Affecting the basic systems in post COVID-19 conditions.
\\n\\n
These books synthesize perspectives of renowned scientists from the world’s most prestigious institutions - from Fukushima Renewable Energy Institute in Japan to Stanford University in the United States, including Columbia University (US), University of Sidney (AU), University of Miami (USA), Cardiff University (UK), and many others.
\\n\\nThis collaboration embodied the true essence of Open Access by simplifying the approach to OA publishing for Academic editors and authors who contributed their research and allowed the new research to be made available free and open to anyone anywhere in the world.
\\n\\nTo celebrate the 50 books published, we have gathered them at one location - just one click away, so that you can easily browse the subjects of your interest, download the content directly, share it or read online.
\\n\\n\\n\\n\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
IntechOpen and Knowledge Unlatched formed a partnership to support researchers working in engineering sciences by enabling an easier approach to publishing Open Access content. Using the Knowledge Unlatched crowdfunding model to raise the publishing costs through libraries around the world, Open Access Publishing Fee (OAPF) was not required from the authors.
\n\nInitially, the partnership supported engineering research, but it soon grew to include physical and life sciences, attracting more researchers to the advantages of Open Access publishing.
\n\n\n\nThese books synthesize perspectives of renowned scientists from the world’s most prestigious institutions - from Fukushima Renewable Energy Institute in Japan to Stanford University in the United States, including Columbia University (US), University of Sidney (AU), University of Miami (USA), Cardiff University (UK), and many others.
\n\nThis collaboration embodied the true essence of Open Access by simplifying the approach to OA publishing for Academic editors and authors who contributed their research and allowed the new research to be made available free and open to anyone anywhere in the world.
\n\nTo celebrate the 50 books published, we have gathered them at one location - just one click away, so that you can easily browse the subjects of your interest, download the content directly, share it or read online.
\n\n\n\n\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"5195",leadTitle:null,fullTitle:"Magnetic Materials",title:"Magnetic Materials",subtitle:null,reviewType:"peer-reviewed",abstract:"This book reports on the recent progresses in theory, application, and characterization of magnetic materials. It covers a broad spectrum of topics on magnetic materials with different shapes and morphologies such as transition metals, cylindrical and 2D ferromagnetic nanowires, core-shell nanowires, monoatomic-layered nanostructures, and nanocrystals. This book addresses diverse groups of readers with general background in physics and material science and also covers topics for the specialists in the field of magnetism. It is believed that this book will be interesting for the readers and will provide a solid foundation about the topic for the students, scientists, and engineers working in the field of material science and condensed matter physics.",isbn:"978-953-51-2428-3",printIsbn:"978-953-51-2427-6",pdfIsbn:"978-953-51-6670-2",doi:"10.5772/61497",price:119,priceEur:129,priceUsd:155,slug:"magnetic-materials",numberOfPages:278,isOpenForSubmission:!1,isInWos:1,isInBkci:!1,hash:"4f04cfbb54e455378de5fc7725e36a0c",bookSignature:"Khan Maaz",publishedDate:"August 24th 2016",coverURL:"https://cdn.intechopen.com/books/images_new/5195.jpg",numberOfDownloads:17921,numberOfWosCitations:9,numberOfCrossrefCitations:2,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:5,numberOfDimensionsCitationsByBook:0,hasAltmetrics:0,numberOfTotalCitations:16,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 14th 2015",dateEndSecondStepPublish:"November 4th 2015",dateEndThirdStepPublish:"February 8th 2016",dateEndFourthStepPublish:"May 8th 2016",dateEndFifthStepPublish:"June 7th 2016",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"107765",title:"Dr.",name:"Maaz",middleName:null,surname:"Khan",slug:"maaz-khan",fullName:"Maaz Khan",profilePictureURL:"https://mts.intechopen.com/storage/users/107765/images/system/107765.png",biography:"Dr. Maaz Khan is working as Deputy Chief Scientist (Professor) at PINSTECH, Pakistan. He has done Ph.D. and post doctorate in the field of Material Science (Nanoscience). His research interests include fabrication of nanomaterials and their structural, optical, magnetic, and electrical characterizations. He has authored more than 100 research articles and published 10 books. Presently, he is the Editor-in-Chief of ‘Journal of Materials, Processing and Design\\' and \\'The Nucleus\\'. He is also the Executive Editor of \\'International Journal of Nano Studies and Technology\\'. Dr. Maaz also serves as the editorial board member of several journals of Material Science.",institutionString:"Pakistan Institute of Nuclear Science and Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"9",institution:{name:"Pakistan Institute of Nuclear Science and Technology",institutionURL:null,country:{name:"Pakistan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"946",title:"Nanotechnology",slug:"metals-and-nonmetals-nanotechnology"}],chapters:[{id:"51314",title:"Scaling in Magnetic Materials",doi:"10.5772/63285",slug:"scaling-in-magnetic-materials",totalDownloads:1769,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,abstract:"The chapter presents applications of the scaling in several problems of magnetic materials. Soft magnetic materials (SMMs) and soft magnetic composites (SMCs) are considered. Application of scaling in investigations of problems, such as power losses, losses separation, data collapse of the losses characteristics and modelling of the magnetic hysteresis, is presented. The symmetry group generated by scaling and gauge transformations enables us to introduce the classification of the hysteresis loops with respect to the equivalence classes. SMC materials require special treatment in the production process. Therefore, algorithms for optimization of the power losses are created. The algorithm for optimization processes is based on the scaling and the notion of the pseudo-equation of state. The scaling makes modelling and calculations easy; however, the data must obey the scaling. Checking procedure of statistical data to this respect is presented.",signatures:"Krzysztof Z. Sokalski, Barbara Ślusarek and Jan Szczygłowski",downloadPdfUrl:"/chapter/pdf-download/51314",previewPdfUrl:"/chapter/pdf-preview/51314",authors:[{id:"179335",title:"Prof.",name:"Krzysztof",surname:"Sokalski",slug:"krzysztof-sokalski",fullName:"Krzysztof Sokalski"},{id:"181153",title:"Prof.",name:"Barbara",surname:"Slusarek",slug:"barbara-slusarek",fullName:"Barbara Slusarek"},{id:"181154",title:"Prof.",name:"Jan",surname:"Szczyglowski",slug:"jan-szczyglowski",fullName:"Jan Szczyglowski"}],corrections:null},{id:"51443",title:"How to Characterize Cylindrical Magnetic Nanowires",doi:"10.5772/63482",slug:"how-to-characterize-cylindrical-magnetic-nanowires",totalDownloads:1689,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Cylindrical magnetic nanowires made through the help of nanoporous alumina templates are being fabricated and characterized since the beginning of 2000. They are still actively investigated nowadays, mainly due to their various promising applications, ranging from high-density magnetic recording to high-frequency devices, passing by sensors, and biomedical applications. They also represent suitable systems in order to study the dimensionality effects on a given material. With time, the development in fabrication techniques allowed to increase the obtained nanowire complexity (controlled crystallinity, modulated composition and/or geometry, range of materials, etc.), while the improvements in nanomanipulation permitted to fabricate system based either on arrays or on single nanowires. On the other side, their increased complexity requires specific physical characterization methods, due to their particular features such as high anisotropy, small magnetic volume, dipolar interaction field between them, and interesting electronic properties. The aim of this chapter was to offer an ample overview of the magnetic, electric, and physical characterization techniques that are suitable for cylindrical magnetic nanowire investigation, of what is the specific care that one needs to take into account and which information will be extracted, with typical and varied examples.",signatures:"Fanny Béron, Marcos V. Puydinger dos Santos, Peterson G. de\nCarvalho, Karoline O. Moura, Luis C.C. Arzuza and Kleber R. Pirota",downloadPdfUrl:"/chapter/pdf-download/51443",previewPdfUrl:"/chapter/pdf-preview/51443",authors:[{id:"180153",title:"Prof.",name:"Fanny",surname:"Béron",slug:"fanny-beron",fullName:"Fanny Béron"},{id:"180848",title:"MSc.",name:"Peterson",surname:"Grandini De Carvalho",slug:"peterson-grandini-de-carvalho",fullName:"Peterson Grandini De Carvalho"},{id:"180849",title:"MSc.",name:"Luis Carlos",surname:"Costa Arzuza",slug:"luis-carlos-costa-arzuza",fullName:"Luis Carlos Costa Arzuza"},{id:"180850",title:"MSc.",name:"Karoline",surname:"Moura",slug:"karoline-moura",fullName:"Karoline Moura"},{id:"180851",title:"Dr.",name:"Marcos",surname:"Puydinger Dos Santos",slug:"marcos-puydinger-dos-santos",fullName:"Marcos Puydinger Dos Santos"},{id:"180853",title:"Prof.",name:"Kleber Roberto",surname:"Pirota",slug:"kleber-roberto-pirota",fullName:"Kleber Roberto Pirota"}],corrections:null},{id:"51213",title:"Magnetization Dynamics–Induced Charge and Spin Transport on the Surface of a Topological Insulator Subjected to Magnetism",doi:"10.5772/62531",slug:"magnetization-dynamics-induced-charge-and-spin-transport-on-the-surface-of-a-topological-insulator-s",totalDownloads:1349,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"We theoretically show spin and charge transport on the disordered surface of a three‐dimensional topological insulator with a magnetic insulator when localized spin of the magnetic insulator depends on time and space. To ascertain the transports, we use a low‐energy effective Hamiltonian on the surface of a topological insulator using the exchange interaction and calculate analytically using Green's function techniques within the linear response to the exchange interaction. As a result, the time‐dependent localized spin induces the charge and spin current. These currents are detected from change in the half‐width value of the ferromagnetic resonance of the localized spin when the magnetic resonance of the localized spin is realized in the attached magnetic insulator. We also show spin and charge current generation in a three‐dimensional Weyl–Dirac semimetal, which has massless Dirac fermions with helicity degrees of freedoms. The time‐dependent localized spin drives the charge and spin current in the system. The charge current as well as the spin current in the Weyl–Dirac system are slightly different from those on the surface of the topological insulator.",signatures:"Katsuhisa Taguchi",downloadPdfUrl:"/chapter/pdf-download/51213",previewPdfUrl:"/chapter/pdf-preview/51213",authors:[{id:"181168",title:"Dr.",name:"Katsuhisa",surname:"Taguchi",slug:"katsuhisa-taguchi",fullName:"Katsuhisa Taguchi"}],corrections:null},{id:"51474",title:"Metamaterial Properties of 2D Ferromagnetic Nanostructures: From Continuous Ferromagnetic Films to Magnonic Crystals",doi:"10.5772/64070",slug:"metamaterial-properties-of-2d-ferromagnetic-nanostructures-from-continuous-ferromagnetic-films-to-ma",totalDownloads:1502,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"In recent years the study of low-dimensional magnetic systems has become topical not only for its several technological applications but also for achieving a deep understanding of the underlying physics of magnetic nanostructures. These efforts have considerably advanced the field of magnetism both theoretically and from an experimental point of view. Very recently, for their challenging features, great attention has been given to the investigation of the static and dynamical properties of magnetic nanostructures with special regard to magnonic crystals, a class of periodic magnetic systems. As shown by micromagnetic and analytical methods, the ferromagnetic materials composing magnonic crystals can be regarded as metamaterials since they exhibit effective properties directly linked, for instance, to the definition of an effective magnetization, an effective permeability, and an effective wavelength. Hence, the aim of this chapter is to give an overview of the recent results obtained on the study of metamaterial properties of two-dimensional ferromagnetic nanostructures ranging from those of thin films to the ones of two-dimensional magnonic crystals. Some possible applications based on the effective properties for tailoring new magnetic devices are suggested.",signatures:"Roberto Zivieri",downloadPdfUrl:"/chapter/pdf-download/51474",previewPdfUrl:"/chapter/pdf-preview/51474",authors:[{id:"181334",title:"Prof.",name:"Roberto",surname:"Zivieri",slug:"roberto-zivieri",fullName:"Roberto Zivieri"}],corrections:null},{id:"51707",title:"Molecular Magnetism Modeling with Applications in Spin Crossover Compounds",doi:"10.5772/64281",slug:"molecular-magnetism-modeling-with-applications-in-spin-crossover-compounds",totalDownloads:2101,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Molecular magnetic materials have become flourishing fields for research and technological developments due to their novel behavior compared to classical magnetic materials. Molecular magnetism modeling has reached a certain degree of maturity, although several experimental findings are still open problems. This chapter is aimed at providing a general introduction to physical modeling in molecular materials with a special emphasis placed on spin crossover compounds. This presentation includes Ising-type models and their generalizations, such as Wajnflasz and Pick, Bousseksou et al., Zimmermann and König, Sorai and Seki, and Nasser et al., along with their applications to the characterization of phase transition, hysteresis behavior, and thermal relaxations in spin crossover compounds. Recent experimental findings are explained in this context and the relevance of theoretical results for technological applications is also discussed.",signatures:"Mihai Dimian and Aurelian Rotaru",downloadPdfUrl:"/chapter/pdf-download/51707",previewPdfUrl:"/chapter/pdf-preview/51707",authors:[{id:"179954",title:"Dr.",name:"Mihai",surname:"Dimian",slug:"mihai-dimian",fullName:"Mihai Dimian"},{id:"181093",title:"Dr.",name:"Aurelian",surname:"Rotaru",slug:"aurelian-rotaru",fullName:"Aurelian Rotaru"}],corrections:null},{id:"50157",title:"Proteresis of Core-Shell Nanocrystals: Investigation through Theoretical Simulation and Experimental Analysis",doi:"10.5772/62398",slug:"proteresis-of-core-shell-nanocrystals-investigation-through-theoretical-simulation-and-experimental-",totalDownloads:1589,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"A study of proteresis (inverted hysteresis) in core-shell nanocrystals is presented. A core-shell anisotropic energy (CSAE) model is established to describe the observed proteretic behavior in Ni/NiO core-shell nanocrystals. The magnetic compositions of core-shell nanocrystals can be selected for ferromagnetic, antiferromagnetic, or paramagnetic materials where the exchange intercoupling between them results in both a large effective anisotropic energy and intercoupling energy. Simulation of the magnetization of core-shell nanocrystals reveals the existence of an exchange in the intercoupling energy between the interface of the core and shell moments that, surprisingly, is tuneable in both hysteresis and proteresis. Observations have shown a distinct proteresis, which is related to the spin-flip and exchange intercoupling energy between Ni and NiO. Our approach shows that the processing-dependent technology plays an important role when the grain size decreases to the order of nanometers and when the magnets are reduced from the single domain to core-shell domain. Integrated studies of process-dependent, theoretical modeling and core-shell nanocrystal fabrication technology will lead to more encouraging development in the overunity industry.",signatures:"Jhong-Yi Ji and Sheng Yun Wu",downloadPdfUrl:"/chapter/pdf-download/50157",previewPdfUrl:"/chapter/pdf-preview/50157",authors:[{id:"7156",title:"Prof.",name:"Sheng Yun",surname:"Wu",slug:"sheng-yun-wu",fullName:"Sheng Yun Wu"},{id:"184417",title:"Dr.",name:"Jhong-Yi",surname:"Ji",slug:"jhong-yi-ji",fullName:"Jhong-Yi Ji"}],corrections:null},{id:"50909",title:"Radiation and Propagation of Waves in Magnetic Materials with Helicoidal Magnetic Structure",doi:"10.5772/64014",slug:"radiation-and-propagation-of-waves-in-magnetic-materials-with-helicoidal-magnetic-structure",totalDownloads:1614,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"In this chapter, we are shortly reviewing some problems of electromagnetic and acoustic wave propagation and radiation in the magnets with helicoidal spin structure. We show the band structure of the coupled wave spectrum in the materials. The band gap width depends on the spiral angle (or, equivalently, on external magnetic field value). Interaction of spin and electromagnetic waves leads to opening the gap in spin-electromagnetic dispersion. This gap leads to opacity window in reflection spectrum of spiral magnet plate. The opacity window closes at phase transition into collinear ferromagnetic state and reaches a maximum at simple spiral state. At the frequencies near band gap boundaries, the rotation of polarization plane of propagating electromagnetic wave is observed. Account of interaction of spin and electromagnetic waves with acoustic subsystem leads to opening the gap in spin-acoustic spectrum. This gap leads to some features in electromagnetic reflectance spectrum and to rotation of acoustic wave polarization plane, i.e. to acoustic Faraday effect. We also show the possibility of acoustic and electromagnetic wave radiation by helicoidal magnets at phase transition into collinear ferromagnetic state. Some features of electromagnetic waves generation by spiral magnets placed in homogeneous magnetic field with harmonical time-dependence are also discussed.",signatures:"Igor V. Bychkov, Dmitry A. Kuzmin and Vladimir G. Shavrov",downloadPdfUrl:"/chapter/pdf-download/50909",previewPdfUrl:"/chapter/pdf-preview/50909",authors:[{id:"178503",title:"Prof.",name:"Igor",surname:"Bychkov",slug:"igor-bychkov",fullName:"Igor Bychkov"},{id:"179168",title:"Dr.",name:"Dmitry",surname:"Kuzmin",slug:"dmitry-kuzmin",fullName:"Dmitry Kuzmin"},{id:"179169",title:"Prof.",name:"Vladimir",surname:"Shavrov",slug:"vladimir-shavrov",fullName:"Vladimir Shavrov"}],corrections:null},{id:"50527",title:"Giant Magnetoimpedance Effect and AC Magnetic Susceptibility in Amorphous Alloys System of FeCoNbBSiCu",doi:"10.5772/63024",slug:"giant-magnetoimpedance-effect-and-ac-magnetic-susceptibility-in-amorphous-alloys-system-of-feconbbsi",totalDownloads:1453,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"The study of Giant Magnetoimpedance (GMI) effect of the amorphous alloys system of Fe72-xCoxNb6B10Si11Cu1 (for x = 35 and x = 40 at. percent Co) and AC magnetic susceptibility for the amorphous alloy of Fe37Co35Nb6B11Si10Cu1 composition are presented in this chapter. The importance of GMI effect for the improvement of technological applications in sensor devices in amorphous magnetic Fe- and Co-based alloys is introduced; then it is described as the experimental procedure of magnetoimpedance and AC magnetic susceptibility measurements. The obtained results are discussed and finally the conclusions are presented.",signatures:"Zulia Isabel Caamaño De Ávila, Amilkar José Orozco Galán and\nAndrés Rosales-Rivera",downloadPdfUrl:"/chapter/pdf-download/50527",previewPdfUrl:"/chapter/pdf-preview/50527",authors:[{id:"181146",title:"Dr.",name:"Zulia",surname:"Caamaño",slug:"zulia-caamano",fullName:"Zulia Caamaño"}],corrections:null},{id:"51160",title:"Magnetization Statics and Ultrafast Photoinduced Dynamics in Co/garnet Heterostructures",doi:"10.5772/62542",slug:"magnetization-statics-and-ultrafast-photoinduced-dynamics-in-co-garnet-heterostructures",totalDownloads:1513,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"We demonstrate experimental studies of the magnetization behavior from statics to ultrafast photoinduced dynamics with high temporal resolution in ultrathin Co/garnet heterostructures with a sub-nanometer roughness at the interface. We report on modulation of spin precession in Co/garnet heterostructures with distinct frequencies and show that the excitation efficiency of these precessions strongly depends on the amplitude and the direction of external magnetic field. Furthermore, it is shown that the magnetization precession in the garnet film can be manipulated by the strong magnetostatic coupling between Co and garnet layers. These findings could provide new possibilities in all-optical excitation and local spin manipulation by polarized femtosecond pulses for the application in nanodevices with high-speed switching.",signatures:"Andrzej Stupakiewicz",downloadPdfUrl:"/chapter/pdf-download/51160",previewPdfUrl:"/chapter/pdf-preview/51160",authors:[{id:"41112",title:"Dr.",name:"Andrzej",surname:"Stupakiewicz",slug:"andrzej-stupakiewicz",fullName:"Andrzej Stupakiewicz"}],corrections:null},{id:"51644",title:"Magnetic Micro-Origami",doi:"10.5772/64293",slug:"magnetic-micro-origami",totalDownloads:1669,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Microscopic origami figures can be created from thin film patterns using surface tension of liquids or residual stresses in thin films. The curvature of the structures, direction of bending, twisting, and folding of the patterns can be controlled by their shape, thickness, and elastic properties and by the strength of the residual stresses. Magnetic materials used for micro- and nano-origami structures play an essential role in many applications. Magnetic force due to applied magnetic field can be used for remote actuation of microrobots. It can also be used in targeted drug delivery to direct cages loaded with drugs or microswimmers to transport drugs to specific organs. Magnetoelastic properties of free-standing micro-origami patterns can serve for stress or magnetic field sensing. Also, the stress-induced anisotropy and magnetic shape anisotropy provide a convenient method of tuning magnetic properties by designing a shape of the micro-origami figures instead of varying the composition of the films. Micro-origami figures can also serve as building blocks for two- and three-dimensional meta-materials with unique properties such as negative index of refraction. Micro-origami techniques provide a powerful method of self-assembly of magnetic circuits and integrating them with microelectro-mechanical systems or other functional devices.",signatures:"Leszek Malkinski and Rahmatollah Eskandari",downloadPdfUrl:"/chapter/pdf-download/51644",previewPdfUrl:"/chapter/pdf-preview/51644",authors:[{id:"115596",title:"Dr.",name:"Leszek",surname:"Malkinski",slug:"leszek-malkinski",fullName:"Leszek Malkinski"},{id:"187129",title:"MSc.",name:"Rahmatollah",surname:"Eskandari",slug:"rahmatollah-eskandari",fullName:"Rahmatollah Eskandari"}],corrections:null},{id:"51165",title:"Magnetic Properties of Gadolinium-Doped ZnO Films and Nanostructures",doi:"10.5772/63320",slug:"magnetic-properties-of-gadolinium-doped-zno-films-and-nanostructures",totalDownloads:1674,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"The magnetic properties of Gd-doped ZnO films and nanostructures are important to the development of next-generation spintronic devices. Here, we elucidate the significant role played by Gd-oxygen-deficiency defects in mediating/inducing ferromagnetic coupling in in situ Gd-doped ZnO thin films deposited at low oxygen pressure by pulsed laser deposition (PLD). Samples deposited at higher oxygen pressures exhibited diamagnetic responses. Vacuum annealing was used on these diamagnetic samples (grown at a relatively high oxygen pressures) to create oxygen-deficiency defects with the aim of demonstrating reproducibility of room-temperature ferromagnetism (RTFM). Samples annealed at oxygen environment exhibited superparamagnetism and blocking-temperature effects. The samples possessed secondary phases; Gd segregation led to superparamagnetism. Theoretical studies showed a shift of the 4f level of Gd to the conduction band minimum (CBM) in Gd-doped ZnO nanowires, which led to an overlap with the Fermi level, resulting in strong exchange coupling and consequently RTFM.",signatures:"Iman S. Roqan, S. Assa Aravindh and Singaravelu Venkatesh",downloadPdfUrl:"/chapter/pdf-download/51165",previewPdfUrl:"/chapter/pdf-preview/51165",authors:[{id:"181087",title:"Dr.",name:"Iman",surname:"Roqan",slug:"iman-roqan",fullName:"Iman Roqan"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"6552",title:"Silver Nanoparticles",subtitle:"Fabrication, Characterization and Applications",isOpenForSubmission:!1,hash:"fa35924b88365602189440c335634a77",slug:"silver-nanoparticles-fabrication-characterization-and-applications",bookSignature:"Khan Maaz",coverURL:"https://cdn.intechopen.com/books/images_new/6552.jpg",editedByType:"Edited by",editors:[{id:"107765",title:"Dr.",name:"Maaz",surname:"Khan",slug:"maaz-khan",fullName:"Maaz Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5404",title:"Raman Spectroscopy and Applications",subtitle:null,isOpenForSubmission:!1,hash:"7d447d2811c5d3fc696761bb12fe3166",slug:"raman-spectroscopy-and-applications",bookSignature:"Khan Maaz",coverURL:"https://cdn.intechopen.com/books/images_new/5404.jpg",editedByType:"Edited by",editors:[{id:"107765",title:"Dr.",name:"Maaz",surname:"Khan",slug:"maaz-khan",fullName:"Maaz Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4644",title:"The Transmission Electron Microscope",subtitle:"Theory and Applications",isOpenForSubmission:!1,hash:"6ef878a14961b97ec0bc5c1762a46aa0",slug:"the-transmission-electron-microscope-theory-and-applications",bookSignature:"Khan Maaz",coverURL:"https://cdn.intechopen.com/books/images_new/4644.jpg",editedByType:"Edited by",editors:[{id:"107765",title:"Dr.",name:"Maaz",surname:"Khan",slug:"maaz-khan",fullName:"Maaz Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1508",title:"The Transmission Electron Microscope",subtitle:null,isOpenForSubmission:!1,hash:"40719eadb88b36d3aab9d67fbef67fe3",slug:"the-transmission-electron-microscope",bookSignature:"Khan Maaz",coverURL:"https://cdn.intechopen.com/books/images_new/1508.jpg",editedByType:"Edited by",editors:[{id:"107765",title:"Dr.",name:"Maaz",surname:"Khan",slug:"maaz-khan",fullName:"Maaz Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5747",title:"Nanowires",subtitle:"New Insights",isOpenForSubmission:!1,hash:"dde280ae9a6cf4036de089d63738a409",slug:"nanowires-new-insights",bookSignature:"Khan Maaz",coverURL:"https://cdn.intechopen.com/books/images_new/5747.jpg",editedByType:"Edited by",editors:[{id:"107765",title:"Dr.",name:"Maaz",surname:"Khan",slug:"maaz-khan",fullName:"Maaz Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6133",title:"Cobalt",subtitle:null,isOpenForSubmission:!1,hash:"96be0c35234ae3c889e6ce68b218fe04",slug:"cobalt",bookSignature:"Khan Maaz",coverURL:"https://cdn.intechopen.com/books/images_new/6133.jpg",editedByType:"Edited by",editors:[{id:"107765",title:"Dr.",name:"Maaz",surname:"Khan",slug:"maaz-khan",fullName:"Maaz Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7674",title:"Modern Spectroscopic Techniques and Applications",subtitle:null,isOpenForSubmission:!1,hash:"da3cb0d978d197ed95c07e8090e06136",slug:"modern-spectroscopic-techniques-and-applications",bookSignature:"Maaz Khan, Gustavo Morari do Nascimento and Marwa El-Azazy",coverURL:"https://cdn.intechopen.com/books/images_new/7674.jpg",editedByType:"Edited by",editors:[{id:"107765",title:"Dr.",name:"Maaz",surname:"Khan",slug:"maaz-khan",fullName:"Maaz Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10941",title:"Ferrites",subtitle:"Synthesis and Applications",isOpenForSubmission:!1,hash:"f6a323bfa4565d7c676bc3733b4983b0",slug:"ferrites-synthesis-and-applications",bookSignature:"Maaz Khan",coverURL:"https://cdn.intechopen.com/books/images_new/10941.jpg",editedByType:"Edited by",editors:[{id:"107765",title:"Dr.",name:"Maaz",surname:"Khan",slug:"maaz-khan",fullName:"Maaz Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5293",title:"Recent Advances in Graphene Research",subtitle:null,isOpenForSubmission:!1,hash:"207ed784d98fcb1189a3ac9147f1dc81",slug:"recent-advances-in-graphene-research",bookSignature:"Pramoda Kumar Nayak",coverURL:"https://cdn.intechopen.com/books/images_new/5293.jpg",editedByType:"Edited by",editors:[{id:"38997",title:"Dr.",name:"Pramoda Kumar",surname:"Nayak",slug:"pramoda-kumar-nayak",fullName:"Pramoda Kumar Nayak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1790",title:"Materials Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"0b85a7bbf89f16101f9195f9588ee66d",slug:"materials-science-and-technology",bookSignature:"Sabar D. Hutagalung",coverURL:"https://cdn.intechopen.com/books/images_new/1790.jpg",editedByType:"Edited by",editors:[{id:"106047",title:"Dr.",name:"Sabar",surname:"Hutagalung",slug:"sabar-hutagalung",fullName:"Sabar Hutagalung"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"65367",slug:"corrigendum-to-review-of-liquid-filled-optical-fibre-based-temperature-sensing",title:"Corrigendum to Review of Liquid-Filled Optical Fibre-Based Temperature Sensing",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/65367.pdf",downloadPdfUrl:"/chapter/pdf-download/65367",previewPdfUrl:"/chapter/pdf-preview/65367",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/65367",risUrl:"/chapter/ris/65367",chapter:{id:"63471",slug:"review-of-liquid-filled-optical-fibre-based-temperature-sensing",signatures:"Fintan McGuinness, Gabriel Leen, Elfed Lewis, Gerard Dooly, Daniel Toal\nand Dinesh Babu Duraibabu",dateSubmitted:"May 22nd 2018",dateReviewed:"August 1st 2018",datePrePublished:"November 5th 2018",datePublished:"April 24th 2019",book:{id:"8271",title:"Applications of Optical Fibers for Sensing",subtitle:null,fullTitle:"Applications of Optical Fibers for Sensing",slug:"applications-of-optical-fibers-for-sensing",publishedDate:"April 24th 2019",bookSignature:"Christian Cuadrado-Laborde",coverURL:"https://cdn.intechopen.com/books/images_new/8271.