Organisms analyzed, their sampling location and year of collection.
\r\n\tIn particular, this book presents topics related to Audio Signal Processing based on the different perspectives of the following: pattern recognition on audio, audio processing, forensic audio, digital filtering, and frequency analysis, and digital signal processing chip for audio, although other topics can be included, too. The most innovative advances on Audio Signal Processing will be included in this book, in order to show the reader, the new researched and developed approaches.
\r\n\r\n\tSpecific cases of voice applications are welcome, where the Voice over IP (VoIP), internet of things (IoT), deep learning (DL) approaches, etc., are very useful including the recent technologies applied on voice and audio.
",isbn:null,printIsbn:"979-953-307-X-X",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"95a662956526e566e5885e68c1d500ed",bookSignature:"Prof. Carlos M. Travieso-Gonzalez",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/8213.jpg",keywords:"Pattern Recognition, Audio Identification, Audio Processing Algorithm, Audio Enhancer, Human Voice Patterns, Text to Speech, Forensic Audio Enhancement, Audio Evidence, Filtering Audio, Wavelet Analysis, Microprocessor for Audio, DSP for Audio",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 24th 2019",dateEndSecondStepPublish:"March 2nd 2020",dateEndThirdStepPublish:"May 1st 2020",dateEndFourthStepPublish:"July 20th 2020",dateEndFifthStepPublish:"September 18th 2020",remainingDaysToSecondStep:"a year",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his M.Sc. degree in 1997 in Telecommunication Engineering at the Polytechnic University of Catalonia (UPC), Spain; and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a Full Professor in Signal Processing and Pattern Recognition and Head of the Signals and Communications Department at ULPGC; teaching from 2001 in subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification systems, signal and image processing, machine learning, and environmental intelligence. He has taken part in 51 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 24 proceedings books, guest editor for 8 JCR-ISI international journals and up to 24 book chapters. He has had over 440 papers published in international journals and conferences (74 of them indexed on JCR – ISI - Web of Science). He has published 7 patents with the Spanish Patent and Trademark Office. He has been supervisor on 8 PhD theses (12 more are under supervision), and 130 Master theses. He is the founder of The IEEE IWOBI Conference series (and President of its steering committee), The InnoEducaTIC conference series, and The APPIS conference series. He is evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC – UK), Spanish Government (ANECA - Spain), Research National Agency (ANR - France), DAAD (Germany), Argentinian Government, and Colombian Institutions. He has been reviewer in different indexed international journals (<70) and conferences (<220) since 2001. He is a member of IASTED Technical Committee on Image Processing from 2007 and member of IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. He will be ACM-APPIS 2021 General Chair and IEEE-IWOBI 2020 and 2020, and was ACM-APPIS 2020 General Chair, IEEE-IWOBI 2019, General Chair APPIS 2019 General Chair, IEEE-IWOBI 2018 General Chair, APPIS 2018 General Chair, InnoEducaTIC 2017 General Chair, IEEE-IWOBI 2017 General Chair, IEEE-IWOBI 2015 General Chair, InnoEducaTIC 2014 General Chair, IEEE-IWOBI 2014 General Chair, IEEE-INES 2013 General Chair, NoLISP 2011 General Chair, JRBP 2012 General Chair and IEEE-ICCST 2005 Co-Chair. He is Associate Editor for the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was Vice-Dean from 2004 to 2010 at the Higher Technical School of Telecommunication Engineers in ULPGC; and Vice-Dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won “Catedra Telefonica” Awards in Modality of Knowledge Transfer, in the editions 2017, 2018 and 2019.",institutionString:"University of Las Palmas de Gran Canaria",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"6",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"24",title:"Technology",slug:"technology"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"247865",firstName:"Jasna",lastName:"Bozic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/247865/images/7225_n.jpg",email:"jasna.b@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6126",title:"Colorimetry and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"f74525de04361957bd947a45b0e64378",slug:"colorimetry-and-image-processing",bookSignature:"Carlos M. Travieso-Gonzalez",coverURL:"https://cdn.intechopen.com/books/images_new/6126.jpg",editedByType:"Edited by",editors:[{id:"27170",title:"Prof.",name:"Carlos",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5783",title:"Motion Tracking and Gesture Recognition",subtitle:null,isOpenForSubmission:!1,hash:"8ca234174d55ac5bb4bd994cdf1541aa",slug:"motion-tracking-and-gesture-recognition",bookSignature:"Carlos M. Travieso-Gonzalez",coverURL:"https://cdn.intechopen.com/books/images_new/5783.jpg",editedByType:"Edited by",editors:[{id:"27170",title:"Prof.",name:"Carlos",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6826",title:"The Use of Technology in Sport",subtitle:"Emerging Challenges",isOpenForSubmission:!1,hash:"f17a3f9401ebfd1c9957c1b8f21c245b",slug:"the-use-of-technology-in-sport-emerging-challenges",bookSignature:"Daniel Almeida Marinho and Henrique Pereira Neiva",coverURL:"https://cdn.intechopen.com/books/images_new/6826.jpg",editedByType:"Edited by",editors:[{id:"177359",title:"Dr.",name:"Daniel Almeida",surname:"Marinho",slug:"daniel-almeida-marinho",fullName:"Daniel Almeida Marinho"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8878",title:"Advances in Microfluidic Technologies for Energy and Environmental Applications",subtitle:null,isOpenForSubmission:!1,hash:"7026c645fea790b8d1ad5b555ded994d",slug:"advances-in-microfluidic-technologies-for-energy-and-environmental-applications",bookSignature:"Yong Ren",coverURL:"https://cdn.intechopen.com/books/images_new/8878.jpg",editedByType:"Edited by",editors:[{id:"177059",title:"Dr.",name:"Yong",surname:"Ren",slug:"yong-ren",fullName:"Yong Ren"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8494",title:"Gyroscopes",subtitle:"Principles and Applications",isOpenForSubmission:!1,hash:"cc0e172784cf5e7851b9722f3ecfbd8d",slug:"gyroscopes-principles-and-applications",bookSignature:"Xuye Zhuang and Lianqun Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/8494.jpg",editedByType:"Edited by",editors:[{id:"69742",title:"Dr.",name:"Xuye",surname:"Zhuang",slug:"xuye-zhuang",fullName:"Xuye Zhuang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7714",title:"Emerging Micro",subtitle:"and Nanotechnologies",isOpenForSubmission:!1,hash:"5c6ea07211f78aafb0b53a184224d655",slug:"emerging-micro-and-nanotechnologies",bookSignature:"Ruby Srivastava",coverURL:"https://cdn.intechopen.com/books/images_new/7714.jpg",editedByType:"Edited by",editors:[{id:"185788",title:"Dr.",name:"Ruby",surname:"Srivastava",slug:"ruby-srivastava",fullName:"Ruby Srivastava"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10151",title:"Technology, Science and Culture",subtitle:"A Global Vision, Volume II",isOpenForSubmission:!1,hash:"1a9e7327c929421c873317ccfad2b799",slug:"technology-science-and-culture-a-global-vision-volume-ii",bookSignature:"Sergio Picazo-Vela and Luis Ricardo Hernández",coverURL:"https://cdn.intechopen.com/books/images_new/10151.jpg",editedByType:"Edited by",editors:[{id:"293960",title:"Dr.",name:"Sergio",surname:"Picazo-Vela",slug:"sergio-picazo-vela",fullName:"Sergio Picazo-Vela"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9336",title:"Technology, Science and Culture",subtitle:"A Global Vision",isOpenForSubmission:!1,hash:"e1895103eeec238cda200b75d6e143c8",slug:"technology-science-and-culture-a-global-vision",bookSignature:"Sergio Picazo-Vela and Luis Ricardo Hernández",coverURL:"https://cdn.intechopen.com/books/images_new/9336.jpg",editedByType:"Edited by",editors:[{id:"293960",title:"Dr.",name:"Sergio",surname:"Picazo-Vela",slug:"sergio-picazo-vela",fullName:"Sergio Picazo-Vela"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6516",title:"Metrology",subtitle:null,isOpenForSubmission:!1,hash:"09e6966a3d9fadcc90b1b723e30d81ca",slug:"metrology",bookSignature:"Anil",coverURL:"https://cdn.intechopen.com/books/images_new/6516.jpg",editedByType:"Edited by",editors:[{id:"190673",title:"Associate Prof.",name:"Anil",surname:"Akdogan",slug:"anil-akdogan",fullName:"Anil Akdogan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"58431",title:"Application of Herbal Medicine as Proliferation and Differentiation Effectors of Human Stem Cells",doi:"10.5772/intechopen.72711",slug:"application-of-herbal-medicine-as-proliferation-and-differentiation-effectors-of-human-stem-cells",body:'Traditional medicine is a popular treatment method for a wide range of diseases in many countries due to its claims of therapeutic activity by patients. The knowledge handed over from generation to generation since ancient ages is the foundation of traditional medicine; hence, the methods of treatment vary depending on the country and the region of origin. In addition, a single region may use different types of traditional medicine due to different ethnic backgrounds of its citizens migrated from different regions of the world.
As the World Health Organization (WHO) defines ‘Traditional medicine is the sum total of the knowledge, skills, and practices based on the theories, beliefs, and experiences indigenous to different cultures, whether explicable or not, used in the maintenance of health as well as in the prevention, diagnosis, improvement or treatment of physical and mental illness [1]’.
Herbal medicine is one of the main streams of every traditional medicine practice regardless of the different types such as Indian traditional medicine (ITM), Sri Lankan traditional medicine (SLTM), traditional Chinese medicine (TCM), Arabic traditional medicine (ATM), African traditional medicine and South American traditional medicine. According to the WHO, medicinal ingredients of herbal medicine include herbs, herbal materials, herbal preparations and finished herbal products that contain active ingredients as parts of plants or other plant materials or combinations; also, 75% of the world’s population use herbs for their basic healthcare needs [2]. Archaeological proof of history in the use of herbal medicine dates back to more than 5000 years [3], along with evidence from ancient literature such as Arkaprakasa (pharmacology and pharmacy) and Kumaratantra (paediatric diseases and management) claimed to be written by the great king Ravana of Sri Lanka where different herbal preparations were introduced for treatment and management of different types of diseases [4]. An in-depth account of the historical events on the use of herbals is reviewed by Petrovska [5]. The same disease could be treated in different countries, with different types of plant-based remedies mainly depending on their indigenous plant varieties and traditional knowledge handed down to generations through thousands of years [6, 7].
Even though history strongly supports the use of herbal medicine, over the last century, traditional knowledge and its effective uses were challenged by Western medical practitioners due to lack of scientific validation of these claims and evidence [2]. However in the recent decades, perspectives on herbal medicine had been evolving into positive thoughts with the isolation of many different effective drugs from plant materials. Existing synthetic drugs are highly expensive, and most of these are required to be replaced due to their instability in vivo [8]. Continuous synthetic drug doses may cause side effects and toxicity [9]; hence, these disadvantages accelerated the search for alternatives derived from natural products. With the technological advances in health and basic sciences, multi screening drug facilities to investigate specific therapeutic activities was made possible. Isolated chemicals and bioactive compounds from plant materials are the main source of modern pharmaceutical drugs, which are either naturally derived or synthetic analogues of existing natural compounds [10]. Among the many different approved drugs derived from herbal material, anticancer drugs [11], antidiabetic drugs [12] and skin care products [13] have maintained topmost status in this long list. In cancer therapy, 25% of the drugs used in the last 20 years are directly derived from plant material [11], and 49% of the antidiabetic drugs approved in the last 10 years were plant derived [12]. Both in developing and developed countries, obesity is becoming a socio-economic burden rendering global populations unhealthy, leading to many non-communicable diseases [14]. There are many weight-reducing supplements prepared by herbal extracts selling in an increased rate in the local markets, even without clinical approval, due to the popularity of the products among the users. Hence, researches are in the timely search of antiobesity herbal preparations [14] as these would flourish as multimillion dollar businesses in the global market.
