List of gas phase reactions and corresponding rate constants [24].
\r\n\tThe aim of this book is to provide the reader with a comprehensive state-of-the-art in artificial neural networks, collecting many of the core concepts and cutting-edge application behind neural networks and deep learning.
",isbn:"978-1-83962-375-2",printIsbn:"978-1-83962-374-5",pdfIsbn:"978-1-83962-376-9",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"5cc6cd7972551be6cfc4d3c87bf8fb5c",bookSignature:"Dr. Pier Luigi Mazzeo and Dr. Paolo Spagnolo",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10390.jpg",keywords:"Recurrent, Recursive Nets, Face Recognition, Crowd Analysis, Different Applications, Object Detection, Classification, Visual Tracking, Speech Recognition, Grams, Reinforcement Learning, 3-D Map",numberOfDownloads:65,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 25th 2020",dateEndSecondStepPublish:"October 23rd 2020",dateEndThirdStepPublish:"December 22nd 2020",dateEndFourthStepPublish:"March 12th 2021",dateEndFifthStepPublish:"May 11th 2021",remainingDaysToSecondStep:"4 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Author and co-author of more than 80 works in national and international journals, conference proceedings, and book chapters, with Ph.D. in Computer Science Engineering.",coeditorOneBiosketch:"Dr. Spagnolo received the engineering degree in computer science from the University of Lecce, Italy. Since 2002 he has been with the Italian National Research Council. His work includes more than 80 publications on AI.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"17191",title:"Dr.",name:"Pier Luigi",middleName:null,surname:"Mazzeo",slug:"pier-luigi-mazzeo",fullName:"Pier Luigi Mazzeo",profilePictureURL:"https://mts.intechopen.com/storage/users/17191/images/system/17191.jpeg",biography:"Pier Luigi Mazzeo received the engineering degree in computer science from the University of Lecce, Lecce, Italy, in 2001. \nSince 2015 he has been with Institute of Applied Sciences and Intelligent Systems of the Italian National Research Council, Lecce, Italy. The most relevant topics, in which he is currently involved, include algorithms for video object tracking , face detection and recognition, facial expression recognition, deep neural network (CNN) and machine learning.\nHe has taken part in several national and international projects and he acts as a reviewer for several international journals and for some book publishers. He has been regularly invited to take part in the Scientific Committees of national and international conferences. \nDr. Mazzeo is author and co-author of more then 80 works in national and international journals, conference proceedings and book chapters.",institutionString:"Institute of Applied Sciences and Intelligent Systems (CNR)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Institute of Applied Science and Intelligent Systems",institutionURL:null,country:{name:"Italy"}}}],coeditorOne:{id:"20192",title:"Dr.",name:"Paolo",middleName:null,surname:"Spagnolo",slug:"paolo-spagnolo",fullName:"Paolo Spagnolo",profilePictureURL:"https://mts.intechopen.com/storage/users/20192/images/system/20192.jpg",biography:"Paolo Spagnolo received the engineering degree in computer science from the University of Lecce, Lecce, Italy, in 2002.\nSince then he has been with the Italian National Research Council.\nHe has been working on several research topics regarding Artificial Intelligence and Computer Vision studying techniques and methodologies for multidimensional digital signal processing; linear and non-linear signal characterization; signal features extraction; supervised and unsupervised classification of signals; deep neural network (CNN).\nDr. Spagnolo is an author of over 80 papers on Artificial Intelligence. He also acts as a reviewer for several international journals.\nHe has also participated in a number of international projects in the area of image and video analysis and has been regularly invited to take part in the Scientific Committees of national and international conferences.",institutionString:"Institute of Applied Sciences and Intelligent Systems (CNR)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Institute of Applied Science and Intelligent Systems",institutionURL:null,country:{name:"Italy"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"9",title:"Computer and Information Science",slug:"computer-and-information-science"}],chapters:[{id:"75265",title:"Deep Learning for Subtyping and Prediction of Diseases: Long-Short Term Memory",slug:"deep-learning-for-subtyping-and-prediction-of-diseases-long-short-term-memory",totalDownloads:24,totalCrossrefCites:0,authors:[{id:"179217",title:"Prof.",name:"Hayrettin",surname:"Okut",slug:"hayrettin-okut",fullName:"Hayrettin Okut"}]},{id:"75193",title:"The Digital Twin of an Organization by Utilizing Reinforcing Deep Learning",slug:"the-digital-twin-of-an-organization-by-utilizing-reinforcing-deep-learning",totalDownloads:31,totalCrossrefCites:0,authors:[null]},{id:"75329",title:"Risk Assessment and Automated Anomaly Detection Using a Deep Learning Architecture",slug:"risk-assessment-and-automated-anomaly-detection-using-a-deep-learning-architecture",totalDownloads:4,totalCrossrefCites:0,authors:[null]},{id:"75342",title:"Application of Deep Learning Methods for Detection and Tracking of Players",slug:"application-of-deep-learning-methods-for-detection-and-tracking-of-players",totalDownloads:10,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"297737",firstName:"Mateo",lastName:"Pulko",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/297737/images/8492_n.png",email:"mateo.p@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"8725",title:"Visual Object Tracking with Deep Neural Networks",subtitle:null,isOpenForSubmission:!1,hash:"e0ba384ed4b4e61f042d5147c97ab168",slug:"visual-object-tracking-with-deep-neural-networks",bookSignature:"Pier Luigi Mazzeo, Srinivasan Ramakrishnan and Paolo Spagnolo",coverURL:"https://cdn.intechopen.com/books/images_new/8725.jpg",editedByType:"Edited by",editors:[{id:"17191",title:"Dr.",name:"Pier Luigi",surname:"Mazzeo",slug:"pier-luigi-mazzeo",fullName:"Pier Luigi Mazzeo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"23911",title:"May Mast Cells Have Any Effect in New Modalities of Cancer Treatment?",doi:"10.5772/23513",slug:"may-mast-cells-have-any-effect-in-new-modalities-of-cancer-treatment-",body:null,keywords:null,chapterPDFUrl:"https://cdn.intechopen.com/pdfs/23911.pdf",chapterXML:null,downloadPdfUrl:"/chapter/pdf-download/23911",previewPdfUrl:"/chapter/pdf-preview/23911",totalDownloads:1116,totalViews:103,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,dateSubmitted:"November 26th 2010",dateReviewed:"June 29th 2011",datePrePublished:null,datePublished:"November 21st 2011",dateFinished:null,readingETA:"0",abstract:null,reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/23911",risUrl:"/chapter/ris/23911",book:{slug:"advances-in-cancer-therapy"},signatures:"Öner Özdemir",authors:[{id:"52298",title:"Prof.",name:"Oner",middleName:null,surname:"Ozdemir",fullName:"Oner Ozdemir",slug:"oner-ozdemir",email:"oner.ozdemir.md@gmail.com",position:null,institution:null}],sections:null,chapterReferences:null,footnotes:null,contributors:null,corrections:null},book:{id:"1311",title:"Advances in Cancer Therapy",subtitle:null,fullTitle:"Advances in Cancer Therapy",slug:"advances-in-cancer-therapy",publishedDate:"November 21st 2011",bookSignature:"Hala Gali-Muhtasib",coverURL:"https://cdn.intechopen.com/books/images_new/1311.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"57145",title:"Prof.",name:"Hala",middleName:null,surname:"Gali-Muhtasib",slug:"hala-gali-muhtasib",fullName:"Hala Gali-Muhtasib"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"23911",title:"May Mast Cells Have Any Effect in New Modalities of Cancer Treatment?",slug:"may-mast-cells-have-any-effect-in-new-modalities-of-cancer-treatment-",totalDownloads:1116,totalCrossrefCites:1,signatures:"Öner Özdemir",authors:[{id:"52298",title:"Prof.",name:"Oner",middleName:null,surname:"Ozdemir",fullName:"Oner Ozdemir",slug:"oner-ozdemir"}]},{id:"23912",title:"The Application of Membrane Vesicles for Cancer Therapy",slug:"the-application-of-membrane-vesicles-for-cancer-therapy",totalDownloads:2375,totalCrossrefCites:0,signatures:"Khan Salma, Jutzy Jessica M.S., Aspe Jonathan R., Valenzuela Malyn May A., Park Joon S., Turay David and Wall Nathan R.",authors:[{id:"46637",title:"Dr.",name:"Nathan",middleName:"Robert",surname:"Wall",fullName:"Nathan Wall",slug:"nathan-wall"},{id:"60902",title:"Dr.",name:"Salma",middleName:null,surname:"Khan",fullName:"Salma Khan",slug:"salma-khan"},{id:"60903",title:"MSc",name:"Malyn May",middleName:null,surname:"Asuncion-Valenzuela",fullName:"Malyn May Asuncion-Valenzuela",slug:"malyn-may-asuncion-valenzuela"},{id:"96584",title:"Dr.",name:"David",middleName:null,surname:"Turay",fullName:"David Turay",slug:"david-turay"},{id:"96585",title:"BSc.",name:"Joon",middleName:null,surname:"Park",fullName:"Joon Park",slug:"joon-park"},{id:"96587",title:"Mrs.",name:"Jessica",middleName:null,surname:"Jutzy",fullName:"Jessica Jutzy",slug:"jessica-jutzy"},{id:"96588",title:"BSc.",name:"Jon",middleName:null,surname:"Aspe",fullName:"Jon Aspe",slug:"jon-aspe"}]},{id:"23913",title:"The Airways: A Promising Route for the Pulmonary Delivery of Anticancer Agents",slug:"the-airways-a-promising-route-for-the-pulmonary-delivery-of-anticancer-agents",totalDownloads:1791,totalCrossrefCites:1,signatures:"Guilleminault L., Hervé-Grépinet V., Lemarié E. and Heuzé-Vourc’h N.",authors:[{id:"60344",title:"Dr.",name:"Nathalie",middleName:null,surname:"Heuzé-Vourch",fullName:"Nathalie Heuzé-Vourch",slug:"nathalie-heuze-vourch"},{id:"60350",title:"Prof.",name:"Virginie",middleName:null,surname:"Hervé-Grépinet",fullName:"Virginie Hervé-Grépinet",slug:"virginie-herve-grepinet"},{id:"60351",title:"Prof.",name:"Etienne",middleName:null,surname:"Lemarié",fullName:"Etienne