Perceptions of wood properties in light of use in multistorey construction based on a review with minor modifications from Sjöström [6].
\r\n\tThis book will aim to present outcomes and novelties in essential oils treatments.
\r\n\tTherefore, it will collect the most recent scientific research on essential oils treatments and usage as well growth conditions, structure.
Human placenta is an indispensable organ during pregnancy for supporting the development of the fetus. The placenta is a unique organ since it is a multicellular barrier, in which both maternal and fetal cells coexist. Placenta performs functions of metabolic exchange and endocrine regulation between two genetically distinct individuals, the mother and the fetus, while maintaining immunological tolerance between them [1, 2].
The term placenta derives from the latin and means “flat cake” because of its discoid shape. At the end of pregnancy, it is about 15–20 cm in diameter, 2–3 cm thick, and 500 g in weight, that is, 1/6 of the fetal weight.
The placenta is constituted by structures of fetal origin, such as, the placental disk, the fetal membranes, divided in amniotic and chorionic membranes, and the umbilical cord. The placenta is also composed by a membrane of maternal origin termed the decidua that originates from the endometrium. The functional unit of the placenta is the chorionic villosity that forms the border between maternal and fetal blood during pregnancy (Figure 1).
First stage in the interaction between fetal and maternal blood circulation. The syncytiotrophoblast erodes maternal vessels.
Placenta development is a continuous process that starts during early embryological stages, even before gastrulation occurs. Four to five days after fecundation, the morula (solid mass of cells called blastomers) has reached the uterus. The appearance of a fluid-filled inner cavity marks the transition from morula to blastocyst and is accompanied by cellular differentiation: the surface cells become the trophoblast (giving rise to extraembryonic structures, including the placenta and the umbilical cord) and the inner cell mass gives rise to the embryo [3]. Just before the implantation into the endometrium, the internal cell mass or embryoblast, goes through important changes such as cellular reorganization that gives place to a top layer, the epiblast and a bottom layer named hypoblast or primitive endoderm. Some extraembryonic tissues such as the amnion derive from the epiblasts that delimit the amniotic cavity that hosts the embryo during pregnancy. Because of the increase in production of amniotic liquid during gestation, the amnion will expand, and merge with the trophoblast to give rise to the amnion-chorionic membrane. Another of the earliest differentiation events in human embryogenesis takes place in the trophoblast with the development of the external syncytiotrophoblast and the internal cytotrophoblast. The cytotrofoblast is constituted by highly proliferative mononucleated cells. Syncytiotrophoblast is formed by fusion of cytotrophoblastic cells and has high invasive capacity. This syncytium is responsible for the implantation or anchorage of the blastocyst within the uterine walls.
The lytic activity of the syncytiotrophoblast, which is responsible for the degradation of the matrix of the endometrium, reaches the uterine capillaries, eroding them. As a result of vascular damage, maternal blood comes out to the syncytiotrophoblast where it forms lacunae; this lacunar stage is the first one toward a fetomaternal circulation. At the same time, the epithelial-like cells of the cytotrofoblast, which have continued proliferating, form accumulations that project toward the syncytiotrophoblast forming the chorionic villi that penetrate the decidua basalis [4]. These finger-like structures (cytotrophoblast covered with syncytiotrophoblast) are invaded by an extraembryonic mesoderm that, in the fourth week after fertilization, gives rise to blood vessels within each villi which makes possible the establishment of the interaction between the fetal circulation, in these embryo vessels, and the maternal blood contained in the trophoblastic lacunae (Figure 1). The different layers of the trophoblast (the cytotrophoblast and the syncytiotrophoblast), the basal membranes of the fetal vessels, and the vascular endothelium of these vessels constitute the placenta barrier that regulates the metabolite exchange between both circulations (fetal and maternal). It has been estimated that this exchange surface is about 5 m2 at week 28 of gestation and reaches 10–11 m2 at term [5]. Moreover, this barrier undergoes a progressive thinning throughout pregnancy going from 10 microns at the beginning to 1 or 2 microns at the end of the gestation [6]. The umbilical cord connects placenta to the fetus. It is a narrow tube that contains two arteries and one vein to transport metabolites between mother and fetus.
Regenerative medicine is an interdisciplinary field within translational medicine whose purpose is to heal or replace damaged tissues or organs as a result of age, illness or trauma. It may involve the transplantation of stem cells that will repair the damaged tissue, stimulate the body’s own repair processes or serve as delivery-vehicles for therapeutic agents such as genes, cytokines, or therapeutic drugs.