In order to investigate the different activities of plant-derived extracts, the use of experimental platforms is important prior to clinical trials. Human stem cells are one such experimental platform to investigate therapeutic activities of herbal extracts in vitro. Stem cells with the ability to self-renew and differentiate into many cell lineages have been accepted and extensively used by scientists globally as a reliable tool in their research. Of the many different sources of stem cells, bone marrow stem cells have been used widely in research due to their well-explained characteristics, but the usage paradigm is shifting towards umbilical cord- and cord blood-derived stem cells due to the advantages such as minimum ethical issues, high availability and easy isolation methods of the latter [15]. Since stem cells possess multi-lineage differentiation ability, stimulated differentiation of stem cells could be used to investigate on therapeutics applicable to different types of diseases. For example, human mesenchymal stem cells (hMSCs) could be differentiated into osteocytes, adipocytes and chondrocytes; hence, herbal extracts could be used to investigate the suppression or the stimulation of adipogenic, osteogenic and chondrogenic differentiation properties of stem cells and therefore used to investigate the therapeutic possibilities of diseases related to the above cell lineages in vitro. Human haematopoietic stem cells are the progenitors of cells of blood tissue; hence, those can be differentiated into different blood cell types, and herbal extracts could be used in the above manner to search for therapeutic agents for blood cell-related disorders. Induced pluripotent stem cells (iPSCs), a group of adult somatic cells which are genetically engineered to function as embryonic-like stem cells, are also widely used as disease model stem cell lines in investigations of therapeutic candidates for different disease targets [16]. iPSC-derived cardiomyocytes from patients with cardiovascular diseases and iPSC-derived neurons from patients with neurodegenerative disorders are currently used in high-throughput drug screening [17]. Undifferentiated stem cells are transplanted in order to regenerate tissue in vivo; hence, stimulation factors are important to increase the regeneration speed. The issues of synthetic growth factors and stimulants, i.e. possible side effects, high costs and low availability, remain unchanged; therefore, natural stimulants are preferred. Hence, research is ongoing in search of natural stimulants for stem cells [8]. Furthermore, growth factors, cytokines and vesicles secreted by hMSCs are known as the secretome of hMSCs, and these bioactive factors isolated singly or as a mixture are investigated as potential therapeutic agents, which could reduce the complexities of therapy using cell transplantations [18].
Although it is reported that over 53,000 plant species are used in herbal medicine globally [2], only a few are being tested and reported with scientific proof of their biological activities. The need for merging of traditional herbal medicine knowledge and cutting-edge scientific techniques is essential to produce novel drugs for the benefit of patients. Investigation of mechanisms of actions and pathways, stimulated by herbal extracts, is critical as this would support the scientific validation of such products prior to their market launch. Therefore, this chapter aims to elaborate such research published in the recent decade, in which herbal preparations, extracts and plant-derived bioactive compounds were utilized to produce scientific proof of anti-disease activity, proliferation stimulant activity and differentiation stimulation or suppression of stem cells and their related plausible mechanisms of action. Also, the chapter would identify research gaps related to effects of herbal extracts on stem cells for use in clinical therapy. This chapter harps on the potential of commercializing herbal-based stem cell therapy, which will also be affordable to the developing world.
Our literature search for the use of herbal preparations to stimulate stem cell proliferation and differentiation in clinical trials resulted in no publications or records, explaining that this area of research is at its infancy harping on the vital necessity of this line of research. However, many studies have been reported on the use of animal models with end results of in vitro studies, cross-linking the above-mentioned research areas, suggesting that the impending phases of research would hopefully culminate in clinical trials, leading to natural products being marketed as commercial stem cell-stimulating agents.
There are several reviews published summarizing the effects of different herbal extracts and their isolated bioactive compounds on human and other mammalian stem cells isolated from different sources. Our review published in 2016 elaborates on osteogenic, anti-adipogenic, neurogenic, endothelial/vascular genesis, angiogenesis and proliferative effects of herbal extracts on human mesenchymal stem cells mostly confirmed by RNA expression studies [8]. Dried root of Korean herb Dipsacus asper had been used in Korean traditional medicine for the treatment of bone fracture and the crude extract, and an isolated compound from the herb hedraganin-3-O-(2-O-acetyl)-α-L-arabinopyranoside demonstrated the osteogenic differentiation ability on bone marrow-derived hMSCs via the upregulation of bone-specific proteins and alkaline phosphatase activity [19]. Aloe emodin, present in Aloe latex, showed anti-adipogenic activity on hMSCs by reducing expression levels of mRNAs (resistin, adiponectin, aP(2), lipoprotein lipase, PPARγ and tumour necrosis factor-α) involved in adipogenic pathways [20]. Treatment of adipose-derived hMSCs with dried root extract of Angelica sinensis, an herb used in traditional Chinese medicine, resulted in significantly higher differentiation of neural-like cells than a commonly used neural inducer, butylated hydroxyanisole [21]. The neuroprotective ability of the same extract was proven by decreased induced neurotoxicity in cultured cortical neurons, increasing the extract’s value as a potential candidate in treating neurodegenerative disorders [22]. A patent was obtained for endothelial differentiation of hMSCs treated with olive leaf extract with overexpression of gene vascular endothelial growth factor, PCAM, platelet-derived growth factor receptor and vascular endothelial growth factor receptor (VEGFR)-1 [23]. An updated list of herbals and mechanism of actions on MSCs, as well as a list of phytochemicals (resveratrol, genistein, naringin, icariin) isolated from plant extracts, were presented in a similar review published in 2017 [24]. As elaborated here, all four isolated compounds had proven their ability to differentiate MSCs into osteoblasts and osteocytes, possibly through the Wnt signalling pathway, upregulating gene expression of RUNX2 and Sirt-1 genes [25, 26, 27]. Combined therapy of adipose-derived hMSCs with icariin showed significantly improved survival rates of hMSCs as well as increased expression of endothelial markers and smooth muscle markers in rat models with diabetes mellitus-induced erectile dysfunction (DMED) inhibiting oxidative stress via the regulation of PI3K/Akt-STAT3 signal pathway [28]. A previous review published in 2014 demonstrated the well-established link between herbal preparations used in Ayurveda for a wide array of disorders with their proliferation and differentiation effects which were utilized in similar capacities on stem cell differentiation and proliferation, providing scientific proof of thousands of years old Ayurvedic predictions and practices [29]. Rasayana, the branch of Ayurveda which explains rejuvenation and immunomodulation, has listed the use of approximately 200 herbs [28] which could be investigated for their regeneration capacities on stem cells. Medhya Rasayana, an intellectual/retention rejuvenation therapy method in Ayurveda that consists of four herbal plants, could be used individually or in combination [30]. Studies on stem cells treated with Medhya Rasayana extracts have shown the expression of nestin on stem cells, an early neural stem cell marker [29], confirming the ability of Medhya herbs to treat disorders related to the neural system by increasing the differentiation ability of stem cells.
A growing concern of ameliorating radiation-induced normal tissue injury is arising as it affects the well-being of cancer patients. Stem cell therapy is used to replace these cells and tissues, and many examples are elaborated in the review of Benderitter et al. [31]. Authors have reviewed a number of studies related to ameliorating radiation-induced myelopathy by transplanting neural stem cells to the spinal code [32], potential applications of transplanting salivary gland stem cells in patients with radiation-induced xerostomia [31], potential benefits of transplanting stem cells and biomaterial in animal models with osteoradionecrosis [33] and transplanting autologous fat drafts including adipose-derived stem cells to treat radiation-induced late skin complications [34]. As herbal extracts had proven their differentiation aiding capabilities in in vitro studies, they could act as stimulants to produce increased numbers of stem cells required for patient transplantations. The following figure illustrates the different sources of human mesenchymal stem cells (hMSCs) and their differentiation capabilities with advantages and disadvantages of herbal stimulants and synthetic stimulants (Figure 1) [8].
A glimpse of hMSC sources and their differentiation capabilities stimulated with herbal extracts or synthetic stimulants (Courtesy: Udalamaththa et al. [8]).
Although most of the reported research was on hMSCs, haematopoietic stem cells (HSCs) are also being investigated for their properties of proliferation and differentiation when treated with herbal extracts and their isolated compounds. Proliferation, differentiation and in vitro expansion of healthy hHSCs are important as many haematological malignancies disrupt the healthy hHSC populations. A review that summarizes a wide range of research publications on the use of Chinese herbal medicine (CHM) to promote recovery after HSC transplantation had elaborated the positive results of herbal extracts from plants such as Sheng Di Huang (Rehmannia glutinosa), Bai Zhu (Atractylodes macrocephala), Ren Shen (Panax), Dang Shen (Codonopsis pilosula), Mai Men Dong (Ophiopogon japonicus), Dang Gui (Angelica sinensis), Tai Zi Shen (Pseudostellaria heterophylla), Huang Qi (Astragalus membranaceus) and Ejiao (Equus asinus) [35]. A study on autologous and allogenic HSC transplanted in patients with chronic granulocytic leukaemia, acute non-lymphocytic leukaemia and lymphoma were treated with CHM concluded that treating with CHM reduces complications of transplantations and promotes recovery of haematopoietic functions [36]. More research on various other HSC transplantations against haematological malignancies such as severe aplastic anaemia patients [37], patients with myelodysplastic syndrome [38] and acute paediatric leukaemia [39] were cited herein [35], which had given positive results on patient survival rates, reduction of complications and increasing functional properties of haematopoietic cells. However, most of these studies were based on a low number of samples; hence, the need to perform such studies in large populations arises in order to validate and standardize the CHM procedures. In vitro studies and animal model studies had also been reported on HSC proliferation and differentiation to gather more scientific evidence to support small local clinical trials performed in isolation in individual countries. EMSA eritin, a polyherbal formulation had increased proliferation of HSC in irradiated BALB/c mice in vivo and triggered differentiation into the lymphopoiesis lineages [40]. Inducing of proliferation and attenuating of apoptosis were observed when an immune-mediated aplastic anaemia mouse model was treated with a modified Chinese herbal formula prepared with Radix astragali, Radix Angelicae sinensis and Coptis chinensis Franch [41].
Although stem cell therapy had boosted disease therapy into the next level of modern therapeutic medicine, a major limitation is their poor survival after transplantation into the host, which could be resolved by supplementing the microenvironment with vitamins and other antioxidants [29] and other preconditioning strategies such as exposure to hypoxic conditions, oxidative stress and heat shock treatments [42]. Scientists are studying natural plant extracts and their isolated compounds as alternatives to synthetic growth factors and other stimulants to precondition the microenvironment for the survival of stem cells in vivo, as there are many reports on the presence of a wide array of beneficial phytochemicals in plants. Pretreatment of adipose-derived hMSCs with C. setidens herbal extract had resulted in increased survival of hMSCs by inhibiting ROS-induced apoptosis, suggesting the suitability of the extract to prevent ROS-induced oxidative stress by regulating the oxidative stress-associated signalling pathway and suppressing the apoptosis-associated signal pathway [43]. Extract of Origanum vulgare had protected murine mesenchymal stem cells from oxidative stress when preconditioned with high doses via significantly decreasing caspase-3 activity [44]. Tinospora cordifolia and Withania somnifera, two widely used herbs used in Ayurveda for rejuvenating and anti-ageing treatment, had shown increase in proliferation and inhibition of senescence in WJ-MSCs in vitro [45], suggesting that pretreatment with these herbals would aid in in vivo transplantation procedures.
Cancer stem cells (CSCs), the cells which are capable of self-renewal and produce the heterogeneous lineage of cancer cells [46], has become the most complicated issue in cancer therapy. A number of studies were reported which resulted in the reduction of cancer cells with the treatment of isolated phytochemicals such as epigallocatechin-3-gallate (EGCG), curcumin, resveratrol, lycopene, pomegranate extracts, luteolin, genistein, piperin, β-carotene and sulforaphane [45]. Specifically, sulforaphane, a phytochemical isolated from broccoli, had apoptosis-inducing effects on pancreatic CSCs [47] and could target breast CSCs effectively [48].
