\r\n\tComputational fluid dynamics is composed of turbulence and modeling, turbulent heat transfer, fluid-solid interaction, chemical reactions and combustion, the finite volume method for unsteady flows, sports engineering problem and simulations - Aerodynamics, fluid dynamics, biomechanics, blood flow.
",isbn:"978-1-83968-248-3",printIsbn:"978-1-83968-247-6",pdfIsbn:"978-1-83968-321-3",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"1f8fd29e4b72dbfe632f47840b369b11",bookSignature:"Dr. Suvanjan Bhattacharyya",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10695.jpg",keywords:"Free Turbulent Flow, Discretisation Methods, Aerodynamics, Phase Flow, Bluff-Body, Complex Geometries, Drag Force, Flow Separation, Laminar Diffusion Flame, Non-Premixed Combustion, Fluid Dynamics, Biomechanics",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"January 28th 2021",dateEndSecondStepPublish:"February 25th 2021",dateEndThirdStepPublish:"April 26th 2021",dateEndFourthStepPublish:"July 15th 2021",dateEndFifthStepPublish:"September 13th 2021",remainingDaysToSecondStep:"2 months",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Dr. Suvanjan Bhattacharyya is currently working as an Assistant Professor in the Department of Mechanical Engineering of BITS Pilani, Pilani Campus. His research interest lies in computational fluid dynamics, experimental heat transfer enhancement, solar energy, renewable energy, etc.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"233630",title:"Dr.",name:"Suvanjan",middleName:null,surname:"Bhattacharyya",slug:"suvanjan-bhattacharyya",fullName:"Suvanjan Bhattacharyya",profilePictureURL:"https://mts.intechopen.com/storage/users/233630/images/system/233630.png",biography:"Dr. Suvanjan Bhattacharyya is currently working as an Assistant Professor in the Department of Mechanical Engineering of BITS Pilani, Pilani Campus, India. Dr. Bhattacharyya completed his post-doctoral research at the Department of Mechanical and Aeronautical Engineering, University of Pretoria, South Africa. Dr. Bhattacharyya completed his Ph.D. in Mechanical Engineering from Jadavpur University, Kolkata, India and with the collaboration of Duesseldorf University of Applied Sciences, Germany. He received his Master’s degree from the Indian Institute of Engineering, Science and Technology, India (Formerly known as Bengal Engineering and Science University), on Heat-Power Engineering.\nHis research interest lies in computational fluid dynamics in fluid flow and heat transfer, specializing on laminar, turbulent, transition, steady, unsteady separated flows and convective heat transfer, experimental heat transfer enhancement, solar energy and renewable energy. He is the author and co-author of 107 papers in high ranked journals and prestigious conference proceedings. He has bagged the best paper award in a number of international conferences as well. He is also in editorial boards of 15 Journals and reviewers of more than 40 prestigious Journals.",institutionString:"Birla Institute of Technology and Science, Pilani",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Birla Institute of Technology and Science, Pilani",institutionURL:null,country:{name:"India"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"9",title:"Computer and Information Science",slug:"computer-and-information-science"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"194667",firstName:"Marijana",lastName:"Francetic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/194667/images/4752_n.jpg",email:"marijana@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"8679",title:"Inverse Heat Conduction and Heat Exchangers",subtitle:null,isOpenForSubmission:!1,hash:"a994b17ac471c6d414d63c74a7ab74de",slug:"inverse-heat-conduction-and-heat-exchangers",bookSignature:"Suvanjan Bhattacharya, Mohammad Moghimi Ardekani, Ranjib Biswas and R. C. Mehta",coverURL:"https://cdn.intechopen.com/books/images_new/8679.jpg",editedByType:"Edited by",editors:[{id:"233630",title:"Dr.",name:"Suvanjan",surname:"Bhattacharyya",slug:"suvanjan-bhattacharyya",fullName:"Suvanjan Bhattacharyya"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"72387",title:"Biofortification of Crops Using Biotechnology to Alleviate Malnutrition",doi:"10.5772/intechopen.92390",slug:"biofortification-of-crops-using-biotechnology-to-alleviate-malnutrition",body:'\nMicronutrients play a variety of roles in metabolism and homeostasis. Micronutrient deficiency, also known as malnutrition, can result in the increased incidence of many diseases and metabolic disorders. To improve nutritional status through a balanced and enriched diet, the quantification and bioavailability of vitamins and minerals must be determined. The analysis of micronutrient content can enhance nutritional quality and improve nutritional status [1].
\nThe level and composition of micronutrients vary significantly among crop varieties. Globally, cereals, roots, and tubers represent major staple food staples. While these crops are rich in carbohydrates, they may have very low quantity or poor-quality proteins and micronutrients [2]. In Asia, people who depend on rice are more prone to vitamin A deficiencies due to the lack of this micronutrient. This in turn makes them more susceptible to a number of health problems such as blindness [3]. Similarly, over 20 different dietary minerals are considered essential for human health. Global-level deficiencies in iron (Fe), zinc (Zn), and iodine (I) are most common as they have a significant negative impact on public health.
\nSince the concentrations of most vitamins in the edible parts of the plants are frequently low, one research goal has been to identify biochemical pathways involved in the synthesis, translocation, and accumulation of micronutrients in plant tissues [4]. Further understanding of these mechanisms would enable us to manipulate these pathways and improve their micronutrient content through metabolic engineering [5]. Although these strategies have demonstrated some degree of success, issues such as appropriate nutrient levels, bioavailability, ready adaptation by farmers, and acceptance by consumers must be addressed [6].
\nFor the past several years, food supplementation has been the main strategy used for vitamin and mineral fortification. This strategy has a number of weaknesses, such as the decreased bioavailability of micronutrients after food processing. Biofortification has been considered an alternative solution and can be achieved via (i) an agronomic approach, (ii) conventional plant breeding, and (iii) genetic engineering [2, 7, 8, 9, 10]. In the following chapter, the micronutrient biofortification of edible crops by genetic engineering will be examined.
\nMinerals can accumulate in various ways and are stored in different compartments/organelles by plants species. These in turn can be affected by growing conditions as well as through interactions with other mineral nutrients [11, 12]. For example, iron is an essential element for plant metabolism, growth, and development [13]. Iron can be absorbed by the roots in the form of Fe2+, then becomes oxidized to Fe3+, is chelated by citrate, and then is transported to the top of the plant [14]. Zinc, another essential nutrient for plant growth and development, accumulates preferably in the vacuoles of the epidermal leaf cells as electron-dense deposits [15, 16].
\nBiofortification of crops using modern biotechnology techniques has been under exploration. Transgenic crops with increased accumulation of important minerals such as iron, zinc, and calcium within edible tissue are under development. Simultaneously, research into transgenic crops with reduced concentrations of antinutrients such as phytate has been developed. Antinutrients reduce the bioavailability of minerals by interfering with their absorption in the gut [9].
\nRice is one of the most well-studied cereals for mineral biofortification. Rice (
There are other ways for iron deficiency to be addressed using transgenic plants. For example, Sharma and Yeh [21] used an ethyl methanesulfonate (EMS) mutant in
Since the same molecular machinery is utilized for transporting iron and zinc into plants, increasing iron content in rice also brings about increased zinc accumulation. As an example, Aung et al. [23] generated a transgenic line of rice commonly eaten by consumers in Myanmar, where approximately 70% of the populace is iron deficient. This line overexpressed the nicotianamine synthase gene HvNAS1 to enhance iron transport, the Fe(II)-nicotianamine transporter gene OsYSL2 to transport iron to the endosperm and the Fe storage protein gene SoyferH2 to increase iron accumulation in the endosperm. The rice plants were shown to accumulate over 3.4-fold higher iron concentrations, in addition to 1.3-fold higher zinc concentrations compared to conventional, nontransgenic rice. The results of this study indicate that transgenic rice biofortified for increased iron content could address both iron as well as zinc micronutrient deficiency in the Myanmar population.