Stem cells are unspecialized cells that have the capacity to renew themselves or differentiate toward more specialized cells. The proliferation of stem cells is indispensable for the maintenance of the stemness niche. The differentiation is the process by which, under certain physiological or experimental conditions, unspecialized cells are induced to become tissue- or organ-specific cells. The differentiation potential of stem cells is essential during the development of the embryo. In the adult, the main function of stem cells is the maintenance of the tissue homeostasis acting as an internal repair system.
Both embryonic and adult tissues are sources of stem cells with therapeutic potential. However, embryonic stem cells have some limitations in clinical practice, such as ethical concerns, difficulty in obtaining, and tumorigenicity. Adult stem cells have been identified in many organs and tissues, including brain, bone marrow, peripheral blood, adipose tissue, skeletal muscle, skin, teeth, heart, gut, liver, and placenta. Though the number of stem cells is very small in many adult tissues, their isolation involves several risks and, once removed from the body, the cells have a limited capacity of proliferation and differentiation, making the generation of large quantities of stem cells difficult.
The placenta is a reservoir of stem cells with several advantages. What makes placenta such an interesting tissue for regenerative medicine? Placenta is spontaneously expulsed at birth, making the use of invasive methods unnecessary as in the case of other sources of adult stem cells. It is considered a medical waste and there are no ethical concerns in its use, unlike using embryonic stem cells [7]. Placenta is a high-yielding source of stem cells compared to other sources such as bone marrow and adipose tissue where the cell recovery decreases with donor age [8]. Versatility and differentiation potential of placental cells is very high probably due to their primitive origin [9]. Furthermore, pregnancy is an example of “tolerated allograft” and placenta is the immunoregulatory organ at the maternal-fetal interface [10]. Placenta is an immunoprivileged organ, and cells isolated from placenta display low immunogenicity in vitro [11] and in vivo [12] when xenotransplanted in immunocompetent animals. The feasibility of placental cells for allogeneic transplantation has been demonstrated [13].
In regenerative medicine, the effects of stem cells are not only restricted to cell or tissue restoration but also to transient paracrine actions. This paracrine action is related to factors produced and secreted by stem cells that will control the injury, modulate the immune responses, and promote self-repair in the surviving injured tissue [14]. Placenta plays a fundamental role in fetomaternal tolerance and this would explain why placenta-derived stem cells have an additional advantage over other stem cells in terms of immunomodulation [15].
Multiple mechanisms underlie maternal tolerance during pregnancy. Fetal and, in particular, placental tissues contribute to its immunoprivileged and immunoregulatory environment. Placental cells are characterized by the absence of MHC class II antigens that normally mediate graft rejection [16]. Placental cells not only express a low level of the highly polymorphic forms of the MHC class I antigens but also express the nonclassical form HLA-G that may play a role in the suppression of immune responses and contribute to maternal-fetal tolerance [17, 18]. Furthermore, through the release of hormones [19], cytokines [20], and soluble forms of MHC antigens, placental cells deviate maternal immune responses toward immune tolerance. Therefore, the cells of the innate immunity of the mother acquire a suppressive profile characterized by a diminished production of pro-inflammatory cytokines. In addition, the B cells and many T cells disappear, leaving the regulatory T cells (Tregs) as the major T-cell subpopulation, with both, immune suppressive and anti-inflammatory characteristics [21].
Different populations of cells with features of stem/progenitor cells have been isolated from placenta: hematopoietic, epithelial, trophoblasts, and mesenchymal cells.
Placenta is a hematopoietic organ since it harbors a large pool of hematopoietic stem cells (HSC) that possess functional properties of true HSC. Placenta-derived HSC can differentiate into all types of mature blood cells and are able to sustain the hematopoiesis during the life of the embryo. Placental HSC activity declines toward the end of gestation, possibly reflecting mobilization of placental HSC to the fetal liver and other developing hematopoietic organs within the embryo, such as thymus, spleen, and bone marrow [22].
The three layers of the placenta, such as the amnion, the chorion, and the decidua, are sources of stem cells. The amniotic layer is composed of a single-cell epithelial layer and a deeper mesodermal layer derived from the epiblast and hypoblast, respectively [23]. The chorion sheet is composed of the inner chorionic mesoderm similar to the mesenchymal region of the amnion and an outer layer of trophoblastic origin. The decidua, the uterine component of the placenta, is also a source of cells of mesodermal origin.