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"220902",title:"Dr.",name:"Christian",middleName:null,surname:"Cuadrado-Laborde",slug:"christian-cuadrado-laborde",fullName:"Christian Cuadrado-Laborde"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"27036",title:"Dr.",name:"Daniel",middleName:null,surname:"Toal",fullName:"Daniel Toal",slug:"daniel-toal",email:"daniel.toal@ul.ie",position:null,institution:null},{id:"85846",title:"Prof.",name:"Elfed",middleName:null,surname:"Lewis",fullName:"Elfed Lewis",slug:"elfed-lewis",email:"Elfed.Lewis@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"259703",title:"Dr.",name:"Dinesh Babu",middleName:null,surname:"Duraibabu",fullName:"Dinesh Babu Duraibabu",slug:"dinesh-babu-duraibabu",email:"dineshbabu.duraibabu@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"269578",title:"Dr.",name:"Gabriel",middleName:null,surname:"Leen",fullName:"Gabriel Leen",slug:"gabriel-leen",email:"Gabriel.Leen@ul.ie",position:null,institution:null},{id:"269579",title:"M.Sc.",name:"Fintan",middleName:null,surname:"McGuinness",fullName:"Fintan McGuinness",slug:"fintan-mcguinness",email:"Fintan.McGuinness@ul.ie",position:null,institution:null},{id:"269580",title:"Dr.",name:"Gerard",middleName:null,surname:"Dooly",fullName:"Gerard Dooly",slug:"gerard-dooly",email:"Gerard.Dooly@ul.ie",position:null,institution:null}]}},chapter:{id:"63471",slug:"review-of-liquid-filled-optical-fibre-based-temperature-sensing",signatures:"Fintan McGuinness, Gabriel Leen, Elfed Lewis, Gerard Dooly, Daniel Toal\nand Dinesh Babu Duraibabu",dateSubmitted:"May 22nd 2018",dateReviewed:"August 1st 2018",datePrePublished:"November 5th 2018",datePublished:"April 24th 2019",book:{id:"8271",title:"Applications of Optical Fibers for Sensing",subtitle:null,fullTitle:"Applications of Optical Fibers for Sensing",slug:"applications-of-optical-fibers-for-sensing",publishedDate:"April 24th 2019",bookSignature:"Christian Cuadrado-Laborde",coverURL:"https://cdn.intechopen.com/books/images_new/8271.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"220902",title:"Dr.",name:"Christian",middleName:null,surname:"Cuadrado-Laborde",slug:"christian-cuadrado-laborde",fullName:"Christian Cuadrado-Laborde"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"27036",title:"Dr.",name:"Daniel",middleName:null,surname:"Toal",fullName:"Daniel Toal",slug:"daniel-toal",email:"daniel.toal@ul.ie",position:null,institution:null},{id:"85846",title:"Prof.",name:"Elfed",middleName:null,surname:"Lewis",fullName:"Elfed Lewis",slug:"elfed-lewis",email:"Elfed.Lewis@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"259703",title:"Dr.",name:"Dinesh Babu",middleName:null,surname:"Duraibabu",fullName:"Dinesh Babu Duraibabu",slug:"dinesh-babu-duraibabu",email:"dineshbabu.duraibabu@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"269578",title:"Dr.",name:"Gabriel",middleName:null,surname:"Leen",fullName:"Gabriel Leen",slug:"gabriel-leen",email:"Gabriel.Leen@ul.ie",position:null,institution:null},{id:"269579",title:"M.Sc.",name:"Fintan",middleName:null,surname:"McGuinness",fullName:"Fintan McGuinness",slug:"fintan-mcguinness",email:"Fintan.McGuinness@ul.ie",position:null,institution:null},{id:"269580",title:"Dr.",name:"Gerard",middleName:null,surname:"Dooly",fullName:"Gerard Dooly",slug:"gerard-dooly",email:"Gerard.Dooly@ul.ie",position:null,institution:null}]},book:{id:"8271",title:"Applications of Optical Fibers for Sensing",subtitle:null,fullTitle:"Applications of Optical Fibers for Sensing",slug:"applications-of-optical-fibers-for-sensing",publishedDate:"April 24th 2019",bookSignature:"Christian Cuadrado-Laborde",coverURL:"https://cdn.intechopen.com/books/images_new/8271.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"220902",title:"Dr.",name:"Christian",middleName:null,surname:"Cuadrado-Laborde",slug:"christian-cuadrado-laborde",fullName:"Christian Cuadrado-Laborde"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11378",leadTitle:null,title:"Functional Connectivity - Current and Future Translational Impact of the Connectome in Neurological Disorders",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tOver the last two decades, fMRI brain studies have strived to find fitting neural correlates of major neurological conditions through functional connectivity. More recently, researchers are attempting to go beyond purely descriptive approaches also due to the boost resulting from the application of artificial intelligence in neuroscience. In particular, the large amount of collected functional and corresponding clinical data is allowing data-characterizing algorithms to properly classify different subcategories of patients based on their functional connectome, as well as to make prognostic predictions about neurological disease phenotypes. Functional connectivity has now been addressed by researchers following multiple approaches of data analysis based on both static and dynamic statistical models of the bold fMRI signal. Very recently the radiomic approach has been applied also to functional connectivity data. Brain functional imaging has therefore been developing the potential to become part of the much-invoked (and needed) "tailored" diagnostic process, as part of an integrated multidisciplinary approach aimed at profiling functional connectome "endophenotype" for each patient. This could facilitate targeted and more effective therapeutic interventions very soon. Researchers and clinicians are encouraged to send contributions that could match this "applicative" quantitative view of functional connectomics in neurology.
",isbn:null,printIsbn:"979-953-307-X-X",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,hash:"a49aeeef74abaa8e292d229fd68c5b21",bookSignature:"Dr. Mario Stanziano and Ph.D. Sara Palermo",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11378.jpg",keywords:"Resting-State fMRI, Resting-State Networks, Neural Field Theory, Sliding Time Window Analysis, ROI-Based Hypothesis Driven Approach, Data-Driven Approach, Global Signal Linear Regression, Global Signal Topography, Data Clustering, Leave-One-Out Procedures, Radiomic Analysis of Brain Functional Connectivity Data, Brain Texture Analysis",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 27th 2021",dateEndSecondStepPublish:"November 24th 2021",dateEndThirdStepPublish:"January 23rd 2022",dateEndFourthStepPublish:"April 13th 2022",dateEndFifthStepPublish:"June 12th 2022",remainingDaysToSecondStep:"6 months",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:'Dr. Mario Stanziano ( MD) is a Neuroradiologist at the IRCCS Neurological Institute "Carlo Besta" of Milan, Neuroscience Ph.D. student at the University of Turin, advisor for the Neuroradiology Department of the Trauma Center of Turin (CTO), actively involved in functional MRI research in several neurological disorders.',coeditorOneBiosketch:"Appreciated researcher with recognized expertise in psychophysiology, neuropsychology, and neuroimaging who is successfully applying the neurocognitive approach to the study of neurodegenerative diseases and placebo mapping. Dr. Palermo is a member of the European Innovation Partnership on Active and Healthy Aging (EIP on AHA), for which she is involved in the Action Group A3 Functional decline and frailty.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"262793",title:"Dr.",name:"Mario",middleName:null,surname:"Stanziano",slug:"mario-stanziano",fullName:"Mario Stanziano",profilePictureURL:"https://mts.intechopen.com/storage/users/262793/images/system/262793.jpeg",biography:'Mario Stanziano is a Diagnostic Neuroradiologist currently working at the Neuroradiology Department of the IRCCS Neurological Institute "Carlo Besta" of Milan. He also collaborates with the Neuroradiology Department of the Trauma Center of Turin (CTO) and, as a PhD student, with the Neuroscience Department "Rita Levi Montalcini" of the University of Turin. He is an expert in functional and structural neuroimaging, especially in functional connectivity analysis under resting state condition.',institutionString:"Istituto Neurologico Carlo Besta",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Istituto Neurologico Carlo Besta",institutionURL:null,country:{name:"Italy"}}}],coeditorOne:{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo",profilePictureURL:"https://mts.intechopen.com/storage/users/233998/images/system/233998.png",biography:"Sara Palermo has an MSc in clinical psychology and a PhD in experimental neuroscience. She is specialty chief editor of Frontiers in Psychology, Neuropsychology, and scientific director of the Italian National Institute of Philanthropy, Filantropolis. She is a member of the Italian Society of Neuropsychology, the Italian Association of Psychogeriatrics, the Italian Society of Neurology for Dementia, and the Society for Interdisciplinary Placebo Studies. She was a member of the European Innovation Partnership on Active and Healthy Ageing (EIP AHA), for which she was involved in Action Group A3: Action for Prevention of Functional Decline and Frailty. Dr Palermo works as a researcher at the Department of Psychology - University of Turin (Italy) and as Scientific Consultant at the Fondazione IRCCS, Istituto Neurologico Carlo Besta (FINCB), Milan, Italy.",institutionString:"University of Turin, Italy & The Foundation of the Carlo Besta Neurological Institute IRCCS",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"6",totalChapterViews:"0",totalEditedBooks:"5",institution:{name:"University of Turin",institutionURL:null,country:{name:"Italy"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"18",title:"Neuroscience",slug:"life-sciences-neuroscience"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"278926",firstName:"Ivana",lastName:"Barac",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/278926/images/8058_n.jpg",email:"ivana.b@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6628",title:"Circadian Rhythm",subtitle:"Cellular and Molecular Mechanisms",isOpenForSubmission:!1,hash:"628bbcbfaf54a56710498540efe51b87",slug:"circadian-rhythm-cellular-and-molecular-mechanisms",bookSignature:"Mohamed Ahmed El-Esawi",coverURL:"https://cdn.intechopen.com/books/images_new/6628.jpg",editedByType:"Edited by",editors:[{id:"191770",title:"Dr.",name:"Mohamed A.",surname:"El-Esawi",slug:"mohamed-a.-el-esawi",fullName:"Mohamed A. El-Esawi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"77664",title:"Post COVID-19 Conditions and the Cardiovascular System",doi:"10.5772/intechopen.99197",slug:"post-covid-19-conditions-and-the-cardiovascular-system",body:'According to its definition, post COVID-19 conditions comprise all signs and symptoms of COVID-19 that persist after the acute phase (3 to 4 weeks), without an upper limit of duration (as for the present state of knowledge). Another term for these conditions, introduced by Antoni Fauci, is “Post-Acute Consequences of SARS-CoV-2 Infection” (PASC) [1].
The acute phase of the disease usually lasts about 3-4 weeks from the onset of symptoms, after which replication competent SARS-CoV-2 has not been isolated in the nasopharynx [1].
Accumulated data show that the consequences for the body can be just as serious and continue for an unusually long time after the initial encounter with the virus. It is the long persistence of complaints of varying degrees and manifestations after the infection that are known as post COVID-19 conditions. There is no precise scientific definition for the reason, duration, and prognosis of PASC [2].
The acute phase of the disease does not determine the onset of Post COVID-19 syndrome, because even patients with mild or asymptomatic infection may report PASC. There is no age limit for the manifestation of post Covid-19 conditions, but the reported frequency is higher in the elderly population [3, 4].
According to the latest data from the World Health Organization, the consequences of an infectious disease can last for two to three years [5].
There are several pathogenetic hypotheses for PASС. The first is direct cell damage by binding of SARC-CoV-2 to ACE 2, initiating a violent immune response leading to increased cytokine production and triggering of procoagulant states [6].
It was later found that the reason for prolonged viral replication is the fact that SARS-CoV-2 can be transmitted by a different route from the respiratory tract, namely through the gastrointestinal tract, which could be considered a second hypothesis. The gastrointestinal tract is a major immunological organ in the human body and disruption of its microbiome leads to severe dysbacteriosis. Intestinal inflammation exacerbates the expression of ACE2, and the virus stays in the gut for much longer, which in turn can modulate immune responses and cause prolonged symptoms [6, 7]. This has been demonstrated by an intestinal biopsy, which detects the presence of the virus for months [7].
COVID-19 has also been shown to provoke autoimmune reactions, leading to a more severe course of the disease and the development of post COVID-19 conditions [7].
The suboptimal immune response leads to a higher viral load associated with decreased balance in interferon production. It was found that in severe disease the body lacks IFN-beta and the level of IFN-alpha and lambda is reduced [7, 8].
Lymphopenia and unregulated inflammation have been observed in patients with severe COVID-19 and prolonged persistence of the infection as a result of decreased production of granular lymphocytes (NK cells), CD16 + monocytes, plasmacytoid dendritic cells, which are responsible for innate immunity [8].
The severity of symptoms can range from mild to inability to perform normal daily duties. Every system could be involved, with a typical fluctuation and changing of symptoms over time. As the pathogenesis has shown, prolonged exposure to viral load can cause multisystem inflammatory syndrome (MIS) or trigger autoimmune conditions. The involvement in PASC is multi-organ, with the most common being complaints from the nervous system [2, 9]. Post COVID-19 conditions are more common among people with chronic diseases such as hypertension, diabetes, kidney disease, obesity. Genetic pre-exposure to the disease has not yet been specified.
The main systems that are affected are the nervous, cardiovascular, pulmonary, and excretory systems, musculoskeletal system, skin (Table 1).
System | Symptoms | Sign |
---|---|---|
Neuropsychiatric | fatigue, dizziness, headache, dysautonomia and cognitive impairment (brain fog), anxiety, depression, sleep disturbances | Direct damage to nerve tissue by the virus in patients with severe disease. [2] Psycho-emotional changes may include a wide range of symptomatic complexes characteristic of severe patients who are being treated in intensive care, known as “Post Intensive Care Syndrome” |
Pulmonary | dyspnea, decreased exercise capacity and hypoxia | Reduced difusion capacity, restrictive pulmonary physiology, destruction of the alveolar-capillary membrane, secondary bacterial infections, pulmonary fibrosis,” ground-glass opacity” [2, 3] |
Cardiovascular | palpitations, dyspnea and chest pain, high blood pressure, fatigue, swelling of the lower extremities, acute pain and discoloration of the arm or leg due to ischemia | Thromboembolic events. It is already known that many patients re-admitted to the hospital with chest pain and positive cardiac enzymes (Troponin, CK, CK-MB,) and high levels of D-dimer. Pulmonary embolism is very common. In patients at high cardiovascular risk or underlying ischemic heart disease, acute thrombotic occlusion of the coronary artery are diagnosed. Non-obstructive coronary heart disease has been verified in many patients: myocardial infarction with non-obstructive coronary arteries (MINOCA), endothelial dysfunction, and microcirculation of arterial vascular disease [9, 10]. Acute limb ischemia may be observed. Some patients have pericardial effusion or the development of dilated cardiomyopathy of viral origin, after myocarditis [10] |
Gastrointestinal | loss of appetite, weight loss, nausea, vomiting, diarrhea, abdominal pain | increased transaminases dysbiosis in the intestinal microflora (disturbed microbiome) with, increase in pathogenic bacteria and decrease in the normal microflora in the gut [7] |
Endocrine |
| |
Excretory and urogenital system | impaired renal function decreased urine output, pain in the kidneys | elevated levels of waste products (urea and creatinine), requiring hemodialysis [2] |
Reproductive system | Impaired spermatogenesis | The male sex is more affected in reproductive system, and one of the hypotheses for this is the higher amount of ACE 2 in the male gonads compared to the uterus [11, 12] |
Musculoskeletal system | occurrence of long-lasting arthralgia/myalgia | Due to immobilization, they can lead to cachexia due to loss of muscle mass. Sarcopenia - impaired muscle function due to loss of muscle tissue [2, 13] |
Ear Nose Throat | pain and “noise” in the ears, throat irritation, loss of taste and smell(anosmia) | Nasal congestion, pharyngeal erythema [14] |
Dermatology | hair loss, skin rash, urticaria, dry skin | disturbed cycle in hair growth, (telogen effuvium); stress after infection “COVID toes” syndrome - reddish-purple discoloration on the toes; In children, a rare condition similar to Kawasaki disease or Multisystem inflammatory syndrome in children (MIS-C) [2, 15, 16] |
Affecting the basic systems in post COVID-19 conditions.
Many global medical centers are opening specialized clinics to provide care for people who have persistent symptoms or related illnesses after COVID-19. It is important to know that most people who have COVID-19 recover. The scientific community should focus on that part of the people in whom the effects of the disease leave lasting traces and change their lives. It is still unknown how long PASC can last. In 30% of COVID-19 survivors, symptoms may persist indefinitely. Data show that 76% of patients reported persistence of at least one of the symptoms of PASC for at least six months after the acute phase [17]. Many COVID-19 survivors cannot return to their normal lifestyle. At this stage, there is no accurate scientific data on whether these long symptoms can lead to a chronicity of the condition.
Understanding the pathogenesis of PASC may provide answers to additional questions to guide the medical community to the right management of the condition.
The loss of human lives, the disability of the population, the increase in the costs of health care and services burden the health systems. Persistence of post COVID-19 conditions affects various levels of medical and social life, and the negative effects on healthcare and the economy may be fully appreciated in years to come.
The psychological and social consequences of ongoing Covid19 should be considered as part of clinical care models [17].
The primary target for SARS-CoV-2 is the respiratory tract, but the cardiovascular system can be involved too [18, 19].
As well as the mild flu-like symptoms, COVID-19 often causes serious damage to the cardiovascular system - pulmonary vascular endothelialitis, microangiopathy, diffuse thrombosis, cardiac arrhythmias, heart failure, myocarditis, pericarditis and acute coronary syndromes [19].
Once in the nasopharynx, the SARS-CoV-2 enters the body by binding through its S-binding protein to angiotensin I-converting enzyme 2 (ACE2) receptors, found mainly in the lungs, cardiac myocytes, and endothelial cells in the vessel wall [20].
ACE2 is known to have protective effects by counteracting angiotensin II and over activating renin-angiotensin-aldosterone system (RAAS), which occurs in conditions of cardiovascular disease (CVD) such as hypertension, congestive heart failure and atherosclerosis [19, 21].
Entering through endocytosis, this RNA virus begins to replicate, causing widespread infection. Since ACE2 converts angiotensin I and II to cardioprotective peptides - angiotensin 1-9 and angiotensin 1-7, its loss on cell surface may potentiate cardiac damage, resulting in endothelial dysfunction, inflammation and thrombosis [21, 22].
ACE2 activity is known to be reduced in vessels with established atherosclerotic plaques and diabetes, while it is increased in women and young people due to the action of estrogens [21].
Decreased ACE2 activity may potentiate the so-called cytokine storm. This is an overreaction of the immune system caused by dysregulating RAAS and activating ACE2/bradykinin axis. The overproduction of cytokines and hyperinflammation leads to exacerbation of underlying cardiovascular diseases or triggering new ones.
According to the latest epidemiological data, about 80% of patients with COVID 19 have mild symptoms, about 45% have symptoms requiring hospitalization, while 5% of patients need mechanical ventilation [21, 22, 23, 24, 25]. The difference in course is related to the degree of viral load, host immune response, age of the patient and the presence of concomitant diseases such as hypertension, diabetes and coagulation abnormalities.
Aging is associated with slowing of body functions, increased oxidative stress, reduced role of endogenous defense mechanisms. With age, reduced efficiency of thrombolysis, lower protection afforded by physical exercise against myocardial ischemia and more frequent manifestations of heart failure are more often observed [21, 22].
It has not yet been established whether the patient’s older age or greater immune response to the virus or both are responsible for myocardial damage with subsequent complications [21, 22, 23, 24].
Direct viral infection, cytokine dysregulation and direct myocyte involvement can lead to acute myocardial injury in patients with COVID-19. Thus except for the high levels of CRP (C-reactive protein), elevated troponin levels suggest acute myocardial injury. It can be a result of myocarditis, ischemic injury, Takotsubo’s cardiomyopathy, septic cardiomyopathy, acute cor pulmonale (as a result of acute pulmonary embolism) [7, 26, 27].
Acute coronary syndromes can be a manifestation of imbalance between myocardial supply and demand as a result of systemic changes – hypoxemia, tachycardia, hypotension, vasoconstriction; or acute thrombosis in the coronary arteries. Often, when the right coronary artery is affected a complete atrioventricular heart block can be seen. Other location of the coronary lesion may lead to severe ischemic cardiomyopathy, left ventricular aneurysm formation with apical thrombosis [28, 29].
The most frequent arrhythmia seen in COVID-19 patients is atrial fibrillation, which is a result of the acute respiratory failure. Electrolyte imbalance – hypokalemia and hypomagnesaemia can also lead to arrhythmic states [30].
Some of the medications used in the treatment of COVID-19 have proarrhythmogenic effects and should be used with caution, as they can provoke long QT interval, ventricular tachycardia and sudden cardiac death [30, 31].
A hypercoagulable state and thrombotic events, that are related to markedly elevated D-dimer and fibrin degradation products, are thought to be secondary to systemic inflammatory response [32, 33].
Takotsubo cardiomyopathy, predominantly seen in women, is mainly a result of increased sympathetic stimulation, which is usually observed in patients with COVID-19. It can be due to physical and psychological stress. This state can mimic acute coronary syndrome, which can develop within severe sepsis, hypoxemia, or metabolic acidosis [34, 35, 36].
Acute myocarditis due to myocardial inflammation can lead to ventricular dysfunction as a result of focal or global myocarditis or necrosis [37]. Life- threatening arrhythmias can be a consequence of myocarditis. When linked with pericardial effusion, further deteriorating of the hemodynamics might lead to acute heart failure (HF) and cardiogenic shock [38, 39].
The pathogenic mechanisms and clinical manifestations of cardiovascular complications of COVID-19 are presented in Table 2.