Lemarié",slug:"etienne-lemarie"},{id:"60563",title:"Mr",name:"Laurent",middleName:null,surname:"Guilleminault",fullName:"Laurent Guilleminault",slug:"laurent-guilleminault"}]},{id:"23914",title:"Cell Division Gene from Bacteria in Minicell Production for Therapy",slug:"cell-division-gene-from-bacteria-in-minicell-production-for-therapy",totalDownloads:1787,totalCrossrefCites:0,signatures:"Nguyen Tu H.K.",authors:[{id:"47823",title:"Dr.",name:"Nguyen Hoang Khue",middleName:null,surname:"Tu",fullName:"Nguyen Hoang Khue Tu",slug:"nguyen-hoang-khue-tu"}]},{id:"23915",title:"Vascular-Targeted Photodynamic Therapy (VTP)",slug:"vascular-targeted-photodynamic-therapy-vtp-",totalDownloads:2940,totalCrossrefCites:0,signatures:"Ezatul Ezleen Kamarulzaman, Hamanou Benachour, Muriel Barberi-Heyob, Céline Frochot, Habibah A Wahab, François Guillemin and Régis Vanderesse",authors:[{id:"49856",title:"Dr.",name:"Regis",middleName:null,surname:"Vanderesse",fullName:"Regis Vanderesse",slug:"regis-vanderesse"},{id:"59251",title:"Dr.",name:"Ezatul Ezleen",middleName:null,surname:"Kamarulzaman",fullName:"Ezatul Ezleen Kamarulzaman",slug:"ezatul-ezleen-kamarulzaman"},{id:"59252",title:"Dr.",name:"Hamanou",middleName:null,surname:"Benachour",fullName:"Hamanou Benachour",slug:"hamanou-benachour"},{id:"59253",title:"Dr.",name:"Muriel",middleName:null,surname:"Barberi-Heyob",fullName:"Muriel Barberi-Heyob",slug:"muriel-barberi-heyob"},{id:"59254",title:"Dr.",name:"Céline",middleName:null,surname:"Frochot",fullName:"Céline Frochot",slug:"celine-frochot"},{id:"59255",title:"Dr.",name:"Habibah",middleName:null,surname:"A Wahab",fullName:"Habibah A Wahab",slug:"habibah-a-wahab"},{id:"59256",title:"Prof.",name:"François",middleName:null,surname:"Guillemin",fullName:"François Guillemin",slug:"francois-guillemin"}]},{id:"23916",title:"Binary Radiotherapy of Melanoma – Russian Research Results",slug:"binary-radiotherapy-of-melanoma-russian-research-results",totalDownloads:1667,totalCrossrefCites:0,signatures:"Victor Kulakov, Elena Grigirjeva, Elena Koldaeva, Alisa Arnopolskaya and Alexey Lipengolts",authors:[{id:"46336",title:"Dr.",name:"Alisa",middleName:null,surname:"Arnopolskaya",fullName:"Alisa Arnopolskaya",slug:"alisa-arnopolskaya"}]},{id:"23917",title:"Clinical Development Paradigms for Cancer Vaccines: The Case of CIMAvax EGF®",slug:"clinical-development-paradigms-for-cancer-vaccines-the-case-of-cimavax-egf-",totalDownloads:2859,totalCrossrefCites:0,signatures:"Gisela González, Tania Crombet and Agustín Lage",authors:[{id:"55160",title:"Dr.",name:"Gisela",middleName:null,surname:"Gonzalez",fullName:"Gisela Gonzalez",slug:"gisela-gonzalez"},{id:"59197",title:"Prof.",name:"Tania",middleName:null,surname:"Crombet",fullName:"Tania Crombet",slug:"tania-crombet"},{id:"59198",title:"Prof.",name:"Agustín",middleName:null,surname:"Lage",fullName:"Agustín Lage",slug:"agustin-lage"}]},{id:"23918",title:"Brain Metastases: Biology and Comprehensive Strategy from Radiotherapy to Metabolic Inhibitors and Hyperthermia",slug:"brain-metastases-biology-and-comprehensive-strategy-from-radiotherapy-to-metabolic-inhibitors-and-hy",totalDownloads:2042,totalCrossrefCites:0,signatures:"Baronzio Gianfranco, Fiorentini Giammaria Guais Adeline and Schwartz Laurent",authors:[{id:"58654",title:"Dr.",name:"Gianfranco",middleName:null,surname:"Baronzio",fullName:"Gianfranco Baronzio",slug:"gianfranco-baronzio"},{id:"60151",title:"Prof.",name:"Giammaria",middleName:null,surname:"Fiorentini",fullName:"Giammaria Fiorentini",slug:"giammaria-fiorentini"},{id:"67113",title:"Dr.",name:"Adeline",middleName:null,surname:"Guais-Vergne",fullName:"Adeline Guais-Vergne",slug:"adeline-guais-vergne"},{id:"67115",title:"Prof.",name:"Laurent",middleName:null,surname:"Schwartz",fullName:"Laurent Schwartz",slug:"laurent-schwartz"}]},{id:"23919",title:"Survivin: Identification of Selective Functional Signaling Pathways inTransformed Cells and Identification of a New Splice Variant with Growth Survival Activity",slug:"survivin-identification-of-selective-functional-signaling-pathways-intransformed-cells-and-identific",totalDownloads:1831,totalCrossrefCites:0,signatures:"Louis M. Pelus and Seiji Fukuda",authors:[{id:"38989",title:"Dr.",name:"Seiji",middleName:null,surname:"Fukuda",fullName:"Seiji Fukuda",slug:"seiji-fukuda"},{id:"49276",title:"Prof.",name:"Louis",middleName:null,surname:"Pelus",fullName:"Louis Pelus",slug:"louis-pelus"}]},{id:"23920",title:"Signalling Pathways Leading to TRAIL Resistance",slug:"signalling-pathways-leading-to-trail-resistance",totalDownloads:1643,totalCrossrefCites:0,signatures:"Roberta Di Pietro",authors:[{id:"60267",title:"Prof.",name:"Roberta",middleName:null,surname:"Di Pietro",fullName:"Roberta Di Pietro",slug:"roberta-di-pietro"}]},{id:"23921",title:"Therapeutical Cues from the Tumor Microenvironment",slug:"therapeutical-cues-from-the-tumor-microenvironment",totalDownloads:1654,totalCrossrefCites:0,signatures:"Stefano Marastoni, Eva Andreuzzi, Roberta Colladel, Alice Paulitti, Alessandra Silvestri, Federico Todaro, Alfonso Colombatti and Maurizio Mongiat",authors:[{id:"59586",title:"Dr.",name:"Maurizio",middleName:null,surname:"Mongiat",fullName:"Maurizio Mongiat",slug:"maurizio-mongiat"},{id:"60322",title:"Dr.",name:"Stefano",middleName:null,surname:"Marastoni",fullName:"Stefano Marastoni",slug:"stefano-marastoni"},{id:"60323",title:"Dr",name:"Roberta",middleName:null,surname:"Colladel",fullName:"Roberta Colladel",slug:"roberta-colladel"},{id:"60324",title:"Dr",name:"Eva",middleName:null,surname:"Andreuzzi",fullName:"Eva Andreuzzi",slug:"eva-andreuzzi"},{id:"60325",title:"Dr.",name:"Alessandra",middleName:null,surname:"Silvestri",fullName:"Alessandra Silvestri",slug:"alessandra-silvestri"},{id:"60326",title:"Dr.",name:"Alice",middleName:null,surname:"Paulitti",fullName:"Alice Paulitti",slug:"alice-paulitti"},{id:"60327",title:"Dr.",name:"Alfonso",middleName:null,surname:"Colombatti",fullName:"Alfonso Colombatti",slug:"alfonso-colombatti"},{id:"101687",title:"BSc.",name:"Federico",middleName:null,surname:"Todaro",fullName:"Federico Todaro",slug:"federico-todaro"}]},{id:"23922",title:"Cyclin-Dependent Kinases (Cdk) as Targets for Cancer Therapy and Imaging",slug:"cyclin-dependent-kinases-cdk-as-targets-for-cancer-therapy-and-imaging",totalDownloads:5674,totalCrossrefCites:2,signatures:"Franziska Graf, Frank Wuest and Jens Pietzsch",authors:[{id:"59927",title:"Dr",name:"Franziska",middleName:null,surname:"Graf",fullName:"Franziska Graf",slug:"franziska-graf"},{id:"73925",title:"Prof.",name:"Jens",middleName:null,surname:"Pietzsch",fullName:"Jens Pietzsch",slug:"jens-pietzsch"},{id:"76397",title:"Prof.",name:"Frank",middleName:null,surname:"Wuest",fullName:"Frank Wuest",slug:"frank-wuest"}]},{id:"23923",title:"Targeting Tumor Perfusion and Oxygenation Modulates Hypoxia and Cancer Sensitivity to Radiotherapy and Systemic Therapies",slug:"targeting-tumor-perfusion-and-oxygenation-modulates-hypoxia-and-cancer-sensitivity-to-radiotherapy-a",totalDownloads:1682,totalCrossrefCites:0,signatures:"Bénédicte F. Jordan and Pierre Sonveaux",authors:[{id:"51589",title:"Prof.",name:"Pierre",middleName:null,surname:"Sonveaux",fullName:"Pierre Sonveaux",slug:"pierre-sonveaux"},{id:"59890",title:"Prof.",name:"Bénédicte F",middleName:null,surname:"Jordan",fullName:"Bénédicte F Jordan",slug:"benedicte-f-jordan"}]},{id:"23924",title:"Significance, Mechanisms, and Progress of Anticancer Drugs Targeting HGF-Met",slug:"significance-mechanisms-and-progress-of-anticancer-drugs-targeting-hgf-met",totalDownloads:1541,totalCrossrefCites:0,signatures:"Katsuya Sakai, Takahiro Nakamura, Yoshinori Suzuki and Kunio Matsumoto",authors:[{id:"46916",title:"Prof.",name:"Kunio",middleName:null,surname:"Matsumoto",fullName:"Kunio Matsumoto",slug:"kunio-matsumoto"}]},{id:"23925",title:"Nuclear Survivin: Cellular Consequences and Therapeutic Implications",slug:"nuclear-survivin-cellular-consequences-and-therapeutic-implications",totalDownloads:1385,totalCrossrefCites:1,signatures:"Sally P. Wheatley",authors:[{id:"59585",title:"Dr.",name:"Sally",middleName:null,surname:"Wheatley",fullName:"Sally Wheatley",slug:"sally-wheatley"}]},{id:"23926",title:"Anticancer Properties of Curcumin",slug:"anticancer-properties-of-curcumin",totalDownloads:3830,totalCrossrefCites:1,signatures:"Varisa Pongrakhananon and Yon Rojanasakul",authors:[{id:"52705",title:"Prof.",name:"Yon",middleName:null,surname:"Rojanasakul",fullName:"Yon Rojanasakul",slug:"yon-rojanasakul"},{id:"60007",title:"Prof.",name:"Varisa",middleName:null,surname:"Pongrakhananon",fullName:"Varisa Pongrakhananon",slug:"varisa-pongrakhananon"}]},{id:"23927",title:"Salograviolide A: A Plant-Derived Sesquiterpene Lactone with Promising Anti-Inflammatory and Anticancer Effects",slug:"salograviolide-a-a-plant-derived-sesquiterpene-lactone-with-promising-anti-inflammatory-and-anticanc",totalDownloads:2254,totalCrossrefCites:1,signatures:"Isabelle Fakhoury and Hala Gali-Muhtasib",authors:[{id:"57145",title:"Prof.",name:"Hala",middleName:null,surname:"Gali-Muhtasib",fullName:"Hala Gali-Muhtasib",slug:"hala-gali-muhtasib"}]},{id:"23928",title:"The Role of Inflammation in Cancer",slug:"the-role-of-inflammation-in-cancer",totalDownloads:1445,totalCrossrefCites:0,signatures:"O’Leary D.P., Neary P.M. and Redmond H.P.",authors:[{id:"53469",title:"Dr.",name:"Peter",middleName:null,surname:"Neary",fullName:"Peter Neary",slug:"peter-neary"},{id:"54816",title:"Prof.",name:"Henry",middleName:null,surname:"Redmond",fullName:"Henry Redmond",slug:"henry-redmond"},{id:"56447",title:"Mr.",name:"Donal",middleName:"Peter",surname:"OLeary",fullName:"Donal OLeary",slug:"donal-oleary"}]},{id:"23929",title:"CD277 an Immune Regulator of T Cell Function and Tumor Cell Recognition",slug:"cd277-an-immune-regulator-of-t-cell-function-and-tumor-cell-recognition",totalDownloads:2018,totalCrossrefCites:0,signatures:"Jose