Amniotic epithelial cells (AEC) are very valuable stem cells for regenerative medicine. They have stem cell molecular markers such as OCT-4, Nanog, SOX-2, and Rex-1 (23). AEC do not have telomerase reverse transcriptase, show a stable karyotype, and do not originate tumors when injected. Amnion does not express MHC class II antigens, so AEC can elude the immune system. AEC can also modulate the immune system through an inhibition of the proliferation of T- and B-cells. In addition, AEC inhibit inflammation, as has seen in vitro [24].
Chorion trophoblastic cells (CTC) represent a mixed and still poorly characterized population of stem cells and there are no reliable methods to isolate them [25], and also, no consistent marking for identifying this population of cells [26].
Most of stem cells isolated from the placental tissues are cells of mesodermal origin and are named amnion mesenchymal stromal cells (AMSC), chorion mesenchymal stromal cells (CMSC), chorionic villi mesenchymal stromal cells (CV-MSC), and decidua mesenchymal stem cells (DMSC) [9, 27, 28] depending on the layer of origin. Inside the umbilical cord, there is a connective tissue that surrounds the umbilical vein and the two umbilical arteries. This tissue, also known as Wharton’s jelly, is a rich source of mesenchymal stromal cells called umbilical cord mesenchymal stem cells (UC-MSC) [29]. They are all considered true mesenchymal stromal cells (MSC), as they meet the three minimal criteria proposed by the International Society for Cellular Therapy [30]. First, placenta-derived MSC exhibit plastic adherence in culture. Second, they express a specific set of cell surface markers, such as CD105, CD73, and CD90, and do not express hematopoietic markers including CD34, CD45 and CD14 or CD11b, CD79a or CD19, and HLA-DR. Third, they have the ability to differentiate in vitro into different mesodermal cell lineages including adipocytes, chondrocytes, and osteoblasts. In addition, AMSC and CMSC are from fetal origin according to the first international workshop on placenta-derived stem cells [31].
Cells with properties of mesenchymal stromal cells have also been isolated from the amniotic fluid (AF) which is used to perform the evaluation of karyotyping and prenatal diagnostic testing. AF is a source of MSC that could be used as autologous cellular therapy for perinatal disorders [32]. These AF-MSC can be easily isolated, have minimal ethical objections, high renewal activity, multiple differentiation capacity, and maintain genetic stability in culture [33].
In this chapter, we will refer to placenta-derived mesenchymal stromal cells as placenta mesenchymal stromal cells (PMSC) regardless of the placenta region where they were isolated.
Mesenchymal stromal cells (MSC) can be isolated from virtually all adult tissues in the body, although not always in large quantities. They are thought to be a precursor cell population capable of reconstituting all the cellular elements that comprise the supportive stromal tissue in each organ [34]. First described in bone marrow as a subset of non-hematopoietic cells [35], they have become the paradigm cell in regenerative medicine. MSC are the most widely studied cell type in both preclinical and clinical trials. The advantages of MSC include ease of isolation and subsequent maintenance in culture, high expansion capacity, high plasticity, and tissue repair activity. The restorative activity of MSC is not necessarily by the replacement of dead or damaged cells, but also, by paracrine actions that mediate immune-regulation and promote cell growth and/or differentiation (Figure 2). Besides, MSC do not form teratomas after transplantation, ensuring safety to the host and, their low immunogenicity makes them suitable for allogeneic transplantation. Furthermore, these cells have the ability to migrate to inflammatory microenvironments [36] and tumors [12, 37], where they play an active role inducing many processes, such as angiogenesis and wound healing, mainly in a paracrine manner [38]. This feature provides an important therapeutic advantage to MSC since they can be injected via systemic infusion and can be used as vehicles for the delivery of drugs such as anticancer agents to the tumor site.
PMSC mechanisms of action. PMSC can migrate, home, and differentiate into tissue specific cells to repair injured tissue, transport restorative genes and used as a cellular vehicles of therapeutic agents. PMSC also exert their actions through paracrine effects and have immunomodulatory properties.