However, in this scenario, scientists are changing their approach in the search for natural products by trying to select herbal extracts and preparations known to be effective against cancers in traditional medicine. This approach would be advantageous for both ends of traditional medicine and modern therapeutics, as traditional medicine will have a chance of proving the remedies in a scientific platform and also the modern therapeutics would have the benefit of using time tested anticancer remedies rather than screening thousands of plant extracts for this purpose without any clues. A review on targeting CSCs using TCM remedies and their active compounds had elaborated several approaches of herbal remedies acting on CSCs. Reversion of drug resistance of CSCs, inducing cell death and inhibiting cell proliferation, inhibiting metastasis and targeting CSCs-related miRNAs are the explained methods of TCM remedies targeting CSCs [49]. Berberine liposomes, isolated from rhizome of Coptis chinensis, showed anticancer effects on human breast CSCs transplanted in nude mice by penetrating the cell membrane, accumulating in mitochondria of CSCs and resulting in reversion of drug resistance and apoptotic pathway inducing cell death and inhibiting cell proliferation [50]. Curcumin and epigallocatechin gallate (EGCG) had synergistically targeted breast CSCs by downregulating stemness genes and inducing differentiation of these into non-stem cells [51]. Prostate cancer metastasis had been reduced by a combination of quercetin, extracted from Dysosma veitchii and EGCG by reducing activity of LEF-1/TCF responsive receptor [52]. Honokiol, a lignan isolated from Magnolia officinalis, had inhibited renal cancer metastasis by regulating miR-141/ZEB2 signalling [53]. Triphala, a widely used formulation in Ayurveda, had shown anticancer properties on human colon cancer stem cells by p53-independent proliferation inhibition and apoptosis inducing [54]. Also, a Sri Lankan group of scientists had investigated on anticancer properties of gedunin, a major compound found in Azadirachta indica, which confirmed its apoptotic-inducing properties against human embryonal carcinoma cells—a cancer stem cell model [55].
Many herbal products are commercialized with claims to be rejuvenating adult stem cells which are considered as stem cell supplements. The first stem cell enhancer was developed and patented by Dr. Sahelian of Stemtech HealthSciences, Inc. in 2005 [56] which included extracts of freshwater microalgae and marine macroalgae [57]. Stem Cell 100® is a patent pending product prepared from bioactive compounds of herbal plants Astragalus membranaceus, Vaccinium, Pine bark, Camellia sinensis, Pterocarpus marsupium, Polygonum multiflorum, Schisandra, Fo-Ti root and Drynaria rhizome mainly derived from TCM [58]. ProxyStem is another patent pending nutraceutical stem cell supplement with claims to be working on pro-inflammatory pathways, endothelial cell health, oxidative stress protection, mitochondrial function and artery support [59].
Another product, NutraStem Active, was awarded a patent for claims of its ability to promote adult stem cells with its four ingredients—blueberry extract, green tea extract, L-carnosine and vitamin D3 [60]. Stem-Kine, a clinically proven stem cell supplement, includes ellagic acid which protects stem cells from free radicals [61]; it is a polyphenol compound extracted from mainly a plant of the berry family [62].
Traditional herbal treatment provides a straightforward method to identify the link between plant/herbal remedies and their use in curing different diseases. Modern scientists now use the same strategy to identify herbal plants and their isolated compounds which could be used as stem cell stimulants for much needed stem cell therapeutic procedures. Studies were initiated in this line of research in developed countries as well as in the developing countries acquiring their own traditional herbal treatment knowledge. China seems to be much ahead in this hybrid system of research using Chinese traditional herbs/isolated compounds and cutting-edge screening technologies. Although there is a plethora of internationally published research by research groups from China, many clinical trials and small population studies seem to be concealed from the rest of the world as these reports are published in local journals in their native language [35]. China is not alone in this exercise. Other countries such as Iran and Pakistan too with rich traditional medicine cultures and also into stem cell research are posing the same issue, as the data they produce are not communicated to the international scientific community. This is an unfortunate situation which could be rectified to be more productive through collaborative research with the rest of the world.
In certain instances, developing countries offer their knowledge of traditional herbal medicine together with their rich local plant diversity to collaborate with developed countries to obtain cutting-edge technologies to achieve high potential results in their research. However, the strict local regulations and policies on shipping indigenous plant material or their compounds in developing countries, in order to protect their own plant species, had restricted this productive collaborative research frame work, as this process is lengthy which would lead to late initiation of laboratory investigations.
Another concern is that of the withdrawal of traditional herbal practitioners from providing information on their herbal remedies to the scientists for investigations; it is the latter who have the ability to scientifically prove that these remedies are actually therapeutically potent. Traditional practices are said to be handed down from generation to generation within families, and most of these practitioners treat patients pro bono, as a social service. Since these practitioners claim to have satisfactory results from providing such treatment, they have no reason to give away their herbal remedies, which had been a family secret for over hundreds of years. However, the modern graduates of traditional medicine are more into scientifically validating their treatment methods, as it is beneficial for their practice to have scientifically proven results to compete with Western medicine practitioners. Most traditional medicine practitioners vary the constituents of herbal preparations and the ratios used in their prescriptions even for the same disease depending on the patient’s individual constitution, indicative of the practise of ‘personalized/precision medicine’. ‘Ayugenomics’ irrevocably established that a genetic basis did indeed exist to the said individual constitutions [63]; differential DNA methylation signatures in the three distinct ‘prakriti’ phenotypes (based on distinctly descriptive physiological, psychological and anatomical features of different individuals) demonstrated the epigenetic basis of traditional human classification in Ayurveda with relevance to personalized medicine [64]. Yet, allopathic medicine strongly believes in standard preparations where only the dose is varied among individual patients. Hence, there arises the question whether modern standardized herbal preparations would be universally effective on every patient.
Nevertheless, herbal remedies that were scientifically investigated for their properties with elucidated mechanisms and pathways of action too may face further obstacles prior to their market launch. As mentioned in the review of Udalamaththa et al., a large-scale manufacturing process may reduce the crude properties of herbal remedies, solvents used to prepare extracts may produce adverse effects when used in therapy, complexity and variability of bioactive compounds may make clinical applications challenging [8]. As standardization of herbal products is a must prior to the market launch, similar and stringent regulations will be applied to herbal stem cell stimulants which are to be used in therapy.
Yet, despite all issues involved, pharmaceutical companies are competing for patents and commercializing herbal stimulants, supplements and many more drugs which could be used in stem cell therapy.
Herbal medicine has at all times been a trusted treatment method from ancient eras. The paucity of the use of herbal medicine or related treatment methods in allopathic medicine practices or other types of therapy using cutting-edge technology may pose the ‘missing part of the puzzle’ which scientists and clinicians have strived to solve. However, in recent years, both traditional medicine and novel technologies in synergy have resulted in beneficial outcomes advantageous to the patients. Examples presented in this chapter provide a glimpse of recent studies where herbal medicine and stem cells have been amalgamated in search of treatment against ‘incurable diseases’. Although the use of medicinal plants in stem cell research is in its infancy, with small population studies within local communities, with low numbers of related patents and many complexities in application in a clinical setting, the attraction of this area of research has never ebbed due to the promising results emerging from basic scientific research. Preliminary trials leading to the initiation of in-depth studies may well result in inexpensive, available, nontoxic drugs, stimulants and supplements useful in stem cell therapy.
The authors gratefully acknowledge funding by the National Science Foundation, Sri Lanka (RG/2015/HS/01).
Mexico is a mega-diverse country with 90,839,521 hectares of protected natural areas, of which Terminos Lagoon, classified as “Flora and Fauna Protection Area” has 705, 016 hectares that make it one of the largest areas in the country. Within its status as a Protected Natural Area, there are fishing activities and oil and gas extraction-conduction areas. Until a decade ago, the Campeche Sound contributed nearly 95% of the crude oil and 80% of the national natural gas; today, due to recent changes in the use of fossil energy, production has decreased, although it remains one of the most important companies in Mexico.
Campeche Sound in general, and Carmen Island in particular, have been zones of abrupt changes, beginning with the exploitation of shrimp, which in the years of 1969 to 1979, promoted the economic development of the area. Since 1976, a historical production of crude oil began for Mexico, bringing with it important changes in the population, social changes and therefore, environmental changes.
According to Cuellar et al. [1] in 1979 the company “Mexican Petroleum” (PEMEX) had a large number of facilities for the extraction and processing of crude oil and natural gas on the southwestern coasts of the Gulf of Mexico, as well as a total of 200 facilities for different purposes and 185 production platforms. These changes affected the fishing production and the lives of the inhabitants as they went from being a “fishing village” to industrial zones with an increase in the population and the services that were demanded. By 1970, there were more than 800 vessels with capacities ranging from three to fifty tons to process shrimp and more than twenty freezers and packers of the fishing product in the area, as well as four shipyards for the shrimp fleet; at present, all this activity has been in considerable decline, almost disappearing [2].
When the oil boom began, the first oil spills put fishing activity at risk and there have been very few studies in the area to determine the degree of impact of the oil industry on the deterioration of the environment; certain species such as white shrimp (Litopenaeus setiferus) are permanently banned to avoid completely depleting the resource; however, recent data and with the current crisis of the SARS-COV2 pandemic indicate that poaching activities have increased in the area, even with the capture of protected species; [
The main fishery resources in this area are shrimp, oyster and scale. The oyster harvest currently has the certification of the Commission for the Protection against Sanitary Risks of Campeche (COPRISCAM, by its acronym in Spanish) in the Atasta lagoon; however, its production has been diminished due to the fishing and poaching of this resource. On the other hand, the clam was the main fishing resource in the Pom lagoon for more than four decades. Currently the catch levels show a notable decrease, which has been attributed to excessive overexploitation; some studies attribute it to pollution and deforestation in the mangrove area. According to Ramos and Villalobos [3], the mangrove ecosystems of the Terminos Lagoon Flora and Fauna Protection Area have registered in recent years, a rapid transformation towards ecosystems with low productivity and biodiversity. The causes of this rapid loss are deforestation, urbanization, industrialization, agricultural, fishing and aquaculture activities; and the alteration of the hydrological regime of the Grijalva-Usumacinta river basin.
The shrimp fishery does not show a better picture. This resource, which was exploited for many years, is now only one fifth of what was obtained in the 1980s. Historical data show that in 1972 the yield of pink shrimp (Farfantepenaeus duorarum) was 11,904 tons and in 2000 it was only 1,409 tons [4]. With regard to the seven-bearded shrimp (Xiphopenaeus kroyeri) from 1993 due to its overexploitation in the coastal marine strip and with the entry into force of Mexican standards NOM-004-PESC-1993 and NOM-002-PESC-1993 (Diario Oficial de la Federación 1994., Plan de Manejo Pesquero de camarón siete barbas Xiphopenaeus kroyeri en las costas de los estados de Campeche y Tabasco) its fishing has been regulated by fishing bans seasons.
Overall, the development of the oil industry, urbanization and overexploitation of marine species have had a strong environmental impact, as well as in the displacement of deep-sea fishing areas. However, very few studies have been conducted in the area that show the overall impact generated on the flora and fauna of this region. Studies have been reported on the impacts on benthic communities and their relation to the presence of hydrocarbons [5]; the studies show the presence and concentration of hydrocarbons in sediments and organisms [5, 6, 7, 8, 9]. There are numerous factors to be considered in the deterioration of an ecosystem, among them the great quantity of organic and inorganic substances that are generated not only by oil activity, but also by the entire related industry. In the years 2000–2001 alone, a total of 104,901 tons of sulfur oxides (SOx) and 1,747 tons of nitrogen oxides (NOx) were emitted into the atmosphere [1, 10]. There are currently no recent studies to compare these levels.