Francisco Zambrano-Zaragoza, Nassima Messal, Sonia Pastor, Emmanuel Scotet, Marc Bonneville, Danièle Saverino, Marcello Bagnasco, Crystelle Harly, Yves Guillaume, Jacques Nunes, Pierre Pontarotti, Marc Lopez and Daniel Olive",authors:[{id:"60372",title:"Prof.",name:"Daniel",middleName:null,surname:"Olive",fullName:"Daniel Olive",slug:"daniel-olive"},{id:"60373",title:"Dr.",name:"Jose Francisco",middleName:null,surname:"Zambrano-Zaragoza",fullName:"Jose Francisco Zambrano-Zaragoza",slug:"jose-francisco-zambrano-zaragoza"},{id:"68501",title:"Dr.",name:"Emmanuel",middleName:null,surname:"Scotet",fullName:"Emmanuel Scotet",slug:"emmanuel-scotet"},{id:"68504",title:"Dr.",name:"Marc",middleName:null,surname:"Bonneville",fullName:"Marc Bonneville",slug:"marc-bonneville"},{id:"68507",title:"Dr.",name:"Daniele",middleName:null,surname:"Saverino",fullName:"Daniele Saverino",slug:"daniele-saverino"},{id:"68508",title:"Prof.",name:"Marcello",middleName:null,surname:"Bagnasco",fullName:"Marcello Bagnasco",slug:"marcello-bagnasco"},{id:"68511",title:"Dr.",name:"Yves",middleName:null,surname:"Guillaume",fullName:"Yves Guillaume",slug:"yves-guillaume"},{id:"69390",title:"Dr.",name:"Jaques",middleName:null,surname:"Nunes",fullName:"Jaques Nunes",slug:"jaques-nunes"},{id:"69392",title:"Dr.",name:"Pierre",middleName:null,surname:"Pontarotti",fullName:"Pierre Pontarotti",slug:"pierre-pontarotti"},{id:"69394",title:"Dr.",name:"Marc",middleName:null,surname:"Lopez",fullName:"Marc Lopez",slug:"marc-lopez"},{id:"69398",title:"Dr.",name:"Cristelle",middleName:null,surname:"Harly",fullName:"Cristelle Harly",slug:"cristelle-harly"},{id:"69399",title:"Dr.",name:"Nassima",middleName:null,surname:"Messal",fullName:"Nassima Messal",slug:"nassima-messal"}]},{id:"23930",title:"Transcription Regulation and Epigenetic Control of Expression of Natural Killer Cell Receptors and Their Ligands",slug:"transcription-regulation-and-epigenetic-control-of-expression-of-natural-killer-cell-receptors-and-t",totalDownloads:1612,totalCrossrefCites:0,signatures:"Zhixia Zhou, Cai Zhang, Jian Zhang and Zhigang Tian",authors:[{id:"49603",title:"Prof.",name:"Cai",middleName:null,surname:"Zhang",fullName:"Cai Zhang",slug:"cai-zhang"},{id:"59821",title:"Mrs.",name:"Zhixia",middleName:null,surname:"Zhou",fullName:"Zhixia Zhou",slug:"zhixia-zhou"}]},{id:"23931",title:"Non-Invasive Devices for Early Detection of Breast Tissue Oncological Abnormalities Using Microwave Radio Thermometry",slug:"non-invasive-devices-for-early-detection-of-breast-tissue-oncological-abnormalities-using-microwave-",totalDownloads:2889,totalCrossrefCites:1,signatures:"Tahir H. Shah, Elias Siores and Chronis Daskalakis",authors:[{id:"52670",title:"Prof.",name:"Elias",middleName:null,surname:"Siores",fullName:"Elias Siores",slug:"elias-siores"},{id:"53035",title:"Dr.",name:"Tahir",middleName:null,surname:"Shah",fullName:"Tahir Shah",slug:"tahir-shah"},{id:"53198",title:"MSc",name:"Chronis",middleName:null,surname:"Daskalakis",fullName:"Chronis Daskalakis",slug:"chronis-daskalakis"}]},{id:"23932",title:"Immunophenotyping of the Blast Cells in Correlations with the Molecular Genetics Analyses for Diagnostic and Clinical Stratification of Patients with Acute Myeloid Leukemia: Single Center Experience",slug:"immunophenotyping-of-the-blast-cells-in-correlations-with-the-molecular-genetics-analyses-for-diagno",totalDownloads:2258,totalCrossrefCites:0,signatures:"Irina Panovska-Stavridis",authors:[{id:"51581",title:"Dr.",name:"Irina",middleName:null,surname:"Panovska-Stavridis",fullName:"Irina Panovska-Stavridis",slug:"irina-panovska-stavridis"}]},{id:"23933",title:"Prospective Applications of Microwaves in Medicine",slug:"prospective-applications-of-microwaves-in-medicine",totalDownloads:4878,totalCrossrefCites:2,signatures:"Jaroslav Vorlíček, Barbora Vrbova and Jan Vrba",authors:[{id:"49876",title:"Prof.",name:"Jan",middleName:null,surname:"Vrba",fullName:"Jan Vrba",slug:"jan-vrba"}]},{id:"23934",title:"Photon Total Body Irradiation for Leukemia Transplantation Therapy: Rationale and Technique Options",slug:"photon-total-body-irradiation-for-leukemia-transplantation-therapy-rationale-and-technique-options",totalDownloads:3088,totalCrossrefCites:0,signatures:"Brent Herron, Alex Herron, Kathryn Howell, Daniel Chin and Luann Roads",authors:[{id:"53244",title:"Mr.",name:"Alex",middleName:null,surname:"Herron",fullName:"Alex Herron",slug:"alex-herron"},{id:"53247",title:"Ms.",name:"Luann",middleName:null,surname:"Roads",fullName:"Luann Roads",slug:"luann-roads"},{id:"94906",title:"MSc.",name:"Brent",middleName:null,surname:"Herron",fullName:"Brent Herron",slug:"brent-herron"},{id:"95310",title:"Dr.",name:"Kathryn",middleName:null,surname:"Howell",fullName:"Kathryn Howell",slug:"kathryn-howell"},{id:"95312",title:"Dr.",name:"Daniel",middleName:null,surname:"Chin",fullName:"Daniel Chin",slug:"daniel-chin"}]},{id:"23935",title:"Radio-Photoluminescence Glass Dosimeter (RPLGD)",slug:"radio-photoluminescence-glass-dosimeter-rplgd-",totalDownloads:6176,totalCrossrefCites:5,signatures:"David Y.C. Huang and Shih-Ming Hsu",authors:[{id:"53301",title:"Dr.",name:"David",middleName:null,surname:"Huang",fullName:"David Huang",slug:"david-huang"}]}]},relatedBooks:[{type:"book",id:"8774",title:"Programmed Cell Death",subtitle:null,isOpenForSubmission:!1,hash:"0459d0c7a518f61817a48fd4709c35bd",slug:"programmed-cell-death",bookSignature:"Hala Gali-Muhtasib and Omar Nasser Rahal",coverURL:"https://cdn.intechopen.com/books/images_new/8774.jpg",editedByType:"Edited by",editors:[{id:"57145",title:"Prof.",name:"Hala",surname:"Gali-Muhtasib",slug:"hala-gali-muhtasib",fullName:"Hala Gali-Muhtasib"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"67900",title:"The Underlying Mechanisms of Chinese Herbal Medicine-Induced Apoptotic Cell Death in Human Cancer",slug:"the-underlying-mechanisms-of-chinese-herbal-medicine-induced-apoptotic-cell-death-in-human-cancer",signatures:"Feiyu Chen, Zhangfeng Zhong, Hor Yue Tan, Ning Wang and Yibin Feng",authors:[null]},{id:"66895",title:"Programmed Cell Death Deregulation in BCR-ABL1-Negative Myeloproliferative Neoplasms",slug:"programmed-cell-death-deregulation-in-bcr-abl1-negative-myeloproliferative-neoplasms",signatures:"Carmen C. Diaconu, Petruta Gurban, Cristina Mambet, Mihaela Chivu-Economescu, Laura G. Necula, Lilia Matei, Denisa Dragu, Saviana Nedeianu, Ana I. Neagu, Aurelia Tatic, Diana Cristodor and Coralia Bleotu",authors:[null]},{id:"66585",title:"Endoplasmic Reticulum Stress-Mediated Cell Death",slug:"endoplasmic-reticulum-stress-mediated-cell-death",signatures:"Mehtap Kara and Ezgi Oztas",authors:[null]},{id:"70279",title:"Cell Death Mechanisms of the Promising Anticancer Compound Gallotannin",slug:"cell-death-mechanisms-of-the-promising-anticancer-compound-gallotannin",signatures:"Marwa Houssein and Hala Gali-Muhtasib",authors:[{id:"57145",title:"Prof.",name:"Hala",middleName:null,surname:"Gali-Muhtasib",fullName:"Hala Gali-Muhtasib",slug:"hala-gali-muhtasib"}]},{id:"68414",title:"Autophagy and Cell Death: Antitumor Drugs Targeting Autophagy",slug:"autophagy-and-cell-death-antitumor-drugs-targeting-autophagy",signatures:"Hai Zhang and Zhinan Chen",authors:[null]},{id:"67450",title:"Autophagy and Cell Death in Alzheimer’s, Parkinson’s and Prion Diseases",slug:"autophagy-and-cell-death-in-alzheimer-s-parkinson-s-and-prion-diseases",signatures:"Samo Ribarič and Irina Milisav Ribarič",authors:[{id:"30734",title:"Prof.",name:"Samo",middleName:null,surname:"Ribaric",fullName:"Samo Ribaric",slug:"samo-ribaric"}]}]}]},onlineFirst:{chapter:{type:"chapter",id:"68593",title:"How to Use the Monte Carlo Simulation Technique? Application: A Study of the Gas Phase during Thin Film Deposition",doi:"10.5772/intechopen.88559",slug:"how-to-use-the-monte-carlo-simulation-technique-application-a-study-of-the-gas-phase-during-thin-fil",body:'In statistical physics only a few problems can be solved exactly. For complex problems, numerical methods can give exact results for problems that could only be solved in an approximate way. Numerical simulation can be a way to test the theory. The numerical results can be compared to the experimental results. The numerical simulation is placed between the fundamental and the experimental treatment; it has a quasi-experimental character (numerical experience). For problems of statistical physics, the most widely used simulation methods are the Monte Carlo method and the molecular dynamics method.
The first Monte Carlo simulation (MCS) was proposed by Metropolis et al. in 1953 [1]. The second Monte Carlo simulation was proposed by Wood and Parker in 1957 [2]. The obtained results were in good agreement with the experimental results of Bridgman [3] and those of Michels et al. [4]. In this method we attribute a series of initial positions chosen randomly to a system of N particles interacting through a defined potential. A sequence of particle configurations is generated by giving successive displacements to particles; we only retain configurations to ensure that the probability density is that of the chosen.
Molecular dynamics simulation (MDS) has been first introduced to simulate the behavior of fluids and solids at the molecular or atomic level. MDS was used for the first time by Alder and Wainwright in the late 1950s [5, 6] to study the interactions of hard spheres. The principle is the resolution of equations of motion for a hard sphere system in a simulation cell. The basic algorithm is Verlet’s algorithm [7].
In this chapter, we will present techniques of numerical simulations using the Monte Carlo method. We will present an application on the gas phase during plasma-enhanced chemical vapor deposition (PECVD) of thin films. The application concerns collisions between particles. Particles are in Brownian motion. Collisions, elastic or inelastic, are considered to be binary. Non-elastic collisions result in effective chemical reactions.