Cardiovascular disease | Pathogenic mechanism | Clinical manifestation |
---|---|---|
Acute coronary syndrome with or without ST elevation | Cytokine storm, hypercoagulability, plaque instability, imbalance between cardiac supply and demand | Typical chest pain or atypical pain and/or dyspnea, elevated levels of troponin, ECG changes (ST elevation or depression) and LV WMAs associated with specific region of distribution of a coronary artery |
Myocarditis | Cytokine storm, direct cellular damage (possible) | Chest pain (possible), dyspnea (possible), elevated levels of troponin, ECG changes (possible), diffuse LV WMAs not related to specific coronary artery territory distribution |
Pericarditis | Cytokine storm, direct cellular damage (possible) | Chest pain, dyspnea (possible), elevated troponin, ECG changes, impaired LV diastolic function and/or pericardial effusion |
TTS | Emotional stress, microvascular and endothelial dysfunction, sepsis, acidosis, hypoxemia | Chest pain and/or dyspnea, elevated troponin, ECG changes, LV WMAs not related to specific coronary artery territory distribution (circumferential pattern, apical ballooning most frequently) |
PE | Hypercoagulability | Chest pain and/or dyspnea, perioral cyanosis, elevated troponin (possible), ECG changes - S1Q3T3 pattern (possible), RV enlargement and dysfunction (McConnell sign, 60/60 sign) |
Decompensated chronic HF | Hypoxia, elevated metabolic demand | Dyspnea, fatique, orthopea, tachydyspnea, hepatomegalia, anasarca, elevated levels of troponin (possible), LV WMAs without de novo abnormalities |
Acute myocardial injury | Cytokine storm, direct cellular damage (possible), microvascular and endothelial dysfunction, hypoxia | Chest pain and/or dyspnea (possible), elevated levels of troponin, ECG changes (possible), LV WMAs (possible) not associated with specific coronary artery territory distribution (if absence of coexistent CAD) |
Arrhytmias | Electrolyte abnormalities and medications for treatment of COVID 19 that have proarrhythmic effects | Dyspnea and chest pain (possible), ECG changes |
Pathogenetic mechanisms and clinical presentations of cardiovascular complications seen in patients with COVID-19.
ACS, acute coronary syndrome; CAD, coronary artery disease; CMR, cardiac magnetic resonance; CT, computed tomography; ECG, electrocardiogram; HF, heart failure; ICA, invasive coronary angiography; LV, left ventricular; PE, pulmonary embolism; RV, right ventricular; TTE, transthoracic echocardiography; TTS, Takotsubo syndrome, WMAs, wall motion abnormalities. Modified from Ref. [40].
As COVID 19 is an infectious disease clinicians should use methods of imaging, minimizing the risk of spreading infection. Most suitable are transthoracic echocardiography and point of care ultrasound. They are the first-line cardiac imaging techniques in this clinical setting, due to its portability, bedside feasibility in emergency settings and low cost [41].
The ultrasound is a diagnostic method for imaging the heart structures, valve lesions and kinetics. According to the European Association of Cardiovascular Imaging it is recommended performing echocardiography in patients with abnormally high levels of cardiac biomarkers and/or ECG signs of myocardial damage, while acknowledging that other imaging diagnostic tests are not routinely used in the emergency context of the COVID-19 pandemic [42, 43].
Findings in echocardiography could be normal heart or uchanged from prior exams, global left ventricular dysfunction and strain, regional left ventricular dysfunction, right ventricuar dilatation, pylmonary hypertention and pericardial effusion.
CT scan and MRI can also be used for distinguising cardiovascular implication, but they have higher cost and lower availability [44].
Every hospital in the world should develop appropriate protocols for rapid diagnosis, triage, isolation, and management of patients with COVID-19 and concomitant cardiovascular complications. These protocols should be well-rehearsed for proper use of health services and to minimize the exposure of the medical staff [45].
Most of the patients with COVID-19 have hypertension, treated with ACE inhibitors or (ACEi) or angiotensin II receptor blockers (ARBs). The amount of cardiac ACE2 mRNA could be increased significantly by the use of ACEi and ARBs [46, 47]. However, major cardiology scientific associations, have recommended continuation of renin-angiotensin system inhibitors (RASi) in patients who have been prescribed them [47, 48, 49].
Statin therapy is important for patients with diabetes, history of stroke or chronic heart disease, and familial hypercholesterolemia. However, in cases with COVID-19 there is still not an approved opinion whether it is risky or beneficial [50, 51].
As various anti-retroviral drugs might interact with cardiac drugs, a dose modification should be performed as well as careful monitoring [52]. Even though chloroquine or hydroxychloroquine could interfere with cellular endocytosis of the virus, prolongation of the QT interval might be observed. Therefore ECG monitoring is crucial and should be done [52, 53].
Colchicine is a drug that has been shown to restrict the production of pro-inflammatory cytokines (tumor necrosis factor [TNF]-α, interleukin [IL]-1 and IL-6) and chemokines (IL-8), usually observed in patients with severe COVID-19 [54, 55].
As patients with COVID-19 may have elevated levels of D-dimer and higher platelet counts, it is suggested that coagulopathy is a major clinical feature in severe cases. This makes the use of anticoagulant and/or antiplatelet therapy very reasonable [56, 57].
Most people recover completely from COVID-19, but some of them have persisting symptoms after their initial recovery. This is the group of “long haulers” and the condition is called post-COVID-19 syndrome/conditions. [57, 58] The most common signs are fatigue, shortness of breath, cough, joint paint, chest pain. Every system could be affected, and the cardiovascular system is one of the frequent targets. Imaging tests taken months after recovery have shown lasting damage to the heart muscle [58, 59, 60]. This may increase the risk of heart failure or other complications such as arrhythmias and micropulmonary embolism. Careful follow-up of patients recovering from COVID-19 would be of great importance to understand the long-term impact of this illness [37, 61, 62].
Bulgarian Cardiac Institute is a leading organization for cardiovascular diagnosis and treatment in South-eastern Europe. The institute manages the largest and fastest growing medical group in Bulgaria. The medical establishments cover 2/3 of the patient flow and ¾ from the territory of the country. The Bulgarian Cardiac Institute is unique in the development of modern scientific, educational and medical activities in the field of cardiology, cardiac surgery, neurology, neurosurgery, vascular surgery, oncology, surgery, orthopedics, genetics, immunology, radiation therapy and radiosurgery.
Despite the growing population of patients surviving COVID-19, the long-term consequences remain a clinical challenge. Currently, just under 1% of studies focus on Post COVID-19 conditions. That is why the Bulgarian Cardiac Institute has launched a large-scale, free-of-charge, voluntary and indefinite screening campaign “Life after COVID-19”. It aims to establish the effects of the infection on the cardiovascular system, diagnosis, treatment, long-term follow-up and adequate actions to improve the quality of life by providing specialized medical care.
The campaign covers citizens who have suffered from COVID-19. Those who wish to participate answer a survey with questions related to their health. When they answer in the affirmative to at least one of the questions (yes, i.e.there is a problem), we offer a free medical examination. It is held in one of the seven high-tech hospitals, with the highest third level of competence, according to national medical standards or in one of the 15 medical centers in the country, by leading specialists in the field of cardiology. The initial examination includes a detailed history, complete examination, blood pressure measurement and electrocardiogram, on the basis of which we determine whether the patient needs additional instrumental or laboratory tests and treatment. According to the results and the leading symptoms, patients are consulted with trained in Europe and USA specialists in the field of cardiac surgery, neurology, neurosurgery, vascular surgery and others. If necessary and with persistence of symptoms, despite treatment, citizens are hospitalized.
As the population of recovering from COVID-19 grows, it is crucial to identify the health problems that surround them. The campaign creates round-the-clock access to high-quality and specialized medical care at European level, based on a multidisciplinary approach and dedicated medical care.
More than 1,500 citizens took part in the survey - 77% of them were treated at home, 23% were hospitalized, of which 2% in intensive care units. Of all respondents, 80% answered in the affirmative (Yes, i.e.there is a problem) to at least one of the initial survey questions. Signs and symptoms such as fatigue (67%), palpitations (41%), shortness of breath (31%), chest pain (30%), joint pain (27%), headache (22%), impaired concentration (17%), persistent cough (16%), dizziness (15%) were among the most frequently reported in the questionnaire responses (Figure 1). A significant proportion of patients had more than two symptoms.
The most common signs and symptoms persisting after COVID-19.
Medical examination was offered to citizens with persistent symptoms. We analyzed data from 808 patients (57% women and 43% men). The most common pathological changes we found were destabilization of blood pressure control (51%) - hypertension (92%), hypotension (5%) or fluctuation in blood pressure (3%). Heart rhythm disorders are the next most common finding (29%), expressed in tachycardia (97%) or bradycardia (3%). Manifestations of heart failure were found in 15% of cases.
According to the anamnesis and the objective condition, additional examinations had to be performed in 65% of the examined. These examinations included:
Instrumental methods: echocardiography (41%), holter ECG (3%), radiography (3%)
Laboratory diagnostics (9.4%): complete blood count, NT-proBNP, D-dimer, blood glucose test
consultations with specialists (10%): neurologist (28%), pulmonologist (22%), endocrinologist (12%), vascular surgeon (5%), rheumatologist (4%) and other
At the end of the examination, a change in therapy was required for 62% of those followed.
At the time of the secondary examination, new studies were performed in 5% and a change in therapy in 2.6%. Despite all interventions, in 6% of the cases, due to the persistence of the symptoms, the citizens were hospitalized.
Our experience shows that the care of patients with COVID-19 should not stop at the end of the acute illness. From the responders to our survey, 4/5 reported persistent signs and symptoms months later. The most common complaints were: fatigue, palpitations, shortness of breath, chest pain. Other reported symptoms included joint pain, headache, and impaired concentration. High values of blood pressure, tachycardia, and manifestations of heart failure were the leading objective changes. Our study showed that in more than half of the cases of COVID-19, additional tests and changes in treatment were required. The range of symptoms required the inclusion of doctors with different specialties in the overall follow-up. Despite the measures taken, the symptoms may be so severe and difficult to control that re-hospitalization may be necessary.
People suffering from post COVID-19 conditions constitute already a significant part of the world’s population, and their numbers will continue to grow. This necessitates a long-term commitment of human and material resources and will test the health and economic system of the countries. Regardless of the obstacles we face, dedication and professionalism, good organization and a holistic approach are the main prerequisites for good results. By tracking and caring for these patients, we will not only contribute to increasing humanity’s knowledge of this new, dangerous pathogen, but we will also make progress in the process of diagnosis and treatment guidelines.
COVID-19 is a multiorgan systemic inflammatory disease caused by SARS-CoV-2 virus. Patients with COVID-19 often exhibit cardiac dysfunction and myocardial injury [63], which we can recognize with laboratory parameters and imaging methods. The most used imaging method is transthoraic echocardiography (TTE), which gives us information about the heart function. Global longitudinal strain (GLS) by speckle tracking echocardiography is an important additive method for evaluation of LV function at global and regional level. It is more sensitive method for detecting myocardial dysfunction, compared with Left ventricular ejection fraction (LVEF) [64]. Another very informative method is MRI, however it is not used that often, due to higher expenses and need of contrast material. According to studies, almost all patients with severe COVID-19 and most of the patients with moderate illness, had a certain degree of cardiac dysfunction [63].
Conventional echocardiography usually does not show significant changes in the LVEF and LV sizes in patients with mild or moderate COVID- 19. According to one trial in China, however, in 78.3% from the patients with mild infection and 98% of the patients who were in critical condition, some echocardiographic parameters showed deviations. For example, the motion of the LV walls was abnormal and the wall thickness was slightly thickened, particularly for the septum [63]. But in patients who were with critical conditions, lower LVEF could be found [65]. These changes are in correlation with elevated serum levels of cardiac biomarkers, such as cardiac troponin I (cTnI) and N-terminal pro-B-type natriuretic peptide (NT-proBNP), pulse oxygen saturation (SpO2) and inflammatory markers, such as C-reactive protein and cytokines [63].
Although abnormalities in conventional echocardiography are found mostly in patients with severe COVID- 19, global longitudinal strain (GLS) can identify subclinical myocardial dysfunction. Moreover, measuring GLS gives us the opportunity for earlier diagnosis of myocardial injury, even before a reduction in the LVEF occurs. Studies showed that reduced LV-GLS is more frequent, occurring in 80% of the patients, while LV function parameters such as reduced EF and wall motion abnormalities were less frequent findings [66].
2D- speckle tracking echocardiography is a method, which evaluates myocardial function at global and regional level. It shows the percentage of deformation between two points in the myocardium. Studies in COVID-19 patients show that the abnormal GLS predominantly involves the basal-septal and basal-lateral segments of the LV. This pattern reminded of a “reverse tako-tsubo” morphology, and is not typical for other viral myocarditis [67]. Another interesting finding is that the reduction of the LV-GLS is usually reversible, with normalization of the findings for one to three months [66].
Cardiac magnetic resonance (CMR) is the current gold standard to evaluate cardiac morphology and function. It has higher sensitivity for detecting occult cardiac dysfunction than hs-cTnI. With its mapping techniques, such as T1, T2, extracellular volume (ECV) and Late Gadolinium Enhancement (GLE), this method can assess quantitatively diffuse or local myocardial fibrosis and edema [68]. One study in Frankfurt with 100 patients recently recovered from COVID-19, showed that 78% of them had abnormal CMR findings, namely lower left ventricular ejection fraction, higher left ventricle volumes, raised signals in native T1 and T2 mapping, which illustrate edema and changes in LGE, showing myocardial fibrosis. Endomyocardial biopsy was performed in patients with severe findings and revealed active lymphocytic inflammation [37].
Our experience in “Life after COVID” campaign (unpublished data) shows that about two-thirds of PASC patients referred for echocardiography have the typical post COVID-19 GLS impairment, involving predominantly the basal segments. We observe such findings in severe as well as non-severe COVID-19 cases. Our management strategy in these cases includes prolongation of antiaggregant therapy, initiation of cardioprotective therapy (could include some or all of the following: beta-blocker, trimetazidine, molsidomine), antiviral therapy (hydroxychloroquine) and advice to refrain from vigorous physical activity, although maintaining moderate physical activity or inclusion in a rehabilitation program. Our initial experience with 3-month follow-up of these patients shows a resolution of the abnormality in about 80% of the cases in this time period.
From our experience, we think that global longitudinal strain is very sensitive for recognizing subclinical myocardial dysfunction and a valuable imaging method for prognosis, management, sport activity resumption advice, and long-term following of the patients recovered from COVID-19.
Apart from the direct lung damage, the virus infection is associated with multiple organ damage, including the heart, causing conditions such as congestive heart failure, myocarditis, conduction abnormalities, arrhythmias, and acute coronary syndromes [69, 70]. The SARS-CoV-2 infection can frequently induce coagulation abnormalities that are associated with cardiopulmonary damage in all patients, despite presence or absence of concomitant risk factors and diseases.
The range of clinical responses to COVID-19 is extremely broad. Endothelial injury is an underlying mechanism that links the inflammation and consequent thrombosis [71, 72]. It is currently hypothesized that ACE-2 receptor is the entry gate for the virus to invade and infect tissues [73]. The vascular endothelium appears to be targeted directly by the virus as ACE-2 is expressed widely in the blood vessels and the heart. The result is exocytosis of endothelial granules containing VWF (von Willebrand factor), P-selectin, and other proinflammatory cytokines, which mediate platelets adhesion, aggregation, and leukocyte adherence to the vessel wall, with a final result of intravascular thrombosis [74].
In addition, many patients with severe COVID-19 undergo thromboembolic events, due to this particular coagulopathy [75, 76]. One of the most and life-threatening types of this coagulation abnormality is the one involving the coronary blood flow, thus causing a heart attack. In this scenario many additional problems arise – for example: access to a Cath lab, exposure of additional medical personnel, more complications and increased mortality for the patients. Invasive coronary angiography for COVID-19 patients is a logistic challenge and, in some cases, there is not a need for intervention since the main problem is the thrombosis and the dysfunction of the microcirculation. For this reason, we evaluated in detail a case series of ten patients referred for primary percutaneous coronary intervention (pPCI) for MI in our catheterization laboratory during the course of COVID-19 infection. The goal was to evaluate if there are any factors or parameters that could predict the presence of an interventional target – infarct related artery (IRA), prior to catheterization, and to determine their sensitivity and specificity.
During November and December 2020, 214 patients were treated in our COVID-19 department. Ten of them were referred to the Cath lab with MI defined by the fourth universal definition [77]. Most of the patients in our study were sent to our hospital due to acute coronary syndrome, while others developed ACS during their stay in the COVID-19 department.
After coronary angiography, we found that 7 patients (70%) had an IRA, and they underwent pPCI. The other 3 (30%) did not have an IRA, they did not require pPCI, and the diagnosis of myocardial infarction with no obstructive coronary arteries (MINOCA) was made, most probably due to myocarditis or microvascular dysfunction.
Comparing the patients with IRA to those without we found that the subjects who required pPCI had significantly higher high-sensitivity troponin I(hsTRI) values, had typical chest pain, and had more often ST elevation. The other studied variables did not differ significantly between the groups with or without IRA. Regarding hsTrI concentrations, all but one patient with IRA and pPCI had hsTrI>7.5 times URL, and all patients without IRA and pPCI had hsTrI ≤7.5 times URLN. Therefore, for hsTrI>1.5 ng/ml (>7.5 times URL) to predict the presence of IRA and the need for pPCI the sensitivity is 86%, the specificity is 100%, positive predictive value (PPV) is 100%, while the negative predictive value (NPV) is 10%.
Even though our analysis is on a small number of patients, similar incidence of arterial (coronary and cerebral) thrombosis (4%) has been described by other authors. In this study, however, the authors have not provided a guide to the right moment of interventional treatment. According to our published data search, we were not able to find another study, analyzing the predictors for the presence of IRA and the need for pPCI in COVID-19 MI patients.
So in conclusion, myocardial infarction, could complicate up to 5% of COVID-19 cases. In our study group, most of the patients (30%) with MI did not have an IRA and, did not need a coronary intervention. Patients with MI and IRA had significantly higher hsTrI values and exclusively typical chest pain compared to patients with MI but without an IRA, whose hsTrI values were lower and chest pain was atypical or non-stenocardic. ECG changes had only a minor statistical significance for distinguishing between MI patients with or without IRA. Our results suggest that using a higher cut-off value for hsTrI increases the specificity for diagnosing a MI and therefore - interventional treatment.
Infection caused by SARS-CoV-2 has been shown to lead to significant procoagulant events, in some cases involving life-threatening pulmonary thromboembolism (PE) [78]. A number of abnormalities have been described in coagulation parameters, which are a predictor of poor prognosis in patients with COVID-19 and PE [79]. Due to the lack of large prospective studies, little is known about the pathogenesis underlying PE, caused by COVID-19 [80]. Additional conditions complicating the diagnosis are the presence of risk factors for PE in almost all patients with COVID-19, as well as the overlap of the clinical presentation between PE and COVID-19.
We, therefore designed a study to find the indicators that predict the presence of PE in patients with acute or Post-acute COVID-19 conditions. It was a single-center study, conducted at the Heart and Brain Hospital, Pleven in the period December 2020-February 2021. It included 27 consecutively hospitalized patients with recent pneumonia caused by Covid-19 and clinical presentation referring to PE. The cohort was divided into two groups - without and with a definitive diagnosis of PE, proven by CT pulmoangiography. During treatment with COVID-19, all patients received a prophylactic dose of anticoagulant and antiplatelet drug.
Our results showed that eight patients from the group had PE, and 19 had not evidence of PE. The mean age of the group was 65 years and 18 of the patients were women. Тhe two groups did not differ significantly in age and distribution between the sexes. Statistically significant differences in electrocardiographic findings were observed in the two groups. In patients without PE, 18 (94.7%) had no evidence of S-wave greater than 1.5 mm in I, aVL. On the other hand, in the group diagnosed with PE in 3 (37.5%) this ECG criteria was not present, and in 5 (62.5%) it was present (p = 0.004). Similar ratios were found in terms of the presence of Q-wave in III, aVF. In patients without PE, 18 (94.7%) did not have this ECG sign, while it was present in half of the patients with PE(p = 0.017).
In patients without PE, the median value of oxygen saturation was 92.0% (69-97), and in those with proven - 88.5% (83-95) (p < 0.001). Statistically significant differences between the two groups were observed in regard to the indicator - the ratio RV/LV diameters ≥1.0 (p = 0.001). In patients without PE there was none with an increase in the ratio ≥ 1 in favor of the right ventricle, while in the group of patients with massive form 5 (62.5%) had the ratio RV/ LV diameters ≥1.0, and 3 (37, 5%) did not have it. The same results were demonstrated for the indicator right ventricular dysfunction (p = 0.001). The RV/LV diameter ratios ≥1.0 as well as right ventricular dysfunction showed sensitivity 62.5%, specificity 100%, positive predictive value 100% and negative such 86.4% to verify the PE diagnosis.
D-dimer values differed significantly in the two groups. In patients without PE, the mean D-dimer value was 1546 ng/ml (109-8840), while in those with PE - 6489.75 ng/ml (570-17051) (p = 0.021). For our laboratory, the upper limit of the normal range is 500 ng/ml. As a result of the ROC analysis we found that the D-dimer cut-off value of 1032 ng/ml (2,064 times higher above the upper limit of the normal range) had an optimal sensitivity (Se) of 87.5%, specificity (Sp) 57.9%, positive predictive value (PPV) 46.7% and negative predictive value (NPV) of 91.7% for the diagnosis of PE (p = 0.021) (Figure 2).
ROC analysis for D-dimer values and the probability of PE.
Regarding D-dimer as a binary variable (cut-off 1032 ng/ml), we found that in the group without PE, in 11 (57.9%) of patients the D-dimer was ≤1032 ng/ml, while in 8 (42.1%) it was >1032 ng/ml. Of the patients with massive PE, only 1 (12.5%) had a D-dimer ≤1032 ng/ml, and the remaining 7 (87.5%) were > 1032 ng/ml (Fisher’s exact tests, p = 0.043).
When performing binary logistic regression, part of the ECG criteria - S-wave over 1.5 mm in I lead and aVL (p = 0.007), Q-wave in III and aVF (p = 0.020), as well as the D-dimer as quantitative variable (p = 0.025) proved to be independent predictors of PE.
Our results show that against the background of acute and Post-acute COVID-19 conditions ECG and EchoCG criteria remain predictive of PE. As for the D-dimer values, we found that a cut-off concentration with optimal Se, Sp, PPV and NPV for diagnosis of PE, is two times higher than the upper limit of normal, with high Se and NPV. We suggest that a higher D-dimer cut-off value should be applied in COVID-19 and post-COVID-19 patients in order to confirm/dismiss the diagnosis PE.
The vascular bed, being rich in ACE2 receptors, is not devoid of complications during the acute or post-acute COVID-19 conditions. Our analysis is to report our experience in the Department of Vascular Surgery of Heart and Brain Center of Clinical Excellence, Pleven, Bulgaria, focusing on management of COVID-19 patients who developed severe acute ischemia with impending lower and upper limb loss.
We carried out a retrospective data collection of COVID-19 patients with severe acute ischemia of the lower or upper limbs between December 2020, and April 2021. We included only those COVID-19 patients suffering from acute lower limb ischemia. Primary outcomes of the analysis were early reoperations, amputation and postoperative mortality.
Admitted to our department were 16 patients (13 male, 3 female) with acute ischemia of the lower limbs and 2 patients (both male) with acute ischemia of the upper limbs. The median age was 70 years (range 50–85 years). All patients tested positive for COVID-19 and all had general clinical symptoms. In all patients, the limb was at risk, and the only alternative was a major amputation. Seven of the cases had previous claudication symptoms and peripheral artery disease (PAD). Computed tomography-angiography (CT-A) showed acute thrombosis over atherosclerotic occlusive disease. The rest of the patients [11] had no clinical evidence of PAD. The occlusion was related to acute thrombosis of the arteries or distal embolization and confirmed by (CT-A).
Generally, based on the patient’s overall stability, degree of ischemia, and limb viability, a determination needs to be made whether intervention is appropriate, and if so, whether an endovascular or open approach should be used. It is crucial to consider the severity of systemic illness when considering intervention. Because of the severe pulmonary complications associated with COVID-19, critically ill patients may not be candidates for revascularization. Similar to damage control in trauma patients, the principle of “life over limb” is justified.
Laboratory parameters in our group showed increased levels of serum D-Dimer, C-reactive protein (CRP), and a decreased platelet count. All 18 patients underwent urgent revascularization, (embolectomy, open surgery procedures, percutaneous transluminal angioplasty with catheter balloon and stenting or primary amputation). Postoperatively, all patients received heparin therapy with low molecular weight heparin, combined with clopidogrel 75 mg and, in some cases, acetylsalicylic acid 100 mg.
Ten of the patients suffered from early (1st or 2nd day) postoperative re-thrombosis. All of them underwent reoperation (embolectomy), but 6 of them suffered from re-re-thrombosis and eventually required above-the-knee amputation and one patient required above-the-elbow amputation. Unfortunately, 7 patient died from multiple organ failure (MOF). 11 patients left the hospital in generally good condition. One patient with femoral-popliteal thrombosis left with symptoms of claudication but without critical limb ischemia. After one month this patient underwent endovascular revascularization with percutaneous transluminal angioplasty (PTA) and stent implantation (Table 3).