Among the inorganic contaminants that cause interest due to the adverse effects they can cause to living beings, heavy metals stand out, some of which have been cataloged as serious threats to human health because of their carcinogenic risk. Regarding the studies carried out to determine the degree of impact on the Campeche Sound, we can cite Vázquez et al. [11] who carried out oceanographic campaigns and comparative studies on the levels of Cd, Cr, Ni and V in marine sediments. In their study, they highlight that oil activity, fishing and marine traffic in the area substantially modify the levels of heavy metals; they also agree that the levels of organic matter have a direct influence on the distribution of metals in sediments; they conclude that metals can interact with organic matter in different ways forming phenomena of adsorption, ion exchange, coprecipitation and complexation.
Other studies have determined the levels of heavy metals in sediments and organisms along the Terminos, Atasta and Pom lagoons and in the Palizada, Candelaria and Chumpan Rivers. Aguilar et al. [12] attributed the levels of Cd, Cr, Cu, Hg and V detected in oysters (Crassotrea virginica) to anthropogenic activities; additionally, they calculated the condition index of the oyster (variable that indicates the condition of health) and attributed a decrease in it to the presence of heavy metals; likewise, the levels of Cd, Cr and Cu exceeded the permissible limits established for mollusks and fishery products in the Mexican norms NOM-031-SSA1–1993.
In another study, the concentrations of Cd, Fe, Cu, Pb and Zn were evaluated in oyster (Crassostrea virginica), crab (Callinectes sapidus) and shrimp (Litopenaeussetiferus). The results showed that both oyster and crab are foods that present high levels of Cd, Fe, Cu and Pb in comparison with shrimp; in this study all detected levels were within the permissible limits established by the Mexican Official Standards NOM-031-SSA1–1993 [13].
Regarding sediment studies, Montalvo et al., [14] analyzed the concentration of heavy metals in sediments of the Palizada River; the results showed a high relationship between the levels of metals found with the climatic season and the texture of the sediment. Later, Canedo et al. [15] evaluated the levels of heavy metals in sediments of the Terminos Lagoon; they concluded that the spatial distribution was influenced by river discharges and that the significant correlations found between B, Ba, Co, Mn, Ni and Zn are due to natural biogeochemical inputs; they also found heavy metal levels above background concentrations in sites near the Atasta Lagoon and considered this area vulnerable to heavy metal contamination.
Heavy metals exert a wide range of toxic effects in humans, aquatic and terrestrial life [12]. Different strategies have been developed to study the degree of contamination of an area, such as the use of organisms called sentinels (oysters, clams) that due to their feeding habits, their little or no mobility, their little capacity to regulate the concentrations of ions in the internal fluids and their high tolerance to the metal ions absorbed above the metabolic requirements [16], make them ideal for studies of contamination by heavy metals; likewise, studies on fish have been of considerable interest to understand the toxic effects and because they are an important source of nutrients for humans and have the potential to bioaccumulate heavy metals in their tissues [17, 18]. Food contamination can come from different sources: from contamination of the aquatic environment, during harvesting, transportation, handling or packaging.
Regarding the toxicity of heavy metals, Hg is distinguished because it does not have any biological function; its presence in the environment is due to anthropogenic causes; the natural causes of contamination by this element are not significant. It is an extremely toxic metal; organisms that have been exposed have few biological mechanisms for its elimination and it accumulates progressively through the food chain [19, 20]. The most common form of organic Hg is in the form of methyl mercury (MeHg). Usually levels above tolerance limits can alter the normal functioning of the central nervous system and affect the kidneys and the immune system [21]. Studies show that the toxicity attributed to it is associated with aging and cell death. Bryan and Langston’s study [22] study on the oyster Crassostrea virginica showed evident embryonic abnormalities at concentrations of 5 to 10 μg/L, while the survival rates of clams, copepods, shrimp and crustaceans were affected by the increase in Hg levels.
Cadmium is an element that has no natural source of generation so its presence in aquatic systems and organisms is entirely anthropogenic [23]. Cd does not have biochemical or nutritional functions; it is highly toxic to plants and animals. The International Agency for Research on Cancer points out the Cd and its compounds as carcinogenic. Cd intake pathways in organisms are gastrointestinal and respiratory; it has severe consequences in the blood by binding to high molecular weight proteins [24]; likewise, it has been reported that it can cause different alterations in the biology of living beings, since it accumulates mainly in the liver and can have a half-life of thirty years [25]. In phytoplankton species, growth inhibition was observed at concentrations as low as 1 μg/L [22]. Other species such as Galaxias maculatus exposed to acute concentrations showed deficiencies in metabolic rate and deteriorating oxygen consumption; also, stress parameters and decrease in liver catalase activity were observed [26]. In the Henanese Sinopotamon crab, a high deterioration of enzyme activity was found in the stomach, intestines, and hepatopancreas [27]. For Crassotrea virginica oyster, hepatological changes of the intestine, digestive gland and other organs were presented when exposed to Cd [28]. Due to its source of origin, the activities by which it can be generated are the industrial processes of fertilizer production, by-product of the smelting of other metals and in electronic devices [24].
Cu is an essential element for the growth and metabolism of many living beings; when the levels are increased, it becomes a not very tolerable element [12]. This metal can cause harmful effects in fish, showing damage such as histopathological alteration and accumulation in different organs [29]. Other studies [22] presented experimental evidence that a considerable number of species are sensitive to concentrations of 1 to 10 μg/L of Cu, while at levels of 2 μg/L, the survival rate in young scallops was reduced; likewise, oyster and mussel embryos showed abnormalities in growth and development after exposure to 5 μg/L and the isopod crustacean Idothea baltica showed an increase in population mortality. Calabrese et al. [30] studied the acute toxicity of Cu in embryos of Crassostrea virginica; the results showed that at certain concentrations there was no development in more than 50% of the individuals under study.
Pb can be in the environment in particulate form or formed into lead compounds; it can be generated as a result of human activities such as oil combustion, industrial processes and solid waste combustion; there are no natural sources of lead, its presence in the environment is anthropogenic [25]. It has been reported that in humans this metal can cause alterations of the nervous system, kidney problems and is related to the development of cancer. In exposed fish, it has been shown to decrease red and white blood cells and decrease hemoglobin levels [18]. The process of Pb accumulation in fish tissues causes oxidative stress; thus, this stress induces synaptic damage and neurotransmitter malfunction and influences immune responses [31].
Ni is a non-essential and toxic metal whose main source of exposure is food, highlighting fish and vegetables that are treated with wastewater. Its introduction to the aquatic environment is anthropogenic. The effects that it causes in different organisms were studied by Martin et al., [32] in embryos of Pacific oyster (Crassostrea gigas), embryos of laurel mussel (Mytilus edulis Linnaeus) and larvae of Dungeness crab (Cancer magister Dana) exposed to ten metals among them Ni; the effects caused in these species are the abnormal development in more than 50% of the studied individuals. In fish such as Colisa fasciatius, a freshwater teleoste, exposed to 45 ppm nickel sulfate, the adverse effects observed were leukopenia due to reduced numbers of lymphocytes and polycythemia, as well as a considerable delay in the rate of erythrocyte sedimentation of dying fish [33].
The conditions of the aquatic environment have a great influence on the transport and mobility of metals such as Ni, so Tamzin et al., [34] carried out their studies in saline waters, hoping that these conditions would decrease the impact on marine biota; however, despite the speciation of the metal in these saline environments it was determined that the physiology of the organisms is the main factor in the toxic impact, finding deterioration as inhibition of breathing and promotion of oxidative stress. In other studies, the mortality rate of African catfish, Clarias gariepinus, showed a linear trend with increasing concentration; the researchers concluded that the depression observed in hematocrit, hemoglobin and erythrocyte decreases in this hematological study can be used as an indicator of Ni-related stress in fish [35].
Terminos Lagoon is the largest lagoon-estuarine ecosystem in Mexico by area and volume. The water body and immediately surrounding shorelands are fully incorporated into a National Flora and Fauna Reserve comprised of 705,016 ha of open water and associated wetlands and upland. Terminos Lagoon consists of about 200,108 ha of open water including associated lagoons and channels, with an average depth of 4 m, surrounded by about 259,000 ha of mangrove and cattail marsh. Of the surrounding 180,000 ha of land that is in some productive use, 90% is cattle ranching, 6% is agricultural, and 4% is urbanized, principally the City of Carmen. It is separated from the Gulf of Mexico by the Carmen Island, a 37 km long, 4 km wide barrier island with two mouths, of 3.2 and 3.8 km located to the east and west, respectively.
Terminos Lagoon was declared as a Federal Flora and Fauna Protection Zone in 1994 and is considered a “critical habitat” by the Mexican Environmental Agency [
This work summarizes the results of several investigations carried out in Terminos Lagoon Natural Protected Area where the content of heavy metals in a variety of aquatic organisms was analyzed. The sampling periods and collect sites are shown below, as well as the aquatic organisms used for the determination of heavy metals.
In 2009, during two sampling campaigns (rainy and dry seasons), the oyster (Crassostrea virginica) was collected at the mouth of three of the rivers that flow into the Terminos Lagoon: the Palizada River, the Chumpan River and the Candelaria River. At each site, three sampling points were established and 100 organisms were obtained from each one.
In 2013–2014 three different types of organisms were analyzed: the oyster (Crassostrea virginica) collected in two sites, Estero Pargo and Mouth of Atasta; shrimp (Litopenaeus setiferus) obtained by trawling in depths of less than 5 fathoms in the Terminos Lagoon; and the crab (Callinectes sapidus) collected at the mouth of the Palizada River. All the organisms were donated by the fishermen’s cooperatives. 60 organisms of commercial size were obtained of each species.
In 2014, samples of three species of macrophytes (Cyperus ligularis L., Lemna minor and Typha domingensis) were collected and analyzed in the “Arroyo La Caleta”, which is a natural water channel parallel to the coast that crosses Carmen City, with a variable extension between both banks. The main contribution of water enters through the west mouth of the Terminos Lagoon and does not present an outlet. Other contributions of water come from land and urban drainage. The system is 7.5 km long. In the case of T. domingensis and C. ligularis L., the complete plants were cut, stored in plastic bags, and placed in refrigeration for later analysis in the laboratory. The samples of L. minor were collected in plastic bags in which water from the “Arroyo La Caleta” was left and, like the previous macrophytes, they were stored in refrigeration.
In 2017, the clam Rangia cuneata was collected at four sampling points in the Atasta Lagoon, which is a lagoon that empties into Terminos Lagoon. In total, eight composed samples were analyzed for this study. In the same lagoon (Atasta) but in 2018, during two sampling campaigns (rainy and dry seasons), catfish (Ariopsis felis) was obtained by fishing with cast nets eight. 30 composed samples were analyzed.
Table 1 summarizes information about of the analyzed organisms, their sampling location and year of collection, while Figure 1 shows the Terminos Lagoon Natural Protected Area and the sampling locations of the organisms analyzed.
Species analyzed | Sampling location | Year of collection |
---|---|---|
Oyster (Crassostrea virginica) | Mouth of the Palizada1, Chumpán2 and Candelaria3 rivers that flow into the Terminos Lagoon. | 2009 |
Oyster (Crassostrea virginica) | Pargo Estuary4 and Atasta Mouth5 | 2013–2014 |
Shrimp (Litopenaeus setiferus) | Terminos Lagoon | 2013–2014 |
Crab (Callinectes sapidus) | Mouth of the Palizada River1 | 2013–2014 |
Macrophytes (Cyperus ligularis L., Lemna minor and Typha domingensis) | Arroyo La Caleta6 | 2014 |
Clam Rangia cuneata | Atasta Lagoon7 | 2017 |
Catfish (Ariopsis felis) | Atasta Lagoon7 | 2018 |
Organisms analyzed, their sampling location and year of collection.