In Section 2, we cite some MCS and MDS works on PECVD processes. Section 3 presents general rules on numerical simulation methods. Section 4 presents how to simulate a physical problem using MCS? We present the Metropolis algorithm as a scheme to trait random configurations and different modules related to elaborate an MCS code. In Section 5, we apply the MCS on SiH4/H2 gas mixture during a PECVD process. Finally the conclusion summarizes the contents of the chapter.
The PECVD is the most widely used technique to produce hydrogenated amorphous silicon thin films (a-Si:H) for solar cells and for film transistors and electronic devices [8, 9]. Reactions during plasma deposition are complex and are not understood completely.
Gorbachev et al. [10, 11, 12] have developed a model that is based on chemical reactions and different processes in a PECVD reactor. The model takes into account the formation of SinHm oligomers (n ≤ 5). It presents a simulation of the growth of the films. Gorbachev et al. found that Si2H5 and Si3H7 strongly influence the growth of the film [11].
Valipa et al. [13] calculated the β reactivity of the SiH3 radical on a surface of a silicon lattice plane during the growth of a-Si:H using MDS. The mechanisms of physical and chemical interactions of low temperature plasmas with surfaces can be explored using MDS [14].
For a CH4/H2 mixture, Farouk et al. used the Monte Carlo method (PIC/MC); they calculated the ionization rate of the plasma and the deposition rate of the thin layer [15]. Rodgers et al. [16] have developed three-dimensional Monte Carlo simulations of diamond (100) surface CVD. Other works on MCS are in [17, 18, 19].
In our previous works [20, 21, 22, 23, 24], we were interested in the study of the gas phase and the interaction of plasmas with the surface, for SiH4/H2 and CH4/H2 gas mixtures during PECVD processes. The used numerical simulation techniques were MCS and MDS. To complete the studies, we used the fluid model [25].
The starting point of numerical simulation is a physical phenomenon; its purpose is to obtain useful physical results. Between these two points, several steps can be identified. These steps are general and they are applicable for MCS. The steps can be summarized as follows:
The physical phenomenon must be defined by the description of the dominant domain of physics. The main assumptions and simplifying approximations are necessary to understand the physical phenomenon and the design of the first model.
Mathematical model requires a mathematical formulation of the problem. It may be a problem of elements or discrete object or a problem of a continuous medium; it may be a spatiotemporal problem or frequency problem and may be a deterministic or probabilistic problem.
It would be interesting to know the mathematical equations that govern the phenomenon:
The forces between particles and elements
The potential interaction
The determination of a time scale
The determination of a length scale
Definition of constant magnitudes of motion and equilibrium magnitudes
Continuity equations, balance equations, transfer equations, etc.
The MCS technique has been chosen for this work; knowing its basic algorithm is necessary for elaborating the simulation. This step requires some actions:
Validation of the model on simple cases
Simulation calculation on complex phenomena
The MCS is based on a probabilistic process with a random choice of configurations and samples of the situation of the physical system. The two pedagogical examples most cited in the literature are the integration of a single variable function and Ising’s model of spin. In the following subsection, we define the integration of a single variable function. We introduce the Ising model at the end of Section 4.2.2.
Calculation of the definite integral for a function f(x) of a single variable x on domain {a, b} has been proposed (Figure 1):
The integral of a function f(x).
Let:
Let xi and yi be real random numbers (i = 1, 2,…, N), and let H be a real number greater than the f(x) for x belonging to the domain {a, b} (or x ∈ {a, b}).
Let r1 and r2 be two random numbers belonging to the domain {0, 1} according to a uniform distribution law. Generators (e.g., Ran, RANDOM, RANDUM, or other IMSL mathematical libraries) of random numbers can be used:
where xi and yi are random numbers (xi ∈ {a, b} and yi ∈ {0, H}).
The Monte Carlo (MC) method is based on a probabilistic process. Let N be the total number of cases chosen (possible cases). It is necessary to count the number of favorable cases (or the number of points below the curve y = f(x)); let yi ≤ f(xi)). The number of favorable cases is Nfav. When N➔∞, the value I of the integral is [26]:
An example [26] is the calculation of the value π by calculating the integral I on a quarter circle of unit radius (R = 1.0). The pairs of random numbers (xi, yi) satisfying the condition: xi2 + yi2 ≤ 1. The function f(x) is equal to
We take a = 0.0, b = 1.0, and H = 1.0.
For different values of N, we show that the numerical solution tends to π = 4I.
Although this integral is simple, it shows the strength and simplicity of the method. The technique can be generalized for the integration of multivariate functions.
We note that integration by the MC method is based on:
The choice of random configurations according to a uniform distribution law
Each configuration chosen is either favorable or unfavorable (the “or” is exclusive).
For statistical physics problems, the probabilistic choice of configurations is not always deterministic; the favorable and unfavorable cases are not exclusive. According to the Metropolis algorithm [26, 27], the steps of the simulation are:
Choice of a simulation cell of adequate shape to the studied phenomena. The size of the simulation cell is related to a scale of length characteristic of the forces and interaction potential of the studied phenomenon. This cell may contain Npc particles (and/or elements).
Choice of an initial configuration that responds to some physical and thermodynamic properties. The total or internal energy of the system is Ei.
Infinitesimal random displacement of a particle (or element of the system) and calculation of the new internal energy of the system Ef. This displacement is related to the physical magnitudes: time scale and length scale. The physical system tends toward a minimization of the internal energy of the system with some fluctuation. Let ΔE = Ef-Ei the fluctuation.
If ΔE ≤ 0; the new configuration is retained (favorable) and the different averages can be obtained; go to step (c).
If ΔE > 0; a random number ε is chosen such that 0 < ε < 1. Let the probability Pr equal to: Pr = exp. (−ΔE/kBT) (where kB is the Boltzmann constant and T is the temperature).
If ε < Pr, accept the move and in any case go back to step (c) for a new choice of an infinitesimal displacement (new configuration). Note that if such a trial move is rejected, the old configuration is again counted in the averaging with probability Pr.
Figure 2 shows how to choose between the selected configurations. Let ε be a random number following a uniform law; If ε1 ≤ Pr the configuration is retained, and if ε2 > Pr the configuration is rejected.
Configuration choice according to Metropolis scheme.
Numerical simulation using the MC method is a very important tool for the study of static properties. The basic algorithm is based on probability notions. Understanding of the distribution function and/or interaction potentials is the heart of the calculation.
In equilibrium statistical physics, the system has a certain probability that can be in any states. The probability of being in a state μ with energy H(μ) is given by the Boltzmann distribution P(μ):
where T is the absolute temperature and kB is called Boltzmann’s constant. It is conventional to denote the quantity (kBT)−1 by the symbol β. The normalizing factor Z, or partition function, is given by:
The average of a quantity Q fora system in equilibrium is:
The internal energy U, is given by:
which can be written in terms of a derivative of the partition function:
From thermodynamics we have expressions for the specific heat C, the entropy S, and the Helmholtz free energy F:
or
and
and
We can calculate other parameters affecting the system.
The Monte Carlo method is an excellent technique for estimating probabilities, and we can take advantage of this property in evaluating the results. The simplest and most popular model of a system of interacting variables in statistical physics is the Ising model. It consists of spins σi which are confined to the sites of a lattice and which may have only the values (+1) and (−1). These spins interact with their nearest neighbors on the lattice with interaction constant J; they can interact with an external magnetic field B coupling to the spins. The Hamiltonian H for this model is [26]:
The Ising model has been studied in one and two dimensions to obtain results of thermal properties, phase transition, and magnetic properties [26, 27, 28]. For chosen values of J and/or B, different steps may be taken for the calculations (simulation cell, initialization, configurations, boundary conditions, calculation algorithms). For any configuration, each spin takes the two possible directions. The detail of the calculation procedure is not the purpose of this chapter.
We give a system of N particles (atoms, molecules, ions or particles) placed in a cell of fixed volume, generally of cubic form. The initial positions may, depending on the case, be distributed randomly according to a certain law (uniform or otherwise) or have a given symmetry. In a fluid, a gas, or a plasma, the particles may have random positions in general; in a solid or surface, with a crystal structure, the particles take ordered positions. The choice of random initial positions allows great freedom on the choice of the number of particles in the cell.
At the first step, the particles are given velocities that are generally selected to have a zero total momentum. If the system is in thermodynamic equilibrium, the initial velocities will be randomly chosen according to a Maxwell-Boltzmann law. In the general case, the velocity distribution is according to the problem dealt with. All other phase properties can be initialized to the particles; the main thing is the conservation of the total quantities of the system.
The particles interact with each other according to chosen interaction potentials. Since the interaction potentials are specific for each “numerical experiment,” the main part of the work consists in calculating the interaction energies for each proposed configuration.
The choice of interaction potentials is directly related to the mathematical formulation of the problem according to the state of the medium: fluid, gas, plasma, or solid. It can be Lennard-Jones potential, Coulomb potential, Debye potential, Morse potential, Stillinger-Weber potential, Born-Mayer potential, Moliere potential, or others.
In general, two main boundary conditions are used: periodic boundary conditions (PBC) and minimum image convention (MIC) [29].
To minimize the surface effect, periodic boundary conditions (PBC) [30] are invariably imposed. The simulation cell is reproduced throughout the space to form an infinite mesh. We can simulate the properties of an infinite system. The particles that we follow are in the central cell; if a particle crosses a wall with a certain velocity, its image returns with the same velocity by the opposite wall. Under these conditions, the number of particles in the central cell, and consequently the density, is constant. These conditions also allow the conservation of the energy and the momentum of the system and do not introduce periodic effects (because of the interaction between particles).
According to the hypotheses and according to the geometry of the problem, other boundary conditions are proposed [26]. For example, in order to model thin films, the simulation cells are longitudinal and parallel to the film; one uses PBC in the directions parallel to the film. In the direction normal to the film, free edge boundary conditions can be used. In such cases, it may be appropriate to also include surface fields and surface interactions. In this way, one can study phenomena such as wetting, interface localization-delocalization transitions, surface-induced ordering and disordering, etc.
The core of the program includes calculating the potential energies of particle configuration and particle collisions. The interactions and collisions between particles can be elastic or inelastic; they can be binary or collective. For computation, the interaction energy of a particle with its neighbors is carried out by refocusing a base cell on the particle. This particle only interacts with particles in this region. This is called the “minimal image convention” (MIC) [1].
Generally, a RANDOM generator of real random numbers ri belonging to the domain {0, 1} (or ri ∈ {0, 1} is available. This distribution law is uniform.
To have a real random number xi belonging to the domain {a, b} (or xi
To have a real random number xi belonging to the domain {a, b} (or xi ∈ {a,b}) according to a formula (or law) of nonuniform distribution f(x), a histogram technique is used. Let Nm be the number of intervals. If the mesh is regular (Figure 3):
Random number selection according to f (x) distribution.
We define:
We define the sequence:
and the sequence:
Hence each real random number ri belongs to the domain {0, 1} (where ri ∈ {0, 1}) (according to the uniform law); this number belongs to the domain {rxj-1, rxj}. It corresponds to a random value xran of the domain {xj-1, xj}; this number satisfies the formula (or the law) of nonuniform distribution f(x).
This technique can be generalized for a nonuniform distribution law f(x) with an irregular mesh Δxi, or with tabular data f(xi) with i = 1,…, m.
The technique can be generalized, too, for a discrete distribution law f(i) with i = 1,…, m.
In the literature, the reader can find simple algorithms for the choice of random numbers of some simple functions (Gaussian, etc.).
It is necessary to find some parameters allowing the control of the smooth course of the evolution of the system. We must look for the constants of movement. For example for an isolated system, we have the conservation of the total energy and the quantity of matter.