\nPaul et al. [24] generated transgenic high-yielding indica rice that expressed the soybean-derived ferritin gene. Transgenic plants produced over 2.6-fold higher levels of ferritin than their nontransgenic counterparts, even in the fourth generation of rice plants. Upon milling, transgenic rice grains provided 2.54-fold and 1.54-fold increases in iron and zinc content, respectively. Similarly, the iron transporter gene MxIRT1 taken from apple trees was utilized by Tan et al. (2015) to generate transgenic rice plants that exhibited an increase in iron and zinc of threefold, in addition to a decrease in cadmium concentration. Cadmium is thought to compete with iron and zinc for transport and accumulation in the rice endosperm and, thus, lower levels of cadmium to reduce toxicity in the rice seed.
\nImprovements in iron and zinc biofortification have also taken place using other approaches. Trijatmiko et al. [25] demonstrated that plants expressing rice nicotianamine synthase (OsNAS2) and soybean ferritin (SferH-1) genes possessed enriched endosperm Fe and Zn content. A Caco-2 cellular assay illustrated that increased iron and zinc levels found in these rice plants were bioavailable. Transgenic plants generated by Banakar et al. [26] expressed high levels of nicotianamine and 2′-deoxymugenic acid (DMA). These plants were able to accumulate up to 4-fold more iron and 2-fold more zinc in rice endosperm, in addition to lower levels of cadmium compared to wild-type plants.
\nOther crop species have also been studied for iron and zinc biofortification using biotechnology. Tan et al. [27] improved iron levels in the pulse crop chickpea (
The calcium content of crops can also be increased using biotechnology. These advances hinge on improved knowledge of how soluble calcium ions found in the soil are transported and accumulate in plant tissue [30]. Calcium plays a significant role in general cell signaling; how calcium transporters are expressed can thus influence a plant’s ability to withstand stress, ward off pathogens, and can influence the nutritional status of animals and humans. Park et al. [31] have generated transgenic tomato, potato, lettuce, and carrots expressing high levels of calcium transporters. One of these calcium transporters, known as a short cation exchanger (sCAX1), can increase calcium transport into plant cell vacuoles [32]. Enhanced calcium absorption has been demonstrated in animal models that were fed transgenic carrots. Similarly, Sharma et al. have examined the potential of finger millet, an orphan crop with high calcium content, by studying the mechanisms behind calcium uptake, transport, and accumulation in grain. It has been reported that climate change may act detrimentally on mineral accumulation in different crop species; this could limit their further availability from food crops for both humans and animals [33].
\nVitamins such as β-carotene and folic acid are critical for human health. The development of microbial biochemistry facilitated the understanding of the biosynthetic pathways involved in vitamin production in plants. All vitamins that are required in the diet are synthesized by plants with the exception of ascorbic acid (vitamin C), which is specifically synthesized by eukaryotic cells [5, 34, 35]. Often biosynthesis is compartmentalized within various organelles. With greater comprehension of the metabolic pathways involved in vitamin production, plants can be developed with high levels of vitamin accumulation.
\nGM technology also has the potential to reduce the global burden of malnutrition and hidden hunger. Vitamin- or mineral-enriched GM foods (GM biofortified foods) are considered to be the next generation of GMOs. Non-GM biofortified crops have been widely developed and commercialized, but the applied conventional breeding techniques may be inadequate for crops with a low level or absence of a certain micronutrient [36]. A recent review has summarized successful R&D efforts in the field of GMOs with increased micronutrient content in staple crops [37].
\nThe well-known example of GM vitamin biofortification is Golden Rice, enriched with pro-vitamin A (β-carotene) [38, 39], followed by vitamin B9 (folate)-enhanced rice [40, 41]. Conventional breeding techniques could not be applied due to the absence/low content of vitamin A in rice grain. For Golden Rice, daffodil, and Pantoea genes were used to increase pro-vitamin A levels within rice endosperm [39]. The most recent version of Golden Rice has been improved further for a 23-fold increase in carotenoids [38]. Similarly, folate-biofortified rice has been generated by overexpressing Arabidopsis genes in rice endosperm. A fourfold increase in folate concentrations in rice was accomplished using this strategy [41] and in the process, folate stability for long-term storage was improved (Blancquaert et al., 2015).
\nFifteen simulation analyses confirmed the positive impact of GM biofortified crop consumption on dietary intake and nutritional outcomes in humans [42]. The vast majority of these studies also confirmed that a regular portion of the targeted biofortified crop would provide the daily micronutrient requirements. For example, the recent simulation analysis of Golden Rice in Asia [43] indicated that it could reduce the prevalence of dietary vitamin A inadequacy by up to 30% (children) and 55–60% (women) in Indonesia and the Philippines, and up to 71% (children) and 78% (women) in Bangladesh.
\nA randomized trial on Golden Rice performed in the United States resulted in a high bio-conversion factor of β-carotene (3.8:1), by which 100 g of uncooked Golden Rice would provide about 80–100% of the estimated average requirement and 55–70% of the recommended dietary allowance (RDA) for adult men and women [44]. Currently, Golden Rice has been approved in an increasing number of countries, including the Philippines. Golden Rice and other GM biofortified crops [16, 42] would be highly cost-effective investments to reduce target micronutrient deficiencies such as vitamin A [45].
\nRecently, Endo et al. [46] devised a genome editing approach to produce β-carotene rice that is fast and direct, by making use of splicing variants in the Orange (Or) gene that cause β-carotene accumulation in cauliflower. The authors genome edited the orthologue of the cauliflower or gene in rice using CRISPR/Cas9 and were able to accumulate β-carotene, without having to introduce transgenes.
\nBananas are the world’s most important fruit crop and a major staple in many African countries. Banana grows in tropical climates, where vitamin A deficiency is most prevalent [47]. The vast number of different banana varieties and the highly variable distribution of vitamin A levels make them amenable for biofortification using biotechnology. Unfortunately, the cooking banana East African highland banana (EAHB) consumed in Uganda as a staple for tens of millions of people has low vitamin A levels.
\nAs bananas are difficult to breed, genetic engineering of bananas with increased vitamin A content has been critical to improving vitamin A levels. The bulk of the research has been performed on the Cavendish banana, most popular in the Western Hemisphere. As a result, the Cavendish has been used as a model system for the EAHB. High levels of vitamin A (20 lg/g dry weight) were found in transgenic banana lines expressing phytoene synthase (derived from the fruit of the Fe’I banana found in Papa New Guinea, which only grows in small bunches) under the control of the banana ubiquitone promoter (Ubi). These transgenic lines appear as dark yellow-orange in color and can provide improved nutrition to some of the poorest subsistence farmers in Africa. Consumption of 300 g of transgenic banana could provide as much as 50% of vitamin A required per person per day. Although there is no existing regulatory framework for biotechnology that is currently set up in Uganda, early release is hoped for [48]. More recently, Kaur et al. [49] demonstrated the capability of genome editing to increase β-carotene accumulation in Cavendish banana. The authors created indels in the lycopene epsilon-cyclase (LCYε) gene to increase β-carotene content.