Superscripts indicates their location on the map (Figure 1).
Terminos Lagoon natural protected area and sampling locations of the organisms analyzed: 1) Palizada River; 2) Chumpan River; 3) Candelaria River; 4) Pargo estuary; 5) Atasta mouth; 6) arroyo La Caleta; 7) Atasta lagoon.
The methods used for the processing of tissues and extraction of heavy metals reported in the various studies considered for the evaluation in this work, have few variations or modifications according to “Official Mexican Standard” (NOM-117-SSA1–1994, Test method for the determination of cadmium, arsenic, lead, copper, iron, zinc and mercury in food) for food analysis that generally consisted of an acidic digestion of the tissues with a repetitive addition of concentrated HNO3 and H2O2.
For bivalves: before extracting the tissues, they were purged during a period of 24 hours in a system with a controlled salinity of 20 psu. By so doing, the bivalves eliminated all the organic matter from their intestines that could have interfered with the results. Finally, they were shucked manually. Organisms were dried through the process of lyophilization for 24 hours and then were homogenized. Subsequently, an acid digestion was carried out, according to the official Mexican standards, as mentioned at the beginning of this section.
Bivalves samples were analyzed by Plasma Emission Spectroscopy (ICP), Perkin Elmer model 400 instrument was used, and standard solutions (J. Baker). For the evaluation of the analytical quality, the samples of oyster tissues were treated in duplicate and were analyzed in parallel with the standard certificates of “Standard reference materials oyster tissue” (SRM-1566b), with a recuperation percentage of between 84 and 94%.
For crustaceans and fish: composite samples were used for which the edible part was extracted from the organisms of each species, the tissues were homogenized with a food processor and a final sample of (20 ± 0.001 g) was taken. The digestion was carried out by adding 10 mL of HNO3 to the tissues and placed on a heating grill at a controlled temperature, after the total destruction of organic matter, 2 mL of H2O2 was added to each sample in 30% solution, concentrating them up to a volume of 1 mL, finally, the concentrate was filtered through Whatman No. filter paper 32, measuring to a final volume of 20 mL for subsequent analysis. The tissue samples were analyzed in an atomic flame absorption equipment adapted with a Thermo-Scientific brand graphite furnace.
For macrophytes: samples were dried in a drying oven at a temperature of 65° C for 96 hours. The dried samples were dissected at the root, stem, and leaf. The digestion was carried out as mentioned for crustaceans and fish, following the methodology of the official Mexican standard NOM-117-SSA1–1994 (Test method for the determination of cadmium, arsenic, lead, tin, copper, iron, zinc and mercury in food). Macrophytes samples were analyzed by Plasma Emission Spectroscopy (ICP).
Table 2 shows the concentrations of metals found in different organisms, which are the basis for determining the risk factor analysis; as expected, organisms such as bivalve mollusks from the Candelaria, Chumpan and Palizada rivers, show the highest values in Cd, exceeding the limits established by the official Mexican Standards (NOM 242 and the USFDA standards Table 3). Likewise, Cu levels are high in clams Rangea cuneata, exceeding international specifications (Table 3); the Pb levels in Ariopsis felis exceed all the international specifications contemplated in this study. The reference values reported in national and international standards for heavy metals in marine fish and mollusks are shown in Table 3.
Organism | Heavy metal levels in different organisms in μg g−1 | Location | Reference | ||||
---|---|---|---|---|---|---|---|
Cu | Hg | Cd | Ni | Pb | |||
Crassotrea virginica | 56.630 (43.320–56.630) | ND | 0.038 (0.020–0.038) | ND | 0.137 (0.043–0.137) | Terminos Lagoon | Aguilar et al., 2014 |
Crassotrea virginica | 60.5 (33.24–60.5) | 1.1 (0.05–1.1) | 2.4 (0.243–2.4) | ND | ND | Candelaria River | Aguilar et al., 2012 |
Crassotrea virginica | 90.8 (30.50–90.8) | 0.7 (0.01–0.7) | 3.2 (0.23–3.2) | ND | ND | Chumpan River | Aguilar et al., 2012 |
Crassotrea virginica | 176.5 (90.23–176.5) | 0.5 (0.02–0.5) | 3.0 (1.2–3.0) | ND | ND | Palizada River | Aguilar et al., 2012 |
Callinectes sapidus | 57.800 (34.680–57.800) | ND | 0.0687 0.0398–0.0687 | ND | 0.4253 (0.2644–0.4253 | Terminos Lagoon | Aguilar Et al., 2014 |
Litopenaes setiferus | 58.470 (41.620–58.470) | ND | 0.015 (*ND-0.015) | ND | ND | Terminos Lagoon | Aguilar et al., 2014 |
Ariopsis felis | — | 0.02934 (0.00159–0.02934) | 1.2864 (0.00454–1.2864) | 41.77 (0.33–41.77) | 3.2097 (0.033–3.2097) | Atasta Lagoon | This Study |
Rangea cuneata | 308.2135 (6.1609–308.2135) | ND | 0.74827 (0.2905–0.7482) | 30.2055 (13.7574–30.2055) | ND | Atasta Lagoon | This Study |
Heavy metals determined in different marine species.
National and international legislation governing heavy metal levels in fish in μg g−1 | |||||||
---|---|---|---|---|---|---|---|
Cu | Hg | Cd | Ni | Pb | Year | ||
JECFA1 | — | 0.5 | — | — | 0.5 | 1989 | |
WHO2 | 20 | 0.005 | 2 | — | 2 | 1996 | |
USFDA3 | — | — | — | 70-80 | — | 1993 | |
NOM 2424 | — | 1 | 0.5 | — | 1 | 2009 | |
FAO5 | 30 | 0.5 | 0.5 | — | 0.5 | 1983 | |
National and international legislation governing the levels of heavy metals in marine mollusks and crustaceans in μg g−1 | |||||||
Cu | Hg | Cd | Ni | Pb | Year | ||
NOM 2426 | — | 1 | 0.5 | — | 1 | 2009 | |
USFDA7 | — | — | 4.0 | — | 1.7 | 1993 | |
NAUEN8 | 32.5 | — | — | — | — | 1983 | |
ISSC9 | — | — | — | 80 | — | 2007 | |
Permissible levels of heavy metals in fishery products.
JECFA, 1989 Evaluation of Certain Food Additives and Contaminants (Thirty-third Report of the Joint FAO/WHO Expert Committee on Food Additives) [meeting held in Geneva from March 21 to 30, 1988]. World Health Organization.
WHO, 1996. Health criteria other supporting information. In: Guidelines for Drinking Water Quality p. 31–388.
USFDA, 1993. Food and Drug Administration, Guidance for Nickel in Shellfish. DHHS/PHS/FDA/CFSAN/Office of Seafood, Washington DC, 1993.
NOM-242-SSA-2009. Products and services. Fresh, refrigerated, frozen and processed fishery products. Health specifications and test methods.
FAO,1983. Compilation of legal limits for hazardous substances in fish and fishery products Fish Circular 464:5–100.
NOM-242-SSA1–2009 Products and services. Fresh, refrigerated, frozen and processed fishery products. Health specifications and test methods.
USFDA, 1993. Guidance document for lead in shellfish. Center for Food Safety and Applied Nutrition. United States Food and Drug Administration, Washington, D. C.
Nauen C.E, 1983. Compilation of legal limist for hazardous substances in fish and fishery products. FAO fisheries circular 764. United Nations Food and Agriculture Organization. Rome, Italy, 102 pp.
ISSC,2007. National shellfish sanitation program. Guide for the control of molluscan shellfish. Interstate Shellfish Sanitation Conference. U.S. Food and Drug Administration, Department of Health and Human Services. Washington, D.C., 549 pp.
Concentrations of heavy metals in the macrophytes collected in “Arroyo La Caleta”, where detected below the limit of quantification of the method (not detected ND) for B, Be, Fe, Mn and Si to 4671.29 μg g−1 for Fe. The average concentration of the metals analyzed presented the following order: Be<As<V < Mn < B < Si < Fe. Of the three species of macrophytes studied, the one that presented higher concentrations of metals was Cyperus ligularis L. accumulating higher percentages of Be, Fe, Mn, Si and V, followed by Typha domingensis which presented the highest concentration of As and average concentrations of the other metals, finally, Lemna minor. Regarding the structure analyzed in plants, the highest concentrations were found in the roots and to a lesser extent in the stem and leaves, which tells us about the ability to translocate (mobilize) the metals to the aerial parts as a strategy of adaptation to pollution due to heavy metals. In general, the highest concentrations found in macrophytes were related to the sites of highest anthropogenic activity [36]. It should be noted that, of all the collection sites in the Términos Lagoon Natural Protected Area analyzed in this study, the “Arroyo La Caleta” is considered one of the most contaminated because it receives wastewater from Carmen City, which is why the fish products obtained there have not been considered suitable for human consumption for several years. Due to the above, the study of the behavior of heavy metals in this location, was based on organisms with high levels of adaptation to heavy metal pollution that are not used for human consumption.
According to the USEPA [37, 38] the estimate of potential risk to human health from the consumption of contaminated marine products is based on the estimated daily intake (EDI), the target hazard quotient (THQ), hazard index (HI) and target cancer risk (TR). The first parameter that was estimated is a function of the relation (EDI; μg kg−1 week−1)
Where FIR is the food ingestion rate of fish or shellfish consumed by an adult; according to CONAPESCA, these data for Mexico, is up to 12 kg year−1 or the equivalent of 230 g week−1 for an adult with an average weight. For children aged 4 to 6 years, the recommended food ingestion rate is 100 grams per week (CONAPESCA: National Commission for Aquaculture and Fisheries, Fishery production statistics,
According to studies by Araneda [39] the population group of adolescents is the one that shows a lower food ingestion rate of these foods; there is no data on intake in Mexico, but the recommendations indicate that an average adolescent between 14 and 17 years of age should consume between 240 and 300 grams of fish and seafood per week, the equivalent of an average of 15. 64 kg year−1. Due to the scarcity of information in this population group, in this study it is considered that the average food ingestion rate for adolescents is 7.8 kg year−1, which is considered a low consumption and that represents a value of 150 gr week−1.
The parameter BWa is the reference body weight of an adult. In countries such as China, this data is 55 kg [40]; the average weight of a Mexican adult is 70 kg. The average weight for children between 4 and 6 years old is 16 kg [41] and for an average adolescent between 14 and 17 years old the weight considered is 54 kg. All the reference data are based on the characteristics and habits of the Mexican population without obesity problems. The MC parameter is the metal concentration (Cu, Pb, Ni, Hg) expressed in μg g−1.
The estimated results for the EDI parameter are shown in Table 4. With the data from the population intake rates, we can estimate the THQ parameter which is a dimensionless amount and a relationship between the concentration of heavy metals in ingested food with other factors. According to USEPA [37, 38] the THQ value should not exceed the numerical value of 1. Estimated values below 1 indicate that the contaminant levels do not cause adverse effects or potential non-carcinogenic risks in exposed persons during the estimated average life span of the Mexican population of 70 years.
The model for estimating the target hazard quotient (THQ) is determined by Eq. 2. The units were adequate for not using correction factors (Table 5).
Where Efr is the exposure frequency to the trace element, (365 days year−1), EDtot is the exposure duration (average life span of 70 years), FIR is the food ingestion rate in grams per day for the respective food item (g day −1), MC is the concentration of the trace element in the given food item (μg g−1), Rfd: is the oral reference dose of the trace element (μg g-1 day−1) (5 × 10−4 for Hg; 1 × 10−3 for Cd; 4 × 10−3 for Pb; 2 × 10−2 for Ni and 4 × 10−2 for Cu), BWa is the reference body weight (g), Atn is the averaged exposure time (Efr x EDtot).