By using the numerical simulation, it is possible to calculate many spatiotemporal quantities F(r,t). These quantities can be positions, speeds, kinetic moments, particle energies, concentrations, transport coefficients, etc. It would then be possible to calculate all other quantities related to F(r,t).
For the calculation of the averages, one can note the quantities on the space, on the time or on both. The histogram methods can be used. Static or dynamic distribution functions and spatial or temporal correlation functions can be calculated. It should be noted that the SMC is much more adequate for static properties because of the probabilistic choice of configurations.
Any calculated function or parameter F(r,t) can be used for another application in another calculation program.
In the MCS model discussed extensively in this chapter, it’s more about collisions between particles. It’s particle-particle MCS or PP-MCS. In many problems of physics, the general idea is the same, but the applications and proposed models are numerous.
Other MCS models, named particle-in-cell MCS (PIC-MCS), are based on particle-cell interactions. In these last models, we also use a probabilistic choice of configurations and small variations in the state of the system (following the Metropolis algorithm); the interaction is between the particle with a cell, a mesh, or a drop. The parameters and variables of the cell, although local and instantaneous, are macroscopic. These parameters and variables can be thermodynamic, fluid, or electromagnetic. An example of the model based on PIC-MCS is described by Mattei et al. [31] for simulation of electromagnetic particle-in-cell collision in inductively coupled plasmas. Several works can be found in the literature on this same line of work. Other MCS models using particles may be considered. [32].
For statistical physics problem solving (such as thin film deposition problems), MCS models use experimental, numerical, or theoretical data from other methods and models. Models can be improved to hybrid models. In the hybrid models, connections between two modules can be realized. The first module is MCS; the second module is fluid, electromagnetic, or other. An example of a three-module hybrid model is presented by Mao and Bogaerts [33] to study gas mixtures in PECVD system. The three modules are MCS, fluid, and electromagnetic. The first module EM calculates the electromagnetic fields by solving Maxwell equations. These fields are used as inputs in the module MCS, where the electron density, electron temperature, electron energy distribution function, and electron impact reaction rates can be computed with a Monte Carlo procedure. Subsequently, the module fluid calculates densities and fluxes of the various plasma species (i.e., heavy particles and electrons) with continuity equations and the electrostatic field with Poisson’s equation. This electrostatic field is used as input again in the EM. This cycle is iterated until convergence. The schematic of the hybrid model is given in Figure 4.
Schematic of a hybrid model of three modules used to study gas mixtures in the PECVD [33].
To solve statistical physics problems with evolutions as a function of time, kinetic models of MCS (kMCS) are used. Using kMCS, Battaile and Srolovitz [17] described kinetic phenomena of the diffusive motion of a single interstitial atom in a close-packed metal crystal. The motion of the interstitial atom is usually limited to two types: vibration of the atom around the center of the interstitial hole in which it resides and hops to nearest-neighbor interstitial sites. The atom can hop into any of the nearest-neighbor interstitial sites; it executes a random walk. In an MC simulation of this diffusion process, the new position of the interstitial atom is chosen at random from a list of the adjacent interstitial sites.
Other CVD and PECVD works on MCS are presented in Ref.s [15, 34, 35, 36, 37, 38]. They show how MCS methods can study properties of gas mixtures and properties of the growth of thin films.
In this section, we present an example of PP-MCS of collisions and reactions in gas phase of SiH4/H2 mixture used in PECVD process. Some paragraphs have been treated in previous works [21, 24].
We use a MCS to study collisions and chemical reactions in gas phase of SiH4/H2 mixture used in the PECVD process. In this phase, important reactions have been identified that contribute to the production and the consumption of hydrogen (H), silylene (SiH2), and silyl (SiH3). The hydrogen consumption reactions SiH4 + H → SiH3 + H2 and SiH3 + H → SiH2 + H2 are found to play a central role in deciding the distribution of hydrogen [39].The plasma chemistry indicates that H atoms and SiH3 radicals play an important role in the a-Si:H deposition process [40]. Experimentally, it is generally accepted that SiH3 radicals dominate a-Si:H and μc-Si film growth from SiH4 plasmas in the PECVD; it is the key precursor of a-Si:H deposition [41]. The proposed MCS allowed to get the ratio SiH2/SiH3 and mean value of densities of species. It provides information on SiH4 dissociation and on the production of SiH3, H, SiH2, and Si2H6 and other important parameters.
The plasma in the PECVD reactor is weakly ionized. For our study, the mixture gas contains 22% of SiH4 and 78% of H2; the pressure is 100 mtorr, the temperature of the gas ranges from 373 to 723 K, the electron temperature is about 2.5 eV, and the electron density is 3. 108 cm−3. The process is considered to be stationary. We take into account electrons and eight neutral species (SiH4, SiH3, SiH2, H, H2, Si2H6, Si2H5, SiH). Reactions taken into account include seven electron-neutral and 14 neutral-neutral reactions. Table 1 shows the 21 reactions and rate constants Kreac. At low temperature, the neutrals interact occasionally with each other and move under the effect of thermal agitation; their velocity distribution function is Maxwell-Boltzmann distribution. Electrons have the mean velocity with kinetic energy Te.
Symbol | Reactions | Kreac (cm3/s) |
---|---|---|
R1 | SiH4 + e→SiH3 + H+e | k1 = 3 × 10−11 [42] |
R2 | SiH4 + e→SiH2 + 2H + e | K2 = 1.5 × 10−10 [42] |
R3 | SiH4 + e→SiH + H + H2 + e | K3 = 9.34 × 10−12 [42] |
R4 | SiH4 + e→SiH2 + H2 + e | K4 = 7.19 × 10−12 [42] |
R5 | H2 + e→2H + e | K5 = 4.49 × 10−12 [42] |
R6 | Si2H6 + e→SiH3 + SiH2 + H + e | K6 = 3.72 × 10−10 [42] |
R7 | Si2H6 + e→SiH4 + SiH2 +e | K7 = 1.1 × 1010× (1.(1./(1. + (0.63 × P)))) [43] |
R8 | SiH4 + H→SiH3 + H2 | K8 = 2.8 × 10−11 × exp.(−1250/T) [44] |
R9 | SiH4 + SiH2→Si2H6 | K9 = 1.1 × 1010 × (1.−(1./(1. + (0.63 × P)))) [43] |
R10 | SiH3 + SiH3→SiH4 + SiH2 | K10 = 0.45 × 1.5 × 10−10 [44] |
R11 | SiH4 + Si2H5→SiH3 + Si2H6 | K11 = 5 × 10−13 [42] |
R12 | SiH3 + H→SiH2 + H2 | K12 = 2 × 10−11 [44] |
R13 | SiH3 + Si2H6→SiH4 + Si2H5 | K13 = 4 × 10−10 × exp. (−2500/T) [44] |
R14 | SiH2 + H→SiH + H2 | k14 = 2 × 10−11 [44] |
R15 | Si2H6 + H→Si2H5 + H2 | K15 = 0.66 × 2.4 × 10−10 × exp. (−1250/T) [43] |
R16 | Si2H6 + H→SiH4 + SiH3 | K16 = 0.34 × 2.4 × 10−10 × exp. (−1250/T) [44] |
R17 | SiH + H2→SiH3 | K17 = 2 × 10−12 [43] |
R18 | SiH2 + SiH3→Si2H5 | K18 = 3.77 × 10−13 [43] |
R19 | SiH2 + H2→SiH4 | K19 = 3 × 10−12 × (1. + (1./1. + (0.03 × P))) [43] |
R20 | 2SiH3→Si2H6 | K20 = 0.1 × 1.5 × 10−10 [43] |
R21 | SiH4 + SiH→Si2H5 | K21 = (1.−(1./(1. + (0.33 × P)))) × (6.9 × 10−10) [43] |
List of gas phase reactions and corresponding rate constants [24].
Let
And chemical reaction for the production of A is as:
Rate production and consumption for any species A are taken as:
The MCS is based on binary collisions at the microscopic level. Elastic collisions are between all particles, and inelastic collisions (or effective collisions) are those that result in a chemical reaction. A chemical reaction needs a collision involving at least two particles (atoms, ions, electrons, or molecules). According to kinetic theory, gases consist of particles in random motion. These particles are uniformly distributed in a cell which has a parallelepiped form of sizes Lx, Ly, and Lz (Figure 5). These particles move in a straight line until they collide with other particles or the walls of their container. Dimensions and volume of Monte Carlo cell must take into consideration the mean free path of species.
Form of the simulation cell.
Let ni be the density of neutral spice i (i = 1,…, 8). The first particle i is randomly chosen according to a probability of neutral species Prsp,I (nonuniform discrete distribution) given by:
The chosen particle takes randomly three components of space in cell ri(xi, yi, zi) according to the normal distribution (nonuniform distribution). It takes also randomly three components of velocity vi (vxi, vyi, vzi) according to Maxwell-Boltzmann distribution.
Let ni and nj be the densities of species i and j in the gas and Vij the relative velocity between the two species i and j.
According to the kinetic theory of gases, we have for an incident particle i on a target particle j the average collision frequency νij as:
where <sij> is the cross section of the particle j.
The mean free path <λι> of species i is:
The time between two collisions τij is then:
For chemical effective reactions (inelastic collisions) between two reactive species i and j giving products i’ and j’, the rate constant reaction verifies [45]:
General rules of collision theory are applied:
The new velocities of the colliding particles are calculated using conservation of energy and momentum for elastic collisions.
Conservation of total energy as isolated system.
Movement of the center of mass and relative motion around the center of mass.
The reader can refer to some fundamental physics books that deal with general notions of collisions and corresponding parameters [45, 46, 47, 48].
The plasma in the PECVD reactor is weakly ionized. At low temperature, particles interact occasionally with each other and move under the effect of thermal agitation. In reality, only a small fraction of collisions are effective (result in a chemical reaction) [21].
In our MCS, after traveling a random walk given by a Gaussian distribution, the first chosen particle collides with a second particle (molecule, atom, radical, or electron). The last particle j is randomly chosen according to a (i-j) collision probability Prcol,j (nonuniform discrete distribution) given by:
where
The activation energy is given by:
where the pre-exponential factor is assumed to be the collision frequency factor and Kreac is the rate constant of the gas phase reaction.
The two colliding particles (e.g., the electron and SiH4 molecule) can interact by several reactions (R1, R2, R3, and R4 in Table 1); we choose randomly one of gas phase reactions occurring according to a, nonuniform discrete distribution reaction probability Prreac (i,j):
where
All chemical systems go naturally toward states of minimum Gibbs free energy [21, 24]. A chemical reaction tends to occur in the direction of lower Gibbs free energy. To determine the direction of the reaction that is taking place, we use the old and new values of Kreac and the equilibrium constant with reactants and product concentrations. Each set of binary collisions can be related or converted into time. As cited in section (a), Table 1 gives gas phase reactions and corresponding rate constants used in this MCS.
To continue the simulation, after the elastic collision, particle i takes new values of components velocity and new mean free path; mean free path is taken from a normal (nonuniform) distribution (Gaussian distribution). If the collision is inelastic, we have to take a new particle.
From Metropolis algorithm, the scheme of this MCS is as follows:
Choices of particle of spice i with random position, velocity, and mean free path; periodic boundary conditions are used to keep particles in the elementary cell.
Choices of random collision with a spice j.
Study of collision type (elastic, inelastic). If the collision is elastic the particle i move with a new velocity and mean free path, and we return to step (b). If the collision is inelastic particles i and j give new particles i’ and j’, according to Metropolis scheme, and we return to step (a) or (b). Periodic boundary conditions are used to keep particles in the elementary cell.
At each step, we can note the different statistics.