The use of placenta as a source of MSC has several advantages with respect to other adult MSC. Besides the ease of extraction of MSC from the placenta without invasive methods, the isolated MSC represent a more homogeneous and primitive population [9, 39]. The last feature is associated with a higher proliferative rate in culture compared to bone marrow MSC [40]. This fact makes it possible to achieve a greater number of cells in fewer passages reducing the risk of ex vivo senescence influencing gene expression and resulting in aging phenotype [41, 42]. The senescent state needs to be taken into account for quality control of PMSC in cellular therapy. In addition, the clinical efficacy and safety of PMSC could be higher, compared to other sources of MSC, since PMSC are younger cells that have been exposed less time to harmful agents, such as reactive oxygen species (ROS), chemical and biological agents, and physical stressors [43]. Also, PMSC have a limited capacity to grow in culture related to low telomerase activity, which is also lost during proliferation, making them a safe product to be used in regenerative medicine [9]. Moreover, PMSC could be advantageous with respect to migratory properties and homing capacities into damaged tissues. Homing of MSC is basically dependent on the release of chemoattractants by the injured tissue and the expression of chemokine receptors on the MSC membrane. For extravasation into tissue, MSC have to attach to and migrate through the endothelium. Several integrins and other adhesion molecules are known to be expressed on MSC. Dependence on the VLA-4/VCAM-1 (very late antigen-4/vascular cell adhesion molecule-1) axis for MSC adherence to endothelial cells has been demonstrated [44]. PMSC have a higher expression of VLA-4 compared to bone marrow MSC suggesting that PMSC may have enhanced properties for homing to damaged tissue [45].
Stem cell therapies are expected to provide substantial benefits to patients suffering a wide range of pathologies. The plasticity and pleiotropic properties of PMSC that include immunomodulation and inflammation control, angiogenesis, neuroprotection, and antiapoptosis, among others, have been widely evaluated at the preclinical level [9, 46, 47].
Myocardial infarction (MI) is a major cause of death and disability worldwide. MI occurs when there is an interruption in blood flow to the heart muscle followed by heart ischemia. Since regeneration of heart muscle is virtually absent, damaged myocardium after infarct is replaced by scar tissue leading to reduced cardiac function. PMSC transplantation is a promising strategy to restore cardiac function and reduce myocardial fibrosis in MI due to their angiogenic and immunosuppressive properties.
PMSC have the potential to differentiate into cardiomyocytes, and exhibit spontaneous beating under in vitro conditions suggesting that they can therapeutically act in the cardiac repair process [9, 48, 49]. Several groups have investigated the effects of PMSC when transplanted in animal models of MI. PMSC injected into rat hearts after the induction of a MI showed integration into cardiac tissues and in vivo transdifferentiation into cardiomyocytes [48]. The CXCR4 chemokine receptor and its ligand, stromal cell-derived factor (SDF-1) axis (CXCR4-SDF1) is the main pathway mediating migration of MSC toward injured tissues. Since it has been shown that chemokine receptor type 4 (CXCR4) is greatly induced in PMSC by hypoxia, a high chemotactic response of PMSC to the ischemic microenvironment of the infarcted heart is expected [50]. Intravenous injection of PMSC in a rat model of infarct showed a sustained cardiac function over 32 weeks from injury [51]. Preconditioning PMSC by hyaluronan mixed ester of butyric and retinoic acid (HBR) potentiates their reparative capacity. Transplantation of preconditioned PMSC in pigs produced a significant reduction in scar size, higher myocardial perfusion and glucose uptake, enhanced capillary density, and decreased fibrous tissue [52]. The paracrine potential of conditioned medium (CM) of PMSC has also been evaluated. Injection of PMSC-CM limited infarct size and cardiomyocyte apoptosis, while promoting capillary density in the infarct border area in a rat model of ischemia/reperfusion [53].
Critical limb ischemia (CLI) is the advanced stage of peripheral artery disease (PAD) with progressive stenosis, and ultimately the obstruction of peripheral arteries. The consequences of the markedly reduced blood flow to the lower limbs are pain at rest, nonhealing ulcers, and gangrene. The risk factors of PAD are advanced age, hyperlipidemia, hypertension, and mainly diabetes. Unfortunately, amputation, in many cases, is the only therapeutic option for CLI as blood capillaries cannot be corrected, and restenosis of vessels is produced.