The values obtained show a variable trend among the reference population groups, with children aged 4–6 years being those with the highest values of EDI for Cu and Ni; these values are directly related to weight.
The accumulated risk was evaluated by the individual sum of each of the THQ factors which represent the risk index (HI), which is shown in Eq. 3. These values, like THQ, must not exceed the numerical value of 1, otherwise it could indicate that there are considerable risk factors for the consumption of marine products reported in this study.
According to the estimated results (Table 6) no value calculated for THQ and HI exceed the parameters established to consider a risk to health by the intake of these contaminants from the consumption of fish and seafood.
Estimated daily intake EDI (μg kg−1 week−1) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cu | Cd | Pb | Ni | Hg | |||||||||||
Organism | Adults | Children (4–6 years) | Teenagers (14–17 years) | Adults | Children (4–6 years) | Teenagers (14–17 years) | Adults | Children (4–6 years) | Teenagers (14–17 years) | Adults | Children (4–6 years) | Teenagers (14–17 years) | Adults | Children (4–6 years) | Teenagers (14–17 years) |
Crassotrea virginica | 186.070 | 353.937 | 156.256 | 0.1248 | 0.2375 | 0.10485 | 0.4501428 | 0.85625 | 0.37801 | — | — | — | — | — | — |
Crassotrea virginica | 198.785 | 378.125 | 166.935 | 7.8857 | 15 | 6.622 | — | — | — | — | — | — | 3.6142 | 6.875 | 3.0351 |
Crassotrea virginica | 298.342 | 567.500 | 250.540 | 10.514 | 20 | 8.8296 | — | — | — | — | — | — | 2.3 | 4.375 | 1.93148 |
Crassotrea virginica | 579.928 | 1103.125 | 487.009 | 9.857 | 18.75 | 8.277 | — | — | — | — | — | — | 1.64285 | 3.125 | 1.3796 |
Callinectes sapidus | 189.914 | 361.250 | 159.485 | 0.226 | 0.42937 | 0.189561 | 1.39741 | 2.6581 | 1.1735 | — | — | — | — | — | — |
Litopenaes setiferus | 192.115 | 365.437 | 161.333 | 0.049 | 0.09375 | 0.041388 | — | — | — | — | — | — | — | — | — |
Ariopsis felis | 143.171 | 313.180 | 4.226 | 1.878.04 | 3.54951 | 1.045 | 2.285 | 8.8563 | 137.244 | 261.0625 | 115.2542 | 0.096402 | 0.1833 | 0.08095 | |
Rangea cuneata | 1012.700 | 1926.33 | 850.440 | 2.4601 | 4.675 | 2.06392 | — | — | — | 99.246 | 188.78 | 83.344 | — | — | — |
Estimated daily intake (EDI), taking as a reference a population group between adults and children of different age ranges.
Target hazard quotient (THQ) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cu | Cd | Pb | Ni | Hg | |||||||||||
Organism | Adults | Children (4–6 years) | Teenagers (14–17 years) | Adults | Children (4–6 years) | Teenagers (14–17 years) | Adults | Children (4–6 years) | Teenagers (14–17 years) | Adults | Children (4–6 years) | Teenagers (14–17 years) | Adults | Children (4–6 years) | Teenagers (14–17 years) |
Crassotrea virginica | 0.1056 | 0.0884 | 0.0262 | 0.0005 | 0.0024 | 0.0007 | 0.0005 | 0.0022 | 0.0007 | — | — | — | — | — | — |
Crassotrea virginica | 0.1127 | 0.0945 | 0.0280 | 0.0342 | 0.1500 | 0.0444 | — | — | — | — | — | — | 0.0291 | 0.1273 | 0.0377 |
Crassotrea virginica | 0.1690 | 0.1418 | 0.0424 | 0.0457 | 0.2000 | 0.0593 | — | — | — | — | — | — | 0.0185 | 0.0820 | 0.0240 |
Crassotrea virginica | 0.3287 | 0.2757 | 0.0817 | 0.0428 | 0.1875 | 0.0556 | — | — | — | — | — | — | 0.0132 | 0.0580 | 0.0172 |
Callinectes sapidus | 0.1077 | 0.0903 | 0.0268 | 0.0009 | 0.0043 | 0.0013 | 0.0015 | 0.0067 | 0.0020 | — | — | — | — | — | — |
Litopenaes setiferus | 0.1088 | 0.0913 | 0.0270 | 0.0002 | 0.0009 | 0.0003 | — | — | — | — | — | — | — | — | — |
Ariopsis felis | — | — | — | 0.0184 | 0.0804 | 0.0239 | 0.0115 | 0.0502 | 0.0149 | 0.0299 | 0.1305 | 0.0387 | 0.0008 | 0.0034 | 0.0010 |
Rangea cuneata | 0.5739 | 0.4815 | 0.1427 | 0.0107 | 0.0467 | 0.0139 | — | — | — | 0.02160 | 0.0944 | 0.0280 | — | — | — |
Estimated values of the target hazard quotient (THQ) in a reference population group.
Hazard index values (HI) | |||
---|---|---|---|
Organism | Adults | Children (4–6 years) | Teenagers (14–17 years) |
Crassotrea virginica | 0.1065 | 0.0930 | 0.0276 |
Crassotrea virginica | 0.1467 | 0.2445 | 0.0724 |
Crassotrea virginica | 0.2148 | 0.3419 | 0.1013 |
Crassotrea virginica | 0.3715 | 0.4632 | 0.1372 |
Callinectes sapidus | 0.1101 | 0.1013 | 0.0300 |
Litopenaes setiferus | 0.1091 | 0.0923 | 0.0273 |
Ariopsis felis | 0.0298 | 0.1306 | 0.0784 |
Rangea cuneata | 0.5846 | 0.5283 | 0.1567 |
Estimated values of the hazard index estimated for a reference population, expressed as the sum of all the individual HI factors.
The results indicate that the estimated HI values do not represent a risk for the reference population, since they do not exceed the comparison value of 1.
The risk from carcinogens was indicated in this study by the TR values (Table 7). For the estimation of these parameters, the values of Region III were taken, where the population of Mexico is included according to USEPA criteria [37, 38]. The equation that represents risk for carcinogenic factors is represented by the following expression:
Target cancer risk (TR) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Cd | Pb | Ni | |||||||
Organism | Adults | Children (4–6 years) | Teenagers (14–17 years) | Adults | Children (4–6 years) | Teenagers (14–17 years) | Adults | Children (4–6 years) | Teenagers (14–17 years) |
Crassotrea virginica | 5.768E-11 | 2.087E-10 | 4.10308E-11 | 2.460E-08 | 8.920E-08 | 1.637E-07 | |||
Crassotrea virginica | 2.300E-07 | 8.325E-07 | 1.63668E-07 | — | — | — | — | — | — |
Crassotrea virginica | 4.090E-07 | 0.004 | 2.90966E-07 | — | — | — | — | — | — |
Crassotrea virginica | 3.595E-07 | 1.307E-06 | 2.55732E-07 | — | — | — | — | — | — |
Callinectes sapidus | 1.886E-10 | 6.821E-10 | 2.37122E-07 | 2.371E-07 | 8.596E-07 | 1.686E-07 | — | — | — |
Litopenaes setiferus | 8.987E-12 | 3.251E-11 | 1.34108E-10 | — | — | — | — | — | — |
Ariopsis felis | 6.610E-08 | 2.391E-07 | 6.3933E-12 | 2.087E-10 | 5.577E-06 | 8.988E-05 | 0.458 | 1.658 | 0.325 |
Rangea cuneata | 2.234E-08 | 8.086E-08 | 4.70213E-08 | — | — | — | 0.3308 | 1.867 | 0.158 |
Estimated values of the target cancer risk (TR) in a reference population.
Where TR is the target cancer risk (dimensionless factor) and Cfo is the oral cancer slope factor; USEPA criteria [42] (μg g−1 bw day−1). The other values are the same used for the estimation of EDI and THQ. In this study, the Cfo values used to estimate TR are 8.5 × 10−3 for Pb and 1.7 for Ni, a metal that is on the list of potent carcinogens [42]. The value of 2.59 × 10−4 was used for Cd which has been considered carcinogenic according to the International Agency for Research On Cancer (IARRC:
The results of the target cancer risk for Cd and Pb show that the three study categories (adults, children, and adolescents) present a low risk of developing cancer from the ingestion of fish and shellfish. On the other hand, the target cancer risk calculated for Ni shows that the population group of children aged 4–6 years represents a very high risk, and a moderate risk is expected for adults and adolescents.
In certain cases, it is not advisable to limit the consumption of these marine products. It is more useful to be vigilant, as well as to limit the frequency of consumption when there is evidence of risk for the population. These actions make the difference in developed countries that have public policies and develop research through environmental agencies to develop models that can be applicable to different regions of the world and thus predict or estimate possible risks.
There are general recommendations in Mexico regarding the consumption of fish and seafood by children under four years of age. Certain countries such as Canada restrict consumption of species caught in rivers and lakes and recommend that consumption in the population group of children 1–4 years old be only 75 g month−1 and in children 5–11 years old be 125 g month−1, as well as that pregnant women should not consume more than 150 g month−1 [44]. Some of these recommendations are in most cases based on economic interests.
Bellanger et al. [44], analyze in their studies the economic implications of exposing a population group to the toxic effects of heavy metals. In Mexico, consumption of fish and seafood is lower than that of other foods. In Mexico, fish products are governed by Mexican standards that limit the presence of heavy metals in their products; likewise, government institutions regulate the health of oyster and clam banks (due to the presence of pathogenic microorganisms), but there are no effective public policies focused on protecting the environment, stopping the deterioration of mangrove areas or monitoring and sanctioning poaching and depredation that are putting numerous species at risk.
Throughout this chapter, aspects of the region of the Campeche Sound were shown, and in particular the Terminos Lagoon, which only a decade ago produced more than 80% of the national production of crude oil, while at the same time numerous marine species of high commercial value were extracted from its waters. Today, even though oil activity has decreased considerably, the effects of this industry, combined with population growth and the ineffectiveness of monitoring programs, still persist. The results of this study of the concentrations of heavy metals in Crassostrea virginica, Rangea cuneata and Ariopsis felis indicate that some of the values found are higher than those established in international and national legislation, so these fish products should not be consumed. The establishment of a monitoring program is suggested to identify the variations and conditions that favor the bioaccumulation process in exposed organisms.
Regarding the risk analysis carried out in this study, the values calculated for the target hazard quotient (THQ) and the hazard index (HI) indicate that the consumption of the studied species does not represent a risk for human health in any of the considered age groups; however, in relation to the TR that evaluates the potential risk for carcinogens, the results show worrying values, especially for the organisms that come from the Pom-Atasta lagoon system. In the two species evaluated (Rangea cuneata and Ariopsis felis), the TR values are considered “high risk” and “moderate risk”, especially in the most vulnerable population group, children. For this reason, it is not recommended the consumption of these species by children under 4 years old and it is suggested to decrease their consumption in the adult and adolescent age groups. These actions are not intended to stigmatize the consumption of these products, but to have greater control and surveillance, especially in population groups of greater vulnerability.
The authors declare no conflict of interest.