Once the species are selected for the simulation model, an estimate of species densities should be made. Following the model of interaction and collisions between particles (binary, collective, etc.), a first choice of the minimum number Ni of particles of each species is made. A first estimate of the sizes (Lx, Ly, Lz) of the elementary cell is made.
The study of the types of interaction potentials and the calculation of the approximate values of the force ranges, the kinetic energies, the internal energies, and the energies of activation make it possible to correct the minimal numbers Ni of particles and the sizes (Lx, Ly, Lz) of the elementary cell.
Let kp be the number of a species, kp = 1,…, 9. The minimal numbers Qnp(kp) and the sizes (Lx, Ly, Lz) have to be discussed for statistical calculations.
For numerical programming, according to the programming language used and according to the size (or the computational capacity) of the computer, it is necessary to find a judicious choice of the tables of integer or real values and which values would be useful to save all during simulation. Let Ncol,m be the maximum number of elastic collisions per particle, and let Ncycle be the number of cycles to average the simulation calculations.
For this MCS, the numerical chosen values are in Table 2.
Cell dimensions and steps for collisions | Number of species Kp | Initial number of particles in cell | ||
---|---|---|---|---|
Lx (m) | 4.68 10−6 | 1 | Qnp(SiH4) | Qnp1 |
Ly (m) | 4.68 10−6 | 2 | Qnp(SiH3) | 10 |
Lz (m) | 20.0 10−3 | 3 | Qnp(SiH2) | 10 |
4 | Qnp(H) | 10 | ||
Ncol,m | 500 | 5 | Qnp(H2) | Qnp5 |
Ncycle internal cycle | 2000 | 6 | Qnp(Si2H6) | 10 |
Ncycle external cycle | 200,000 | 7 | Qnp(SiH) | 10 |
8 | Qnp(Si2H5) | 10 | ||
9 | Qnp(e) | Qnp9 |
Used quantities and parameters in calculations for the gas temperature Tg = 520 K.
For radicals (e.g., SiH3), particle numbers Qnp(k) are very small; we take Qnp(k) = 10. These numbers cannot take value 1 or 0, even if a species k is in trace form in the gas. The value 0 for a species k means that any other species k’ does not make a collision with the species k; and the value 1 means that we have no collisions between particles of the same species in the cell.
Qnp1, Qnp5, and Qnp9 are calculated from the volume of cell, the pressure, the temperature, and the total number of particles in the cell (Qnp1 = 0.81187824 * 109; Qnp5 = 0.20296956 * 109; Qnp9 = 131).
As we have chosen a stationary regime, we must reach the values and properties at equilibrium. The results of the simulation show this trend. In MCS, averaged values, distribution functions, autocorrelation functions, and correlation functions can be calculated. To ensure rapid convergence of calculations, it would be useful to look for statistically symmetric (or stationary or unsteady) parameters [26, 50].
As an example for our MCS calculation, we have:
The number of Si2H6, SiH, and Si2H5 particles reaching the surface is negligible.
Let Ns,i and Ns, H2 be the densities of a species i and H2 reaching the surface. The ratios Ns,i/Ns, H2 are too small (Table 3).
Let Ns,i be the density of a species i reaching the surface and Nv,i the density of same species i in volume. The ratios Ns,i/Nv,i are too small (Table 4); the surface effect is negligible.
The reactions begin with the dissociation (consumption) of H2 and SiH4 by R5, R1, and R2 reactions.
The production of SiH3 is done by R8, and then there is production of SiH2 by R12.
The reaction R2: SiH4 + e → SiH2 + 2H + e plays the central role in SiH4 dissociation by electron impact [24]. This result is compatible with [39].
The second important chemical reaction in the SiH4 dissociation is R1: SiH4 + e → SiH3 + H + e [24]. This result is compatible with that of Perkins et al. [51] and that of Doyle et al. [52].
Type | H2 | SiH4 | H | SiH3 | SiH2 |
---|---|---|---|---|---|
Ns,i/Ns, H2 | 1 | 0.23 | 1.67 10−4 | 8.60 10−5 | 9.86 10−6 |
Ratios Ns,i/Ns, H2 of particles reaching the surface compared to H2.
Type | SiH4 | SiH3 | SiH2 |
---|---|---|---|
v, j | 6.695 10−6 | 7.965 10−6 | 775 10−6 |
Ratios Ns,i/Nv,i of particles reaching the surface compared to volume.
MCS is a widely used method in statistical physics to study thermodynamic, structural, or phase properties. It is based on random and probabilistic processes. The purpose of this chapter is to present the technique for general use in physics for the study of thin film deposition problems. The technique can be generalized to other fields of science: biology, economics, transportation, and social sciences.
We started by presenting general rules for numerical simulation methods. Metropolis algorithm has been considered as the basic algorithm. After, we presented the different steps for the realization of a MCS code. We chose the particle-particle model MCS (PP-MCS) to explain the different steps and procedures to be applied in the deposition of thin layers by PECVD processes. We have shown that this technique can be generalized to the particle-in-cell MCS (PIC-MCS) case or kinetic MCS (kMCS), as it can be joined with other modules to give hybrid models. It is important to know how to choose random configurations from the laws or probability distributions in the system.
A numerical application is presented for collisions in a SiH4/H2 gas mixture in the PECVD process. A preliminary work of determination of the chemical reactions between molecules and radicals is made. A choice of the simulation cell is made, and the definition of the probabilities of the collisions between peers is made. The Metropolis algorithm makes it possible to follow the various elastic and inelastic collisions; it also makes it possible to make the statistics of the interactions with the surface. The results are compatible with [39, 51, 52].
Other questions may be asked to account for molecular ions, surface and volume kinetics, or thin film formation. The techniques and different models of the MCS (PP-MCS, MCS-PIC, kMCS) allow taking care of these questions.
The interconnection of the MCS with other models (MDS, hybrid model, fluid model, electromagnetic model, etc.) would allow answering more questions. The methods can be applied to other specialties than the physical sciences.
"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality. Throughout the world, we are seeing progress in attracting, retaining, and promoting women in STEMM. IntechOpen are certainly supporting this work globally by empowering all scientists and ensuring that women are encouraged and enabled to publish and take leading roles within the scientific community." Dr. Catrin Rutland, University of Nottingham, UK
",metaTitle:"Advantages of Publishing with IntechOpen",metaDescription:"We have more than a decade of experience in Open Access publishing. \n\n ",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"We have more than a decade of experience in Open Access publishing. The advantages of publishing with IntechOpen include:
\\n\\nOur platform – IntechOpen is the world’s leading publisher of OA books, built by scientists, for scientists.
\\n\\nOur reputation – Everything we publish goes through a two-stage peer review process. We’re proud to count Nobel laureates among our esteemed authors. We meet European Commission standards for funding, and the research we’ve published has been funded by the Bill and Melinda Gates Foundation and the Wellcome Trust, among others. IntechOpen is a member of all relevant trade associations (including the STM Association and the Association of Learned and Professional Society Publishers) and has a selection of books indexed in Web of Science's Book Citation Index.
\\n\\nOur expertise – We’ve published more than 4,500 books by more than 118,000 authors and editors.
\\n\\nOur reach – Our books have more than 130 million downloads and more than 146,150 Web of Science citations. We increase citations via indexing in all the major databases, including the Book Citation Index at Web of Science and Google Scholar.
\\n\\nOur services – The support we offer our authors and editors is second to none. Each book in our program receives the following:
\\n\\nOur end-to-end publishing service frees our authors and editors to focus on what matters: research. We empower them to shape their fields and connect with the global scientific community.
\\n\\n"In developing countries until now, advancement in science has been very limited, because insufficient economic resources are dedicated to science and education. These limitations are more marked when the scientists are women. In order to develop science in the poorest countries and decrease the gender gap that exists in scientific fields, Open Access networks like IntechOpen are essential. Free access to scientific research could contribute to ameliorating difficult life conditions and breaking down barriers." Marquidia Pacheco, National Institute for Nuclear Research (ININ), Mexico
\\n\\nInterested? Contact Ana Pantar (book.idea@intechopen.com) for more information.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'We have more than a decade of experience in Open Access publishing. The advantages of publishing with IntechOpen include:
\n\nOur platform – IntechOpen is the world’s leading publisher of OA books, built by scientists, for scientists.
\n\nOur reputation – Everything we publish goes through a two-stage peer review process. We’re proud to count Nobel laureates among our esteemed authors. We meet European Commission standards for funding, and the research we’ve published has been funded by the Bill and Melinda Gates Foundation and the Wellcome Trust, among others. IntechOpen is a member of all relevant trade associations (including the STM Association and the Association of Learned and Professional Society Publishers) and has a selection of books indexed in Web of Science's Book Citation Index.
\n\nOur expertise – We’ve published more than 4,500 books by more than 118,000 authors and editors.
\n\nOur reach – Our books have more than 130 million downloads and more than 146,150 Web of Science citations. We increase citations via indexing in all the major databases, including the Book Citation Index at Web of Science and Google Scholar.
\n\nOur services – The support we offer our authors and editors is second to none. Each book in our program receives the following:
\n\nOur end-to-end publishing service frees our authors and editors to focus on what matters: research. We empower them to shape their fields and connect with the global scientific community.