Preclinical studies have reported benefits of cell therapy in neovascularization in several mouse models of hindlimb ischemia. PMSC have demonstrated pro-angiogenic effects when intramuscularly injected into the ischemic region of the affected limb, improving blood flow and promoting new vessel formation [54, 55, 56]. Similar results have been described in a diabetic nude rat model [57]. Moreover, CM from the PMSC also had pro-angiogenic action in a mouse hindlimb ischemic model, comparable to the PMSC transplanted group in the same study, revealing that PMSC action resulted primarily from a paracrine action of the angiogenic factors released from the PMSC [55]. However, in another study, cells were more efficacious than cell lysate in rescuing blood flow, probably indicating the importance of prolonged paracrine effect for maximal blood flow recovery [57].
Stroke is an acute focal injury of the central nervous system (CNS) by a vascular cause, including cerebral infarction, intracerebral hemorrhage (ICH), and subarachnoid hemorrhage (SAH), and is a major cause of disability and death worldwide. Thrombolysis is the most commonly used therapeutic approach although most patients fall outside of the clinical time window for effective treatment.
Experimental data show that stem cell therapy can limit neuronal degeneration and improve the functional outcome. The neuroprotective action of PMSC has been demonstrated in a rat model of stroke. Intravenous administration of PMSC, 4 hours after the injury, resulted in a significant improvement of functional outcome and significant decrease of lesion volume, correlating with increased vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), and brain-derived neurotrophic factor (BDNF) levels in the ischemic brain compared to controls [58].
Cancer is one of the main problems in public health worldwide. Despite great progresses having been made in understanding the molecular basis of cancer, and the rapid advances in diagnosis, the efficacy of current treatment strategies is limited and mortality is still high. Stem cell-based treatments have been extensively explored for their possible potential to treat various cancers. Tumor microenvironment resembles a wound environment as tumors are considered as unhealed wounds [60]. Inflammatory and wound microenvironments induce migration of PMSC [36, 61]. Due to the characteristic of placenta-derived MSC, these cells represent an important tool for their use in anticancer therapies. First, PMSC can migrate and engraft into the tumor site and directly affect tumor biology through paracrine signaling. Second, PMSC could be used for the specific delivery of drugs to tumors thus reducing the doses administered and the side effects. Third, PMSC can also be genetically modified to give a stable expression of antitumor factors specifically in the tumor.
Placenta-derived MSC have an intrinsic tropism for sites of injury regardless of tissue or organ. Furthermore, it has been shown that PMSC and CM from PMSC are able to inhibit the proliferation of several tumor cell lines [62]. Moreover, PMSC have an antitumor effect in vivo, inhibiting tumor progression when were intravenously injected in a rat model of mammary cancer [12]. Similarly, PMSC showed antitumor effects in vivo when previously expanded in the presence of tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) [63] and when engineered to deliver growth factors to the tumor site, such as, pigment epithelium-derived factor [64], or endostatin [65].
Neurodegeneration involves a progressive and irreversible loss of neurons. Alzheimer’s, Parkinson’s, and multiple sclerosis are some of the more studied neurodegenerative syndromes. The neuromuscular disorder amyotrophic lateral sclerosis (ALS) is a degenerative process caused by motor neuron loss. To date, there is no cure for these diseases. Cell therapy with stem cells arises as a therapeutic alternative based, either on the replacement of the lost neurons, or on a neuroprotective action through release of neurotrophic factors. PMSC are able to differentiate in vitro into several neural lineages, including neurons [9, 66], oligodendrocytes [66], glial cells [67], and dopaminergic neurons [68].
Parkinson’s disease (PD) is a progressive neurodegenerative disease associated with a specific loss of dopaminergic neurons in the substantia nigra and depletion of dopamine levels in the striatum. The main therapeutic objective in PD is the recovery of dopaminergic neurotransmission in the striatum. Cellular replacement has been emerged as a suitable therapeutic strategy. First-trimester human PMSC differentiated to neural progenitors and transplanted into the striatum of a rat model of PD, underwent dopaminergic differentiation and showed an attenuation of the symptoms [69]. PD motor pathology is also accompanied by other disabilities, such as, mood disorders, constipation, and hyposmia. It is expected that besides the regenerative effects of PMSC, the secretion of trophic factors, their anti-inflammatory and antiapoptotic effects, could also alleviate these nonmotor symptoms.