IntechOpen books are indexed by the following abstracting and indexing services:
",metaTitle:"Indexing and Abstracting",metaDescription:"IntechOpen was built by scientists, for scientists. We understand the community we serve, but to bring an even better service to the table for IntechOpen Authors and Academic Editors, we partnered with the leading companies and associations in the industry and beyond.",metaKeywords:null,canonicalURL:"/page/indexing-and-abstracting",contentRaw:'[{"type":"htmlEditorComponent","content":"Clarivate Web Of Science - Book Citation Index
\\n\\nCroatian Library (digital NSK)
\\n\\nOCLC (Online Computer Library Center) - WorldCat® Digital Collection Gateway
\\n\\n\\n\\n
\\n"}]'},components:[{type:"htmlEditorComponent",content:'
Clarivate Web Of Science - Book Citation Index
\n\nCroatian Library (digital NSK)
\n\nOCLC (Online Computer Library Center) - WorldCat® Digital Collection Gateway
\n\n\n\n
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"126408",title:"Prof.",name:"A",middleName:null,surname:"Chaves",slug:"a-chaves",fullName:"A Chaves",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal do Ceará",country:{name:"Brazil"}}},{id:"116458",title:"Prof.",name:"A. A.",middleName:null,surname:"Minzoni",slug:"a.-a.-minzoni",fullName:"A. A. Minzoni",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Autonomous University of Mexico",country:{name:"Mexico"}}},{id:"105746",title:"Dr.",name:"A.W.M.M.",middleName:null,surname:"Koopman-van Gemert",slug:"a.w.m.m.-koopman-van-gemert",fullName:"A.W.M.M. Koopman-van Gemert",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/105746/images/5803_n.jpg",biography:"Dr. Anna Wilhelmina Margaretha Maria Koopman-van Gemert MD, PhD, became anaesthesiologist-intensivist from the Radboud University Nijmegen (the Netherlands) in 1987. She worked for a couple of years also as a blood bank director in Nijmegen and introduced in the Netherlands the Cell Saver and blood transfusion alternatives. She performed research in perioperative autotransfusion and obtained the degree of PhD in 1993 publishing Peri-operative autotransfusion by means of a blood cell separator.\nBlood transfusion had her special interest being the president of the Haemovigilance Chamber TRIP and performing several tasks in local and national blood bank and anticoagulant-blood transfusion guidelines committees. Currently, she is working as an associate professor and up till recently was the dean at the Albert Schweitzer Hospital Dordrecht. She performed (inter)national tasks as vice-president of the Concilium Anaesthesia and related committees. \nShe performed research in several fields, with over 100 publications in (inter)national journals and numerous papers on scientific conferences. \nShe received several awards and is a member of Honour of the Dutch Society of Anaesthesia.",institutionString:null,institution:{name:"Albert Schweitzer Hospital",country:{name:"Gabon"}}},{id:"90116",title:"Dr.",name:"Aaron",middleName:null,surname:"Flores-Gil",slug:"aaron-flores-gil",fullName:"Aaron Flores-Gil",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Autonomous University of Carmen",country:{name:"Mexico"}}},{id:"83089",title:"Prof.",name:"Aaron",middleName:null,surname:"Ojule",slug:"aaron-ojule",fullName:"Aaron Ojule",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Port Harcourt",country:{name:"Nigeria"}}},{id:"295748",title:"Mr.",name:"Abayomi",middleName:null,surname:"Modupe",slug:"abayomi-modupe",fullName:"Abayomi Modupe",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/no_image.jpg",biography:null,institutionString:null,institution:{name:"Landmark University",country:{name:"Nigeria"}}},{id:"119935",title:"Prof.",name:"Abbas",middleName:null,surname:"Dandache",slug:"abbas-dandache",fullName:"Abbas Dandache",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidad Politécnica del Valle de México",country:{name:"Mexico"}}},{id:"94191",title:"Prof.",name:"Abbas",middleName:null,surname:"Moustafa",slug:"abbas-moustafa",fullName:"Abbas Moustafa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94191/images/96_n.jpg",biography:"Prof. Moustafa got his doctoral degree in earthquake engineering and structural safety from Indian Institute of Science in 2002. He is currently an associate professor at Department of Civil Engineering, Minia University, Egypt and the chairman of Department of Civil Engineering, High Institute of Engineering and Technology, Giza, Egypt. He is also a consultant engineer and head of structural group at Hamza Associates, Giza, Egypt. Dr. Moustafa was a senior research associate at Vanderbilt University and a JSPS fellow at Kyoto and Nagasaki Universities. He has more than 40 research papers published in international journals and conferences. He acts as an editorial board member and a reviewer for several regional and international journals. His research interest includes earthquake engineering, seismic design, nonlinear dynamics, random vibration, structural reliability, structural health monitoring and uncertainty modeling.",institutionString:null,institution:{name:"Minia University",country:{name:"Egypt"}}},{id:"84562",title:"Dr.",name:"Abbyssinia",middleName:null,surname:"Mushunje",slug:"abbyssinia-mushunje",fullName:"Abbyssinia Mushunje",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Fort Hare",country:{name:"South Africa"}}},{id:"202206",title:"Associate Prof.",name:"Abd Elmoniem",middleName:"Ahmed",surname:"Elzain",slug:"abd-elmoniem-elzain",fullName:"Abd Elmoniem Elzain",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kassala University",country:{name:"Sudan"}}},{id:"98127",title:"Dr.",name:"Abdallah",middleName:null,surname:"Handoura",slug:"abdallah-handoura",fullName:"Abdallah Handoura",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"École Supérieure des Télécommunications",country:{name:"Morocco"}}},{id:"91404",title:"Prof.",name:"Abdecharif",middleName:null,surname:"Boumaza",slug:"abdecharif-boumaza",fullName:"Abdecharif Boumaza",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Abbès Laghrour University of Khenchela",country:{name:"Algeria"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5228},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10370},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15791}],offset:12,limit:12,total:6959},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"15"},books:[{type:"book",id:"10676",title:"Graph Theory",subtitle:null,isOpenForSubmission:!0,hash:"900c60742d224080732bd16bd25ccba8",slug:null,bookSignature:"Dr. Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:null,editors:[{id:"146092",title:"Dr.",name:"Harun",surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Topology",subtitle:null,isOpenForSubmission:!0,hash:"85eac84b173d785f989522397616124e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10678",title:"Biostatistics",subtitle:null,isOpenForSubmission:!0,hash:"f63db439474a574454a66894db8b394c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10678.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:17},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:4},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:18},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:3},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5240},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1056",title:"Neurology",slug:"neurology",parent:{title:"Mental and Behavioural Disorders and Diseases of the Nervous System",slug:"mental-and-behavioural-disorders-and-diseases-of-the-nervous-system"},numberOfBooks:55,numberOfAuthorsAndEditors:1700,numberOfWosCitations:777,numberOfCrossrefCitations:362,numberOfDimensionsCitations:910,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"neurology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9778",title:"Migraine",subtitle:null,isOpenForSubmission:!1,hash:"ba52761e098431d3113b538e9f6427f6",slug:"migraine",bookSignature:"Wojciech Kozubski",coverURL:"https://cdn.intechopen.com/books/images_new/9778.jpg",editedByType:"Edited by",editors:[{id:"83372",title:"Prof.",name:"Wojciech",middleName:null,surname:"Kozubski",slug:"wojciech-kozubski",fullName:"Wojciech Kozubski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8087",title:"Neuroprotection",subtitle:"New Approaches and Prospects",isOpenForSubmission:!1,hash:"10acd587ca2c942616bfc09c4b79df39",slug:"neuroprotection-new-approaches-and-prospects",bookSignature:"Matilde Otero-Losada, Francisco Capani and Santiago Perez Lloret",coverURL:"https://cdn.intechopen.com/books/images_new/8087.jpg",editedByType:"Edited by",editors:[{id:"193560",title:"Dr.",name:"Matilde",middleName:null,surname:"Otero-Losada",slug:"matilde-otero-losada",fullName:"Matilde Otero-Losada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8172",title:"Amyotrophic Lateral Sclerosis",subtitle:"Recent Advances and Therapeutic Challenges",isOpenForSubmission:!1,hash:"454a2d1c81a4a4452f791a8b31b427dd",slug:"amyotrophic-lateral-sclerosis-recent-advances-and-therapeutic-challenges",bookSignature:"Muralidhar L. Hegde",coverURL:"https://cdn.intechopen.com/books/images_new/8172.jpg",editedByType:"Edited by",editors:[{id:"264616",title:"Dr.",name:"Muralidhar L.",middleName:null,surname:"Hegde",slug:"muralidhar-l.-hegde",fullName:"Muralidhar L. Hegde"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8203",title:"Peripheral Nerve Disorders and Treatment",subtitle:null,isOpenForSubmission:!1,hash:"faa3d9b75498d42c252aa550b9346922",slug:"peripheral-nerve-disorders-and-treatment",bookSignature:"Hande Turker, Leonel Garcia Benavides, Guillermo Ramos Gallardo and Miriam Méndez Del Villar",coverURL:"https://cdn.intechopen.com/books/images_new/8203.jpg",editedByType:"Edited by",editors:[{id:"63331",title:"Prof.",name:"Hande",middleName:null,surname:"Turker",slug:"hande-turker",fullName:"Hande Turker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7070",title:"Novel Aspects on Motor Neuron Disease",subtitle:null,isOpenForSubmission:!1,hash:"3ea8aa08fd9d45d806411a8c60b7adab",slug:"novel-aspects-on-motor-neuron-disease",bookSignature:"Humberto Foyaca Sibat and Lourdes de Fátima Ibañez-Valdés",coverURL:"https://cdn.intechopen.com/books/images_new/7070.jpg",editedByType:"Edited by",editors:[{id:"142346",title:"Prof.",name:"Humberto",middleName:null,surname:"Foyaca Sibat",slug:"humberto-foyaca-sibat",fullName:"Humberto Foyaca Sibat"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9364",title:"New Insight into Cerebrovascular Diseases",subtitle:"An Updated Comprehensive Review",isOpenForSubmission:!1,hash:"bb9cf94a9674571e55f6e01a20ec372a",slug:"new-insight-into-cerebrovascular-diseases-an-updated-comprehensive-review",bookSignature:"Patricia Bozzetto Ambrosi, Rufai Ahmad, Auwal Abdullahi and Amit Agrawal",coverURL:"https://cdn.intechopen.com/books/images_new/9364.jpg",editedByType:"Edited by",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8296",title:"Multiple Sclerosis",subtitle:null,isOpenForSubmission:!1,hash:"ec14c3341208a441acbc52bc4b632c0c",slug:"multiple-sclerosis",bookSignature:"Stavros J. Baloyannis",coverURL:"https://cdn.intechopen.com/books/images_new/8296.jpg",editedByType:"Edited by",editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros",middleName:"J",surname:"Baloyannis",slug:"stavros-baloyannis",fullName:"Stavros Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8430",title:"Neurodevelopment and Neurodevelopmental