All procedures | Generally good condition | Mortality | |
---|---|---|---|
All patients | 18 | 11 (61.1%) | 7 (38.9%) |
Open surgery | 15 | 8 (53.3%) | 7 (46.7%) |
PTA/Stent | 3 | 3 (100%) | 0 (0%) |
Re-operation | 4 | 3 (75%) | 1 (25%) |
Amputation | 6 | 3 (50%) | 3 (50%) |
Operative vascular procedures at the Vascular Surgery Department of Heart and Brain Center of Clinical Excellence, Pleven, Bulgaria.
In our experience, the incidence of acute limb ischemia increased significantly during the COVID-19 pandemic in Bulgaria. Successful revascularization and survival was lower than expected, which we believed was due to a virus-related hypercoagulable state. The use of prolonged systemic heparin might improve surgical treatment efficacy, limb salvage, and overall survival.
The COVID-19 pandemic posed serious challenges not only to modern cardiac surgery, but to medicine in general. As a result of the epidemic situation, the planned admission to hospitals and elective operations were stopped, and some of the health facilities were transformed into COVID-19 centers. Our hospital has developed a special algorithm for admission of patients in need of urgent or emergent cardiac surgery.
The epidemic situation has led to a reduction in hospital admissions. One of the reasons is certainly the fear of intra-hospital infection and transmission of COVID-19. The other reason is the postponement of elective operations. According to statistics, the number of hospitalized patients with acute coronary syndrome has decreased by 30%. If we consider that the mortality from COVID-19 is about 3% and the mortality from untreated STEMI reaches 30%, then the fear seems unjustified [81]. Important in this case, from a cardiac surgery point of view, is the definition of the concepts of elective and emergency admission and treatment, as well as treatment in accelerated and urgent order, as well as the nosological units to the respective groups:
True elective (isolated MR, isolated AS)
Accelerated elective (AS combined with CAD)
Urgent (CAD withLM disease or LM equivalent)
Emergent (Infective endocarditis, Acute myocardial infarction)
Salvage life saving (Aortic dissection Stanford type A, mechanical complications after AMI)
While the first two groups may remain on the waiting list, for the next three the waiting time is shortened according to the disease (24 hours, 6 hours and as soon as possible in case of urgent, emergency and life-saving surgery, respectively). The functioning of such a system requires particularly good communication and collaboration between GPs, specialized outpatient and inpatient care, proper categorization of patients and optimal timing of treatment.
Unfortunately, there is still no formal international protocol or guidelines for optimal timing of cardiac surgery in patients with active COVID-19 infection. Since the beginning of the pandemic, 18 patients with identified COVID-19 infection pre- or postoperatively have undergone cardiac surgery (4.9% of all operated patients). The results of the operative treatment are excellent, as the intraoperative and early (up to 7th day) postoperative mortality is zero. Late postoperative mortality was 44%, with no patients dying from cardiovascular disease. It is noteworthy, contrary to expectations, that it is not the complexity of surgical treatment that is the leading risk factor for the complicated postoperative period in patients with proven COVID-19, but the development of viral pneumonia. Interstitial changes typical of COVID-19 pneumonia (ground-glass opacities, vascular enlargement, bilateral abnormalities, lower lobe involvement, and posterior predilection) have been demonstrated by CT scan in 75% of the deaths, with respiratory failure being the leading cause of death.
The question how long after recovery from a COVID-19 infection can a patient be transferred to surgery also remains open. Several studies on the subject are currently conducted. The data collected so far from 116 countries on 140,231 patients may finally show some resolve [82]. 2.2% of the patients included in the study were diagnosed preoperatively with COVID-19 infection. Mortality is highest in the first 7 weeks after the illness.
Thus, with surgical treatment 0-2 weeks, 3-4 weeks, and 5-6 weeks after COVID-19, the 30-day mortality was 4.1%, 3.9% and 3.6%, respectively. In surgical treatment after the seventh week, the results were the same as in patients without COVID-19 infection (1.5%). The estimated 30-day postoperative mortality in patients without COVID-19 infection was 1.5%. It should be borne in mind, however, that these are not specific studies in the field of cardiac surgery, but concern surgery in general. Probably the specific risk for cardiac surgery patients would be higher if we consider the complicated procedure of cardiac surgery, the aging of the population and the polymorbidity of the Bulgarian population. The role of the Heart team is crucial and the preparation of precise general hospital protocols and individual approach to each patient are extremely important for achieving good results.
A breakthrough was launched for the field of personalized medicine when the president of the United States of America announced precision medicine in January 2015, presenting it for review and implementation by all healthcare professionals [1]. Since then, molecular characterization of patients which are more precise has been developed in the area which includes an increasing number of ‘omics’: (proteomics, genomics, transcriptomics, lipidomics, metabolomics and epigenomics), integration of genomic data, the rapid exchange of knowledge among researchers, bioinformatics which involves the retrieval and analysis of data stored in the large databases, and the growing world of Big data and artificial intelligence [1, 2]. These factors are introduced to drive clinicians towards diagnosis, follow-up and therapeutic decisions in precision medicine [2].
Data science applies the use of machine learning algorithms to audio, video, images, text, and numbers to develop artificial intelligence (AI) systems which are used in data processing and preparation of analysis, optimization and construction of integral models, which is further used in the combination of certain algorithm and consequently produce insights that analysts can translate to add value to existing knowledge [3].
One of the principal challenges in clinical endocrine practice is thyroid disease management. During the last years, continuous progress has been experienced in medical science. Also, some factors have improved our knowledge of this field from arithmetical to geometrical proportions. Some of the lists of these factors include accurate clinical assessment, understanding inter or intracellular reactions, and the environment’s influence on this reaction [2]. Most fields of science have undergone a big data revolution. The use of data science in personalized medicine is important for treating variability in autoimmune disorders, especially in patients with the presence of varying autoimmune diseases [4, 5]. Studies have also shown how data like the electronic health records (EHRs) initially designed to facilitate patients registration has been used as a tool in predicting thyroid diseases, as seen in some reports that link the EHRs data to extant genotypes to identify new gene locus like forkhead box E1 (FOXE1), which is associated with autoimmune thyroid diseases [6, 7, 8].
Genomic data is an important data in precision medicine. Therefore, most thyroid diseases such as autoimmune thyroiditis are known to have high heritability [8, 9]. Studies have reported high rate of Graves’ disease in monozygotic twins compared to dizygotic twins (in the range of 50–70%, compared with 3–25% respectively). Also, Hemminki and his co-worker reported the familial standardized incidence ratios for Graves’ disease to be 4.49 (for individuals whose parent was affected), 5.04 (for individuals with only a single sibling affected), while 310 (if the individual has two or more siblings affected), and 16.45 in twins [1, 8, 10]. For Hashimoto’s thyroiditis (HT), the sibling risk ratio was found to be 28 and this risk was confirmed in data obtained from Germany [8, 11, 12]. All this evidence shows the association of genetic susceptibility to autoimmune thyroid diseases.
A genome-wide association study (GWAS) of hyperthyroidism was carried out with a sample of 1317 hypothyroidism cases and 5053 controls which was algorithmically determined from five EMRDs (electronic medical record databases), one association was found with near forkhead box E1 (also known as thyroid transcription factor 2 (TTF-2)) [7]. Gene studies have also linked autoimmune hypothyroidism with PTPN22 (protein tyrosine phosphatase, non-receptor type 22), CTLA4 (cytotoxic T lymphocyte antigen 4) and HLA II (human leukocyte antigen class II region) [7, 8]. On the other hand, Graves’ disease has been studied in several genome-wide association studies, with the discovery of many loci [1, 7]. These associations are important in the diagnosis and treatment of autoimmune thyroid diseases.
Autoimmune thyroid diseases (AITDs) are the most common autoimmune diseases in humans and it is divided based on the grade of lymphocytic infiltration [13]. They are more prevalent in females than males (i.e. they are 5–10 less frequent in men). Graves’ disease which is a disease associated with hyperthyroidism and Hashimoto’s thyroiditis which is also associated with hypothyroidism are the major types of AITDs [13].
Graves’ disease is the most common cause of hyperthyroidism, which affects people at any age but most prevalent in adults, the incidence of this disease peaks between 30 and 50 years [14]. It is also characterized by goiter, ophthalmopathy [15].
HT has now been considered the most common AITD [16], the most common endocrine disorder [17] and also the most common cause of hypothyroidism [18, 19]. It can be divided into primary and secondary forms, the primary form is the most common thyroiditis and the secondary is the more recent description of thyroiditis [20].
The factors that result in AITDs are genetic factors and environmental factors. Various susceptibility genes like HLA-DR gene locus and non-MHC genes which includes CTLA-4, CD40, PTPN22, CD25, FOXP3, thyroglobulin and TSH receptor genes have been identified and characterized [21]. The major environmental triggers that have been identified are; iodine, selenium, medications, smoking and stress, infection, sex steroids, pregnancy, fetal microchimerism and radiation exposure [22, 23].
The risk of developing Graves’ disease is influenced by genetic factors accounting for up to 80%, while environmental factors account for up to 20% [24, 25, 26]. The mechanisms involved in immune tolerance are destroyed by these environmental factors in genetically predisposed people leading to the onset of the disease [24, 26].
In Hashimoto thyroiditis, genetic and environmental factors also contribute to the development of HT.
Many factors play a role in the pathogenesis of AITDs, mostly involving the complex interaction of the genetics and environmental factors, immune system and cytokines [27]. The pathogenesis of AITDs results from either cell-mediated autoimmune and endocrine autoimmunity [26]. Thyroid peroxidase antibodies are potent marker of AITDs [27]. Its levels associated with the expression of MHC on thrococytes and with a degree of infiltration by lymphocytes may sensitize and trigger the synthesis of autoantibodies [28]. They are involved in both the immune system and directly targeting the thyroid follicular cells [27]. Their presence has been identified within inflammatory and thyroid follicular cells [29]. Cytokines enhance inflammatory responses by stimulating both B and T lymphocytes, resulting in antibody production and damage to the thyroid tissue by apoptosis in particular HT [30]. In addition, T cells subtypes have also been recently discovered to play a role in the pathogenesis of AITDs [31, 32, 33].
In Graves’ disease, pathogenesis is a complex process, it involves the TRAbs which are antibodies against the thyroid-stimulating receptors [34]. TSH receptor antibodies (TRAb) mimics the function of TSH and it causes the disease by binding to the TSH receptor thereby stimulating or inhibiting thyroid cells in producing thyroid hormones (T3 and T4) [35]. The TRAbs binding to the TSH receptors leads to continuous and uncontrolled thyroid stimulation associated with the synthesis of thyroid hormone in excess and thyroid hypertrophy [35].
In Hashimoto thyroiditis, the pathogenic mechanism involves the contribution of cellular immunity in the form of the defect in the suppressor T cells as well as regulatory T cells, follicular helper T cells, cytotoxicity and apoptosis and humoral immunity in the form of TPO/TG antibodies and immunoglobin subclass, sodium iodide symporter (NIS) and pendrin antibodies, thyroid-stimulating hormone receptor (TSHR) antibodies and also the role of cytokines and DNA fragments and micro RNA [36]. All these have been observed to play an important role in the pathogenesis of HT.S.
The recent landmark in the management of HT disease and GD disease will be discussed as it is the major form of AITDs.
Since it discovery, various understanding has been made about this condition. It has been reviewed that a grading system might be a better method of classifying hypothyroidism due to the continuous change that is observed in the serum level of TSH and free thyroxine (T4) than differentiating it into clinical and subclinical forms [37]. With this consideration, it becomes difficult to determine a starting point for thyroid hormone therapy supplementation which is ideal enough. A randomized trial (TRUST) initiated by the European Commission (2012) aids the understanding of the effects of levothyroxine (LT4) in the treatment of subclinical hypothyroidism [37].
Reoccurrence of symptoms was observed in 5–10% of patients with hypothyroidism despite receiving LT4 treatment and having a normal serum TSH levels [38]. A guideline has been provided by European Thyroid Association (ETA) on the combination therapy of LT4 and LT3 as superior to T4monotherapy and LT4 mono-therapy [38].
Since the inception of GD, it has been treated by antithyroid drugs, radioactive iodine and surgery. Preexisting guidelines were used in the management of GD but recently a detailed guideline has been provided separately for subclinical hyperthyroidism, although they are not supported by randomized clinical trial [39]. Radioiodine is used in the treatment of Grave’s disease [40]. It connects to thyroid autoimmunity through thyroid cell death in which self-antigens are liberated from the thyroid gland following the exposure to the therapy until complete ablation has been achieved [40]. Treatments of GD with antithyroid drugs gives favorable and unfavorable response in patients [40].
With all the recent studies on the management of GD, each management plan is associated with its limitation and a definite plan for the management of GD has not been confirmed. To provide a permanent treatment plan for the disease, researchers are: looking at the aspects of creating a new drug that will d preventing the disease without destroying or removing the thyroid gland and also avoiding the recurrence of the disease. The results of recent in vivo experiments are quite promising [41].
In both diseases, vitamin D has been reviewed to play a significant role in the modulation of the immune system, enhancing the innate immune response while it also exerts an inhibitory action on the adaptive immune system [42].
This is based on clinical features and laboratory investigation. The circulating antibodies is a core determinant of AITDs as they are measured against TPO and TG. A negative test excludes AITDs, but a positive test infers AITDs, each type of disease depending on the presence of either antibody. The measurement is done using thyroid receptors assays or bioassays [37].
At a time when computer processing power keeps increasing exponentially while networks keep expanding, data available at the same time becomes overwhelming and it becomes imperative to marry the field of data processing and computer so as to take full advantage of the available data as it already exceeds the processing capacity of manual methods and conventional database approach [43]. Data science as a field supports the process of taking data-driven decisions while depending largely on “Big data” storage, engineering and analysis [43]. Therefore thinking data science application in a field implies the intention to gather data, process such data, analyze and utilize such data for the purpose of understanding illness, understanding the reason for such illness (diagnosis), understanding how the illness is progressing (prognosis), understanding the possible endpoint of such illness (prediction) and understanding the intervention that could bring the best out of such situation (treatment/recommendation) [44].
Autoimmune diseases are dangerous or disruptive disease conditions that affect the tissues of the body, which is facilitated by the susceptible genes present in the host and environmental factors where the body’s immune system attacks itself through the presentation and recognition of specific antigens and the response of the target organs [45].
In an attempt to harness the recent and innovative development taking place with regards to computing infrastructure, methods of data processing and tools for data analysis, the discipline of data science is evolving with serious evolving challenges. Cluster computing and cloud computing are fundamental components of data science that enhance usage of powerful algorithms necessary to access, visualize, interpret, organize, analyze, and rapidly with a reasonable degree of efficiency manage cross-scale big data necessary for enhanced use of artificial intelligence. The availability of big data and the advancement in the field of artificial intelligence has led to the development of various machine learning algorithms, deep learning algorithms and deep neural networks algorithms to process big data considering its high volume and complexity.
One big question that has been raised in the field of computing is the question of how to design and enable computers that are capable of improving automatically through the various experience without explicit instructions and limited human intervention. Such question was answered by the birth of the field of machine learning which stands as one of the most rapidly growing technical fields today which is a point where computer science intersects with statistics and stands as the heart of artificial intelligence and data science [46]. The mechanism of machine learning, a rapidly developing arm of computational algorithms, is to simulate and emulate human reasoning and intelligence by allowing the designed system to learn from the environment. Low cost of computation, online access and availability of data, discovery of new theories and new learning algorithms among other are forces that drives machine learning [46]. Different machine-learning algorithms has been made with the intention to solve various machine learning related problems and use the large variety of data types [47, 48]. Conceptually, what machine-learning algorithms do can be perceived as running through a large selection of the program to select a program of choice and this choice is guided by experience acquired through training and the choice would be a program that optimizes the performance metric. The great range of variation seen in machine-learning algorithms depends in part on the method by which the algorithm represents its candidate programs (e.g., mathematical functions, decision trees, and general programming languages) [47]. The variation is also dependent on the method through which such algorithm search through this list of programs (e.g., optimization algorithms with well-understood convergence guarantees and evolutionary search methods that evaluate successive generations of randomly mutated programs) [47]. Supervised learning stands as the most widely employed method of training machine learning algorithms [47].
Deep learning involves the use of computational models that are made up of multiple layers of processing, which are capable of learning using representations of data with multiple levels of abstraction. Deep learning methods have rapidly and progressively improved technologies available for recognizing and processing speech, recognizing and identifying visual objects, and many other domains. Deep learning has also been useful in fields such as drug discovery and genomics. Conventional machine-learning techniques were limited in their ability to process natural data in their raw form. However, deep learning using multiple levels of abstraction and representation that is obtained by making simple but non-linear modules that can transform the representation at one level (starting with the raw input) into a representation at a higher, slightly more abstract level and with the composition of enough of such transformations, very complex functions can be learned [49].
Multiple levels of non-linearity in the networks of artificial neurons that makes up deep multi-layer neural networks enables such algorithm to compactly represent functions which are non-linear and highly-varying. Some interesting characteristics of neural network-based systems include the fact that they can learn and adapt while learning because they consist of an architecture of artificial neurons which are wired to form networks that are arranged in layers, has a loss or optimisation function driving the learning process and possess a training algorithm constantly run through changing parameters [50].
Data science is known to encompass the preparation of data for analysis, this includes aggregating, cleaning, and manipulating the data to uncover patterns and draw out insights. Exploiting historical clinical datasets to improve future treatment choices has proved beneficial for both patients and physicians [43, 51]. Through machine learning (a branch of artificial intelligence), it is very possible to obtain patterns within patient data, the exploitation of these patterns helps to predict and treat patients in order to improve clinical disease management [52].
Machine learning also features selection algorithms such as Kruskal-Wallis’ analysis, Fisher’s discriminant ratio, and Relief-F. In some research, these algorithms have been used to analyze databases containing clinical features (such as U.S. Surveillance Epidemiology and End Results (SEER) database) from identified thyroid disease patients [51].
Also, the discovery of data mining has been essential in the health care sector as its application have been reported in drug delivery, disease predictions and abnormality detections. Electronic health records have provided access to vast clinical data, the application of data mining techniques has helped transform this data information into valuable knowledge for making health care decisions [53]. Also, data mining algorithms have been used on health record data sets to analyze factors contributing to autoimmune diseases such as those associated with thyroid disease [54].
Although the major autoimmune thyroid disease include Graves’ disease and Hashimoto’s thyroiditis [55], these diseases are different clinically. Genetic data shows that their pathogenesis shares immuno-genetic mechanisms. Some shared susceptibility genes include human leukocyte antigen DR containing arginine at position (β74 HLA-DRβ1-Arg74). Exploring the genetic-epigenetic interactions of autoimmune thyroid pathogenesis is essential to uncover new therapeutic targets [55], this suggests how important genetic datasets are in developing therapeutic targets.
Precision medicine has also been implemented in a therapeutic approach to autoimmune thyroid disease such as Graves’ disease [1]. Therefore, recent therapies are targeting a key co-stimulatory molecule usually expressed on antigen-presenting cells (CD40), due to this, anti-CD40 monoclonal antibody has been developed [56]. Studies on genetic data suggest that genetic polymorphisms in the CD40 gene drive its expression and response to anti-CD40 monoclonal antibody like Iscalimab (also known as CFZ 533), which is a full human IGg1 [56, 57]. Furthermore, studies established that thyroglobulin antibody (TgAb) and thyroid peroxidase antibody (TPOAb) are the most characteristic autoimmune antibodies to Hashimoto’s thyroiditis [58].
The aim of analyzing datasets (such as genomic datasets and electronic health records) in precision medicine of autoimmune thyroid disease is to determine the treatment options, manner of implementation and choice of therapy. Lastly, this section demonstrate that existing medical datasets has been a reliably strength in clinical predictions, thus, it helps medical practitioners to make an informed and optimized treatment decisions. Figure 1 illustrates the steps in the application of data science to treat autoimmune thyroid disease.
Shows the steps taken in applying data science to treat autoimmune thyroid disease (AITD).
Biological agents are usually precise for a specified target, a few have subsequently renowned standard target (e.g. rituximab for B-lymphocytes) [59]. Considering specific agents with specific targets is the strategy that aid to achieve cure for this autoimmune disease [60]. Some biological agents involved in novel treatment of Grave’s disease include:
Rituximab (RTX): rituximab is an anti-B cell agent (monoclonal chimeric antibody) that is against the transmembrane protein CD20 on B cells (but not plasma cells) [61]. Intraorbital administration of rituximab has been shown to be effective as opposed to high dose of systemic glucocorti-coids in the treatment of thyroid-related orbitopathy in grave disease [62, 63].
Adalimumab: T-cells expressing IGF-1 receptors are assumed to show a central role in mediating the autoimmune process in severe grave’s disease [64]. Adalimumab is one of the anti-T-cell agents which seems to have efficacy similar to that of infliximab. It is a human monoclonal IgG1 antibody which clings to both soluble and membrane-bound TNF (tumor necrosis factor), it also repairs complement and induces lysis of cells expressing membrane-bound TNF [64, 65].
Intravenous immunoglobulin: strategically using anti-auto-antigen to stimulate the thyroid but not blocking autoantibodies are highly predominant in severe and vigorous thyroid-associated orbitopathy [66]. Therapeutic measures aiming at the autoantibodies may be effective, even though such consideration must be cross-checked in determining if the presence of such autoantibodies is truly causal or a threat [67].
The most common cause of autoimmune hyperthyroidism is Graves’ disease, which primarily affects the thyroid gland. In Graves’ disease, the main auto-antigen is the TSH receptor (thyroid-stimulating hormone receptor (TSHR)), expressed primarily in the thyroid and secondarily in adipocytes, fibroblasts, among others sites. It also appears to be closely related to the insulin-like growth factor 1 (IGF-1) receptor [68]. This disorder presents a systemic clinical manifestation that affect vital organs like the heart, liver and eyes. Failure to diagnose this disease on time can predispose thyroid storm, which carries high morbidity and mortality. Therefore, it is imperative to diagnose and manage the disease early in other to prevent severe cardiac complications such as atrial fibrillation, atrial flutter, and high output cardiac failure [69].
Data mining and machine learning have been reported to play an important role in diagnosing diseases, as they provide a vast classification of accurate techniques for the prediction of disease. Patient data collected from healthcare organizations is useful for accessing the risk factors analysis of diseases such as autoimmune thyroid disease. Classification algorithms is one of the most important applications in the data mining field, which can be used to make decisions in many real-world problems [51, 54]. A recent study uses 34 unique clinical data (variables) such as patients’ age at the time of diagnosis and information regarding lymph nodes to build novel classifiers that distinguish patients who probably live for over ten years since diagnosis from those who did not survive at least five years. This report also shows there is 94.5% accuracy in distinguishing patients in terms of prognosis using machine learning [51].
The diagnosis of Graves’ disease begins with a thorough historical and physical examination. The historical examination includes the data recorded from family history for Graves’ disease, while the physical examination includes assessing goiter size by ultrasound [69, 70]. Dr. Cech began the discussion of precision medicine in the domain of thyroid disease, according to him, the use of radioisotopes to treat hyperthyroidism and thyroid cancer is one of the first uses of precision medicine in thyroid disease [71]. Researchers from the field of endocrine practice investigated Graves’ disease retrospectively by collecting data such as disease severity, smoking rate and severity of orbitopathy [70]. Studies have also reported that TSHR antibodies and activated T cells play a major role in the pathogenesis of Graves’ orbitopathy, this role is by activating adipocyte TSHR, retroocular fibroblast and IGF-1 receptors, also plays an important role by initiating a retro-orbital inflammatory environment [68].
Since the advent of precision medicine, its future application in thyroid dysfunction suggests developing new approaches in quantifying, detecting, and analyzing biomedical information. Since the description of Graves’ disease by Robert Graves, it is known that several environmental and epigenetic factors influence the onset of this disease. Also, some susceptibility elements, such as particular genotypes of HLA, CTLA-4, CD40 or thyroglobulin have been identified. Furthermore, recent data has shed more light on how an epigenetic-genetic interaction between a noncoding single nucleotide polymorphism (SNP) (coded within the TSH receptor (TSHR) gene) alters the thymic expression of TSHR, which further triggers Graves’ disease [72, 73, 74].
Hashimoto’s thyroiditis (HT), also known as chronic lymphocytic thyroiditis or chronic autoimmune thyroiditis, is one of the common autoimmune thyroid diseases that can cause an increased tumor vulnerability and raise the chances of developing chronic heart disease diseases especially in individuals with Hashimoto’s thyroiditis [75]. The biochemical markers for Hashimoto’s thyroiditis are thyroid peroxidase and thyroglobulin autoantibodies in the serum, with greater dominance in females than males. The most significant biochemical etiology of this disease is the presence of thyroid autoantibodies (TAbs) in the patients’ serum against two vital thyroid antigens, which are thyroid peroxidase (TPO) and thyroglobulin (TG) [76]. The diagnosis of Hashimoto’s thyroiditis (HT) usually causes many controversies, and sometimes until the late stage of occurrence before proper diagnosis can yield result. The use of data science to predict the presence of this dysfunction is key to modern day precision medicine. Firstly, through epidemiological study of the disease pattern in areas where iodine intake is normal or excessive, considering age factor, pathogenesis of autoimmune thyroiditis in monozygotic twins as compared with dizygotic twins [77].