\nMaize also produces β-carotene, and concentrations vary greatly between different varieties. Although β-carotene content can be increased using conventional breeding, genetic engineering strategies have also been implemented. Consumption of transgenic maize biofortified with β-carotene improved volunteer’s health in clinical trials held in Africa and North America [50, 51]. Moreover, chickens fed transgenic biofortified maize produced eggs that exhibited increased carotenoid content [52]. The deep orange color of biofortified maize challenges public perception for some African populaces, as orange maize is often associated with animal feed, whereas white maize is traditionally considered to be for human consumption.
\nThe BioCassava Plus project specifically targets cassava, a staple crop in Africa that is nutritionally deficient yet is consumed by a quarter of a million sub-Saharan Africans [53]. Transgenic cassava expressing high levels of β-carotene have been demonstrated to increase vitamin A levels and improve nutritional status in feeding studies [54]. Programs such as the BioCassava Project could therefore generate cassava crops with lasting nutritional benefits.
\nβ-Carotene biofortified sweet potato has become a priority for sub-Saharan Africa [55]. White-fleshed sweet potato was transformed with the Orange (Or) gene responsible for carotenoid accumulation, so that β-carotene and total carotenoids levels in the IbOr-Ins transgenic sweet potato were 10-fold higher compared to that of white-fleshed sweet potato [56, 57].
\nThis chapter illustrates the ability of biofortification using genetic engineering to address micronutrient deficiencies in a variety of crops found in resource-poor nations. The current regulatory climate and anti-GMO lobbying efforts have retarded the release of GM crops that address highly prevalent vitamin and mineral deficiencies [58, 59]. Nevertheless, the proof of concept has been realized for various nutritionally enhanced GMOs [37, 60]. This has triggered an increase in the number of nutritional traits in the global GM crops pipeline over the last two decades and is expected to be further reinforced in the near future [61]. Consumer opinion on nutritious crops is hardly affected by the type of technology used to generate them [45, 62]. It is unfortunate that a significant effect of lobbying polarizes public opinion, regardless of the scientific basis of given arguments [63]. The current environment is showing signs of turning around with the approval of Golden Rice in several countries. It is anticipated that other biofortified crops will soon follow regulatory approval, and thus help to alleviate malnutrition worldwide.
\nThe increasing demand on clean and inexpensive energy has led to the emergence of solar cells in the early 1950s, where the main source of the world’s power is fossil fuels. The creation of photovoltaics (PV) has opened a new era on exploiting solar radiation for the production of electricity. However, the development of the PV industry is not sufficient to cover the market demand on solar panels due to their low efficiency. Therefore, cheaper and higher-efficiency technologies are required for the solar power market. These requirements have induced the researchers to find an alternative solution by replacing the current solar cells with optical antennas integrated to diodes forming a rectifying antenna (rectenna) using the wave nature of light [1, 2]. Most of the recent researches are focused on developing solar rectennas to convert the visible region of solar spectrum efficiently to electric power and exploiting the unused portion of solar radiation (i.e., infrared region) [3]. The proposed solar rectennas are expected to exhibit higher efficiency (theoretically 100% for monochromatic illumination) than current solar cells [4]. Rather than the low efficiency, solar rectennas overcome the other drawbacks of PVs which include the dependence on the bandgap energy and the narrowband operation (visible region only). However, several challenges contribute to make the actual conversion efficiency much lower than expected such as the poor coupling between the optical antenna and the diode [5].
Each photon in semiconductor solar cells produces electron hole pair to generate electrical power. However, the device absorbs only those photons that have energy higher than the band gap energy. This limits the conversion efficiency to 44% or even less in real devices. On the other hand, classical rectifiers receive the electromagnetic energy and convert it into DC power with a conversion efficiency reaching 100%. Solar rectennas are designed to operate in a similar way with the expectation to obtain very high efficiencies at a wide range of the electromagnetic spectrum. The field of solar rectennas appears to be promising and attractive due to the fact that high efficiency is theoretically obtainable and the material used is inexpensive and available.
Why solar rectennas?
Solar rectennas can achieve as high as the efficiency of solar cells or even higher.
The material of solar rectennas is widely available in the form of thin films, and the fabrication process is inexpensive compared to conventional solar cells.
Solar rectennas demonstrate versatility over PV devices by exceeding efficiency during the day.
Other forms of infrared such as waste heat can also be harvested by solar rectennas rather than the solar irradiation.
In contrast, there are several drawbacks and challenges associated with solar rectennas such as [6]:
When converting visible light, the time constant must be in the range of 0.1 fs, which is hard to achieve using the planar MIM diodes.
The leakage current of the diode must be as small as 1
A strong matching between the antenna impedance and the diode’s to ensure maximum power transfer and hence higher efficiency.
It is obvious that the technology of solar rectennas is still young in the early stage of research and faces numerous challenges and limitations. Thus, in this chapter, the theoretical understanding is presented highlighting the development of each part of a solar rectenna.
In the last century, the story of solar rectenna begun when electrical power has been transferred without the use of wires. This technique is called wireless power transmission (WPT). It is worth to mention that all the rectenna systems conceived at that time were working at microwave frequencies with efficiencies exceeding 80% at a single frequency.
A brief historical background on this technique is presented here:
Early experiments on WPT return to the work of Hertz and Tesla which was implemented by exploiting a giant coil and a 3-ft-diameter copper ball to transport the electromagnetic wave with low frequency from one point in space to another one. Later, the idea of power transmission has been developed by researchers particularly after the significant progress that witnessed in microwave technology [7].
In 1963, the first rectenna has been invented by Raytheon Co., which was constructed from 28 half-wave dipole antennas. Each one terminated with a bridge rectifier. The overall efficiency of this design was 40%. The rectenna has then been developed by the same company to use as a power source for a microwave-powered helicopter.
In 1972, Bailey proposed an idea to use the rectennas to generate electricity from solar power. This idea was based on using a pair of pyramids or cones as a modified dipole, which is similar to rod antennas. The pair is connected to a load via a diode (half-wave rectifier) [1].
In 1984, arrays of crossed dipoles (Figure 1) have been proposed by Marks, where an insulating sheet with fast full-wave rectification is used [9].
In contrast, Bailey proposed a conventional broadside array antenna, in which the output signal is collected after passing in several dipoles. The latter is used to feed a transmission line in which the signals are transferred to a rectifier. Combined signals are used in that approach to add in-phase.
In 1996, Lin et al. achieved the first experimental work [10] that based on the absorption of light by fabricated metallic resonant nanostructures and rectification at light frequency. The device that used this technique uses dipole antenna array that connected in parallel and constructed on a silicon substrate. The device components also include a p-n diode as a half-wave rectifier.
In 2003, infrared (IR) rectenna structure-based metal-insulator-metal (MIM) diodes have been designed by Berland [11]. It has been designed using dipoles, operating at 10 μm wavelength. The overall recorded efficiency, however, was very low (<1%) [11].
In 2010, spiral nanoantenna for solar energy has been designed and fabricated to collect energy at mid-IR region [12]. Kotter et al. demonstrated the progress related to this technique.