Alzheimer’s disease (AD) pathogenesis is characterized by a deposition of β-amyloid peptide and hyperphosphorylation of tau causing loss of the synaptic and neuronal activities and neuroinflammation. It has been demonstrated that PMSC, transplanted into an Alzheimer’s disease mouse model, modulated the inflammatory response. Moreover, mice injected with PMSC presented higher levels of β-amyloid degrading enzymes, reduced levels of pro-inflammatory cytokines, and increased levels of anti-inflammatory cytokines (TGF-β and IL-10). The effect of PMSC injection resulted in an improvement of memory function [70].
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by loss of nerve cells in the brain and spinal cord, leading to muscle weakness, paralysis, respiratory problems, and eventually, death. Multiple intravenous injections of PMSC in a mouse model of ALS, resulted in a protection of motor neurons from inflammatory effectors delaying functional deterioration and increasing lifespan [71].
Multiple sclerosis (MS) is a chronic disease of the central nervous system characterized by demyelinated areas in the brain and spinal cord that heal forming a glial scar (sclerosis). It is believed that MS is caused by T cell-mediated autoimmune reaction against proteins of the myelin sheath inducing oligodendrocytes and neuronal loss. Most of therapies in MS patients target the immune system or the inflammatory process. Since the pathogenic process of MS can be divided into inflammatory and degenerative phases, PMSC-based cell therapy seems appropriate since it may be able to specifically regulate immune responses and also induce neuronal regeneration. The animal model that closely resembles the MS symptoms is the experimental autoimmune encephalomyelitis (EAE) in mice where the animals are injected with myelin antigens that initiate an immune response. Several preclinical trials based on the treatment of EAE animals with PMSC have been published. Intracerebroventricular (ICV) transplantation of PMSC at day 5 (pre-symptomatology) or day 14 (at the beginning of the disease) after immunization, significantly reduced the severity of the disease and prolonged survival without delaying the onset of the disease [72]. Several intraperitoneal injections of PMSC in EAE mice delayed the onset of the symptoms and decreased disease incidence in the treated group respect to control, as well as inhibiting T cell proliferation and downregulating the production of pro-inflammatory factors while increasing the production of anti-inflammatory cytokines [73]. Likewise, ICV or intrathecal (ITH) injection of PMSC in EAE rats, also delayed the onset of motor symptoms, reduced inflammation, prevented axonal loss, and reduced disease severity [74].
Bone regeneration is the physiological process of bone formation, which is involved in continuous remodeling throughout adult life, and can be observed during bone healing after damage. However, there are large lesions created by traumatism, infection, tumor resection or skeletal abnormalities in which physiological bone regeneration is not sufficient. There are also other conditions, such as osteoporosis, in which regeneration is compromised. PMSC have the potential to differentiate into osteogenic lineage, and seem to be an appropriate therapeutic option for bone regeneration. The use of 3D scaffolds that support cell differentiation and improve engraftment has become habitual in PMSC-mediated bone regeneration therapy. Several published studies confirm that PMSC have potent in vivo bone-forming capacity and may be worthwhile candidates for in vivo bone tissue repair. So, when PMSC were subcutaneously injected into severe combined immunodeficiency (SCID) mice with hydroxyapatite/tricalcium phosphate particles as a vehicle, new bone formation was found throughout all implants [75]. Another study showed that PMSC administered in combination with nanobiphasic calcium phosphate ceramics in a rat model of femur bone defects produced complete healing of the defect in 3 months without evidence of fibrosis [76].
Osteoarthritis (OA) is a degenerative process of the cartilage in joints. There is still no treatment available to improve or reverse the degenerative process and current pharmacological treatments are only palliative. Given the potential of PMSC to differentiate into musculoskeletal lineages including bone and cartilage, MSC have been proposed as an optimal regenerative cellular therapy for degenerative musculoskeletal conditions as OA. There are numerous data that support this hypothesis in preclinical models. PMSC embedded in a collagen I gel and transplanted in a rat model of femoral cartilage defect appeared to cover the tissue defects with soft tissue positive for toluidine blue suggesting in vivo differentiation of transplanted cells [77]. Also PMSC grown on silk fibroin and transplanted into the knee in rabbits with knee osteochondral defects resulted in newly created hyaline cartilage without inflammatory response [78]. Similarly, PMSC seeded onto poly lactic-co-glycolic acid (PLGA) and preconditioned in chondrogenic medium were well tolerated and found in the reparative tissue of OA rabbit knees 8 weeks after transplantation [79].