Diagnosis of Hashimoto’s thyroiditis (HT) is made by examining a diffuse, smooth, firm goiter in a young woman, with strongly positive titers of TG Ab or TPO Ab and a euthyroid or hypothyroid metabolic condition. This disease caused by immunological damage show conditions that are severe and can cause further complications. Reviewed works of autoimmune hypothyroidism in monozygotic twins, shows there is a corresponding rate below 1 which is traceable to environmental factors and thus, making this factors to be etiologically significant [78]. In precision medicine, the study of genomics can be used to diagnose autoimmune thyroid disease, most especially Hashimoto’s thyroiditis. Genotyping analysis to show the genes that are susceptible to environmental factor endocrine disruptors, taking note of the influence of age, weight, sex, timing, and race to show endocrine levels [76].
The presence of TAbs (thyroid autoantibodies) in the patients’ sera is the principal biochemical characteristic of HT disease. The Tabs is against two major antigens which are, thyroid peroxidase (TPO) and thyroglobulin (Tg). The TPO antigen is crucial for thyroid hormone synthesis and they are located on thyrocyte’s apical membrane, while the Tg are large glycoprotein within the follicular cells of the thyroid gland and they serves as storage for thyroid hormones [76, 77, 78].
The principal factor that drives the pathogenesis of HT is the antibodies against TPO (TPOAbs) and Tg (TgAbs) (in immunoglobulin G (IgG) class). Unlike TgAbs, the TPOAbs damage thyroid cells due to its antibody dependent cell cytotoxicity but both shows great affinity for their respective antigens. Furthermore, studies reported that they both have limited role in the pathogenesis of HT but both T-cell cytotoxicity and apoptotic pathway activation influence the disease onset [77, 78]. Although, the TAbs serves as a biomarker for thyroid autoimmunity but TPOAbs are presented in over 90% of HT patients, while 80% of the patients presents TgAbs [77]. Also, T helper cell type 2 (Th2) has been reported to lead to an excessive stimulation of B cells and production of plasmatic cells that produce antibodies against thyroid antigens leading to autoimmune thyroiditis [78].
Table 1 shows some factors that can influence HT [77, 79].
Genetic factor | A strong genetic susceptibility has been shown to be associated with the disease incidence, development and severity. Of this genes, CTL antigen-4, Tg, vitamin D receptor, cytokines, TPO and PTPN-22 (Protein Thyrosine Phosphatase nonreceptor-type-22) are the most important |
Endogenous factor | Most important endogenous factor for this disease are female sex, fetal microchimerism, pregnancy and postpartum period |
Environmental factor | Most important factors that influence this disease development are drugs, iodine intake, chemicals/toxins and infections |
Self-tolerance | Altered self-tolerance complemented with increased antigen presentation is a strong cause of HT |
Factors that initiates Hashimoto thyroiditis.
Studies have reported a vast prediction algorithms that help in classifying, monitoring and suggesting treatment regimen for thyroid diseases, therefore the importance of data science is to serve as early approach to diagnosis, prognosis and treatment of thyroid diseases. Below are studies that achieve a high percentage of accuracy with new data approaches to investigate and treat thyroid diseases.
Since proper interpretation of thyroid functional data is an important issue in the classification of thyroid disease [80], thyroid disease dataset from UCI machine learning database has been used in comparative thyroid disease diagnosis. This was attained by using probabilistic, multilayer and learning vector quantization neural networks [81]. Likewise, Polat et al., also make use of dataset from UCI machine learning repository to diagnose thyroid diseases by hybridizing AIRS (artificial immune recognition system) which was first proposed by A. Watkins, with developed Fuzzy weighted pre-processing. The classification obtained from this study is about 85% accurate [80].
Moreover, Ruggeri et al., use data recordings of medical history, assessment of selected autoantibodies profiles and physical examination to delineate clinical patterns in patients with Hashimoto thyroiditis from pediatric/adolescent to adult age. It was found out that there is high prevalence of non-thyroidal autoimmune diseases (NTADs) in HT patients and this is also influenced by the patient’s age [82]. Therefore, NTADs should be watch out for in patients confirmed to be affected by Hashimoto thyroiditis. Hence, exploring clinical dataset with data science has helped in the prognosis of autoimmune thyroid disease.
Some of the recently proposed algorithms with high accuracy are Expert System for Thyroid Disease Diagnosis (ESTDD), this is an expert system that diagnose thyroid diseases via neuro fuzzy rules with about 95% accuracy [54, 83].
In addition, classification based data mining has also played important role in providing significant diagnosis, decision making and proper treatment for thyroid diseases at early stage. Some data mining algorithms have shown a very high accuracy, speed, performance and low cost for treatments [54]. Example of these algorithms that helps to find better treatments for thyroid patients are kNN (k nearest-neighbor), support vector machine, ID3ara and Naïve bayes [54]. Lastly, novel intelligent hybrid decision support system was utilized in the diagnosis of thyroid disorder, the classification analysis made by algorithms were sensitive, specific and high in accuracy (94.7%, 99.7% and 98.5% respectively). It was also reported that this approach can be applied to other deadly diseases [84].
Given the ease of diagnose and treatment of thyroid disease, expectations are high on the specific and personalized approach to the diagnosis and treatment of such disease. However, some aspect of the methods of diagnosis and treatment needs improvement to enhance the health of thyroid disease patients. Table 2 discusses few of the challenges that has been identified or associated with the management of thyroid related diseases.
Area | Challenge |
---|---|
Diagnosis | Characterizing the common and individualized genetic background autoimmune thyroid diseases |
Identifying environmental endocrine factors that enhance the development of thyroid diseases | |
Predicting the chances of anti-thyroid drug side effects in a particular patient | |
Treatment | Development of a new thyroid gland from stem cells (for hypothyroid patients (Hashimoto’s disease) |
Development of blocking molecules for the self-activated TSH-receptor | |
Development of small molecule targeted at thyroid autoantibodies (or gland antigens) to counteract their activity autoimmune thyroid disease | |
Precisely tailoring thyroid hormone replacement dose to any patient according to individual needs | |
Develop precise targeted immune therapy for the autoimmune disease | |
Use of genomic data to predict the chances of acquiring an autoimmune disease in a patient |
Challenges in diagnosing and treating autoimmune thyroid disease [68].
Data science has been shown to be a useful tool in preparing, aggregating, cleaning, and manipulating clinical data to uncover disease patterns and draw insights into how the disease can be treated. Also, genomic datasets in databases have been utilized in precision medicine to diagnose and treat patients. These facts show green light for data science usage by medical practitioners and researchers in the near future.
It is recommended that data science be incorporated into clinical practice to improve precise targeted immune therapy for autoimmune thyroid diseases. Also, it is recommended that more research be carried out using genomic data to further bolster the precision from these data in the diagnosis and treatment of individual patients.
IntechOpen books are published online and are accessible for free.
\r\n\r\nHowever, if you are interested in ordering your hardcover copy, you can do so by contacting our Print Sales Department at orders@intechopen.com. All IntechOpen books are printed on demand in full-colour and delivered in signature packaging through FREE DHL Express delivery.
\r\n\r\nFor a quote or assistance please contact us directly at orders@intechopen.com The quote will be sent to you within 1-2 business days.
\r\n\r\nOur entire portfolio of over 5,500 books is also available through Amazon.
',metaTitle:"Order and delivery",metaDescription:"Our books are published online and are accessible for free. However, if you are interested in ordering your hardcover copy, you can do so by contacting our Print Sales Department at orders@intechopen.com. All IntechOpen books are printed on demand in full-colour and delivered in signature packaging through free DHL Express delivery. A selection of our books in soft cover is also available through Amazon.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Our books are available hardcover, printed in full colour and produced to the highest standards on PEFC™ and FSC certified paper, complying with principles of responsible forestry worldwide. The paper size is 180 x 260 mm (7 x 10.2 inches).
\\n\\nIntechOpen works with award winning print-houses and we hold to the fact that all of our printed products are of the highest quality.
\\n\\nIntechOpen books retail price range is:
\\n\\n100 - 159 GBP ex. VAT (available in USD and EUR)
\\n\\nDiscounts available:
\\n\\nBulk discounts are granted for orders of 10 copies and more.
\\n\\nThere is no minimum or maximum threshold on the quantity of book orders.
\\n\\nOrders have to be paid in advance and before printing. We accept payment in GBP, EUR and USD.
\\n\\nWe currently accept the following payment options:
\\n\\nWhen paying with a credit card, you will be redirected to the PayPal.com online payment portal.
\\n\\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\\n\\nIn accordance with the best security practice, we do not accept card orders via email.
\\n\\nThe combined printing and delivery time for orders vary from 7-15 business days, depending on the printed quantity and destination. This period does not include any customs clearance difficulties that may arise and that are beyond our control. Once your order has been printed and shipped, you will receive a confirmation email that includes your DHL tracking number. You can then track your order at www.dhl.com.
\\n\\nIf you do not receive your order within 30 days from the date your order is shipped, please contact us to inquire about the shipping status at orders@intechopen.com.
\\n\\nTax: Residents of European Union countries need to add a Book Value-Added Tax Rate based on their country of residence. Institutions and companies, registered as VAT taxable entities in their own EU member state, will not pay VAT by providing IntechOpen with their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\nCustoms: free shipping does not include any duties, taxes or clearing charges levied by the destination country. These charges are the responsibility of the customer and will vary from country to country.
\\n\\nP.O. Boxes cannot be used as a Ship-To Address.
\\n\\nIntechOpen partners do not provide shipping service from Europe to the countries listed below. Please refrain from mailing items addressed to the countries listed below, until further notice.
\\n\\nWhen ordering our books from the countries listed below, please provide an alternative mailing address. For any further assistance, please contact us at orders@intechopen.com.
\\n\\nRestricted Ship-to Countries:
\\n\\nPOD products are non-returnable and non-refundable, except in the event of poor print quality or an error in quantity. If we delivered the item to you in error or the item is faulty, please contact us.
\\n\\nInspect your order carefully when it arrives. Any problems should be immediately reported to orders@intechopen.com.
\\n\\nPrint copies of our publications are most often purchased by universities, libraries, institutions and academia personnel, hence increasing the visibility and outreach of our authors' published work among science communities and institutions.
\\n\\nOur books are available at our direct Print Sales Department and through selected representatives throughout the world.
\\n\\nBooks International
\\n\\nRepresentative for: Brunei, Cambodia, Indonesia, Indonesia, Laos, Malaysia, Myanmar, Philippines, Singapore, Thailand, Vietnam (ASEAN)
\\n\\nChina Publishers Services Ltd - CPS
\\n\\nRepresentative for: China, Taiwan, Hong Kong
\\n\\nIndia - CBS Publishers & Distributors Pvt. Ltd.
\\n\\nRepresentative for: India, Bangladesh, Pakistan, Sri Lanka, Bhutan, Nepal, Maldives, Iran, Algeria, Bahrain, Egypt, Iraq, Israel, Jordan, Kuwait, Lebanon, Libya, Malta, Morocco, Oman, Qatar, Saudi Arabia, Syria, Tunis, United Arab Emirates and Yemen
\\n\\nLSR Libros Servicios y Representaciones S.A. de C.V
\\n\\nRepresentative for Mexico, Chile and Colombia
\\n\\nMissing Link Versandbuchhandlung eG
\\n\\nRepresentative for: Germany, Austria, Switzerland
\\n\\nKuba Libri, s.r.o.
\\n\\nRepresentative for: Czech Republic
\\n\\nFor partnership opportunities, please contact orders@intechopen.com.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Our books are available hardcover, printed in full colour and produced to the highest standards on PEFC™ and FSC certified paper, complying with principles of responsible forestry worldwide. The paper size is 180 x 260 mm (7 x 10.2 inches).
\n\nIntechOpen works with award winning print-houses and we hold to the fact that all of our printed products are of the highest quality.
\n\nIntechOpen books retail price range is:
\n\n100 - 159 GBP ex. VAT (available in USD and EUR)
\n\nDiscounts available:
\n\nBulk discounts are granted for orders of 10 copies and more.
\n\nThere is no minimum or maximum threshold on the quantity of book orders.
\n\nOrders have to be paid in advance and before printing. We accept payment in GBP, EUR and USD.
\n\nWe currently accept the following payment options:
\n\nWhen paying with a credit card, you will be redirected to the PayPal.com online payment portal.
\n\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\n\nIn accordance with the best security practice, we do not accept card orders via email.
\n\nThe combined printing and delivery time for orders vary from 7-15 business days, depending on the printed quantity and destination. This period does not include any customs clearance difficulties that may arise and that are beyond our control. Once your order has been printed and shipped, you will receive a confirmation email that includes your DHL tracking number. You can then track your order at www.dhl.com.
\n\nIf you do not receive your order within 30 days from the date your order is shipped, please contact us to inquire about the shipping status at orders@intechopen.com.
\n\nTax: Residents of European Union countries need to add a Book Value-Added Tax Rate based on their country of residence. Institutions and companies, registered as VAT taxable entities in their own EU member state, will not pay VAT by providing IntechOpen with their VAT registration number. This is made possible by the EU reverse charge method.
\n\nCustoms: free shipping does not include any duties, taxes or clearing charges levied by the destination country. These charges are the responsibility of the customer and will vary from country to country.
\n\nP.O. Boxes cannot be used as a Ship-To Address.
\n\nIntechOpen partners do not provide shipping service from Europe to the countries listed below. Please refrain from mailing items addressed to the countries listed below, until further notice.
\n\nWhen ordering our books from the countries listed below, please provide an alternative mailing address. For any further assistance, please contact us at orders@intechopen.com.
\n\nRestricted Ship-to Countries:
\n\nPOD products are non-returnable and non-refundable, except in the event of poor print quality or an error in quantity. If we delivered the item to you in error or the item is faulty, please contact us.
\n\nInspect your order carefully when it arrives. Any problems should be immediately reported to orders@intechopen.com.
\n\nPrint copies of our publications are most often purchased by universities, libraries, institutions and academia personnel, hence increasing the visibility and outreach of our authors' published work among science communities and institutions.
\n\nOur books are available at our direct Print Sales Department and through selected representatives throughout the world.
\n\nBooks International
\n\nRepresentative for: Brunei, Cambodia, Indonesia, Indonesia, Laos, Malaysia, Myanmar, Philippines, Singapore, Thailand, Vietnam (ASEAN)
\n\nChina Publishers Services Ltd - CPS
\n\nRepresentative for: China, Taiwan, Hong Kong
\n\nIndia - CBS Publishers & Distributors Pvt. Ltd.
\n\nRepresentative for: India, Bangladesh, Pakistan, Sri Lanka, Bhutan, Nepal, Maldives, Iran, Algeria, Bahrain, Egypt, Iraq, Israel, Jordan, Kuwait, Lebanon, Libya, Malta, Morocco, Oman, Qatar, Saudi Arabia, Syria, Tunis, United Arab Emirates and Yemen
\n\nLSR Libros Servicios y Representaciones S.A. de C.V
\n\nRepresentative for Mexico, Chile and Colombia
\n\nMissing Link Versandbuchhandlung eG
\n\nRepresentative for: Germany, Austria, Switzerland
\n\nKuba Libri, s.r.o.
\n\nRepresentative for: Czech Republic
\n\nFor partnership opportunities, please contact orders@intechopen.com.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6585},{group:"region",caption:"Middle and South America",value:2,count:5888},{group:"region",caption:"Africa",value:3,count:2382},{group:"region",caption:"Asia",value:4,count:12514},{group:"region",caption:"Australia and Oceania",value:5,count:1006},{group:"region",caption:"Europe",value:6,count:17531}],offset:12,limit:12,total:132506},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"title",topicId:"8,9,10,11,14,15,17,20,22,24"},books:[{type:"book",id:"12039",title:"Advances in 3D Printing",subtitle:null,isOpenForSubmission:!0,hash:"fe8827f28fcc56e13b3f0cb6ffda2b71",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12039.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12287",title:"Advances in Adaptive Filtering",subtitle:null,isOpenForSubmission:!0,hash:"f672739150b2dc09c4a769603aa9082a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12287.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12268",title:"Advances in Biogeography",subtitle:null,isOpenForSubmission:!0,hash:"f2d6469d89d55bc993737c9ae0d3b1ea",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12268.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12040",title:"Advances in Lean Manufacturing",subtitle:null,isOpenForSubmission:!0,hash:"280b436c389c11cac34db042d0ea4f21",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12040.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11986",title:"Advances in Nanosheets",subtitle:null,isOpenForSubmission:!0,hash:"dcc5e4b27db4514b2dd77680e0467793",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11986.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11941",title:"Advances in Turbomachinery",subtitle:null,isOpenForSubmission:!0,hash:"fe2c693976d70c5d0cc5f8003e6e73c5",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11941.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12068",title:"Advances in Virtual Reality",subtitle:null,isOpenForSubmission:!0,hash:"d6a4f0e27fd3a464f9d95f1deab17858",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12068.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12014",title:"Aerodynamics of Sports",subtitle:null,isOpenForSubmission:!0,hash:"a644b9f34b956e288a59e76cf9de909f",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12014.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11987",title:"Applications of Zirconia",subtitle:null,isOpenForSubmission:!0,hash:"512a37f19175e9f2ac0910aa3fd624ae",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11987.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12075",title:"Arsenic",subtitle:null,isOpenForSubmission:!0,hash:"a1156f4143737baa68f568837f9edc94",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12075.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11985",title:"Autonomous Vehicles",subtitle:null,isOpenForSubmission:!0,hash:"c06614cccf990358e3759c9b8873bb27",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11985.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11938",title:"Ballistics",subtitle:null,isOpenForSubmission:!0,hash:"9c64ef67aac55216f08c65a2a179835c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11938.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:8},{group:"topic",caption:"Chemistry",value:8,count:19},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:18},{group:"topic",caption:"Engineering",value:11,count:47},{group:"topic",caption:"Environmental Sciences",value:12,count:7},{group:"topic",caption:"Immunology and Microbiology",value:13,count:12},{group:"topic",caption:"Materials Science",value:14,count:15},{group:"topic",caption:"Mathematics",value:15,count:7},{group:"topic",caption:"Medicine",value:16,count:109},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:7},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:11},{group:"topic",caption:"Physics",value:20,count:5},{group:"topic",caption:"Psychology",value:21,count:8},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:32},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:134},popularBooks:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10351",title:"Enhanced Liposuction",subtitle:"New Perspectives and Techniques",isOpenForSubmission:!1,hash:"f08ed6de16da357614586c5b58ed4dfa",slug:"enhanced-liposuction-new-perspectives-and-techniques",bookSignature:"Diane Irvine Duncan",coverURL:"https://cdn.intechopen.com/books/images_new/10351.jpg",editors:[{id:"279869",title:"Dr.",name:"Diane Irvine",middleName:null,surname:"Duncan",slug:"diane-irvine-duncan",fullName:"Diane Irvine Duncan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10779",title:"21st Century Nanostructured Materials",subtitle:"Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture",isOpenForSubmission:!1,hash:"72c67f97f9bef68200df115b5fd79884",slug:"21st-century-nanostructured-materials-physics-chemistry-classification-and-emerging-applications-in-industry-biomedicine-and-agriculture",bookSignature:"Phuong V. Pham",coverURL:"https://cdn.intechopen.com/books/images_new/10779.jpg",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4385},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3665,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1713,editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",publishedDate:"April 28th 2022",numberOfDownloads:2481,editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1107,editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3307,editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3266,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1868,editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",publishedDate:"May 4th 2022",numberOfDownloads:856,editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1704,editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7489,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"208",title:"Material Science",slug:"nanotechnology-and-nanomaterials-material-science",parent:{id:"17",title:"Nanotechnology and Nanomaterials",slug:"nanotechnology-and-nanomaterials"},numberOfBooks:99,numberOfSeries:0,numberOfAuthorsAndEditors:2716,numberOfWosCitations:4236,numberOfCrossrefCitations:1957,numberOfDimensionsCitations:4588,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"208",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editedByType:"Edited by",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10779",title:"21st Century Nanostructured Materials",subtitle:"Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture",isOpenForSubmission:!1,hash:"72c67f97f9bef68200df115b5fd79884",slug:"21st-century-nanostructured-materials-physics-chemistry-classification-and-emerging-applications-in-industry-biomedicine-and-agriculture",bookSignature:"Phuong V. Pham",coverURL:"https://cdn.intechopen.com/books/images_new/10779.jpg",editedByType:"Edited by",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10504",title:"Crystallization and Applications",subtitle:null,isOpenForSubmission:!1,hash:"3478d05926950f475f4ad2825d340963",slug:"crystallization-and-applications",bookSignature:"Youssef Ben Smida and Riadh Marzouki",coverURL:"https://cdn.intechopen.com/books/images_new/10504.jpg",editedByType:"Edited by",editors:[{id:"311698",title:"Dr.",name:"Youssef",middleName:null,surname:"Ben Smida",slug:"youssef-ben-smida",fullName:"Youssef Ben Smida"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10644",title:"Recent Developments in Atomic Force Microscopy and Raman Spectroscopy for Materials Characterization",subtitle:null,isOpenForSubmission:!1,hash:"30a4c22b98d8dd2b18e5c33dade4b94b",slug:"recent-developments-in-atomic-force-microscopy-and-raman-spectroscopy-for-materials-characterization",bookSignature:"Chandra Shakher Pathak and Samir Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/10644.jpg",editedByType:"Edited by",editors:[{id:"318029",title:"Dr.",name:"Chandra Shakher",middleName:null,surname:"Pathak",slug:"chandra-shakher-pathak",fullName:"Chandra Shakher Pathak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10386",title:"Ionic Liquids",subtitle:"Thermophysical Properties and Applications",isOpenForSubmission:!1,hash:"e995617af1c5e63353ae91bbdac4c894",slug:"ionic-liquids-thermophysical-properties-and-applications",bookSignature:"S. M. Sohel Murshed",coverURL:"https://cdn.intechopen.com/books/images_new/10386.jpg",editedByType:"Edited by",editors:[{id:"24904",title:"Prof.",name:"S. M. Sohel",middleName:null,surname:"Murshed",slug:"s.-m.