In 2011, a monopole antenna has been designed by Midrio et al., where nickel is used as the main material to fabricate the reception of thermal radiation. This type of antenna is overlapping with the ground plane. MIM that consists of nickel-nickel oxide-nickel diode is used to convert terahertz fields into electrical current. Furthermore, other research studies [13] are interested to study the impacts of geometrical parameters on the antenna performance.
The first optical rectenna proposed by mark [
After that, there was a significant interest by researchers to study nanoantennas coupled to MIM diode for solar power-harvesting applications or THz sensing, which cannot be covered here due to space limitations.
The structure and the operation theory of nanoantennas have been presented in this section. The same as the response of the conventional RF antenna to the electromagnetic wave, nanoantenna responds to the visible light and IR. Induced AC current, which is formed on the surface of the antenna, interacts with the incident wave and oscillates with it in the same frequency. The presence of a feeding gap in the antenna can help to collect the solar power, and then DC power is produced by rectifying the oscillated AC current with the aid of a specific diode-based rectifier.
Based on the theory of boundary conditions, the tangential electric field vanishes on the antenna surface and is equal to zero (Et = 0). This is fundamental to the traditional RF antenna, where metals are considered to have ideal electrical conductivity. In other words, Es = −Ei, where Es and Ei are scattered electric and incident electric fields, respectively.
In contrast, the operation of nanoscale antennas is based on the optical and IR regimes. In this case, metals are considered to be non-ideal conductors since they exhibit lower conductivity. Thus, the expression Et has to be taken into account. This expression can be presented by multiplying the value of surface impedance by the value of the surface current.
Figure 2 shows the block diagram of a typical optical rectenna, in which the solar antenna receives the electromagnetic wave within a proper frequency band to deliver it to the low-pass filter (LPF) [8]. The latter, which is placed between the antenna and diode (rectifier), is used to prevent the reradiation of the higher harmonics that generated from the rectification process by the nonlinear diode. Generally, power losses result in from this reradiation.
Block diagram of optical rectenna [
Furthermore, the LPF matches the impedance between the antenna and the subsequent circuitry. The DC LPF smoothly delivers the rectified signal to DC and then passes it to the external load. In general, MIM diode is considered being the most common rectifier in the solar rectenna system; based on the electron tunneling process, the rectification is generally occurring through the insulator layer.
Mirrors and lenses are usually utilized to control light propagation. However, they are unable to concentrate the light in a tiny area (smaller than λ/2), whereas antennas can easily confine the electromagnetic wave in subwavelength (beyond the diffraction limit). The urgent need to localize the light beyond the diffraction limit has motivated the researchers and helped toward the development of nanoantennas. With the rapid growth of nanotechnology techniques, scientists are now able to fabricate nanoantennas in the order of 10 nm using E-beam lithography [14, 15]. The dimensions of nanoantenna must be in the order of the incident light wavelength to ensure efficient performance. Light/matter interaction has been exploited extensively in many applications such as photovoltaics, microscopy, and THz sensing.
The main role that nanoantenna plays in solar rectennas is to receive external fields and confine the energy at its feed gap to be rectified by a nanodiode. The technological advances in the development of a new generation of nanodiodes such as point-contact diodes have contributed significantly to the emergence of solar rectennas in its modern form [16]. Figure 3 demonstrates numerous fabricated nanoantennas for various applications.
Fabricated nanoantennas: (a) dipole, (b) bowtie, (c) log-periodic, and (d) spiral.
The performance of nanoantennas in solar rectennas is measured by their ability to efficiently concentrate the received solar energy at the feed gap of the antenna. The electric field generated at the feed gap varies from one type of antenna to another depending on the characteristics of the antenna itself. Thus, the confined electric field can be enhanced by choosing the proper antenna type for this application or by gathering a number of antennas in one rectenna system forming an antenna array. A comparison between different types of nanoantennas is presented in Figures 4 and 5, where the figure of merit is the value of the received electric field at the antenna’s gap [18].
Concentration of the electric field at the feed gap of different nanoantennas [
Electric field variation versus wavelength for different nanoantennas [
Another way to increase the captured electric field is to arrange several antenna elements in an array form. Figure 6 shows an eight-element bowtie nanoarray as suggested in [19], where the concentration in the feed gap is also illustrated, while Figure 7 shows the variation of the electric field with increasing the wavelength. The nanoarray exhibits multiple resonances with maximum capturing at longer wavelengths.
Bowtie nanoarray configuration [
Electric field variation with wavelength for bowtie nanoarray and single bowtie of the same footprint area [
The most commonly used nanodiodes in solar rectennas are metal-insulator-metal diodes, which act as a promising rectifying element in solar rectennas. MIM diodes are made of thin insulator layer sandwiched between metal electrodes and depend on the tunneling mechanism. Work functions of metals and the electron affinity of insulators play an important role in MIM diodes by making a barrier at the interface between metal and insulator. Figure 8 shows a typical MIM diode where a difference between metal work function is clearly indicated to ensure efficient electron transport across the insulator. The quantum-mechanical tunneling of electrons governs the charge transport mechanism through the barrier. Electron tunneling in MIM diodes is ultrafast, and this makes them operate at THz frequencies. A thin insulator layer (few nanometers) is required to ensure the tunneling of electrons through the diode layers.
Equilibrium band diagram of (a) symmetric Nb/Nb2O5/Nb diode and (b) asymmetric Nb/Nb2O5/Pt diode [
Recent years have witnessed tremendous lithographical efforts to reduce the size of MIM diodes. To this end, the insulator layer is grown by oxidizing metal films to achieve the desired thickness. The second metal is then deposited, where this method help
The major obstacle in using MIM at optical frequencies is the high RC time constant. The diode resistance and capacitance must be well controlled through the fabrication techniques and processes in ordered to reduce it. In this section, the most important parameters of the MIM diode will be discussed:
Most of the MIM diode parameters are extracted directly from the I-V characteristics, which is the key factor in the characterization of MIM diodes. Figure 9 demonstrates typical MIM diode parameters.
Current versus biasing voltage for the asymmetric MIM diode with insulator thickness 𝑠 = 5 nm and barrier heights 𝜑1 = 0.4 eV and 𝜑2 = 1.75 eV [
In this section, a comparison between the performance of nanoantennas fabricated by different materials will be presented. The characteristics of the designed dipole nanoantennas have been obtained by solving Hallen’s integral equation numerically. Obtained results show that carbon exhibits very low conductivity compared with other types of proposed semiconductors like Si and Ge.
This is because of the fact that carbon has a relatively wide energy gap, which is the main reason to enhance carbon nanoantenna performance. In contrast, creating extra defect states by phosphor or iron doping in the narrow band gap of Si and Ge can increase the conductivity and, thus, the efficiency of the host material.
The calculated efficiencies of these heavily doped semiconductor nanoantennas are unity. This is because of the high conductivity of these materials. Moreover, obtained results show that these materials behave like a perfect electric conductor at the wavelength range of interest. In addition, the performance of these semiconductor nanoantennas is compared with nanoantennas made of gold that showed approximately similar performance.
To investigate the impact of the conductivity (𝜎) on the antenna parameters, pure and heavily doped semiconductors materials are used instead of metal in designing nanoantennas. Since plasmonic materials like gold are being used to fabricate metallic nanoantenna, a modeling comparison between the metallic and heavily doped semiconductor antenna is proposed to study the impact of the material on the performance of nanoantenna to exploit the mid-IR to generate presentable power.
Furthermore, the mid-IR radiation provides very low penetration depths for the electromagnetic fields. Generally, most studies on this area were focused on operating system with 10 𝜇m wavelengths, which may provide a wide range of energies [12].