\n\n"In developing countries until now, advancement in science has been very limited, because insufficient economic resources are dedicated to science and education. These limitations are more marked when the scientists are women. In order to develop science in the poorest countries and decrease the gender gap that exists in scientific fields, Open Access networks like IntechOpen are essential. Free access to scientific research could contribute to ameliorating difficult life conditions and breaking down barriers." Marquidia Pacheco, National Institute for Nuclear Research (ININ), Mexico
\n\nInterested? Contact Ana Pantar (book.idea@intechopen.com) for more information.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"58592",title:"Dr.",name:"Arun",middleName:null,surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/58592/images/1664_n.jpg",biography:"Arun K. Shanker is serving as a Principal Scientist (Plant Physiology) with the Indian Council of Agricultural Research (ICAR) at the Central Research Institute for Dryland Agriculture in Hyderabad, India. He is working with the ICAR as a full time researcher since 1993 and has since earned his Advanced degree in Crop Physiology while in service. He has been awarded the prestigious Member of the Royal Society of Chemistry (MRSC), by the Royal Society of Chemistry, London in 2015. Presently he is working on systems biology approach to study the mechanism of abiotic stress tolerance in crops. His main focus now is to unravel the mechanism of drought and heat stress response in plants to tackle climate change related threats in agriculture.",institutionString:null,institution:{name:"Indian Council of Agricultural Research",country:{name:"India"}}},{id:"4782",title:"Prof.",name:"Bishnu",middleName:"P",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4782/images/system/4782.jpg",biography:"Bishnu P. Pal is Professor of Physics at Mahindra École\nCentrale Hyderabad India since July 1st 2014 after retirement\nas Professor of Physics from IIT Delhi; Ph.D.’1975 from IIT\nDelhi; Fellow of OSA and SPIE; Senior Member IEEE;\nHonorary Foreign Member Royal Norwegian Society for\nScience and Arts; Member OSA Board of Directors (2009-\n11); Distinguished Lecturer IEEE Photonics Society (2005-\n07).",institutionString:null,institution:{name:"Indian Institute of Technology Delhi",country:{name:"India"}}},{id:"69653",title:"Dr.",name:"Chusak",middleName:null,surname:"Limsakul",slug:"chusak-limsakul",fullName:"Chusak Limsakul",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Prince of Songkla University",country:{name:"Thailand"}}},{id:"75563",title:"Dr.",name:"Farzana Khan",middleName:null,surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75563/images/system/75563.png",biography:"Dr Farzana Khan Perveen (FLS; Gold-Medallist) obtained her BSc (Hons) and MSc (Zoology: Entomology) from the University of Karachi, MAS (Monbush-Scholar; Agriculture: Agronomy) and from the Nagoya University, Japan, and PhD (Research and Course-works from the Nagoya University; Toxicology) degree from the University of Karachi. She is Founder/Chairperson of the Department of Zoology (DOZ) and Ex-Controller of Examinations at Shaheed Benazir Bhutto University (SBBU) and Ex-Founder/ Ex-Chairperson of DOZ, Hazara University and Kohat University of Science & Technology. \nShe is the author of 150 high impact research papers, 135 abstracts, 4 authored books and 8 chapters. She is the editor of 5 books and she supervised BS(4), MSc(50), MPhil(40), and Ph.D. (1) students. She has organized and participated in numerous international and national conferences and received multiple awards and fellowships. She is a member of research societies, editorial boards of Journals, and World-Commission on Protected Areas, International Union for Conservation of Nature. Her fields of interest are Entomology, Toxicology, Forensic Entomology, and Zoology.",institutionString:"Shaheed Benazir Bhutto University",institution:{name:"Shaheed Benazir Bhutto University",country:{name:"Pakistan"}}},{id:"23804",title:"Dr.",name:"Hamzah",middleName:null,surname:"Arof",slug:"hamzah-arof",fullName:"Hamzah Arof",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/23804/images/5492_n.jpg",biography:"Hamzah Arof received his BSc from Michigan State University, and PhD from the University of Wales. Both degrees were in electrical engineering. His current research interests include signal processing and photonics. Currently he is affiliated with the Department of Electrical Engineering, University of Malaya, Malaysia.",institutionString:null,institution:{name:"University of Malaya",country:{name:"Malaysia"}}},{id:"41989",title:"Prof.",name:"He",middleName:null,surname:"Tian",slug:"he-tian",fullName:"He Tian",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"East China University of Science and Technology",country:{name:"China"}}},{id:"33351",title:null,name:"Hendra",middleName:null,surname:"Hermawan",slug:"hendra-hermawan",fullName:"Hendra Hermawan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/33351/images/168_n.jpg",biography:null,institutionString:null,institution:{name:"Institut Teknologi Bandung",country:{name:"Indonesia"}}},{id:"11981",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Ishiguro",slug:"hiroshi-ishiguro",fullName:"Hiroshi Ishiguro",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Osaka University",country:{name:"Japan"}}},{id:"45747",title:"Dr.",name:"Hsin-I",middleName:null,surname:"Chang",slug:"hsin-i-chang",fullName:"Hsin-I Chang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/no_image.jpg",biography:null,institutionString:null,institution:{name:"National Chiayi University",country:{name:"Taiwan"}}},{id:"61581",title:"Dr.",name:"Joy Rizki Pangestu",middleName:null,surname:"Djuansjah",slug:"joy-rizki-pangestu-djuansjah",fullName:"Joy Rizki Pangestu Djuansjah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/61581/images/237_n.jpg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"94249",title:"Prof.",name:"Junji",middleName:null,surname:"Kido",slug:"junji-kido",fullName:"Junji Kido",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Yamagata University",country:{name:"Japan"}}},{id:"12009",title:"Dr.",name:"Ki Young",middleName:null,surname:"Kim",slug:"ki-young-kim",fullName:"Ki Young Kim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12009/images/system/12009.jpg",biography:"Http://m80.knu.ac.kr/~doors",institutionString:null,institution:{name:"National Cheng Kung University",country:{name:"Taiwan"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5763},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10365},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15784}],offset:12,limit:12,total:10365},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"6"},books:[{type:"book",id:"8977",title:"Protein Kinase - New Opportunities, Challenges and Future Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"6d200cc031706a565b554fdb1c478901",slug:null,bookSignature:"Dr. Rajesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",editedByType:null,editors:[{id:"329385",title:"Dr.",name:"Rajesh",surname:"Singh",slug:"rajesh-singh",fullName:"Rajesh Singh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9659",title:"Fibroblasts - Advances in Cancer, Autoimmunity and Inflammation",subtitle:null,isOpenForSubmission:!0,hash:"926fa6446f6befbd363fc74971a56de2",slug:null,bookSignature:"Ph.D. Mojca Frank Bertoncelj and Ms. Katja Lakota",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",editedByType:null,editors:[{id:"328755",title:"Ph.D.",name:"Mojca",surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10797",title:"Cell Culture",subtitle:null,isOpenForSubmission:!0,hash:"2c628f4757f9639a4450728d839a7842",slug:null,bookSignature:"Prof. Xianquan Zhan",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",editedByType:null,editors:[{id:"223233",title:"Prof.",name:"Xianquan",surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10800",title:"Ligase",subtitle:null,isOpenForSubmission:!0,hash:"1f10ff112edb1fec24379dac85ef3b5b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10800.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10801",title:"Uric Acid",subtitle:null,isOpenForSubmission:!0,hash:"d947ab87019e69ab11aa597edbacc018",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10837",title:"Peroxisomes",subtitle:null,isOpenForSubmission:!0,hash:"0014b09d4b35bb4d7f52ca0b3641cda1",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10838",title:"Ion Channels",subtitle:null,isOpenForSubmission:!0,hash:"048017b227b3bdfd0d33a49bac63c915",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10840",title:"Benzimidazole",subtitle:null,isOpenForSubmission:!0,hash:"9fe810233f92a9c454c624aec634316f",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,isOpenForSubmission:!0,hash:"64617cf21bf1e47170bb2bcf31b1fc37",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:13},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:6},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:14},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:27},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:9},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.png",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9864",title:"Hydrology",subtitle:null,isOpenForSubmission:!1,hash:"02925c63436d12e839008c793a253310",slug:"hydrology",bookSignature:"Theodore V. Hromadka II and Prasada Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9864.jpg",editors:[{id:"181008",title:"Dr.",name:"Theodore V.",middleName:"V.",surname:"Hromadka II",slug:"theodore-v.-hromadka-ii",fullName:"Theodore V. Hromadka II"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9083",title:"Rodents",subtitle:null,isOpenForSubmission:!1,hash:"480148de5ecf236b3e0860fc3954b2d4",slug:"rodents",bookSignature:"Loth S. Mulungu",coverURL:"https://cdn.intechopen.com/books/images_new/9083.jpg",editors:[{id:"108433",title:"Dr.",name:"Loth S.",middleName:null,surname:"Mulungu",slug:"loth-s.-mulungu",fullName:"Loth S. Mulungu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5220},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"112",title:"Biomedical Engineering",slug:"engineering-biomedical-engineering",parent:{title:"Engineering",slug:"engineering"},numberOfBooks:63,numberOfAuthorsAndEditors:1947,numberOfWosCitations:3297,numberOfCrossrefCitations:1685,numberOfDimensionsCitations:4225,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"engineering-biomedical-engineering",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10107",title:"Artificial Intelligence in Oncology Drug Discovery and Development",subtitle:null,isOpenForSubmission:!1,hash:"043c178c3668865ab7d35dcb2ceea794",slug:"artificial-intelligence-in-oncology-drug-discovery-and-development",bookSignature:"John W. Cassidy and Belle Taylor",coverURL:"https://cdn.intechopen.com/books/images_new/10107.jpg",editedByType:"Edited by",editors:[{id:"244455",title:"Dr.",name:"John",middleName:null,surname:"Cassidy",slug:"john-cassidy",fullName:"John Cassidy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9575",title:"Recent Advances in Biomechanics",subtitle:null,isOpenForSubmission:!1,hash:"97edc53b612c683e4c79a995a9f379c0",slug:"recent-advances-in-biomechanics",bookSignature:"Redha Taiar",coverURL:"https://cdn.intechopen.com/books/images_new/9575.jpg",editedByType:"Edited by",editors:[{id:"81693",title:"Prof.",name:"Redha",middleName:null,surname:"Taiar",slug:"redha-taiar",fullName:"Redha Taiar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9236",title:"Cheminformatics and its Applications",subtitle:null,isOpenForSubmission:!1,hash:"3fed97d1719b8a321190c86985494a34",slug:"cheminformatics-and-its-applications",bookSignature:"Amalia Stefaniu, Azhar Rasul and Ghulam Hussain",coverURL:"https://cdn.intechopen.com/books/images_new/9236.jpg",editedByType:"Edited by",editors:[{id:"213696",title:"Dr.",name:"Amalia",middleName:null,surname:"Stefaniu",slug:"amalia-stefaniu",fullName:"Amalia Stefaniu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8569",title:"Intraocular Lens",subtitle:null,isOpenForSubmission:!1,hash:"2c184a80e647c0e74df5bc34318a2d8b",slug:"intraocular-lens",bookSignature:"Xiaogang Wang and Felicia M. Ferreri",coverURL:"https://cdn.intechopen.com/books/images_new/8569.jpg",editedByType:"Edited by",editors:[{id:"243698",title:"M.D.",name:"Xiaogang",middleName:null,surname:"Wang",slug:"xiaogang-wang",fullName:"Xiaogang Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7945",title:"Cryopreservation",subtitle:"Current