-sohel-murshed",fullName:"S. M. Sohel Murshed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10281",title:"Nanopores",subtitle:null,isOpenForSubmission:!1,hash:"73c465d2d70f8deca04b05d7ecae26c4",slug:"nanopores",bookSignature:"Sadia Ameen, M. Shaheer Akhtar and Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/10281.jpg",editedByType:"Edited by",editors:[{id:"52613",title:"Dr.",name:"Sadia",middleName:null,surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9913",title:"Carbon Nanotubes",subtitle:"Redefining the World of Electronics",isOpenForSubmission:!1,hash:"43a22b8570e841b7a26d70159b2f755d",slug:"carbon-nanotubes-redefining-the-world-of-electronics",bookSignature:"Prasanta Kumar Ghosh, Kunal Datta and Arti Dinkarrao Rushi",coverURL:"https://cdn.intechopen.com/books/images_new/9913.jpg",editedByType:"Edited by",editors:[{id:"294687",title:"Dr.",name:"Prasanta",middleName:"Kumar",surname:"Ghosh",slug:"prasanta-ghosh",fullName:"Prasanta Ghosh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10479",title:"21st Century Advanced Carbon Materials for Engineering Applications",subtitle:"A Comprehensive Handbook",isOpenForSubmission:!1,hash:"712d04d43dbe1dca7dec9fcc08bc8852",slug:"21st-century-advanced-carbon-materials-for-engineering-applications-a-comprehensive-handbook",bookSignature:"Mujtaba Ikram and Asghari Maqsood",coverURL:"https://cdn.intechopen.com/books/images_new/10479.jpg",editedByType:"Edited by",editors:[{id:"286820",title:"Dr.",name:"Mujtaba",middleName:null,surname:"Ikram",slug:"mujtaba-ikram",fullName:"Mujtaba Ikram"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10411",title:"Materials at the Nanoscale",subtitle:null,isOpenForSubmission:!1,hash:"be29908600b7067c583ac21da1544a2d",slug:"materials-at-the-nanoscale",bookSignature:"Awadesh Kumar Mallik",coverURL:"https://cdn.intechopen.com/books/images_new/10411.jpg",editedByType:"Edited by",editors:[{id:"178218",title:"Dr.",name:"Awadesh",middleName:null,surname:"Mallik",slug:"awadesh-mallik",fullName:"Awadesh Mallik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10465",title:"Silver Micro-Nanoparticles",subtitle:"Properties, Synthesis, Characterization, and Applications",isOpenForSubmission:!1,hash:"dcc19a2b44c91940e16d82fd5eb8fffa",slug:"silver-micro-nanoparticles-properties-synthesis-characterization-and-applications",bookSignature:"Samir Kumar, Prabhat Kumar and Chandra Shakher Pathak",coverURL:"https://cdn.intechopen.com/books/images_new/10465.jpg",editedByType:"Edited by",editors:[{id:"296661",title:"Dr.",name:"Samir",middleName:null,surname:"Kumar",slug:"samir-kumar",fullName:"Samir Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10469",title:"Nanofibers",subtitle:"Synthesis, Properties and Applications",isOpenForSubmission:!1,hash:"28dc655dde01b94399cab954663f8bff",slug:"nanofibers-synthesis-properties-and-applications",bookSignature:"Brajesh Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/10469.jpg",editedByType:"Edited by",editors:[{id:"176093",title:"Dr.",name:"Brajesh",middleName:null,surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10505",title:"Colloids",subtitle:"Types, Preparation and Applications",isOpenForSubmission:!1,hash:"55025219ea1a8b915ec8aa4b9f497a8d",slug:"colloids-types-preparation-and-applications",bookSignature:"Mohamed Nageeb Rashed",coverURL:"https://cdn.intechopen.com/books/images_new/10505.jpg",editedByType:"Edited by",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:99,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"50566",doi:"10.5772/63234",title:"Influences of Doping on Photocatalytic Properties of TiO2 Photocatalyst",slug:"influences-of-doping-on-photocatalytic-properties-of-tio2-photocatalyst",totalDownloads:5353,totalCrossrefCites:23,totalDimensionsCites:75,abstract:"As a kind of highly effective, low‐cost, and stable photocatalysts, TiO2 has received substantial public and scientific attention. However, it can only be activated under ultraviolet light irradiation due to its wide bandgap, high recombination, and weak separation efficiency of carriers. Doping is an effective method to extend the light absorption to the visible light region. In this chapter, we will address the importance of doping, different doping modes, preparation method, and photocatalytic mechanism in TiO2 photocatalysts. Thereafter, we will concentrate on Ti3+ self‐doping, nonmetal doping, metal doping, and codoping. Examples of progress can be given for each one of these four doping modes. The influencing factors of preparation method and doping modes on photocatalytic performance (spectrum response, carrier transport, interfacial electron transfer reaction, surface active sites, etc.) are summed up. The main objective is to study the photocatalytic processes, to elucidate the mechanistic models for a better understanding the photocatalytic reactions, and to find a method of enhancing photocatalytic activities.",book:{id:"5139",slug:"semiconductor-photocatalysis-materials-mechanisms-and-applications",title:"Semiconductor Photocatalysis",fullTitle:"Semiconductor Photocatalysis - Materials, Mechanisms and Applications"},signatures:"Fei Huang, Aihua Yan and Hui Zhao",authors:[{id:"178389",title:"Dr.",name:"Fei",middleName:null,surname:"Huang",slug:"fei-huang",fullName:"Fei Huang"},{id:"185126",title:"Dr.",name:"Aihua",middleName:null,surname:"Yan",slug:"aihua-yan",fullName:"Aihua Yan"},{id:"185127",title:"Ms.",name:"Hui",middleName:null,surname:"Zhao",slug:"hui-zhao",fullName:"Hui Zhao"}]},{id:"17184",doi:"10.5772/17039",title:"Polymer Nanocomposites: From Synthesis to Applications",slug:"polymer-nanocomposites-from-synthesis-to-applications",totalDownloads:17288,totalCrossrefCites:31,totalDimensionsCites:68,abstract:null,book:{id:"1045",slug:"nanocomposites-and-polymers-with-analytical-methods",title:"Nanocomposites and Polymers with Analytical Methods",fullTitle:"Nanocomposites and Polymers with Analytical Methods"},signatures:"S. Anandhan and S. Bandyopadhyay",authors:[{id:"27050",title:"Prof.",name:"Sri",middleName:null,surname:"Bandyopadhyay",slug:"sri-bandyopadhyay",fullName:"Sri Bandyopadhyay"},{id:"44992",title:"Prof.",name:"Anandhan",middleName:null,surname:"Srinivasan",slug:"anandhan-srinivasan",fullName:"Anandhan Srinivasan"}]},{id:"9725",doi:"10.5772/8508",title:"Biosynthesis and Application of Silver and Gold Nanoparticles",slug:"biosynthesis-and-application-of-silver-and-gold-nanoparticles",totalDownloads:27927,totalCrossrefCites:23,totalDimensionsCites:58,abstract:null,book:{id:"3621",slug:"silver-nanoparticles",title:"Silver Nanoparticles",fullTitle:"Silver Nanoparticles"},signatures:"Zygmunt Sadowski",authors:null},{id:"17194",doi:"10.5772/21694",title:"Properties of Nanofillers in Polymer",slug:"properties-of-nanofillers-in-polymer",totalDownloads:20385,totalCrossrefCites:9,totalDimensionsCites:56,abstract:null,book:{id:"1045",slug:"nanocomposites-and-polymers-with-analytical-methods",title:"Nanocomposites and Polymers with Analytical Methods",fullTitle:"Nanocomposites and Polymers with Analytical Methods"},signatures:"Damien M. Marquis, Éric Guillaume and Carine Chivas-Joly",authors:[{id:"44307",title:"Dr",name:"Damien",middleName:"Michel",surname:"Marquis",slug:"damien-marquis",fullName:"Damien Marquis"},{id:"44317",title:"Prof.",name:"Carine",middleName:null,surname:"Chivas-Joly",slug:"carine-chivas-joly",fullName:"Carine Chivas-Joly"}]},{id:"52860",doi:"10.5772/65937",title:"Cerium Oxide Nanostructures and their Applications",slug:"cerium-oxide-nanostructures-and-their-applications",totalDownloads:5365,totalCrossrefCites:23,totalDimensionsCites:55,abstract:"Due to excellent physical and chemical properties, cerium oxide (ceria, CeO2) has attracted much attention in recent years. This chapter aimed at providing some basic and fundamental properties of ceria, the importance of oxygen vacancies in this material, nano‐size effects and various synthesis strategies to form diverse structural morphologies. Finally, some key applications of ceria‐based nanostructures are reviewed. We conclude this chapter by expressing personal perspective on the probable challenges and developments of the controllable synthesis of CeO2 nanomaterials for various applications.",book:{id:"5510",slug:"functionalized-nanomaterials",title:"Functionalized Nanomaterials",fullTitle:"Functionalized Nanomaterials"},signatures:"Adnan Younis, Dewei Chu and Sean Li",authors:[{id:"191574",title:"Dr.",name:"Adnan",middleName:null,surname:"Younis",slug:"adnan-younis",fullName:"Adnan Younis"}]}],mostDownloadedChaptersLast30Days:[{id:"71103",title:"Preparation of Nanoparticles",slug:"preparation-of-nanoparticles",totalDownloads:3140,totalCrossrefCites:11,totalDimensionsCites:25,abstract:"Innovative developments of science and engineering have progressed very fast toward the synthesis of nanomaterials to achieve unique properties that are not the same as the properties of the bulk materials. The particle reveals interesting properties at the dimension below 100 nm, mostly from two physical effects. The two physical effects are the quantization of electronic states apparent leading to very sensitive size-dependent effects such as optical and magnetic properties and the high surface-to-volume ratio modifies the thermal, mechanical, and chemical properties of materials. The nanoparticles’ unique physical and chemical properties render them most appropriate for a number of specialist applications.",book:{id:"9109",slug:"engineered-nanomaterials-health-and-safety",title:"Engineered Nanomaterials",fullTitle:"Engineered Nanomaterials - Health and Safety"},signatures:"Takalani Cele",authors:[{id:"305934",title:"Dr.",name:"Takalani",middleName:null,surname:"Cele",slug:"takalani-cele",fullName:"Takalani Cele"}]},{id:"72636",title:"Nanocomposite Materials",slug:"nanocomposite-materials",totalDownloads:2139,totalCrossrefCites:5,totalDimensionsCites:11,abstract:"Nanocomposites are the heterogeneous/hybrid materials that are produced by the mixtures of polymers with inorganic solids (clays to oxides) at the nanometric scale. Their structures are found to be more complicated than that of microcomposites. They are highly influenced by the structure, composition, interfacial interactions, and components of individual property. Most popularly, nanocomposites are prepared by the process within in situ growth and polymerization of biopolymer and inorganic matrix. With the rapid estimated demand of these striking potentially advanced materials, make them very much useful in various industries ranging from small scale to large to very large manufacturing units. With a great deal to mankind with environmental friendly, these offer advanced technologies in addition to the enhanced business opportunities to several industrial sectors like automobile, construction, electronics and electrical, food packaging, and technology transfer.",book:{id:"10072",slug:"nanotechnology-and-the-environment",title:"Nanotechnology and the Environment",fullTitle:"Nanotechnology and the Environment"},signatures:"Mousumi Sen",authors:[{id:"310218",title:"Dr.",name:"Mousumi",middleName:null,surname:"Sen",slug:"mousumi-sen",fullName:"Mousumi Sen"}]},{id:"38951",title:"Carbon Nanotube Transparent Electrode",slug:"carbon-nanotube-transparent-electrode",totalDownloads:3985,totalCrossrefCites:3,totalDimensionsCites:5,abstract:null,book:{id:"3077",slug:"syntheses-and-applications-of-carbon-nanotubes-and-their-composites",title:"Syntheses and Applications of Carbon Nanotubes and Their Composites",fullTitle:"Syntheses and Applications of Carbon Nanotubes and Their Composites"},signatures:"Jing Sun and Ranran Wang",authors:[{id:"153508",title:"Prof.",name:"Jing",middleName:null,surname:"Sun",slug:"jing-sun",fullName:"Jing Sun"},{id:"153596",title:"Ms.",name:"Ranran",middleName:null,surname:"Wang",slug:"ranran-wang",fullName:"Ranran Wang"}]},{id:"49413",title:"Electrodeposition of Nanostructure Materials",slug:"electrodeposition-of-nanostructure-materials",totalDownloads:3732,totalCrossrefCites:1,totalDimensionsCites:7,abstract:"We are conducting a multi-disciplinary research work that involves development of nanostructured thin films of semiconductors for different applications. Nanotechnology is widely considered to constitute the basis of the next technological revolution, following on from the first Industrial Revolution, which began around 1750 with the introduction of the steam engine and steelmaking. Nanotechnology is defined as the design, characterization, production, and application of materials, devices and systems by controlling shape and size of the nanoscale. The nanoscale itself is at present considered to cover the range from 1 to 100 nm. All samples prepared in thin film forms and the characterization revealed their nanostructure. The major exploitation of thin films has been in microelectronics, there are numerous and growing applications in communications, optical electronics, coatings of all kinds, and in energy generation. A great many sophisticated analytical instruments and techniques, largely developed to characterize thin films, have already become indispensable in virtually every scientific endeavor irrespective of discipline. Among all these techniques, electrodeposition is the most suitable technique for nanostructured thin films from aqueous solution served as samples under investigation. The electrodeposition of metallic layers from aqueous solution is based on the discharge of metal ions present in the electrolyte at a cathodic surface (the substrate or component.) The metal ions accept an electron from the electrically conducting material at the solid- electrolyte interface and then deposit as metal atoms onto the surface. The electrons necessary for this to occur are either supplied from an externally applied potential source or are surrendered by a reducing agent present in solution (electroless reduction). The metal ions themselves derive either from metal salts added to solution, or by the anodic dissolution of the so-called sacrificial anodes, made of the same metal that is to be deposited at the cathode.",book:{id:"4718",slug:"electroplating-of-nanostructures",title:"Electroplating of Nanostructures",fullTitle:"Electroplating of Nanostructures"},signatures:"Souad A. M. Al-Bat’hi",authors:[{id:"174793",title:"Dr.",name:"Mohamad",middleName:null,surname:"Souad",slug:"mohamad-souad",fullName:"Mohamad Souad"}]},{id:"71346",title:"Application of Nanomaterials in Environmental Improvement",slug:"application-of-nanomaterials-in-environmental-improvement",totalDownloads:1691,totalCrossrefCites:0,totalDimensionsCites:13,abstract:"In recent years, researchers used many scientific studies to improve modern technologies in the field of reducing the phenomenon of pollution resulting from them. In this chapter, methods to prepare nanomaterials are described, and the main properties such as mechanical, electrical, and optical properties and their relations are determined. The investigation of nanomaterials needed high technologies that depend on a range of nanomaterials from 1 to 100 nm; these are scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffractions (XRD). The applications of nanomaterials in environmental improvement are different from one another depending on the type of devices used, for example, solar cells for producing clean energy, nanotechnologies in coatings for building exterior surfaces, and sonochemical decolorization of dyes by the effect of nanocomposite.",book:{id:"10072",slug:"nanotechnology-and-the-environment",title:"Nanotechnology and the Environment",fullTitle:"Nanotechnology and the Environment"},signatures:"Ali Salman Ali",authors:[{id:"313275",title:"Associate Prof.",name:"Ali",middleName:null,surname:"Salman",slug:"ali-salman",fullName:"Ali Salman"}]}],onlineFirstChaptersFilter:{topicId:"208",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"81438",title:"Research Progress of Ionic Thermoelectric Materials for Energy Harvesting",slug:"research-progress-of-ionic-thermoelectric-materials-for-energy-harvesting",totalDownloads:20,totalDimensionsCites:0,doi:"10.5772/intechopen.101771",abstract:"Thermoelectric material is a kind of functional material that can mutually convert heat energy and electric energy. It can convert low-grade heat energy (less than 130°C) into electric energy. Compared with traditional electronic thermoelectric materials, ionic thermoelectric materials have higher performance. The Seebeck coefficient can generate 2–3 orders of magnitude higher ionic thermoelectric potential than electronic thermoelectric materials, so it has good application prospects in small thermoelectric generators and solar power generation. According to the thermoelectric conversion mechanism, ionic thermoelectric materials can be divided into ionic thermoelectric materials based on the Soret effect and thermocouple effect. They are widely used in pyrogen batteries and ionic thermoelectric capacitors. The latest two types of ionic thermoelectric materials are in this article. The research progress is explained, and the problems and challenges of ionic thermoelectric materials and the future development direction are also put forward.",book:{id:"10037",title:"Thermoelectricity - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg"},signatures:"Jianwei Zhang, Ying Xiao, Bowei Lei, Gengyuan Liang and Wenshu Zhao"},{id:"77670",title:"Thermoelectric Elements with Negative Temperature Factor of Resistance",slug:"thermoelectric-elements-with-negative-temperature-factor-of-resistance",totalDownloads:71,totalDimensionsCites:0,doi:"10.5772/intechopen.98860",abstract:"The method of manufacturing of ceramic materials on the basis of ferrites of nickel and cobalt by synthesis and sintering in controllable regenerative atmosphere is presented. As the generator of regenerative atmosphere the method of conversion of carbonic gas is offered. Calculation of regenerative atmosphere for simultaneous sintering of ceramic ferrites of nickel and cobalt is carried out. It is offered, methods of the dilated nonequilibrium thermodynamics to view process of distribution of a charge and heat along a thermoelement branch. The model of a thermoelement taking into account various relaxation times of a charge and warmth is constructed.",book:{id:"10037",title:"Thermoelectricity - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg"},signatures:"Yuri Bokhan"},{id:"79236",title:"Processing Techniques with Heating Conditions for Multiferroic Systems of BiFeO3, BaTiO3, PbTiO3, CaTiO3 Thin Films",slug:"processing-techniques-with-heating-conditions-for-multiferroic-systems-of-bifeo3-batio3-pbtio3-catio",totalDownloads:96,totalDimensionsCites:0,doi:"10.5772/intechopen.101122",abstract:"In this chapter, we have report a list of synthesis methods (including both synthesis steps & heating conditions) used for thin film fabrication of perovskite ABO3 (BiFeO3, BaTiO3, PbTiO3 and CaTiO3) based multiferroics (in both single-phase and composite materials). The processing of high quality multiferroic thin film have some features like epitaxial strain, physical phenomenon at atomic-level, interfacial coupling parameters to enhance device performance. Since these multiferroic thin films have ME properties such as electrical (dielectric, magnetoelectric coefficient & MC) and magnetic (ferromagnetic, magnetic susceptibility etc.) are heat sensitive, i.e. ME response at low as well as higher temperature might to enhance the device performance respect with long range ordering. The magnetoelectric coupling between ferromagnetism and ferroelectricity in multiferroic becomes suitable in the application of spintronics, memory and logic devices, and microelectronic memory or piezoelectric devices. In comparison with bulk multiferroic, the fabrication of multiferroic thin film with different structural geometries on substrate has reducible clamping effect. A brief procedure for multiferroic thin film fabrication in terms of their thermal conditions (temperature for film processing and annealing for crystallization) are described. Each synthesis methods have its own characteristic phenomenon in terms of film thickness, defects formation, crack free film, density, chip size, easier steps and availability etc. been described. A brief study towards phase structure and ME coupling for each multiferroic system of BiFeO3, BaTiO3, PbTiO3 and CaTiO3 is shown.",book:{id:"10037",title:"Thermoelectricity - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg"},signatures:"Kuldeep Chand Verma and Manpreet Singh"},{id:"78034",title:"Quantum Physical Interpretation of Thermoelectric Properties of Ruthenate Pyrochlores",slug:"quantum-physical-interpretation-of-thermoelectric-properties-of-ruthenate-pyrochlores",totalDownloads:74,totalDimensionsCites:0,doi:"10.5772/intechopen.99260",abstract:"Lead- and lead-yttrium ruthenate pyrochlores were synthesized and investigated for Seebeck coefficients, electrical- and thermal conductivity. Compounds A2B2O6.5+z with 0 ≤ z < 0.5 were defect pyrochlores and p-type conductors. The thermoelectric data were analyzed using quantum physical models to identify scattering mechanisms underlying electrical (σ) and thermal conductivity (κ) and to understand the temperature dependence of the Seebeck effect (S). In the metal-like lead ruthenates with different Pb:Ru ratios, σ (T) and the electronic thermal conductivity κe (T) were governed by ‘electron impurity scattering’, the lattice thermal conductivity κL (T) by the 3-phonon resistive process (Umklapp scattering). In the lead-yttrium ruthenate solid solutions (Pb(2-x)YxRu2O(6.5±z)), a metal–insulator transition occurred at 0.2 moles of yttrium. On the metallic side (<0.2 moles Y) ‘electron impurity scattering’ prevailed. On the semiconductor/insulator side between x = 0.2 and x = 1.0 several mechanisms were equally likely. At x > 1.5 the Mott Variable Range Hopping mechanism was active. S (T) was discussed for Pb-Y-Ru pyrochlores in terms of the effect of minority carrier excitation at lower- and a broadening of the Fermi distribution at higher temperatures. The figures of merit of all of these pyrochlores were still small (≤7.3 × 10−3).",book:{id:"10037",title:"Thermoelectricity - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg"},signatures:"Sepideh Akhbarifar"},{id:"77635",title:"Optimization of Thermoelectric Properties Based on Rashba Spin Splitting",slug:"optimization-of-thermoelectric-properties-based-on-rashba-spin-splitting",totalDownloads:123,totalDimensionsCites:0,doi:"10.5772/intechopen.98788",abstract:"In recent years, the application of thermoelectricity has become more and more widespread. Thermoelectric materials provide a simple and environmentally friendly solution for the direct conversion of heat to electricity. The development of higher performance thermoelectric materials and their performance optimization have become more important. Generally, to improve the ZT value, electrical conductivity, Seebeck coefficient and thermal conductivity must be globally optimized as a whole object. However, due to the strong coupling among ZT parameters in many cases, it is very challenging to break the bottleneck of ZT optimization currently. Beyond the traditional optimization methods (such as inducing defects, varying temperature), the Rashba effect is expected to effectively increase the S2σ and decrease the κ, thus enhancing thermoelectric performance, which provides a new strategy to develop new-generation thermoelectric materials. Although the Rashba effect has great potential in enhancing thermoelectric performance, the underlying mechanism of Rashba-type thermoelectric materials needs further research. In addition, how to introduce Rashba spin splitting into current thermoelectric materials is also of great significance to the optimization of thermoelectricity.",book:{id:"10037",title:"Thermoelectricity - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg"},signatures:"Zhenzhen Qin"},{id:"75364",title:"Challenges in Improving Performance of Oxide Thermoelectrics Using Defect Engineering",slug:"challenges-in-improving-performance-of-oxide-thermoelectrics-using-defect-engineering",totalDownloads:211,totalDimensionsCites:0,doi:"10.5772/intechopen.96278",abstract:"Oxide thermoelectric materials are considered promising for high-temperature thermoelectric applications in terms of low cost, temperature stability, reversible reaction, and so on. Oxide materials have been intensively studied to suppress the defects and electronic charge carriers for many electronic device applications, but the studies with a high concentration of defects are limited. It desires to improve thermoelectric performance by enhancing its charge transport and lowering its lattice thermal conductivity. For this purpose, here, we modified the stoichiometry of cation and anion vacancies in two different systems to regulate the carrier concentration and explored their thermoelectric properties. Both cation and anion vacancies act as a donor of charge carriers and act as phonon scattering centers, decoupling the electrical conductivity and thermal conductivity.",book:{id:"10037",title:"Thermoelectricity - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg"},signatures:"Jamil Ur Rahman, Gul Rahman and Soonil Lee"}],onlineFirstChaptersTotal:6},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:8,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:286,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:9,numberOfPublishedChapters:101,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"May 13th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"7",title:"Bioinformatics and Medical Informatics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",isOpenForSubmission:!0,editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",slug:"slawomir-wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",biography:"Professor Sławomir Wilczyński, Head of the Chair of Department of Basic Biomedical Sciences, Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Poland. His research interests are focused on modern imaging methods used in medicine and pharmacy, including in particular hyperspectral imaging, dynamic thermovision analysis, high-resolution ultrasound, as well as other techniques such as EPR, NMR and hemispheric directional reflectance. Author of over 100 scientific works, patents and industrial designs. Expert of the Polish National Center for Research and Development, Member of the Investment Committee in the Bridge Alfa NCBiR program, expert of the Polish Ministry of Funds and Regional Policy, Polish Medical Research Agency. Editor-in-chief of the journal in the field of aesthetic medicine and dermatology - Aesthetica.",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},{id:"8",title:"Bioinspired Technology and Biomechanics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",isOpenForSubmission:!0,editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",slug:"adriano-andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",biography:"Dr. Adriano de Oliveira Andrade graduated in Electrical Engineering at the Federal University of Goiás (Brazil) in 1997. He received his MSc and PhD in Biomedical Engineering respectively from the Federal University of Uberlândia (UFU, Brazil) in 2000 and from the University of Reading (UK) in 2005. He completed a one-year Post-Doctoral Fellowship awarded by the DFAIT (Foreign Affairs and International Trade Canada) at the Institute of Biomedical Engineering of the University of New Brunswick (Canada) in 2010. Currently, he is Professor in the Faculty of Electrical Engineering (UFU). He has authored and co-authored more than 200 peer-reviewed publications in Biomedical Engineering. He has been a researcher of The National Council for Scientific and Technological Development (CNPq-Brazil) since 2009. He has served as an ad-hoc consultant for CNPq, CAPES (Coordination for the Improvement of Higher Education Personnel), FINEP (Brazilian Innovation Agency), and other funding bodies on several occasions. He was the Secretary of the Brazilian Society of Biomedical Engineering (SBEB) from 2015 to 2016, President of SBEB (2017-2018) and Vice-President of SBEB (2019-2020). He was the head of the undergraduate program in Biomedical Engineering of the Federal University of Uberlândia (2015 - June/2019) and the head of the Centre for Innovation and Technology Assessment in Health (NIATS/UFU) since 2010. He is the head of the Postgraduate Program in Biomedical Engineering (UFU, July/2019 - to date). He was the secretary of the Parkinson's Disease Association of Uberlândia (2018-2019). Dr. Andrade's primary area of research is focused towards getting information from the neuromuscular system to understand its strategies of organization, adaptation and controlling in the context of motor neuron diseases. His research interests include Biomedical Signal Processing and Modelling, Assistive Technology, Rehabilitation Engineering, Neuroengineering and Parkinson's Disease.",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",isOpenForSubmission:!0,editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",biography:"Dr. Luis Villarreal is a research professor from the Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México. Dr. Villarreal is the editor in chief and founder of the Revista de Ciencias Tecnológicas (RECIT) (https://recit.uabc.mx/) and is a member of several editorial and reviewer boards for numerous international journals. He has published more than thirty international papers and reviewed more than ninety-two manuscripts. His research interests include biomaterials, nanomaterials, bioengineering, biosensors, drug delivery systems, and tissue engineering.",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:17,paginationItems:[{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81766",title:"Evolution of Organoids in Oncology",doi:"10.5772/intechopen.104251",signatures:"Allen Thayakumar Basanthakumar, Janitha Chandrasekhar Darlybai and Jyothsna Ganesh",slug:"evolution-of-organoids-in-oncology",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81547",title:"Organoids and Commercialization",doi:"10.5772/intechopen.104706",signatures:"Anubhab Mukherjee, Aprajita Sinha, Maheshree Maibam, Bharti Bisht and Manash K. Paul",slug:"organoids-and-commercialization",totalDownloads:30,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}}]},overviewPagePublishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",biography:"Michele Lanza is Associate Professor of Ophthalmology at Università della Campania, Luigi Vanvitelli, Napoli, Italy. His fields of interest are anterior segment