To solve Hallen’s integral equation, which is numerically used to evaluate the input impedance of the cylindrical dipole nanoantennas [21], method of moments (MOM) is generally used for this purpose. A study has been conducted to investigate the effect of replacing gold in plasmonic nanoantennas at mid-IR by heavily phosphorus
One of the methods used to increase the efficiency of nanoantenna is by developing the quality of materials that are used to fabricate the nanoantenna. In this work, heavily doped Ge with phosphorous and heavily doped Si with Fe have been proposed as an alternative to carbon. The value of the frequency-dependent dielectric constant of heavily doped Ge with a doping concentration of 2.23 × 1019 cm−3 has been given somewhere else [23]. On the other hand, the values of heavily doped Si with a doping concentration of 1 × 1020 cm−3 have been obtained by another study [24]. The interaction between Fe and Si has been studied and reported in [25].
The dielectric constant (εr) has frequency-dependent real and imaginary parts, in which the metal conductivity (𝜎) at IR wavelengths can be obtained as the following equation [26]:
The complex form of material conductivity at IR wavelengths is illustrated as real and imaginary parts in Figures 10 and 11, respectively. Both figures show that heavily doped semiconductors exhibit considerably high conductivity at a range of wavelength between 5 and 15 𝜇m. Consequently, both of the heavily doped semiconductors behave like perfect electric conductor [22].
Real and imaginary parts of Ge conductivity versus wavelength [
Real and imaginary parts of Si conductivity versus wavelength [
It is found that the conduction-dielectric efficiencies at the wavelength 10 μm for both Ge and Si are 100% as what is expected to having the same behavior as the perfect electric conductor. In contrast, the relatively low conductivity of gold yield decreases in the efficiency to around 90% at wavelengths of interest.
The figure of merit in solar rectennas is the conversion efficiency, which depends on several factors related to both the antenna and the MIM diode. The conversion efficiency, ηt, of a solar rectenna can be described as [27].
where ηr is the antenna radiation efficiency, ηs is the efficiency that related to the losses inside the antenna, ηq is the quantum efficiency that is responsible for the rectification of the received power, and ηc is the coupling efficiency between the antenna and the diode. It is worth noting that the term ηrηs in (2) depends on the antenna type and its characteristics and is referred, in this chapter, to as antenna-dependent efficiency of solar rectenna. On the other hand, the term ηqηc relates strongly to the diode parameters and is referred to as the diode-dependent efficiency.
For solar energy conversion, each efficiency factor is required to be optimized and maximized. Recent works have focused on improving only the quantum efficiency [28] or the diode-dependent efficiency by assuming a perfect antenna (i.e., do not include antenna efficiency limits) [4]. The analysis of the complete conversion efficiency in one single work gives the reader a close physical insight on how the IR solar rectenna works, including the parameters that affect its performance. In the following sections, we will investigate each term of (2) individually with a detailed description of its main parameters and how to compute them. After finding the optimum values of each efficiency term in (2), the overall conversion efficiency will then be calculated and plotted.
As mentioned in Section 7, the antenna-dependent efficiency is represented by the term ηrηs. This section demonstrates how to find this efficiency numerically, which depends totally on antenna parameters. The calculation of antenna efficiency should take into account the losses that relates to reflection, conduction, and dielectric inside the antenna. The reflection losses will be represented by the coupling efficiency, ηc, and will be discussed in details in the following section. Thus, this section will be dedicated to the calculation of the conduction and dielectric losses inside the antenna structure. Since it is very difficult to compute and separate these losses individually, they will, therefore, be lumped together to form the conduction-dielectric efficiency, cd, which can be defined as [29].
where
where
where ω is the angular frequency, μ0 is the free-space permeability, and σ is the metal conductivity. It is worth mentioning here that Eq. (4) is valid for the case of a uniform current distribution.
Before starting the calculation of the conduction-dielectric efficiency, it is important to recall that metals are no longer perfect electric conductors at optical and infrared frequencies [30]. Consequently, the DC bulk conductivity of metal cannot be utilized in (5). Instead, the frequency-dependent conductivity at optical frequencies should be calculated.
The two terms of the diode-dependent efficiency are the coupling efficiency, ηc, and quantum efficiency, ηq. In this chapter, we will set
where
where
Figure 12 shows the total conversion efficiency (solid line) for an IR solar rectenna versus the wavelength. Moreover, we have added the diode-dependent efficiency (dashed line) to the same graph to show the role that the antenna plays in shaping the conversion efficiency. The total conversion efficiency has been calculated based on the terms of (2), where every single term is calculated individually and all terms are then combined together. The main reason behind this low efficiency is the mismatch between the resistance of the designed MIM diode,
Total conversion efficiency and the diode-dependent efficiency of a typical IR solar rectenna [
The promising features of solar rectennas have motivated the researcher recently to come up with new approaches and ideas in order to improve the total conversion efficiency. Examples of these approaches include improving the impedance matching and the coupling between the antenna and rectifier [32, 33]. Another approach is to use metasurface absorbers to enhance the performance of solar rectenna [34]. In addition, light concentrators represented by adding a layer of micro lenses lead to increase the captured electric field as demonstrated in [35] or design dual-polarized nanoantennas [36] and/or multiband nanoantennas [37] to get benefits of all received spectrum. The approach was even extended to include harvesting thermal energy at infrared wavelengths from hot bodies [38], which sometimes focuses on preselected narrow frequencies in the infrared region [39].
Researchers worldwide pay attention and effort to reduce the cost of conventional solar cells and increase their efficiency by using new materials and different approaches. However, there is no significant improvement in their conversion efficiency, which is still quite low. Breakthroughs in designing efficient nanoantennas led to rapid development in solar rectenna for harvesting solar radiation. Efficient nanoantennas were designed for receiving the solar energy as an AC signal and coupling it to a nanodiode to convert it to DC power.
The focus of this chapter was to highlight different types of nanoantennas that are commonly used in this application. The design and simulation results of four types of nanoantennas have been presented, and a comparison is made to find the best candidate. The figure of merit in the selection process was the captured electric field at the feed gap of the antenna, which is a key factor in calculating the harvested energy. As a result of the comparison, it was found that the spiral nanoantenna exhibited better performance at resonance. Furthermore, it was found that the captured electric field at the feed gap could be increased by coupling many elements in one structure.
Finally, this chapter highlighted the most important factors that influence the conversion efficiency of solar rectennas with the aim to improve and optimize it. It was shown that even when optical antennas couple thermal radiation efficiently, the total conversion efficiency is still low. This is due to the poor matching between the diode and the antenna, where a very high diode resistance is obtained compared to the low antenna resistance, albeit the diode characteristics have been optimized.
As a summary, solar rectennas are an attractive option to replace PV cells in harvesting solar energy; however, this technique requires further developments in the rectification process.
"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality. Throughout the world, we are seeing progress in attracting, retaining, and promoting women in STEMM. IntechOpen are certainly supporting this work globally by empowering all scientists and ensuring that women are encouraged and enabled to publish and take leading roles within the scientific community." Dr. Catrin Rutland, University of Nottingham, UK
",metaTitle:"Advantages of Publishing with IntechOpen",metaDescription:"We have more than a decade of experience in Open Access publishing. \n\n ",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"We have more than a decade of experience in Open Access publishing. The advantages of publishing with IntechOpen include:
\\n\\nOur platform – IntechOpen is the world’s leading publisher of OA books, built by scientists, for scientists.