Disorder",subtitle:null,isOpenForSubmission:!1,hash:"696c96d038de473216e48b199613c111",slug:"neurodevelopment-and-neurodevelopmental-disorder",bookSignature:"Michael Fitzgerald",coverURL:"https://cdn.intechopen.com/books/images_new/8430.jpg",editedByType:"Edited by",editors:[{id:"205005",title:"Dr.",name:"Michael",middleName:null,surname:"Fitzgerald",slug:"michael-fitzgerald",fullName:"Michael Fitzgerald"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7860",title:"Epilepsy",subtitle:"Advances in Diagnosis and Therapy",isOpenForSubmission:!1,hash:"17e914e07088c3e9c4d085a609be1f42",slug:"epilepsy-advances-in-diagnosis-and-therapy",bookSignature:"Isam Jaber Al-Zwaini and Ban Adbul-Hameed Majeed Albadri",coverURL:"https://cdn.intechopen.com/books/images_new/7860.jpg",editedByType:"Edited by",editors:[{id:"30993",title:"Prof.",name:"Isam Jaber",middleName:null,surname:"Al-Zwaini",slug:"isam-jaber-al-zwaini",fullName:"Isam Jaber Al-Zwaini"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6677",title:"Recent Advances in Neurodegeneration",subtitle:null,isOpenForSubmission:!1,hash:"65c05412d2a2f134e3eaa811c921273e",slug:"recent-advances-in-neurodegeneration",bookSignature:"Antonella Borreca",coverURL:"https://cdn.intechopen.com/books/images_new/6677.jpg",editedByType:"Edited by",editors:[{id:"192832",title:"Dr.",name:"Antonella",middleName:null,surname:"Borreca",slug:"antonella-borreca",fullName:"Antonella Borreca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7862",title:"Traumatic Brain Injury",subtitle:"Neurobiology, Diagnosis and Treatment",isOpenForSubmission:!1,hash:"247618f9fcfd8e9054e1202968e3387b",slug:"traumatic-brain-injury-neurobiology-diagnosis-and-treatment",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/7862.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7581",title:"Neuroprotection",subtitle:null,isOpenForSubmission:!1,hash:"0a01b892051ad12c316ddf17801b962e",slug:"neuroprotection",bookSignature:"Raymond Chuen-Chung Chang and Yuen-Shan Ho",coverURL:"https://cdn.intechopen.com/books/images_new/7581.jpg",editedByType:"Edited by",editors:[{id:"33396",title:"Dr.",name:"Raymond Chuen-Chung",middleName:null,surname:"Chang",slug:"raymond-chuen-chung-chang",fullName:"Raymond Chuen-Chung Chang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:55,mostCitedChapters:[{id:"24857",doi:"10.5772/28930",title:"Hormonal Signaling Systems of the Brain in Diabetes Mellitus",slug:"hormonal-signaling-systems-of-the-brain-in-diabetes-mellitus",totalDownloads:1717,totalCrossrefCites:3,totalDimensionsCites:24,book:{slug:"neurodegenerative-diseases-processes-prevention-protection-and-monitoring",title:"Neurodegenerative Diseases",fullTitle:"Neurodegenerative Diseases - Processes, Prevention, Protection and Monitoring"},signatures:"Alexander Shpakov, Oksana Chistyakova, Kira Derkach and Vera Bondareva",authors:[{id:"75886",title:"Dr",name:"Vera",middleName:null,surname:"Bondareva",slug:"vera-bondareva",fullName:"Vera Bondareva"},{id:"75888",title:"Prof.",name:"Alexander",middleName:null,surname:"Shpakov",slug:"alexander-shpakov",fullName:"Alexander Shpakov"},{id:"81684",title:"Dr",name:"Oksana",middleName:null,surname:"Chistyakova",slug:"oksana-chistyakova",fullName:"Oksana Chistyakova"},{id:"81685",title:"Dr.",name:"Kira",middleName:null,surname:"Derkach",slug:"kira-derkach",fullName:"Kira Derkach"}]},{id:"51342",doi:"10.5772/63824",title:"Autoimmune Processes in Multiple Sclerosis: Production of Harmful Catalytic Antibodies Associated with Significant Changes in the Hematopoietic Stem Cell Differentiation and Proliferation",slug:"autoimmune-processes-in-multiple-sclerosis-production-of-harmful-catalytic-antibodies-associated-wit",totalDownloads:807,totalCrossrefCites:5,totalDimensionsCites:23,book:{slug:"trending-topics-in-multiple-sclerosis",title:"Trending Topics in Multiple Sclerosis",fullTitle:"Trending Topics in Multiple Sclerosis"},signatures:"Georgy A. Nevinsky",authors:[{id:"47119",title:"Dr.",name:"Georgy",middleName:null,surname:"Nevinsky",slug:"georgy-nevinsky",fullName:"Georgy Nevinsky"}]},{id:"44546",doi:"10.5772/54305",title:"Astrocytes Role in Parkinson: A Double-Edged Sword",slug:"astrocytes-role-in-parkinson-a-double-edged-sword",totalDownloads:3933,totalCrossrefCites:9,totalDimensionsCites:14,book:{slug:"neurodegenerative-diseases",title:"Neurodegenerative Diseases",fullTitle:"Neurodegenerative Diseases"},signatures:"Ricardo Cabezas, Marco Fidel Avila, Daniel Torrente, Ramon Santos\nEl-Bachá, Ludis Morales, Janneth Gonzalez and George E. Barreto",authors:[{id:"85869",title:"Prof.",name:"George",middleName:"E.",surname:"Barreto",slug:"george-barreto",fullName:"George Barreto"},{id:"88549",title:"Dr.",name:"Ludis",middleName:null,surname:"Morales",slug:"ludis-morales",fullName:"Ludis Morales"},{id:"97601",title:"Dr.",name:"Janneth",middleName:null,surname:"Gonzalez",slug:"janneth-gonzalez",fullName:"Janneth Gonzalez"},{id:"157020",title:"MSc.",name:"Ricardo",middleName:null,surname:"Cabezas",slug:"ricardo-cabezas",fullName:"Ricardo Cabezas"},{id:"157021",title:"MSc.",name:"Marco Fidel",middleName:null,surname:"Ávila",slug:"marco-fidel-avila",fullName:"Marco Fidel Ávila"},{id:"165566",title:"Dr.",name:"Ramon",middleName:null,surname:"El-Bachá",slug:"ramon-el-bacha",fullName:"Ramon El-Bachá"},{id:"167253",title:"Mr.",name:"Daniel",middleName:null,surname:"Torrente",slug:"daniel-torrente",fullName:"Daniel Torrente"}]}],mostDownloadedChaptersLast30Days:[{id:"60608",title:"Mucuna and Parkinson’s Disease: Treatment with Natural Levodopa",slug:"mucuna-and-parkinson-s-disease-treatment-with-natural-levodopa",totalDownloads:3369,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"parkinson-s-disease-understanding-pathophysiology-and-developing-therapeutic-strategies",title:"Parkinson's Disease",fullTitle:"Parkinson's Disease - Understanding Pathophysiology and Developing Therapeutic Strategies"},signatures:"Rafael González Maldonado",authors:[{id:"214658",title:"Dr.",name:"Rafael",middleName:null,surname:"Gonzalez-Maldonado",slug:"rafael-gonzalez-maldonado",fullName:"Rafael Gonzalez-Maldonado"}]},{id:"51973",title:"Current Rehabilitation Methods for Cerebral Palsy",slug:"current-rehabilitation-methods-for-cerebral-palsy",totalDownloads:3100,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"cerebral-palsy-current-steps",title:"Cerebral Palsy",fullTitle:"Cerebral Palsy - Current Steps"},signatures:"Nilay Çömük Balcı",authors:[{id:"185483",title:"Ph.D.",name:"Nilay",middleName:null,surname:"Çömük Balcı",slug:"nilay-comuk-balci",fullName:"Nilay Çömük Balcı"}]},{id:"51054",title:"The Role of Nurses in Parkinson's Disease",slug:"the-role-of-nurses-in-parkinson-s-disease",totalDownloads:4524,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"challenges-in-parkinson-s-disease",title:"Challenges in Parkinson's Disease",fullTitle:"Challenges in Parkinson's Disease"},signatures:"Michelle Hyczy de Siqueira Tosin and Beatriz Guitton Renaud\nBaptista de Oliveira",authors:[{id:"181642",title:"Dr.",name:"Michelle",middleName:"Hyczy De Siqueira",surname:"Tosin",slug:"michelle-tosin",fullName:"Michelle Tosin"},{id:"182956",title:"Prof.",name:"Beatriz",middleName:null,surname:"Oliveira",slug:"beatriz-oliveira",fullName:"Beatriz Oliveira"}]},{id:"62475",title:"Orofacial Dystonia and Other Oromandibular Movement Disorders",slug:"orofacial-dystonia-and-other-oromandibular-movement-disorders",totalDownloads:1249,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"dystonia-different-prospects",title:"Dystonia",fullTitle:"Dystonia - Different Prospects"},signatures:"Nicolás Patricio Skármeta, Paula Espinoza-Mellado and Pedro\nChana",authors:null},{id:"57012",title:"Traumatic Axonal Injury in Patients with Mild Traumatic Brain Injury",slug:"traumatic-axonal-injury-in-patients-with-mild-traumatic-brain-injury",totalDownloads:1007,totalCrossrefCites:4,totalDimensionsCites:4,book:{slug:"traumatic-brain-injury-pathobiology-advanced-diagnostics-and-acute-management",title:"Traumatic Brain Injury",fullTitle:"Traumatic Brain Injury - Pathobiology, Advanced Diagnostics and Acute Management"},signatures:"Sung Ho Jang",authors:[{id:"219787",title:"Dr.",name:"Sung Ho",middleName:null,surname:"Jang",slug:"sung-ho-jang",fullName:"Sung Ho Jang"}]},{id:"58454",title:"Diffuse Axonal Injury: A Devastating Pathology",slug:"diffuse-axonal-injury-a-devastating-pathology",totalDownloads:1018,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"traumatic-brain-injury-pathobiology-advanced-diagnostics-and-acute-management",title:"Traumatic Brain Injury",fullTitle:"Traumatic Brain Injury - Pathobiology, Advanced Diagnostics and Acute Management"},signatures:"Christ Ordookhanian, Katherine Tsai, Sean W. Kaloostian and Paul\nE. Kaloostian",authors:[{id:"209339",title:"Dr.",name:"Paul",middleName:null,surname:"Kaloostian",slug:"paul-kaloostian",fullName:"Paul Kaloostian"}]},{id:"56812",title:"Targeted Temperature Management in Traumatic Brain Injury",slug:"targeted-temperature-management-in-traumatic-brain-injury",totalDownloads:877,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"traumatic-brain-injury-pathobiology-advanced-diagnostics-and-acute-management",title:"Traumatic Brain Injury",fullTitle:"Traumatic Brain Injury - Pathobiology, Advanced Diagnostics and Acute Management"},signatures:"Sombat Muengtaweepongsa and Pornchai Yodwisithsak",authors:[{id:"64867",title:"Dr.",name:"Sombat",middleName:null,surname:"Muengtaweepongsa",slug:"sombat-muengtaweepongsa",fullName:"Sombat Muengtaweepongsa"}]},{id:"19700",title:"Physiotherapy for Children with Cerebral Palsy",slug:"physiotherapy-for-children-with-cerebral-palsy",totalDownloads:20762,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"epilepsy-in-children-clinical-and-social-aspects",title:"Epilepsy in Children",fullTitle:"Epilepsy in Children - Clinical and Social Aspects"},signatures:"Mintaze Kerem Günel",authors:[{id:"38412",title:"Prof.",name:"Mintaze",middleName:null,surname:"Kerem Günel",slug:"mintaze-kerem-gunel",fullName:"Mintaze Kerem Günel"}]},{id:"58504",title:"Management of Intracranial Pressure in Traumatic Brain Injury",slug:"management-of-intracranial-pressure-in-traumatic-brain-injury",totalDownloads:1199,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"traumatic-brain-injury-pathobiology-advanced-diagnostics-and-acute-management",title:"Traumatic Brain Injury",fullTitle:"Traumatic Brain Injury - Pathobiology, Advanced Diagnostics and Acute Management"},signatures:"Christ Ordookhanian, Meena Nagappan, Dina Elias and Paul E.\nKaloostian",authors:[{id:"209339",title:"Dr.",name:"Paul",middleName:null,surname:"Kaloostian",slug:"paul-kaloostian",fullName:"Paul Kaloostian"}]},{id:"51622",title:"Assessments and Outcome Measures of Cerebral Palsy",slug:"assessments-and-outcome-measures-of-cerebral-palsy",totalDownloads:3784,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"cerebral-palsy-current-steps",title:"Cerebral Palsy",fullTitle:"Cerebral Palsy - Current Steps"},signatures:"Ayşe Numanoğlu Akbaş",authors:[{id:"181610",title:"Dr.",name:"Ayşe",middleName:null,surname:"Numanoğlu Akbaş",slug:"ayse-numanoglu-akbas",fullName:"Ayşe Numanoğlu Akbaş"}]}],onlineFirstChaptersFilter:{topicSlug:"neurology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/99047/michitaka-kosaka",hash:"",query:{},params:{id:"99047",slug:"michitaka-kosaka"},fullPath:"/profiles/99047/michitaka-kosaka",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()