Advances and Evaluations",isOpenForSubmission:!1,hash:"0fe037813f921f4136cd393b7ff8dfe1",slug:"cryopreservation-current-advances-and-evaluations",bookSignature:"Marian Quain",coverURL:"https://cdn.intechopen.com/books/images_new/7945.jpg",editedByType:"Edited by",editors:[{id:"72151",title:"Dr.",name:"Marian",middleName:"Dorcas",surname:"Quain",slug:"marian-quain",fullName:"Marian Quain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7439",title:"Photoacoustic Imaging",subtitle:"Principles, Advances and Applications",isOpenForSubmission:!1,hash:"05982e7eb4c7f3f165306f9b136a8ae4",slug:"photoacoustic-imaging-principles-advances-and-applications",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/7439.jpg",editedByType:"Edited by",editors:[{id:"225387",title:"Prof.",name:"Reda",middleName:null,surname:"Gharieb",slug:"reda-gharieb",fullName:"Reda Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6835",title:"Computer Methods and Programs in Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"19f08ef15d97900c94dc8fb04f9afb5f",slug:"computer-methods-and-programs-in-biomedical-signal-and-image-processing",bookSignature:"Lulu Wang",coverURL:"https://cdn.intechopen.com/books/images_new/6835.jpg",editedByType:"Edited by",editors:[{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",slug:"lulu-wang",fullName:"Lulu Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7869",title:"Advanced Endoscopy",subtitle:null,isOpenForSubmission:!1,hash:"92f6ce51b737e9086a6059ab7470eee9",slug:"advanced-endoscopy",bookSignature:"Qiang Yan and Xu Sun",coverURL:"https://cdn.intechopen.com/books/images_new/7869.jpg",editedByType:"Edited by",editors:[{id:"247970",title:"Prof.",name:"Qiang",middleName:null,surname:"Yan",slug:"qiang-yan",fullName:"Qiang Yan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8691",title:"Ultrasound Elastography",subtitle:null,isOpenForSubmission:!1,hash:"fdbf5197352ca0294bfc963ef83d1e00",slug:"ultrasound-elastography",bookSignature:"Monica Lupsor-Platon",coverURL:"https://cdn.intechopen.com/books/images_new/8691.jpg",editedByType:"Edited by",editors:[{id:"208594",title:"Associate Prof.",name:"Monica",middleName:null,surname:"Lupsor-Platon",slug:"monica-lupsor-platon",fullName:"Monica Lupsor-Platon"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7728",title:"Synthetic Biology",subtitle:"New Interdisciplinary Science",isOpenForSubmission:!1,hash:"cc50b31cb749d94a5aa38999a712ae2f",slug:"synthetic-biology-new-interdisciplinary-science",bookSignature:"Madan L. Nagpal, Oana-Maria Boldura, Cornel Baltă and Shymaa Enany",coverURL:"https://cdn.intechopen.com/books/images_new/7728.jpg",editedByType:"Edited by",editors:[{id:"182681",title:"Dr.",name:"Madan L.",middleName:null,surname:"Nagpal",slug:"madan-l.-nagpal",fullName:"Madan L. Nagpal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8125",title:"Medical Imaging",subtitle:"Principles and Applications",isOpenForSubmission:!1,hash:"e0fa3875d6f66d5ccd8cd3f1444c3fb9",slug:"medical-imaging-principles-and-applications",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/8125.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6875",title:"Bio-Inspired Technology",subtitle:null,isOpenForSubmission:!1,hash:"074fba986c7ba872f1af99c4fb65337e",slug:"bio-inspired-technology",bookSignature:"Ruby Srivastava",coverURL:"https://cdn.intechopen.com/books/images_new/6875.jpg",editedByType:"Edited by",editors:[{id:"185788",title:"Dr.",name:"Ruby",middleName:null,surname:"Srivastava",slug:"ruby-srivastava",fullName:"Ruby Srivastava"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:63,mostCitedChapters:[{id:"17237",doi:"10.5772/24553",title:"Hydrogels: Methods of Preparation, Characterisation and Applications",slug:"hydrogels-methods-of-preparation-characterisation-and-applications",totalDownloads:64259,totalCrossrefCites:61,totalDimensionsCites:210,book:{slug:"progress-in-molecular-and-environmental-bioengineering-from-analysis-and-modeling-to-technology-applications",title:"Progress in Molecular and Environmental Bioengineering",fullTitle:"Progress in Molecular and Environmental Bioengineering - From Analysis and Modeling to Technology Applications"},signatures:"Syed K. H. Gulrez, Saphwan Al-Assaf and Glyn O Phillips",authors:[{id:"58120",title:"Prof.",name:"Saphwan",middleName:null,surname:"Al-Assaf",slug:"saphwan-al-assaf",fullName:"Saphwan Al-Assaf"}]},{id:"26368",doi:"10.5772/23927",title:"Poly(Lactic Acid)-Based Biomaterials: Synthesis, Modification and Applications",slug:"poly-lactic-acid-based-biomaterials-synthesis-modification-and-applications",totalDownloads:35069,totalCrossrefCites:54,totalDimensionsCites:128,book:{slug:"biomedical-science-engineering-and-technology",title:"Biomedical Science, Engineering and Technology",fullTitle:"Biomedical Science, Engineering and Technology"},signatures:"Lin Xiao, Bo Wang, Guang Yang and Mario Gauthier",authors:[{id:"52500",title:"Prof.",name:"Guang",middleName:null,surname:"Yang",slug:"guang-yang",fullName:"Guang Yang"}]},{id:"18658",doi:"10.5772/19033",title:"Metals for Biomedical Applications",slug:"metals-for-biomedical-applications",totalDownloads:47348,totalCrossrefCites:63,totalDimensionsCites:119,book:{slug:"biomedical-engineering-from-theory-to-applications",title:"Biomedical Engineering",fullTitle:"Biomedical Engineering - From Theory to Applications"},signatures:"Hendra Hermawan, Dadan Ramdan and Joy R. P. Djuansjah",authors:[{id:"33351",title:null,name:"Hendra",middleName:null,surname:"Hermawan",slug:"hendra-hermawan",fullName:"Hendra Hermawan"},{id:"61581",title:"Dr.",name:"Joy Rizki Pangestu",middleName:null,surname:"Djuansjah",slug:"joy-rizki-pangestu-djuansjah",fullName:"Joy Rizki Pangestu Djuansjah"},{id:"61582",title:"Dr.",name:"Dadan",middleName:null,surname:"Ramdan",slug:"dadan-ramdan",fullName:"Dadan Ramdan"}]}],mostDownloadedChaptersLast30Days:[{id:"67558",title:"Polymerase Chain Reaction (PCR): Principle and Applications",slug:"polymerase-chain-reaction-pcr-principle-and-applications",totalDownloads:5746,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"synthetic-biology-new-interdisciplinary-science",title:"Synthetic Biology",fullTitle:"Synthetic Biology - New Interdisciplinary Science"},signatures:"Karim Kadri",authors:[{id:"290766",title:"Dr.",name:"Kadri",middleName:null,surname:"Karim",slug:"kadri-karim",fullName:"Kadri Karim"}]},{id:"10042",title:"Superhydrophobicity, Learn from the Lotus Leaf",slug:"superhydrophobicity-learn-from-the-lotus-leaf",totalDownloads:16768,totalCrossrefCites:3,totalDimensionsCites:10,book:{slug:"biomimetics-learning-from-nature",title:"Biomimetics",fullTitle:"Biomimetics Learning from Nature"},signatures:"Mengnan Qu, Jinmei He and Junyan Zhang",authors:null},{id:"67331",title:"Research in Medical Imaging Using Image Processing Techniques",slug:"research-in-medical-imaging-using-image-processing-techniques",totalDownloads:2424,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"medical-imaging-principles-and-applications",title:"Medical Imaging",fullTitle:"Medical Imaging - Principles and Applications"},signatures:"Yousif Mohamed Y. Abdallah and Tariq Alqahtani",authors:[{id:"274452",title:"Dr.",name:"Yousif Mohamed Y.",middleName:"Mohamed Yousif",surname:"Abdallah",slug:"yousif-mohamed-y.-abdallah",fullName:"Yousif Mohamed Y. Abdallah"},{id:"294009",title:"Dr.",name:"Tariq",middleName:null,surname:"Alqahtani",slug:"tariq-alqahtani",fullName:"Tariq Alqahtani"}]},{id:"48226",title:"Biomedical Sensor, Device and Measurement Systems",slug:"biomedical-sensor-device-and-measurement-systems",totalDownloads:5399,totalCrossrefCites:3,totalDimensionsCites:6,book:{slug:"advances-in-bioengineering",title:"Advances in Bioengineering",fullTitle:"Advances in Bioengineering"},signatures:"Gaofeng Zhou, Yannian Wang and Lujun Cui",authors:[{id:"37425",title:"Dr.",name:"Gaofeng",middleName:null,surname:"Zhou",slug:"gaofeng-zhou",fullName:"Gaofeng Zhou"}]},{id:"17237",title:"Hydrogels: Methods of Preparation, Characterisation and Applications",slug:"hydrogels-methods-of-preparation-characterisation-and-applications",totalDownloads:64249,totalCrossrefCites:61,totalDimensionsCites:210,book:{slug:"progress-in-molecular-and-environmental-bioengineering-from-analysis-and-modeling-to-technology-applications",title:"Progress in Molecular and Environmental Bioengineering",fullTitle:"Progress in Molecular and Environmental Bioengineering - From Analysis and Modeling to Technology Applications"},signatures:"Syed K. H. Gulrez, Saphwan Al-Assaf and Glyn O Phillips",authors:[{id:"58120",title:"Prof.",name:"Saphwan",middleName:null,surname:"Al-Assaf",slug:"saphwan-al-assaf",fullName:"Saphwan Al-Assaf"}]},{id:"59741",title:"Active Contour Based Segmentation Techniques for Medical Image Analysis",slug:"active-contour-based-segmentation-techniques-for-medical-image-analysis",totalDownloads:2480,totalCrossrefCites:10,totalDimensionsCites:18,book:{slug:"medical-and-biological-image-analysis",title:"Medical and Biological Image Analysis",fullTitle:"Medical and Biological Image Analysis"},signatures:"R.J. Hemalatha, T.R. Thamizhvani, A. Josephin Arockia Dhivya,\nJosline Elsa Joseph, Bincy Babu and R. Chandrasekaran",authors:[{id:"238868",title:"Prof.",name:"Hemalatha",middleName:null,surname:"R.J",slug:"hemalatha-r.j",fullName:"Hemalatha R.J"},{id:"242385",title:"Dr.",name:"Chandrasekaran",middleName:null,surname:"R",slug:"chandrasekaran-r",fullName:"Chandrasekaran R"},{id:"242386",title:"Ms.",name:"Thamizhvani",middleName:null,surname:"T.R",slug:"thamizhvani-t.r",fullName:"Thamizhvani T.R"},{id:"242388",title:"Dr.",name:"Josephin Arockia Dhivya",middleName:null,surname:"A",slug:"josephin-arockia-dhivya-a",fullName:"Josephin Arockia Dhivya A"},{id:"242389",title:"Ms.",name:"Josline Elsa",middleName:null,surname:"Joseph",slug:"josline-elsa-joseph",fullName:"Josline Elsa Joseph"},{id:"242390",title:"Ms.",name:"Bincy",middleName:null,surname:"Babu",slug:"bincy-babu",fullName:"Bincy Babu"}]},{id:"18658",title:"Metals for Biomedical Applications",slug:"metals-for-biomedical-applications",totalDownloads:47343,totalCrossrefCites:63,totalDimensionsCites:119,book:{slug:"biomedical-engineering-from-theory-to-applications",title:"Biomedical Engineering",fullTitle:"Biomedical Engineering - From Theory to Applications"},signatures:"Hendra Hermawan, Dadan Ramdan and Joy R. P. Djuansjah",authors:[{id:"33351",title:null,name:"Hendra",middleName:null,surname:"Hermawan",slug:"hendra-hermawan",fullName:"Hendra Hermawan"},{id:"61581",title:"Dr.",name:"Joy Rizki Pangestu",middleName:null,surname:"Djuansjah",slug:"joy-rizki-pangestu-djuansjah",fullName:"Joy Rizki Pangestu Djuansjah"},{id:"61582",title:"Dr.",name:"Dadan",middleName:null,surname:"Ramdan",slug:"dadan-ramdan",fullName:"Dadan Ramdan"}]},{id:"63949",title:"A Survey on 3D Ultrasound Reconstruction Techniques",slug:"a-survey-on-3d-ultrasound-reconstruction-techniques",totalDownloads:1165,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"artificial-intelligence-applications-in-medicine-and-biology",title:"Artificial Intelligence",fullTitle:"Artificial Intelligence - Applications in Medicine and Biology"},signatures:"Farhan Mohamed and Chan Vei Siang",authors:null},{id:"9927",title:"Digitizing Literacy: Reflections on the Haptics of Writing",slug:"digitizing-literacy-reflections-on-the-haptics-of-writing",totalDownloads:10143,totalCrossrefCites:39,totalDimensionsCites:91,book:{slug:"advances-in-haptics",title:"Advances in Haptics",fullTitle:"Advances in Haptics"},signatures:"Anne Mangen and Jean-Luc Velay",authors:null},{id:"43462",title:"Current Applications of Optical Coherence Tomography in Ophthalmology",slug:"current-applications-of-optical-coherence-tomography-in-ophthalmology",totalDownloads:3266,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"optical-coherence-tomography",title:"Optical Coherence Tomography",fullTitle:"Optical Coherence Tomography"},signatures:"Nadia Al Kharousi, Upender K. Wali and Sitara Azeem",authors:[{id:"130480",title:"Dr.",name:"Nadiya",middleName:null,surname:"Al Kharousi",slug:"nadiya-al-kharousi",fullName:"Nadiya Al Kharousi"}]}],onlineFirstChaptersFilter:{topicSlug:"engineering-biomedical-engineering",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/94882/kelly-hinkle",hash:"",query:{},params:{id:"94882",slug:"kelly-hinkle"},fullPath:"/profiles/94882/kelly-hinkle",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()