\\n\\nOur reputation – Everything we publish goes through a two-stage peer review process. We’re proud to count Nobel laureates among our esteemed authors. We meet European Commission standards for funding, and the research we’ve published has been funded by the Bill and Melinda Gates Foundation and the Wellcome Trust, among others. IntechOpen is a member of all relevant trade associations (including the STM Association and the Association of Learned and Professional Society Publishers) and has a selection of books indexed in Web of Science's Book Citation Index.
\\n\\nOur expertise – We’ve published more than 4,500 books by more than 118,000 authors and editors.
\\n\\nOur reach – Our books have more than 130 million downloads and more than 146,150 Web of Science citations. We increase citations via indexing in all the major databases, including the Book Citation Index at Web of Science and Google Scholar.
\\n\\nOur services – The support we offer our authors and editors is second to none. Each book in our program receives the following:
\\n\\nOur end-to-end publishing service frees our authors and editors to focus on what matters: research. We empower them to shape their fields and connect with the global scientific community.
\\n\\n"In developing countries until now, advancement in science has been very limited, because insufficient economic resources are dedicated to science and education. These limitations are more marked when the scientists are women. In order to develop science in the poorest countries and decrease the gender gap that exists in scientific fields, Open Access networks like IntechOpen are essential. Free access to scientific research could contribute to ameliorating difficult life conditions and breaking down barriers." Marquidia Pacheco, National Institute for Nuclear Research (ININ), Mexico
\\n\\nInterested? Contact Ana Pantar (book.idea@intechopen.com) for more information.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'We have more than a decade of experience in Open Access publishing. The advantages of publishing with IntechOpen include:
\n\nOur platform – IntechOpen is the world’s leading publisher of OA books, built by scientists, for scientists.
\n\nOur reputation – Everything we publish goes through a two-stage peer review process. We’re proud to count Nobel laureates among our esteemed authors. We meet European Commission standards for funding, and the research we’ve published has been funded by the Bill and Melinda Gates Foundation and the Wellcome Trust, among others. IntechOpen is a member of all relevant trade associations (including the STM Association and the Association of Learned and Professional Society Publishers) and has a selection of books indexed in Web of Science's Book Citation Index.
\n\nOur expertise – We’ve published more than 4,500 books by more than 118,000 authors and editors.
\n\nOur reach – Our books have more than 130 million downloads and more than 146,150 Web of Science citations. We increase citations via indexing in all the major databases, including the Book Citation Index at Web of Science and Google Scholar.
\n\nOur services – The support we offer our authors and editors is second to none. Each book in our program receives the following:
\n\nOur end-to-end publishing service frees our authors and editors to focus on what matters: research. We empower them to shape their fields and connect with the global scientific community.
\n\n"In developing countries until now, advancement in science has been very limited, because insufficient economic resources are dedicated to science and education. These limitations are more marked when the scientists are women. In order to develop science in the poorest countries and decrease the gender gap that exists in scientific fields, Open Access networks like IntechOpen are essential. Free access to scientific research could contribute to ameliorating difficult life conditions and breaking down barriers." Marquidia Pacheco, National Institute for Nuclear Research (ININ), Mexico
\n\nInterested? Contact Ana Pantar (book.idea@intechopen.com) for more information.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5822},{group:"region",caption:"Middle and South America",value:2,count:5289},{group:"region",caption:"Africa",value:3,count:1761},{group:"region",caption:"Asia",value:4,count:10546},{group:"region",caption:"Australia and Oceania",value:5,count:909},{group:"region",caption:"Europe",value:6,count:15938}],offset:12,limit:12,total:119319},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasnoeditors:"0"},books:[{type:"book",id:"8969",title:"Deserts and Desertification",subtitle:null,isOpenForSubmission:!0,hash:"4df95c7f295de7f6003e635d9a309fe9",slug:null,bookSignature:"Dr. Yajuan Zhu, Dr. Qinghong Luo and Dr. Yuguo Liu",coverURL:"https://cdn.intechopen.com/books/images_new/8969.jpg",editedByType:null,editors:[{id:"180427",title:"Dr.",name:"Yajuan",surname:"Zhu",slug:"yajuan-zhu",fullName:"Yajuan Zhu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9667",title:"Neuroimmunology",subtitle:null,isOpenForSubmission:!0,hash:"9cf0e8203ce088c0b84add014fd8d382",slug:null,bookSignature:"Prof. Robert Weissert",coverURL:"https://cdn.intechopen.com/books/images_new/9667.jpg",editedByType:null,editors:[{id:"79343",title:"Prof.",name:"Robert",surname:"Weissert",slug:"robert-weissert",fullName:"Robert Weissert"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9816",title:"Idiopathic Pulmonary Fibrosis",subtitle:null,isOpenForSubmission:!0,hash:"365bb9762ba33db2d07e677690af1772",slug:null,bookSignature:"Dr. Salim Surani and Dr. Venkat Rajasurya",coverURL:"https://cdn.intechopen.com/books/images_new/9816.jpg",editedByType:null,editors:[{id:"15654",title:"Dr.",name:"Salim",surname:"Surani",slug:"salim-surani",fullName:"Salim Surani"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10218",title:"Flagellar Motility in Cells",subtitle:null,isOpenForSubmission:!0,hash:"5fcc15570365a82d9f2c4816f4e0ee2e",slug:null,bookSignature:"Prof. Yusuf Bozkurt",coverURL:"https://cdn.intechopen.com/books/images_new/10218.jpg",editedByType:null,editors:[{id:"90846",title:"Prof.",name:"Yusuf",surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10223",title:"Obesity and Health",subtitle:null,isOpenForSubmission:!0,hash:"c202a2b74cd9a2c44b1c385f103ac65d",slug:null,bookSignature:"Dr. Venketeshwer Rao and Dr. Leticia Rao",coverURL:"https://cdn.intechopen.com/books/images_new/10223.jpg",editedByType:null,editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10231",title:"Proton Therapy",subtitle:null,isOpenForSubmission:!0,hash:"f4a9009287953c8d1d89f0fa9b7597b0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10231.