disease, keratoconus, glaucoma, corneal dystrophies, and cataracts. His research topics include\nintraocular lens power calculation, eye modification induced by refractive surgery, glaucoma progression, and validation of new diagnostic devices in ophthalmology. \nHe has published more than 100 papers in international and Italian scientific journals, more than 60 in journals with impact factors, and chapters in international and Italian books. He has also edited two international books and authored more than 150 communications or posters for the most important international and Italian ophthalmology conferences.",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}]},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null}]},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11580",title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",hash:"1806716f60b9be14fc05682c4a912b41",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"March 23rd 2022",isOpenForSubmission:!0,editors:[{id:"258334",title:"Dr.",name:"Carlos Eduardo",surname:"Fonseca-Alves",slug:"carlos-eduardo-fonseca-alves",fullName:"Carlos Eduardo Fonseca-Alves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11579",title:"Animal Welfare - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11579.jpg",hash:"12e4f41264cbe99028655e5463fa941a",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"51520",title:"Dr.",name:"Shao-Wen",surname:"Hung",slug:"shao-wen-hung",fullName:"Shao-Wen Hung"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11578",title:"Antibiotics and Probiotics in Animal Food - Impact and Regulation",coverURL:"https://cdn.intechopen.com/books/images_new/11578.jpg",hash:"3731c009f474c6ed4293f348ca7b27ac",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 3rd 2022",isOpenForSubmission:!0,editors:[{id:"225390",title:"Dr.",name:"Asghar Ali",surname:"Kamboh",slug:"asghar-ali-kamboh",fullName:"Asghar Ali Kamboh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:1,paginationItems:[{id:"81831",title:"Deep Network Model and Regression Analysis using OLS Method for Predicting Lung Vital Capacity",doi:"10.5772/intechopen.104737",signatures:"Harun Sümbül",slug:"deep-network-model-and-regression-analysis-using-ols-method-for-predicting-lung-vital-capacity",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:0,authors:null,book:{title:"Decision Science - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11604.jpg",subseries:{id:"86",title:"Business and Management"}}}]},subseriesFiltersForOFChapters:[{caption:"Business and Management",value:86,count:1,group:"subseries"}],publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",hash:"86a6d33cf601587e591064ce92effc02",volumeInSeries:1,fullTitle:"Leadership in a Changing World - A Multidimensional Perspective",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",institutionString:null,institution:{name:"Université Laval",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Business and Management",value:86,count:1}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1}],authors:{paginationCount:249,paginationItems:[{id:"274452",title:"Dr.",name:"Yousif",middleName:"Mohamed",surname:"Abdallah",slug:"yousif-abdallah",fullName:"Yousif Abdallah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274452/images/8324_n.jpg",biography:"I certainly enjoyed my experience in Radiotherapy and Nuclear Medicine, particularly it has been in different institutions and hospitals with different Medical Cultures and allocated resources. Radiotherapy and Nuclear Medicine Technology has always been my aspiration and my life. As years passed I accumulated a tremendous amount of skills and knowledge in Radiotherapy and Nuclear Medicine, Conventional Radiology, Radiation Protection, Bioinformatics Technology, PACS, Image processing, clinically and lecturing that will enable me to provide a valuable service to the community as a Researcher and Consultant in this field. My method of translating this into day to day in clinical practice is non-exhaustible and my habit of exchanging knowledge and expertise with others in those fields is the code and secret of success.",institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",biography:"Bartłomiej Płaczek, MSc (2002), Ph.D. (2005), Habilitation (2016), is a professor at the University of Silesia, Institute of Computer Science, Poland, and an expert from the National Centre for Research and Development. His research interests include sensor networks, smart sensors, intelligent systems, and image processing with applications in healthcare and medicine. He is the author or co-author of more than seventy papers in peer-reviewed journals and conferences as well as the co-author of several books. He serves as a reviewer for many scientific journals, international conferences, and research foundations. Since 2010, Dr. Placzek has been a reviewer of grants and projects (including EU projects) in the field of information technologies.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"35000",title:"Prof.",name:"Ulrich H.P",middleName:"H.P.",surname:"Fischer",slug:"ulrich-h.p-fischer",fullName:"Ulrich H.P Fischer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/35000/images/3052_n.jpg",biography:"Academic and Professional Background\nUlrich H. P. has Diploma and PhD degrees in Physics from the Free University Berlin, Germany. He has been working on research positions in the Heinrich-Hertz-Institute in Germany. Several international research projects has been performed with European partners from France, Netherlands, Norway and the UK. He is currently Professor of Communications Systems at the Harz University of Applied Sciences, Germany.\n\nPublications and Publishing\nHe has edited one book, a special interest book about ‘Optoelectronic Packaging’ (VDE, Berlin, Germany), and has published over 100 papers and is owner of several international patents for WDM over POF key elements.\n\nKey Research and Consulting Interests\nUlrich’s research activity has always been related to Spectroscopy and Optical Communications Technology. Specific current interests include the validation of complex instruments, and the application of VR technology to the development and testing of measurement systems. He has been reviewer for several publications of the Optical Society of America\\'s including Photonics Technology Letters and Applied Optics.\n\nPersonal Interests\nThese include motor cycling in a very relaxed manner and performing martial arts.",institutionString:null,institution:{name:"Charité",country:{name:"Germany"}}},{id:"341622",title:"Ph.D.",name:"Eduardo",middleName:null,surname:"Rojas Alvarez",slug:"eduardo-rojas-alvarez",fullName:"Eduardo Rojas Alvarez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/341622/images/15892_n.jpg",biography:null,institutionString:null,institution:{name:"University of Cuenca",country:{name:"Ecuador"}}},{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",biography:"Muhammad Sarfraz is a professor in the Department of Information Science, Kuwait University, Kuwait. His research interests include optimization, computer graphics, computer vision, image processing, machine learning, pattern recognition, soft computing, data science, and intelligent systems. Prof. Sarfraz has been a keynote/invited speaker at various platforms around the globe. He has advised/supervised more than 110 students for their MSc and Ph.D. theses. He has published more than 400 publications as books, journal articles, and conference papers. He has authored and/or edited around seventy books. Prof. Sarfraz is a member of various professional societies. He is a chair and member of international advisory committees and organizing committees of numerous international conferences. He is also an editor and editor in chief for various international journals.",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"32650",title:"Prof.",name:"Lukas",middleName:"Willem",surname:"Snyman",slug:"lukas-snyman",fullName:"Lukas Snyman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/32650/images/4136_n.jpg",biography:"Lukas Willem Snyman received his basic education at primary and high schools in South Africa, Eastern Cape. He enrolled at today's Nelson Metropolitan University and graduated from this university with a BSc in Physics and Mathematics, B.Sc Honors in Physics, MSc in Semiconductor Physics, and a Ph.D. in Semiconductor Physics in 1987. After his studies, he chose an academic career and devoted his energy to the teaching of physics to first, second, and third-year students. After positions as a lecturer at the University of Port Elizabeth, he accepted a position as Associate Professor at the University of Pretoria, South Africa.\r\n\r\nIn 1992, he motivates the concept of 'television and computer-based education” as means to reach large student numbers with only the best of teaching expertise and publishes an article on the concept in the SA Journal of Higher Education of 1993 (and later in 2003). The University of Pretoria subsequently approved a series of test projects on the concept with outreach to Mamelodi and Eerste Rust in 1993. In 1994, the University established a 'Unit for Telematic Education ' as a support section for multiple faculties at the University of Pretoria. In subsequent years, the concept of 'telematic education” subsequently becomes well established in academic circles in South Africa, grew in popularity, and is adopted by many universities and colleges throughout South Africa as a medium of enhancing education and training, as a method to reaching out to far out communities, and as a means to enhance study from the home environment.\r\n\r\nProfessor Snyman in subsequent years pursued research in semiconductor physics, semiconductor devices, microelectronics, and optoelectronics.\r\n\r\nIn 2000 he joined the TUT as a full professor. Here served for a period as head of the Department of Electronic Engineering. Here he makes contributions to solar energy development, microwave and optoelectronic device development, silicon photonics, as well as contributions to new mobile telecommunication systems and network planning in SA.\r\n\r\nCurrently, he teaches electronics and telecommunications at the TUT to audiences ranging from first-year students to Ph.D. level.\r\n\r\nFor his research in the field of 'Silicon Photonics” since 1990, he has published (as author and co-author) about thirty internationally reviewed articles in scientific journals, contributed to more than forty international conferences, about 25 South African provisional patents (as inventor and co-inventor), 8 PCT international patent applications until now. Of these, two USA patents applications, two European Patents, two Korean patents, and ten SA patents have been granted. A further 4 USA patents, 5 European patents, 3 Korean patents, 3 Chinese patents, and 3 Japanese patents are currently under consideration.\r\n\r\nRecently he has also published an extensive scholarly chapter in an internet open access book on 'Integrating Microphotonic Systems and MOEMS into standard Silicon CMOS Integrated circuitry”.\r\n\r\nFurthermore, Professor Snyman recently steered a new initiative at the TUT by introducing a 'Laboratory for Innovative Electronic Systems ' at the Department of Electrical Engineering. The model of this laboratory or center is to primarily combine outputs as achieved by high-level research with lower-level system development and entrepreneurship in a technical university environment. Students are allocated to projects at different levels with PhDs and Master students allocated to the generation of new knowledge and new technologies, while students at the diploma and Baccalaureus level are allocated to electronic systems development with a direct and a near application for application in industry or the commercial and public sectors in South Africa.\r\n\r\nProfessor Snyman received the WIRSAM Award of 1983 and the WIRSAM Award in 1985 in South Africa for best research papers by a young scientist at two international conferences on electron microscopy in South Africa. He subsequently received the SA Microelectronics Award for the best dissertation emanating from studies executed at a South African university in the field of Physics and Microelectronics in South Africa in 1987. In October of 2011, Professor Snyman received the prestigious Institutional Award for 'Innovator of the Year” for 2010 at the Tshwane University of Technology, South Africa. This award was based on the number of patents recognized and granted by local and international institutions as well as for his contributions concerning innovation at the TUT.",institutionString:null,institution:{name:"University of South Africa",country:{name:"South Africa"}}},{id:"317279",title:"Mr.",name:"Ali",middleName:"Usama",surname:"Syed",slug:"ali-syed",fullName:"Ali Syed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/317279/images/16024_n.png",biography:"A creative, talented, and innovative young professional who is dedicated, well organized, and capable research fellow with two years of experience in graduate-level research, published in engineering journals and book, with related expertise in Bio-robotics, equally passionate about the aesthetics of the mechanical and electronic system, obtained expertise in the use of MS Office, MATLAB, SolidWorks, LabVIEW, Proteus, Fusion 360, having a grasp on python, C++ and assembly language, possess proven ability in acquiring research grants, previous appointments with social and educational societies with experience in administration, current affiliations with IEEE and Web of Science, a confident presenter at conferences and teacher in classrooms, able to explain complex information to audiences of all levels.",institutionString:null,institution:{name:"Air University",country:{name:"Pakistan"}}},{id:"75526",title:"Ph.D.",name:"Zihni Onur",middleName:null,surname:"Uygun",slug:"zihni-onur-uygun",fullName:"Zihni Onur Uygun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75526/images/12_n.jpg",biography:"My undergraduate education and my Master of Science educations at Ege University and at Çanakkale Onsekiz Mart University have given me a firm foundation in Biochemistry, Analytical Chemistry, Biosensors, Bioelectronics, Physical Chemistry and Medicine. After obtaining my degree as a MSc in analytical chemistry, I started working as a research assistant in Ege University Medical Faculty in 2014. In parallel, I enrolled to the MSc program at the Department of Medical Biochemistry at Ege University to gain deeper knowledge on medical and biochemical sciences as well as clinical chemistry in 2014. In my PhD I deeply researched on biosensors and bioelectronics and finished in 2020. Now I have eleven SCI-Expanded Index published papers, 6 international book chapters, referee assignments for different SCIE journals, one international patent pending, several international awards, projects and bursaries. In parallel to my research assistant position at Ege University Medical Faculty, Department of Medical Biochemistry, in April 2016, I also founded a Start-Up Company (Denosens Biotechnology LTD) by the support of The Scientific and Technological Research Council of Turkey. Currently, I am also working as a CEO in Denosens Biotechnology. The main purposes of the company, which carries out R&D as a research center, are to develop new generation biosensors and sensors for both point-of-care diagnostics; such as glucose, lactate, cholesterol and cancer biomarker detections. My specific experimental and instrumental skills are Biochemistry, Biosensor, Analytical Chemistry, Electrochemistry, Mobile phone based point-of-care diagnostic device, POCTs and Patient interface designs, HPLC, Tandem Mass Spectrometry, Spectrophotometry, ELISA.",institutionString:null,institution:{name:"Ege University",country:{name:"Turkey"}}},{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",biography:"Jaya T. Varkey, PhD, graduated with a degree in Chemistry from Cochin University of Science and Technology, Kerala, India. She obtained a PhD in Chemistry from the School of Chemical Sciences, Mahatma Gandhi University, Kerala, India, and completed a post-doctoral fellowship at the University of Minnesota, USA. She is a research guide at Mahatma Gandhi University and Associate Professor in Chemistry, St. Teresa’s College, Kochi, Kerala, India.\nDr. Varkey received a National Young Scientist award from the Indian Science Congress (1995), a UGC Research award (2016–2018), an Indian National Science Academy (INSA) Visiting Scientist award (2018–2019), and a Best Innovative Faculty award from the All India Association for Christian Higher Education (AIACHE) (2019). She Hashas received the Sr. Mary Cecil prize for best research paper three times. She was also awarded a start-up to develop a tea bag water filter. \nDr. Varkey has published two international books and twenty-seven international journal publications. She is an editorial board member for five international journals.",institutionString:"St. Teresa’s College",institution:null},{id:"250668",title:"Dr.",name:"Ali",middleName:null,surname:"Nabipour Chakoli",slug:"ali-nabipour-chakoli",fullName:"Ali Nabipour Chakoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/250668/images/system/250668.jpg",biography:"Academic Qualification:\r\n•\tPhD in Materials Physics and Chemistry, From: Sep. 2006, to: Sep. 2010, School of Materials Science and Engineering, Harbin Institute of Technology, Thesis: Structure and Shape Memory Effect of Functionalized MWCNTs/poly (L-lactide-co-ε-caprolactone) Nanocomposites. Supervisor: Prof. Wei Cai,\r\n•\tM.Sc in Applied Physics, From: 1996, to: 1998, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Determination of Boron in Micro alloy Steels with solid state nuclear track detectors by neutron induced auto radiography, Supervisors: Dr. M. Hosseini Ashrafi and Dr. A. Hosseini.\r\n•\tB.Sc. in Applied Physics, From: 1991, to: 1996, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Design of shielding for Am-Be neutron sources for In Vivo neutron activation analysis, Supervisor: Dr. M. Hosseini Ashrafi.\r\n\r\nResearch Experiences:\r\n1.\tNanomaterials, Carbon Nanotubes, Graphene: Synthesis, Functionalization and Characterization,\r\n2.\tMWCNTs/Polymer Composites: Fabrication and Characterization, \r\n3.\tShape Memory Polymers, Biodegradable Polymers, ORC, Collagen,\r\n4.\tMaterials Analysis and Characterizations: TEM, SEM, XPS, FT-IR, Raman, DSC, DMA, TGA, XRD, GPC, Fluoroscopy, \r\n5.\tInteraction of Radiation with Mater, Nuclear Safety and Security, NDT(RT),\r\n6.\tRadiation Detectors, Calibration (SSDL),\r\n7.\tCompleted IAEA e-learning Courses:\r\nNuclear Security (15 Modules),\r\nNuclear Safety:\r\nTSA 2: Regulatory Protection in Occupational Exposure,\r\nTips & Tricks: Radiation Protection in Radiography,\r\nSafety and Quality in Radiotherapy,\r\nCourse on Sealed Radioactive Sources,\r\nCourse on Fundamentals of Environmental Remediation,\r\nCourse on Planning for Environmental Remediation,\r\nKnowledge Management Orientation Course,\r\nFood Irradiation - Technology, Applications and Good Practices,\r\nEmployment:\r\nFrom 2010 to now: Academic staff, Nuclear Science and Technology Research Institute, Kargar Shomali, Tehran, Iran, P.O. Box: 14395-836.\r\nFrom 1997 to 2006: Expert of Materials Analysis and Characterization. Research Center of Agriculture and Medicine. Rajaeeshahr, Karaj, Iran, P. O. Box: 31585-498.",institutionString:"Atomic Energy Organization of Iran",institution:{name:"Atomic Energy Organization of Iran",country:{name:"Iran"}}},{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",biography:"Monika Elżbieta Machoy, MD, graduated with distinction from the Faculty of Medicine and Dentistry at the Pomeranian Medical University in 2009, defended her PhD thesis with summa cum laude in 2016 and is currently employed as a researcher at the Department of Orthodontics of the Pomeranian Medical University. She expanded her professional knowledge during a one-year scholarship program at the Ernst Moritz Arndt University in Greifswald, Germany and during a three-year internship at the Technical University in Dresden, Germany. She has been a speaker at numerous orthodontic conferences, among others, American Association of Orthodontics, European Orthodontic Symposium and numerous conferences of the Polish Orthodontic Society. She conducts research focusing on the effect of orthodontic treatment on dental and periodontal tissues and the causes of pain in orthodontic patients.",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",country:{name:"Poland"}}},{id:"252743",title:"Prof.",name:"Aswini",middleName:"Kumar",surname:"Kar",slug:"aswini-kar",fullName:"Aswini Kar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252743/images/10381_n.jpg",biography:"uploaded in cv",institutionString:null,institution:{name:"KIIT University",country:{name:"India"}}},{id:"204256",title:"Dr.",name:"Anil",middleName:"Kumar",surname:"Kumar Sahu",slug:"anil-kumar-sahu",fullName:"Anil Kumar Sahu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204256/images/14201_n.jpg",biography:"I have nearly 11 years of research and teaching experience. I have done my master degree from University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh India. I have published 16 review and research articles in international and national journals and published 4 chapters in IntechOpen, the world’s leading publisher of Open access books. I have presented many papers at national and international conferences. I have received research award from Indian Drug Manufacturers Association in year 2015. My research interest extends from novel lymphatic drug delivery systems, oral delivery system for herbal bioactive to formulation optimization.",institutionString:null,institution:{name:"Chhattisgarh Swami Vivekanand Technical University",country:{name:"India"}}},{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null},{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"254463",title:"Prof.",name:"Haisheng",middleName:null,surname:"Yang",slug:"haisheng-yang",fullName:"Haisheng Yang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/254463/images/system/254463.jpeg",biography:"Haisheng Yang, Ph.D., Professor and Director of the Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology. He received his Ph.D. degree in Mechanics/Biomechanics from Harbin Institute of Technology (jointly with University of California, Berkeley). Afterwards, he worked as a Postdoctoral Research Associate in the Purdue Musculoskeletal Biology and Mechanics Lab at the Department of Basic Medical Sciences, Purdue University, USA. He also conducted research in the Research Centre of Shriners Hospitals for Children-Canada at McGill University, Canada. Dr. Yang has over 10 years research experience in orthopaedic biomechanics and mechanobiology of bone adaptation and regeneration. He earned an award from Beijing Overseas Talents Aggregation program in 2017 and serves as Beijing Distinguished Professor.",institutionString:"Beijing University of Technology",institution:null},{id:"255757",title:"Dr.",name:"Igor",middleName:"Victorovich",surname:"Lakhno",slug:"igor-lakhno",fullName:"Igor Lakhno",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255757/images/system/255757.jpg",biography:"Lakhno Igor Victorovich was born in 1971 in Kharkiv (Ukraine). \nMD – 1994, Kharkiv National Medical Univesity.\nOb&Gyn; – 1997, master courses in Kharkiv Medical Academy of Postgraduate Education.\nPhD – 1999, Kharkiv National Medical Univesity.\nDSc – 2019, PL Shupik National Academy of Postgraduate Education \nLakhno Igor has been graduated from an international training courses on reproductive medicine and family planning held in Debrecen University (Hungary) in 1997. Since 1998 Lakhno Igor has worked as an associate professor of the department of obstetrics and gynecology of VN Karazin National University and an associate professor of the perinatology, obstetrics and gynecology department of Kharkiv Medical Academy of Postgraduate Education. Since June 2019 he’s a professor of the department of obstetrics and gynecology of VN Karazin National University and a professor of the perinatology, obstetrics and gynecology department of Kharkiv Medical Academy of Postgraduate Education . He’s an author of about 200 printed works and there are 17 of them in Scopus or Web of Science databases. Lakhno Igor is a rewiever of Journal of Obstetrics and Gynaecology (Taylor and Francis), Informatics in Medicine Unlocked (Elsevier), The Journal of Obstetrics and Gynecology Research (Wiley), Endocrine, Metabolic & Immune Disorders-Drug Targets (Bentham Open), The Open Biomedical Engineering Journal (Bentham Open), etc. He’s defended a dissertation for DSc degree \\'Pre-eclampsia: prediction, prevention and treatment”. Lakhno Igor has participated as a speaker in several international conferences and congresses (International Conference on Biological Oscillations April 10th-14th 2016, Lancaster, UK, The 9th conference of the European Study Group on Cardiovascular Oscillations). His main scientific interests: obstetrics, women’s health, fetal medicine, cardiovascular medicine.",institutionString:"V.N. Karazin Kharkiv National University",institution:{name:"Kharkiv Medical Academy of Postgraduate Education",country:{name:"Ukraine"}}},{id:"89721",title:"Dr.",name:"Mehmet",middleName:"Cuneyt",surname:"Ozmen",slug:"mehmet-ozmen",fullName:"Mehmet Ozmen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/89721/images/7289_n.jpg",biography:null,institutionString:null,institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"243698",title:"M.D.",name:"Xiaogang",middleName:null,surname:"Wang",slug:"xiaogang-wang",fullName:"Xiaogang Wang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243698/images/system/243698.png",biography:"Dr. Xiaogang Wang, a faculty member of Shanxi Eye Hospital specializing in the treatment of cataract and retinal disease and a tutor for postgraduate students of Shanxi Medical University, worked in the COOL Lab as an international visiting scholar under the supervision of Dr. David Huang and Yali Jia from October 2012 through November 2013. Dr. Wang earned an MD from Shanxi Medical University and a Ph.D. from Shanghai Jiao Tong University. Dr. Wang was awarded two research project grants focused on multimodal optical coherence tomography imaging and deep learning in cataract and retinal disease, from the National Natural Science Foundation of China. He has published around 30 peer-reviewed journal papers and four book chapters and co-edited one book.",institutionString:"Shanxi Eye Hospital",institution:{name:"Shanxi Eye Hospital",country:{name:"China"}}},{id:"242893",title:"Ph.D. Student",name:"Joaquim",middleName:null,surname:"De Moura",slug:"joaquim-de-moura",fullName:"Joaquim De Moura",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/242893/images/7133_n.jpg",biography:"Joaquim de Moura received his degree in Computer Engineering in 2014 from the University of A Coruña (Spain). In 2016, he received his M.Sc degree in Computer Engineering from the same university. He is currently pursuing his Ph.D degree in Computer Science in a collaborative project between ophthalmology centers in Galicia and the University of A Coruña. His research interests include computer vision, machine learning algorithms and analysis and medical imaging processing of various kinds.",institutionString:null,institution:{name:"University of A Coruña",country:{name:"Spain"}}},{id:"267434",title:"Dr.",name:"Rohit",middleName:null,surname:"Raja",slug:"rohit-raja",fullName:"Rohit Raja",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRZkkQAG/Profile_Picture_2022-05-09T12:55:18.jpg",biography:null,institutionString:null,institution:null},{id:"294334",title:"B.Sc.",name:"Marc",middleName:null,surname:"Bruggeman",slug:"marc-bruggeman",fullName:"Marc Bruggeman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/294334/images/8242_n.jpg",biography:"Chemical engineer graduate, with a passion for material science and specific interest in polymers - their near infinite applications intrigue me. \n\nI plan to continue my scientific career in the field of polymeric biomaterials as I am fascinated by intelligent, bioactive and biomimetic materials for use in both consumer and medical applications.",institutionString:null,institution:null},{id:"244950",title:"Dr.",name:"Salvatore",middleName:null,surname:"Di Lauro",slug:"salvatore-di-lauro",fullName:"Salvatore Di Lauro",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0030O00002bSF1HQAW/ProfilePicture%202021-12-20%2014%3A54%3A14.482",biography:"Name:\n\tSALVATORE DI LAURO\nAddress:\n\tHospital Clínico Universitario Valladolid\nAvda Ramón y Cajal 3\n47005, Valladolid\nSpain\nPhone number: \nFax\nE-mail:\n\t+34 983420000 ext 292\n+34 983420084\nsadilauro@live.it\nDate and place of Birth:\nID Number\nMedical Licence \nLanguages\t09-05-1985. Villaricca (Italy)\n\nY1281863H\n474707061\nItalian (native language)\nSpanish (read, written, spoken)\nEnglish (read, written, spoken)\nPortuguese (read, spoken)\nFrench (read)\n\t\t\nCurrent position (title and company)\tDate (Year)\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. Private practise.