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10343",title:"Ocular Hypertension",subtitle:null,isOpenForSubmission:!0,hash:"0ff71cc7e0d9f394f41162c0c825588a",slug:null,bookSignature:"Prof. Michele Lanza",coverURL:"https://cdn.intechopen.com/books/images_new/10343.jpg",editedByType:null,editors:[{id:"240088",title:"Prof.",name:"Michele",surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10370",title:"Advances in Fundamental and Applied Research on Spatial Audio",subtitle:null,isOpenForSubmission:!0,hash:"f16232a481c08a05cc191ac64cf2c69e",slug:null,bookSignature:"Dr. Brian FG Katz and Dr. Piotr Majdak",coverURL:"https://cdn.intechopen.com/books/images_new/10370.jpg",editedByType:null,editors:[{id:"278731",title:"Dr.",name:"Brian FG",surname:"Katz",slug:"brian-fg-katz",fullName:"Brian FG Katz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10504",title:"Crystallization",subtitle:null,isOpenForSubmission:!0,hash:"3478d05926950f475f4ad2825d340963",slug:null,bookSignature:"Dr. Youssef Ben Smida and Dr. Riadh Marzouki",coverURL:"https://cdn.intechopen.com/books/images_new/10504.jpg",editedByType:null,editors:[{id:"311698",title:"Dr.",name:"Youssef",surname:"Ben Smida",slug:"youssef-ben-smida",fullName:"Youssef Ben Smida"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10557",title:"Elaeis guineensis",subtitle:null,isOpenForSubmission:!0,hash:"79500ab1930271876b4e0575e2ed3966",slug:null,bookSignature:"Dr. Hesam Kamyab",coverURL:"https://cdn.intechopen.com/books/images_new/10557.jpg",editedByType:null,editors:[{id:"225957",title:"Dr.",name:"Hesam",surname:"Kamyab",slug:"hesam-kamyab",fullName:"Hesam Kamyab"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10568",title:"Hysteresis in Engineering",subtitle:null,isOpenForSubmission:!0,hash:"6482387993b3cebffafe856a916c44ce",slug:null,bookSignature:"Dr. Giuseppe Viola",coverURL:"https://cdn.intechopen.com/books/images_new/10568.jpg",editedByType:null,editors:[{id:"173586",title:"Dr.",name:"Giuseppe",surname:"Viola",slug:"giuseppe-viola",fullName:"Giuseppe Viola"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:28},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:8},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:10},{group:"topic",caption:"Computer and Information Science",value:9,count:9},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:10},{group:"topic",caption:"Engineering",value:11,count:26},{group:"topic",caption:"Environmental Sciences",value:12,count:3},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:3},{group:"topic",caption:"Medicine",value:16,count:49},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:218},popularBooks:{featuredBooks:[{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5330},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editedByType:"Edited by",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9021",title:"Novel Perspectives of Stem Cell Manufacturing and Therapies",subtitle:null,isOpenForSubmission:!1,hash:"522c6db871783d2a11c17b83f1fd4e18",slug:"novel-perspectives-of-stem-cell-manufacturing-and-therapies",bookSignature:"Diana Kitala and Ana Colette Maurício",coverURL:"https://cdn.intechopen.com/books/images_new/9021.jpg",editedByType:"Edited by",editors:[{id:"203598",title:"Ph.D.",name:"Diana",middleName:null,surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editedByType:"Edited by",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editedByType:"Edited by",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editedByType:"Edited by",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editedByType:"Edited by",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"401",title:"Bioinformatics",slug:"immunology-bioinformatics",parent:{title:"Immunology",slug:"immunology"},numberOfBooks:1,numberOfAuthorsAndEditors:24,numberOfWosCitations:5,numberOfCrossrefCitations:6,numberOfDimensionsCitations:8,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"immunology-bioinformatics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"5300",title:"Advanced Biosignal Processing and Diagnostic Methods",subtitle:null,isOpenForSubmission:!1,hash:"6ff0e362b66214cde5c72df4c671f32c",slug:"advanced-biosignal-processing-and-diagnostic-methods",bookSignature:"Christoph Hintermüller",coverURL:"https://cdn.intechopen.com/books/images_new/5300.jpg",editedByType:"Edited by",editors:[{id:"180972",title:"Dr.",name:"Christoph",middleName:null,surname:"Hintermüller",slug:"christoph-hintermuller",fullName:"Christoph Hintermüller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,mostCitedChapters:[{id:"51325",doi:"10.5772/64068",title:"Nonlinear Adaptive Signal Processing Improves the Diagnostic Quality of Transabdominal Fetal Electrocardiography",slug:"nonlinear-adaptive-signal-processing-improves-the-diagnostic-quality-of-transabdominal-fetal-electro",totalDownloads:1107,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"advanced-biosignal-processing-and-diagnostic-methods",title:"Advanced Biosignal Processing and Diagnostic Methods",fullTitle:"Advanced Biosignal Processing and Diagnostic Methods"},signatures:"Radek Martinek, Radana Kahankova, Hana Skukova, Jaromir\nKonecny, Petr Bilik, Jan Zidek and Homer Nazeran",authors:[{id:"149251",title:"Dr.",name:"Homer",middleName:null,surname:"Nazeran",slug:"homer-nazeran",fullName:"Homer Nazeran"},{id:"182946",title:"Dr.",name:"Radek",middleName:null,surname:"Martinek",slug:"radek-martinek",fullName:"Radek Martinek"},{id:"187874",title:"Dr.",name:"Radana",middleName:null,surname:"Kahankova",slug:"radana-kahankova",fullName:"Radana Kahankova"},{id:"187887",title:"Ms.",name:"Hana",middleName:null,surname:"Skutova",slug:"hana-skutova",fullName:"Hana Skutova"},{id:"187888",title:"Dr.",name:"Jaromir",middleName:null,surname:"Konecny",slug:"jaromir-konecny",fullName:"Jaromir Konecny"},{id:"187889",title:"Dr.",name:"Petr",middleName:null,surname:"Bilik",slug:"petr-bilik",fullName:"Petr Bilik"},{id:"187890",title:"Dr.",name:"Jan",middleName:null,surname:"Zidek",slug:"jan-zidek",fullName:"Jan Zidek"}]},{id:"51657",doi:"10.5772/63914",title:"Network Theoretical Approach to Describe Epileptic Processes",slug:"network-theoretical-approach-to-describe-epileptic-processes",totalDownloads:1005,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"advanced-biosignal-processing-and-diagnostic-methods",title:"Advanced Biosignal Processing and Diagnostic Methods",fullTitle:"Advanced Biosignal Processing and Diagnostic Methods"},signatures:"Ancor Sanz-García, Rafael G. de Sola, Lorena Vega-Zelaya, Jesús\nPastor and Guillermo J. Ortega",authors:[{id:"36503",title:"Dr.",name:"Rafael G",middleName:null,surname:"Sola",slug:"rafael-g-sola",fullName:"Rafael G Sola"},{id:"85177",title:"Dr.",name:"Guillermo",middleName:null,surname:"Ortega",slug:"guillermo-ortega",fullName:"Guillermo Ortega"},{id:"170195",title:"Dr.",name:"Jesus",middleName:null,surname:"Pastor",slug:"jesus-pastor",fullName:"Jesus Pastor"},{id:"183726",title:"Dr.",name:"Ancor",middleName:null,surname:"Sanz",slug:"ancor-sanz",fullName:"Ancor Sanz"},{id:"183728",title:"MSc.",name:"Lorena",middleName:null,surname:"Vega-Zelaya",slug:"lorena-vega-zelaya",fullName:"Lorena Vega-Zelaya"}]},{id:"51273",doi:"10.5772/63915",title:"Position-Free Vital Sign Monitoring: Measurements and Processing",slug:"position-free-vital-sign-monitoring-measurements-and-processing",totalDownloads:1586,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"advanced-biosignal-processing-and-diagnostic-methods",title:"Advanced Biosignal Processing and Diagnostic Methods",fullTitle:"Advanced Biosignal Processing and Diagnostic Methods"},signatures:"Dany Obeid, Sarah Samad, Sawsan Sadek, Gheorghe Zaharia and\nGhaïs El Zein",authors:[{id:"19505",title:"Prof.",name:"Ghaïs",middleName:null,surname:"El Zein",slug:"ghais-el-zein",fullName:"Ghaïs El Zein"},{id:"21472",title:"Prof.",name:"Gheorghe",middleName:null,surname:"Zaharia",slug:"gheorghe-zaharia",fullName:"Gheorghe Zaharia"},{id:"183137",title:"Dr.",name:"Dany",middleName:null,surname:"Obeid",slug:"dany-obeid",fullName:"Dany Obeid"},{id:"188319",title:"Ms.",name:"Sarah",middleName:null,surname:"Samad",slug:"sarah-samad",fullName:"Sarah Samad"},{id:"188320",title:"Prof.",name:"Sawsan",middleName:null,surname:"Sadek",slug:"sawsan-sadek",fullName:"Sawsan Sadek"}]}],mostDownloadedChaptersLast30Days:[{id:"51273",title:"Position-Free Vital Sign Monitoring: Measurements and Processing",slug:"position-free-vital-sign-monitoring-measurements-and-processing",totalDownloads:1586,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"advanced-biosignal-processing-and-diagnostic-methods",title:"Advanced Biosignal Processing and Diagnostic Methods",fullTitle:"Advanced Biosignal Processing and Diagnostic Methods"},signatures:"Dany Obeid, Sarah Samad, Sawsan Sadek, Gheorghe Zaharia and\nGhaïs El Zein",authors:[{id:"19505",title:"Prof.",name:"Ghaïs",middleName:null,surname:"El Zein",slug:"ghais-el-zein",fullName:"Ghaïs El Zein"},{id:"21472",title:"Prof.",name:"Gheorghe",middleName:null,surname:"Zaharia",slug:"gheorghe-zaharia",fullName:"Gheorghe Zaharia"},{id:"183137",title:"Dr.",name:"Dany",middleName:null,surname:"Obeid",slug:"dany-obeid",fullName:"Dany Obeid"},{id:"188319",title:"Ms.",name:"Sarah",middleName:null,surname:"Samad",slug:"sarah-samad",fullName:"Sarah Samad"},{id:"188320",title:"Prof.",name:"Sawsan",middleName:null,surname:"Sadek",slug:"sawsan-sadek",fullName:"Sawsan Sadek"}]},{id:"51657",title:"Network Theoretical Approach to Describe Epileptic Processes",slug:"network-theoretical-approach-to-describe-epileptic-processes",totalDownloads:1005,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"advanced-biosignal-processing-and-diagnostic-methods",title:"Advanced Biosignal Processing and Diagnostic Methods",fullTitle:"Advanced Biosignal Processing and Diagnostic Methods"},signatures:"Ancor Sanz-García, Rafael G. de Sola, Lorena Vega-Zelaya, Jesús\nPastor and Guillermo J. Ortega",authors:[{id:"36503",title:"Dr.",name:"Rafael G",middleName:null,surname:"Sola",slug:"rafael-g-sola",fullName:"Rafael G Sola"},{id:"85177",title:"Dr.",name:"Guillermo",middleName:null,surname:"Ortega",slug:"guillermo-ortega",fullName:"Guillermo Ortega"},{id:"170195",title:"Dr.",name:"Jesus",middleName:null,surname:"Pastor",slug:"jesus-pastor",fullName:"Jesus Pastor"},{id:"183726",title:"Dr.",name:"Ancor",middleName:null,surname:"Sanz",slug:"ancor-sanz",fullName:"Ancor Sanz"},{id:"183728",title:"MSc.",name:"Lorena",middleName:null,surname:"Vega-Zelaya",slug:"lorena-vega-zelaya",fullName:"Lorena Vega-Zelaya"}]},{id:"51538",title:"Enhancing Estimates of Breakpoints in Genome Copy Number Alteration using Confidence Masks",slug:"enhancing-estimates-of-breakpoints-in-genome-copy-number-alteration-using-confidence-masks",totalDownloads:814,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"advanced-biosignal-processing-and-diagnostic-methods",title:"Advanced Biosignal Processing and Diagnostic Methods",fullTitle:"Advanced Biosignal Processing and Diagnostic Methods"},signatures:"Jorge Muñoz‐Minjares, Yuriy Shmaliy and Oscar Ibarra‐Manzano",authors:[{id:"162535",title:"Prof.",name:"Oscar",middleName:null,surname:"Ibarra Manzano",slug:"oscar-ibarra-manzano",fullName:"Oscar Ibarra Manzano"},{id:"182490",title:"Ph.D. Student",name:"Jorge",middleName:null,surname:"Muñoz-Minjares",slug:"jorge-munoz-minjares",fullName:"Jorge Muñoz-Minjares"},{id:"182941",title:"Dr.",name:"Yuriy",middleName:null,surname:"S. Shmaliy",slug:"yuriy-s.-shmaliy",fullName:"Yuriy S. Shmaliy"}]},{id:"51325",title:"Nonlinear Adaptive Signal Processing Improves the Diagnostic Quality of Transabdominal Fetal Electrocardiography",slug:"nonlinear-adaptive-signal-processing-improves-the-diagnostic-quality-of-transabdominal-fetal-electro",totalDownloads:1107,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"advanced-biosignal-processing-and-diagnostic-methods",title:"Advanced Biosignal Processing and Diagnostic Methods",fullTitle:"Advanced Biosignal Processing and Diagnostic Methods"},signatures:"Radek Martinek, Radana Kahankova, Hana Skukova, Jaromir\nKonecny, Petr Bilik, Jan Zidek and Homer Nazeran",authors:[{id:"149251",title:"Dr.",name:"Homer",middleName:null,surname:"Nazeran",slug:"homer-nazeran",fullName:"Homer Nazeran"},{id:"182946",title:"Dr.",name:"Radek",middleName:null,surname:"Martinek",slug:"radek-martinek",fullName:"Radek Martinek"},{id:"187874",title:"Dr.",name:"Radana",middleName:null,surname:"Kahankova",slug:"radana-kahankova",fullName:"Radana Kahankova"},{id:"187887",title:"Ms.",name:"Hana",middleName:null,surname:"Skutova",slug:"hana-skutova",fullName:"Hana Skutova"},{id:"187888",title:"Dr.",name:"Jaromir",middleName:null,surname:"Konecny",slug:"jaromir-konecny",fullName:"Jaromir Konecny"},{id:"187889",title:"Dr.",name:"Petr",middleName:null,surname:"Bilik",slug:"petr-bilik",fullName:"Petr Bilik"},{id:"187890",title:"Dr.",name:"Jan",middleName:null,surname:"Zidek",slug:"jan-zidek",fullName:"Jan Zidek"}]},{id:"51454",title:"Classifying and Predicting Respiratory Function Based on Gait Analysis",slug:"classifying-and-predicting-respiratory-function-based-on-gait-analysis",totalDownloads:858,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"advanced-biosignal-processing-and-diagnostic-methods",title:"Advanced Biosignal Processing and Diagnostic Methods",fullTitle:"Advanced Biosignal Processing and Diagnostic Methods"},signatures:"Yu Sheng Chan, Wen Te Liu and Ching Te Chiu",authors:[{id:"183749",title:"Prof.",name:"Ching Te",middleName:null,surname:"Chiu",slug:"ching-te-chiu",fullName:"Ching Te Chiu"},{id:"186690",title:"Mr.",name:"Yu Sheng",middleName:null,surname:"Chan",slug:"yu-sheng-chan",fullName:"Yu Sheng Chan"},{id:"193669",title:"Dr.",name:"Wen Te",middleName:null,surname:"Liu",slug:"wen-te-liu",fullName:"Wen Te Liu"}]}],onlineFirstChaptersFilter:{topicSlug:"immunology-bioinformatics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/97989/isabel-pedron",hash:"",query:{},params:{id:"97989",slug:"isabel-pedron"},fullPath:"/profiles/97989/isabel-pedron",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()