\t2017-today\n\n2019-today\n\t\n\t\nEducation (High school, university and postgraduate training > 3 months)\tDate (Year)\nDegree in Medicine and Surgery. University of Neaples 'Federico II”\nResident in Opthalmology. Hospital Clinico Universitario Valladolid\nMaster in Vitreo-Retina. IOBA. University of Valladolid\nFellow of the European Board of Ophthalmology. Paris\nMaster in Research in Ophthalmology. University of Valladolid\t2003-2009\n2012-2016\n2016-2017\n2016\n2012-2013\n\t\nEmployments (company and positions)\tDate (Year)\nResident in Ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl.\nFellow in Vitreo-Retina. IOBA. University of Valladolid\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. \n\t2012-2016\n2016-2017\n2017-today\n\n2019-Today\n\n\n\t\nClinical Research Experience (tasks and role)\tDate (Year)\nAssociated investigator\n\n' FIS PI20/00740: DESARROLLO DE UNA CALCULADORA DE RIESGO DE\nAPARICION DE RETINOPATIA DIABETICA BASADA EN TECNICAS DE IMAGEN MULTIMODAL EN PACIENTES DIABETICOS TIPO 1. Grant by: Ministerio de Ciencia e Innovacion \n\n' (BIO/VA23/14) Estudio clínico multicéntrico y prospectivo para validar dos\nbiomarcadores ubicados en los genes p53 y MDM2 en la predicción de los resultados funcionales de la cirugía del desprendimiento de retina regmatógeno. Grant by: Gerencia Regional de Salud de la Junta de Castilla y León.\n' Estudio multicéntrico, aleatorizado, con enmascaramiento doble, en 2 grupos\nparalelos y de 52 semanas de duración para comparar la eficacia, seguridad e inmunogenicidad de SOK583A1 respecto a Eylea® en pacientes con degeneración macular neovascular asociada a la edad' (CSOK583A12301; N.EUDRA: 2019-004838-41; FASE III). Grant by Hexal AG\n\n' Estudio de fase III, aleatorizado, doble ciego, con grupos paralelos, multicéntrico para comparar la eficacia y la seguridad de QL1205 frente a Lucentis® en pacientes con degeneración macular neovascular asociada a la edad. (EUDRACT: 2018-004486-13). Grant by Qilu Pharmaceutical Co\n\n' Estudio NEUTON: Ensayo clinico en fase IV para evaluar la eficacia de aflibercept en pacientes Naive con Edema MacUlar secundario a Oclusion de Vena CenTral de la Retina (OVCR) en regimen de tratamientO iNdividualizado Treat and Extend (TAE)”, (2014-000975-21). Grant by Fundacion Retinaplus\n\n' Evaluación de la seguridad y bioactividad de anillos de tensión capsular en conejo. Proyecto Procusens. Grant by AJL, S.A.\n\n'Estudio epidemiológico, prospectivo, multicéntrico y abierto\\npara valorar la frecuencia de la conjuntivitis adenovírica diagnosticada mediante el test AdenoPlus®\\nTest en pacientes enfermos de conjuntivitis aguda”\\n. National, multicenter study. Grant by: NICOX.\n\nEuropean multicentric trial: 'Evaluation of clinical outcomes following the use of Systane Hydration in patients with dry eye”. Study Phase 4. Grant by: Alcon Labs'\n\nVLPs Injection and Activation in a Rabbit Model of Uveal Melanoma. Grant by Aura Bioscience\n\nUpdating and characterization of a rabbit model of uveal melanoma. Grant by Aura Bioscience\n\nEnsayo clínico en fase IV para evaluar las variantes genéticas de la vía del VEGF como biomarcadores de eficacia del tratamiento con aflibercept en pacientes con degeneración macular asociada a la edad (DMAE) neovascular. Estudio BIOIMAGE. IMO-AFLI-2013-01\n\nEstudio In-Eye:Ensayo clínico en fase IV, abierto, aleatorizado, de 2 brazos,\nmulticçentrico y de 12 meses de duración, para evaluar la eficacia y seguridad de un régimen de PRN flexible individualizado de 'esperar y extender' versus un régimen PRN según criterios de estabilización mediante evaluaciones mensuales de inyecciones intravítreas de ranibizumab 0,5 mg en pacientes naive con neovascularización coriodea secunaria a la degeneración macular relacionada con la edad. CP: CRFB002AES03T\n\nTREND: Estudio Fase IIIb multicéntrico, randomizado, de 12 meses de\nseguimiento con evaluador de la agudeza visual enmascarado, para evaluar la eficacia y la seguridad de ranibizumab 0.5mg en un régimen de tratar y extender comparado con un régimen mensual, en pacientes con degeneración macular neovascular asociada a la edad. CP: CRFB002A2411 Código Eudra CT:\n2013-002626-23\n\n\n\nPublications\t\n\n2021\n\n\n\n\n2015\n\n\n\n\n2021\n\n\n\n\n\n2021\n\n\n\n\n2015\n\n\n\n\n2015\n\n\n2014\n\n\n\n\n2015-16\n\n\n\n2015\n\n\n2014\n\n\n2014\n\n\n\n\n2014\n\n\n\n\n\n\n\n2014\n\nJose Carlos Pastor; Jimena Rojas; Salvador Pastor-Idoate; Salvatore Di Lauro; Lucia Gonzalez-Buendia; Santiago Delgado-Tirado. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical\nconsequences. Progress in Retinal and Eye Research. 51, pp. 125 - 155. 03/2016. DOI: 10.1016/j.preteyeres.2015.07.005\n\n\nLabrador-Velandia S; Alonso-Alonso ML; Di Lauro S; García-Gutierrez MT; Srivastava GK; Pastor JC; Fernandez-Bueno I. Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures.Experimental Eye Research. 185, 17/05/2019. DOI: 10.1016/j.exer.2019.05.011\n\nSalvatore Di Lauro; Maria Teresa Garcia Gutierrez; Ivan Fernandez Bueno. Quantification of pigment epithelium-derived factor (PEDF) in an ex vivo coculture of retinal pigment epithelium cells and neuroretina.\nJournal of Allbiosolution. 2019. ISSN 2605-3535\n\nSonia Labrador Velandia; Salvatore Di Lauro; Alonso-Alonso ML; Tabera Bartolomé S; Srivastava GK; Pastor JC; Fernandez-Bueno I. Biocompatibility of intravitreal injection of human mesenchymal stem cells in immunocompetent rabbits. Graefe's archive for clinical and experimental ophthalmology. 256 - 1, pp. 125 - 134. 01/2018. DOI: 10.1007/s00417-017-3842-3\n\n\nSalvatore Di Lauro, David Rodriguez-Crespo, Manuel J Gayoso, Maria T Garcia-Gutierrez, J Carlos Pastor, Girish K Srivastava, Ivan Fernandez-Bueno. A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells. Molecular Vision. 2016 - 22, pp. 243 - 253. 01/2016.\n\nSalvatore Di Lauro. Classifications for Proliferative Vitreoretinopathy ({PVR}): An Analysis of Their Use in Publications over the Last 15 Years. Journal of Ophthalmology. 2016, pp. 1 - 6. 01/2016. DOI: 10.1155/2016/7807596\n\nSalvatore Di Lauro; Rosa Maria Coco; Rosa Maria Sanabria; Enrique Rodriguez de la Rua; Jose Carlos Pastor. Loss of Visual Acuity after Successful Surgery for Macula-On Rhegmatogenous Retinal Detachment in a Prospective Multicentre Study. Journal of Ophthalmology. 2015:821864, 2015. DOI: 10.1155/2015/821864\n\nIvan Fernandez-Bueno; Salvatore Di Lauro; Ivan Alvarez; Jose Carlos Lopez; Maria Teresa Garcia-Gutierrez; Itziar Fernandez; Eva Larra; Jose Carlos Pastor. Safety and Biocompatibility of a New High-Density Polyethylene-Based\nSpherical Integrated Porous Orbital Implant: An Experimental Study in Rabbits. Journal of Ophthalmology. 2015:904096, 2015. DOI: 10.1155/2015/904096\n\nPastor JC; Pastor-Idoate S; Rodríguez-Hernandez I; Rojas J; Fernandez I; Gonzalez-Buendia L; Di Lauro S; Gonzalez-Sarmiento R. Genetics of PVR and RD. Ophthalmologica. 232 - Suppl 1, pp. 28 - 29. 2014\n\nRodriguez-Crespo D; Di Lauro S; Singh AK; Garcia-Gutierrez MT; Garrosa M; Pastor JC; Fernandez-Bueno I; Srivastava GK. Triple-layered mixed co-culture model of RPE cells with neuroretina for evaluating the neuroprotective effects of adipose-MSCs. Cell Tissue Res. 358 - 3, pp. 705 - 716. 2014.\nDOI: 10.1007/s00441-014-1987-5\n\nCarlo De Werra; Salvatore Condurro; Salvatore Tramontano; Mario Perone; Ivana Donzelli; Salvatore Di Lauro; Massimo Di Giuseppe; Rosa Di Micco; Annalisa Pascariello; Antonio Pastore; Giorgio Diamantis; Giuseppe Galloro. Hydatid disease of the liver: thirty years of surgical experience.Chirurgia italiana. 59 - 5, pp. 611 - 636.\n(Italia): 2007. ISSN 0009-4773\n\nChapters in books\n\t\n' Salvador Pastor Idoate; Salvatore Di Lauro; Jose Carlos Pastor Jimeno. PVR: Pathogenesis, Histopathology and Classification. Proliferative Vitreoretinopathy with Small Gauge Vitrectomy. Springer, 2018. ISBN 978-3-319-78445-8\nDOI: 10.1007/978-3-319-78446-5_2. \n\n' Salvatore Di Lauro; Maria Isabel Lopez Galvez. Quistes vítreos en una mujer joven. Problemas diagnósticos en patología retinocoroidea. Sociedad Española de Retina-Vitreo. 2018.\n\n' Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor Jimeno. iOCT in PVR management. OCT Applications in Opthalmology. pp. 1 - 8. INTECH, 2018. DOI: 10.5772/intechopen.78774.\n\n' Rosa Coco Martin; Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor. amponadores, manipuladores y tinciones en la cirugía del traumatismo ocular.Trauma Ocular. Ponencia de la SEO 2018..\n\n' LOPEZ GALVEZ; DI LAURO; CRESPO. OCT angiografia y complicaciones retinianas de la diabetes. PONENCIA SEO 2021, CAPITULO 20. (España): 2021.\n\n' Múltiples desprendimientos neurosensoriales bilaterales en paciente joven. Enfermedades Degenerativas De Retina Y Coroides. SERV 04/2016. \n' González-Buendía L; Di Lauro S; Pastor-Idoate S; Pastor Jimeno JC. Vitreorretinopatía proliferante (VRP) e inflamación: LA INFLAMACIÓN in «INMUNOMODULADORES Y ANTIINFLAMATORIOS: MÁS ALLÁ DE LOS CORTICOIDES. RELACION DE PONENCIAS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGIA. 10/2014.",institutionString:null,institution:null},{id:"265335",title:"Mr.",name:"Stefan",middleName:"Radnev",surname:"Stefanov",slug:"stefan-stefanov",fullName:"Stefan Stefanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/265335/images/7562_n.jpg",biography:null,institutionString:null,institution:null},{id:"318905",title:"Prof.",name:"Elvis",middleName:"Kwason",surname:"Tiburu",slug:"elvis-tiburu",fullName:"Elvis Tiburu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"336193",title:"Dr.",name:"Abdullah",middleName:null,surname:"Alamoudi",slug:"abdullah-alamoudi",fullName:"Abdullah Alamoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"318657",title:"MSc.",name:"Isabell",middleName:null,surname:"Steuding",slug:"isabell-steuding",fullName:"Isabell Steuding",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"318656",title:"BSc.",name:"Peter",middleName:null,surname:"Kußmann",slug:"peter-kussmann",fullName:"Peter Kußmann",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"338222",title:"Mrs.",name:"María José",middleName:null,surname:"Lucía Mudas",slug:"maria-jose-lucia-mudas",fullName:"María José Lucía Mudas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}},{id:"147824",title:"Mr.",name:"Pablo",middleName:null,surname:"Revuelta Sanz",slug:"pablo-revuelta-sanz",fullName:"Pablo Revuelta Sanz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}}]}},subseries:{item:{id:"12",type:"subseries",title:"Human Physiology",keywords:"Anatomy, Cells, Organs, Systems, Homeostasis, Functions",scope:"Human physiology is the scientific exploration of the various functions (physical, biochemical, and mechanical properties) of humans, their organs, and their constituent cells. The endocrine and nervous systems play important roles in maintaining homeostasis in the human body. Integration, which is the biological basis of physiology, is achieved through communication between the many overlapping functions of the human body's systems, which takes place through electrical and chemical means. Much of the basis of our knowledge of human physiology has been provided by animal experiments. Because of the close relationship between structure and function, studies in human physiology and anatomy seek to understand the mechanisms that help the human body function. The series on human physiology deals with the various mechanisms of interaction between the various organs, nerves, and cells in the human body.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11408,editor:{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma",profilePictureURL:"https://mts.intechopen.com/storage/users/195829/images/system/195829.jpg",biography:"Professor Kunihiro Sakuma, Ph.D., currently works in the Institute for Liberal Arts at the Tokyo Institute of Technology. He is a physiologist working in the field of skeletal muscle. He was awarded his sports science diploma in 1995 by the University of Tsukuba and began his scientific work at the Department of Physiology, Aichi Human Service Center, focusing on the molecular mechanism of congenital muscular dystrophy and normal muscle regeneration. His interest later turned to the molecular mechanism and attenuating strategy of sarcopenia (age-related muscle atrophy). His opinion is to attenuate sarcopenia by improving autophagic defects using nutrient- and pharmaceutical-based treatments.",institutionString:null,institution:{name:"Tokyo Institute of Technology",institutionURL:null,country:{name:"Japan"}}},editorTwo:null,editorThree:{id:"331519",title:"Dr.",name:"Kotomi",middleName:null,surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031QtFXQA0/Profile_Picture_1637053227318",biography:"Senior researcher Kotomi Sakai, Ph.D., MPH, works at the Research Organization of Science and Technology in Ritsumeikan University. She is a researcher in the geriatric rehabilitation and public health field. She received Ph.D. from Nihon University and MPH from St.Luke’s International University. Her main research interest is sarcopenia in older adults, especially its association with nutritional status. Additionally, to understand how to maintain and improve physical function in older adults, to conduct studies about the mechanism of sarcopenia and determine when possible interventions are needed.",institutionString:null,institution:{name:"Ritsumeikan University",institutionURL:null,country:{name:"Japan"}}},series:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261"},editorialBoard:[{id:"213786",title:"Dr.",name:"Henrique P.",middleName:null,surname:"Neiva",slug:"henrique-p.-neiva",fullName:"Henrique P. Neiva",profilePictureURL:"https://mts.intechopen.com/storage/users/213786/images/system/213786.png",institutionString:null,institution:{name:"University of Beira Interior",institutionURL:null,country:{name:"Portugal"}}},{id:"39275",title:"Prof.",name:"Herbert Ryan",middleName:null,surname:"Marini",slug:"herbert-ryan-marini",fullName:"Herbert Ryan Marini",profilePictureURL:"https://mts.intechopen.com/storage/users/39275/images/9459_n.jpg",institutionString:null,institution:{name:"University of Messina",institutionURL:null,country:{name:"Italy"}}},{id:"196218",title:"Dr.",name:"Pasquale",middleName:null,surname:"Cianci",slug:"pasquale-cianci",fullName:"Pasquale Cianci",profilePictureURL:"https://mts.intechopen.com/storage/users/196218/images/system/196218.png",institutionString:null,institution:{name:"University of Foggia",institutionURL:null,country:{name:"Italy"}}}]},onlineFirstChapters:{paginationCount:13,paginationItems:[{id:"81566",title:"New and Emerging Technologies for Integrative Ambulatory Autonomic Assessment and Intervention as a Catalyst in the Synergy of Remote Geocoded Biosensing, Algorithmic Networked Cloud Computing, Deep Learning, and Regenerative/Biomic Medicine: Further Real",doi:"10.5772/intechopen.104092",signatures:"Robert L. Drury",slug:"new-and-emerging-technologies-for-integrative-ambulatory-autonomic-assessment-and-intervention-as-a-",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81286",title:"Potassium Derangements: A Pathophysiological Review, Diagnostic Approach, and Clinical Management",doi:"10.5772/intechopen.103016",signatures:"Sairah Sharif and Jie Tang",slug:"potassium-derangements-a-pathophysiological-review-diagnostic-approach-and-clinical-management",totalDownloads:24,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80895",title:"Heart Rate Variability as a Marker of Homeostatic Level",doi:"10.5772/intechopen.102500",signatures:"Moacir Fernandes de Godoy and Michele Lima Gregório",slug:"heart-rate-variability-as-a-marker-of-homeostatic-level",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Moacir",surname:"Godoy"},{name:"Michele",surname:"Gregório"}],book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80433",title:"Heart Autonomic Nervous System: Basic Science and Clinical Implications",doi:"10.5772/intechopen.101718",signatures:"Elvan Wiyarta and Nayla Karima",slug:"heart-autonomic-nervous-system-basic-science-and-clinical-implications",totalDownloads:49,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80316",title:"Central Control of the Larynx in Mammals",doi:"10.5772/intechopen.102009",signatures:"Manuel Víctor López-González, Marta González-García, Laura Carrillo-Franco, Amelia Díaz-Casares and Marc Stefan Dawid-Milner",slug:"central-control-of-the-larynx-in-mammals",totalDownloads:36,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80402",title:"General Anesthesia and Autonomic Nervous System: Control and Management in Neurosurgery",doi:"10.5772/intechopen.101829",signatures:"Irina Alexandrovna Savvina, Anna Olegovna Petrova and Yulia Mikhailovna Zabrodskaya",slug:"general-anesthesia-and-autonomic-nervous-system-control-and-management-in-neurosurgery",totalDownloads:58,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80035",title:"Healthy Lifestyle, Autonomic Nervous System Activity, and Sleep Status for Healthy Aging",doi:"10.5772/intechopen.101837",signatures:"Miki Sato, Feni Betriana, Ryuichi Tanioka, Kyoko Osaka, Tetsuya Tanioka and Savina Schoenhofer",slug:"healthy-lifestyle-autonomic-nervous-system-activity-and-sleep-status-for-healthy-aging",totalDownloads:60,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80175",title:"Signaling Pathways Regulating Axogenesis and Dendritogenesis in Sympathetic Neurons",doi:"10.5772/intechopen.102442",signatures:"Vidya Chandrasekaran",slug:"signaling-pathways-regulating-axogenesis-and-dendritogenesis-in-sympathetic-neurons",totalDownloads:65,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Vidya",surname:"Chandrasekaran"}],book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80176",title:"Impacts of Environmental Stressors on Autonomic Nervous System",doi:"10.5772/intechopen.101842",signatures:"Mayowa Adeniyi",slug:"impacts-of-environmental-stressors-on-autonomic-nervous-system",totalDownloads:64,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"79655",title:"The Autonomic Nervous System, Sex Differences, and Chronobiology under General Anesthesia in In Vivo Experiments Involving Rats",doi:"10.5772/intechopen.101075",signatures:"Pavol Svorc Jr and Pavol Svorc",slug:"the-autonomic-nervous-system-sex-differences-and-chronobiology-under-general-anesthesia-in-in-vivo-e",totalDownloads:91,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"79194",title:"Potassium in Solid Cancers",doi:"10.5772/intechopen.101108",signatures:"Jessica Iorio, Lisa Lastraioli and Elena Lastraioli",slug:"potassium-in-solid-cancers",totalDownloads:119,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"78820",title:"Potassium Homeostasis",doi:"10.5772/intechopen.100368",signatures:"Shakuntala S. Patil and Sachin M. Patil",slug:"potassium-homeostasis",totalDownloads:108,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"78193",title:"Potassium and Cardiac Surgery",doi:"10.5772/intechopen.99735",signatures:"Shawn Kant, Frank W. Sellke and Jun Feng",slug:"potassium-and-cardiac-surgery",totalDownloads:174,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}}]},publishedBooks:{paginationCount:2,paginationItems:[{type:"book",id:"8430",title:"Neurodevelopment and Neurodevelopmental Disorder",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8430.jpg",slug:"neurodevelopment-and-neurodevelopmental-disorder",publishedDate:"November 27th 2019",editedByType:"Edited by",bookSignature:"Michael Fitzgerald",hash:"696c96d038de473216e48b199613c111",volumeInSeries:6,fullTitle:"Neurodevelopment and Neurodevelopmental Disorder",editors:[{id:"205005",title:"Dr.",name:"Michael",middleName:null,surname:"Fitzgerald",slug:"michael-fitzgerald",fullName:"Michael Fitzgerald",profilePictureURL:"https://mts.intechopen.com/storage/users/205005/images/system/205005.jpg",institutionString:"Independant Researcher",institution:{name:"Trinity College Dublin",institutionURL:null,country:{name:"Ireland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8797",title:"Adipose Tissue",subtitle:"An Update",coverURL:"https://cdn.intechopen.com/books/images_new/8797.jpg",slug:"adipose-tissue-an-update",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Leszek Szablewski",hash:"34880b7b450ef96fa5063c867c028b02",volumeInSeries:4,fullTitle:"Adipose Tissue - An Update",editors:[{id:"49739",title:"Dr.",name:"Leszek",middleName:null,surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski",profilePictureURL:"https://mts.intechopen.com/storage/users/49739/images/system/49739.jpg",institutionString:"Medical University of Warsaw",institution:{name:"Medical University of Warsaw",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.jpg",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"4",title:"Fungal Infectious Diseases",scope:"Fungi are ubiquitous and there are almost no non-pathogenic fungi. Fungal infectious illness prevalence and prognosis are determined by the exposure between fungi and host, host immunological state, fungal virulence, and early and accurate diagnosis and treatment. \r\nPatients with both congenital and acquired immunodeficiency are more likely to be infected with opportunistic mycosis. Fungal infectious disease outbreaks are common during the post- disaster rebuilding era, which is characterised by high population density, migration, and poor health and medical conditions.\r\nSystemic or local fungal infection is mainly associated with the fungi directly inhaled or inoculated in the environment during the disaster. The most common fungal infection pathways are human to human (anthropophilic), animal to human (zoophilic), and environment to human (soilophile). Diseases are common as a result of widespread exposure to pathogenic fungus dispersed into the environment. \r\nFungi that are both common and emerging are intertwined. In Southeast Asia, for example, Talaromyces marneffei is an important pathogenic thermally dimorphic fungus that causes systemic mycosis. Widespread fungal infections with complicated and variable clinical manifestations, such as Candida auris infection resistant to several antifungal medicines, Covid-19 associated with Trichoderma, and terbinafine resistant dermatophytosis in India, are among the most serious disorders. \r\nInappropriate local or systemic use of glucocorticoids, as well as their immunosuppressive effects, may lead to changes in fungal infection spectrum and clinical characteristics. Hematogenous candidiasis is a worrisome issue that affects people all over the world, particularly ICU patients. CARD9 deficiency and fungal infection have been major issues in recent years. Invasive aspergillosis is associated with a significant death rate. Special attention should be given to endemic fungal infections, identification of important clinical fungal infections advanced in yeasts, filamentous fungal infections, skin mycobiome and fungal genomes, and immunity to fungal infections.\r\nIn addition, endemic fungal diseases or uncommon fungal infections caused by Mucor irregularis, dermatophytosis, Malassezia, cryptococcosis, chromoblastomycosis, coccidiosis, blastomycosis, histoplasmosis, sporotrichosis, and other fungi, should be monitored. \r\nThis topic includes the research progress on the etiology and pathogenesis of fungal infections, new methods of isolation and identification, rapid detection, drug sensitivity testing, new antifungal drugs, schemes and case series reports. It will provide significant opportunities and support for scientists, clinical doctors, mycologists, antifungal drug researchers, public health practitioners, and epidemiologists from all over the world to share new research, ideas and solutions to promote the development and progress of medical mycology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",keywords:"Emerging Fungal Pathogens, Invasive Infections, Epidemiology, Cell Membrane, Fungal Virulence, Diagnosis, Treatment"},{id:"5",title:"Parasitic Infectious Diseases",scope:"Parasitic diseases have evolved alongside their human hosts. In many cases, these diseases have adapted so well that they have developed efficient resilience methods in the human host and can live in the host for years. Others, particularly some blood parasites, can cause very acute diseases and are responsible for millions of deaths yearly. Many parasitic diseases are classified as neglected tropical diseases because they have received minimal funding over recent years and, in many cases, are under-reported despite the critical role they play in morbidity and mortality among human and animal hosts. The current topic, Parasitic Infectious Diseases, in the Infectious Diseases Series aims to publish studies on the systematics, epidemiology, molecular biology, genomics, pathogenesis, genetics, and clinical significance of parasitic diseases from blood borne to intestinal parasites as well as zoonotic parasites. We hope to cover all aspects of parasitic diseases to provide current and relevant research data on these very important diseases. In the current atmosphere of the Coronavirus pandemic, communities around the world, particularly those in different underdeveloped areas, are faced with the growing challenges of the high burden of parasitic diseases. At the same time, they are faced with the Covid-19 pandemic leading to what some authors have called potential syndemics that might worsen the outcome of such infections. Therefore, it is important to conduct studies that examine parasitic infections in the context of the coronavirus pandemic for the benefit of all communities to help foster more informed decisions for the betterment of human and animal health.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",keywords:"Blood Borne Parasites, Intestinal Parasites, Protozoa, Helminths, Arthropods, Water Born Parasites, Epidemiology, Molecular Biology, Systematics, Genomics, Proteomics, Ecology"},{id:"6",title:"Viral Infectious Diseases",scope:"The Viral Infectious Diseases Book Series aims to provide a comprehensive overview of recent research trends and discoveries in various viral infectious diseases emerging around the globe. The emergence of any viral disease is hard to anticipate, which often contributes to death. A viral disease can be defined as an infectious disease that has recently appeared within a population or exists in nature with the rapid expansion of incident or geographic range. This series will focus on various crucial factors related to emerging viral infectious diseases, including epidemiology, pathogenesis, host immune response, clinical manifestations, diagnosis, treatment, and clinical recommendations for managing viral infectious diseases, highlighting the recent issues with future directions for effective therapeutic strategies.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",keywords:"Novel Viruses, Virus Transmission, Virus Evolution, Molecular Virology, Control and Prevention, Virus-host Interaction"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 15th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:286,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRqB9QAK/Profile_Picture_1626163237970",institutionString:null,institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/98783",hash:"",query:{},params:{id:"98783"},fullPath:"/profiles/98783",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()