Cirrhosis is the common end-stage of most of the injuries affecting the liver such as virus infections, chronic alcoholism, metabolic diseases, or acute liver failure. A scar is formed by extracellular matrix, making the normal function of the liver difficult. Cirrhosis is an irreversible state that can become life-threatening and, frequently, liver transplantation is the only alternative for healing. Donor shortage and continuous need for immunosuppression are the main limitations to liver transplant and cell transplantation appears as a suitable alternative. In addition to fetal and adult hepatocytes, stem cells are considered for cell transplantation. PMSC can be helpful since their potential capacity to differentiate to hepatic-like cells and form functional three-dimensional structures have been reported [80].
Transplanted into animal models of disease, PMSC induced a significant reduction of fibrosis and of serum levels of transaminases. Liver regeneration has been proposed to be promoted by the induction of autophagy process [81], stimulation of liver cell proliferation [82], decreased apoptosis, and suppression of stellate cells activation [83]. Although no evidence of differentiation of the transplanted cells into hepatocytes was reported in a CCl4-induced fibrosis rat model [82], in other models, PMSC engraftment and expression of human albumin and α-fetoprotein have been reported [83, 84, 85].
Crohn’s disease (CD) and ulcerative colitis (UC) are chronic conditions caused by a sustained inflammation of the intestinal epithelium that ends in tissue destruction throughout the gastrointestinal tract. It is believed that these disorders are the result of an abnormal host immune response to intraluminal antigens in genetically predisposed individuals. Several genetic variants of nucleotide-binding oligomerization domain 2 (NOD2) are associated with the development of Crohn’s disease [86]. Both pathologies have a major impact on the quality of life and there is no curative treatment. Furthermore, many patients are not responsive to current therapy.
Intraperitoneal administration of conditioned medium from PMSC ameliorated clinical parameters in a mouse model of dextran sulfate sodium (DSS)-induced colitis [87]. Intraperitoneal injection of PMSC also prevented the loss of body weight and decreased the mortality of mice. These benefits were greater when NOD2-activated PMSC were used [88].
Stress urinary incontinence (SUI) is a widespread disorder, commonly associated with childbirth, with a detrimental impact on the quality of life. SUI triggers a weakening of muscles and ligaments causing involuntary leakage of urine during physical activity, sneezing, or coughing. Surgical intervention to place a tissue sling that provides support to the urethra is the usual therapeutic action.
Animal models of SUI have been employed to prove the benefits of cell therapy in this pathology. Periurethral injection of myogenic differentiated PMSC in SUI mice restored the urethral sphincter to apparently normal histology and function [89].
The goal of cell-based regenerative medicine is to repair, replace, or regenerate cells, tissues, or organs when damaged. However, there are still some unresolved issues such as engraftment of transplanted cells onto the injured tissue and the survival for the time needed to repair the damage. Nanotechnology can be very helpful since nanomaterials can be used as scaffolds to improve the engraftment of stem cells onto the damaged tissue. In addition, the use of nanoparticles (NPs) for gene/drug delivery can complement the therapeutic benefits of transplanted stem cells, and allow the tracking of the cells inside the body [90].
Several reports described the therapeutic application of PMSC combined with biomaterials. PMSC proliferation and differentiation into myocardial and neuronal cells improved when the cells were grown on top of gold-coated collagen nanofibers (GCNFs) [91]. The peptide hydrogel PuraMatrix® (PM; 3-D Matrix, Ltd) was used to support PMSC in rat models of both acute MI and post-MI ischemic cardiomyopathy. The peptide hydrogel and the PMSC create a film to coat the heart. The epicardial “coating” method has advantages with respect to intramyocardial injection such as higher survival of the transplanted cells and lower complications [92].
In bone regenerative medicine, the RKKP glass ceramic has been proposed as a biocompatible support for PMSC. RKKP exhibits a higher osteointegration rate compared to other ceramic materials mainly in osteopenic bone. Additionally, the biology of PMSC is not affected when grown over this support while maintaining their osteogenic potential [93] PMSC seeded over poly-L-lactic acid (PLLA) nanofibrous scaffolds and subjected to osteogenic conditions have been successfully grafted in a rabbit model of sternal defect closure [94].
Some systems have shown suitable behaviors as recipients of PMSC for cartilage regeneration. Collagen sponge allowed the formation of a cartilage-like tissue both, in vitro and in vivo, under chondrogenic-inducing conditions [95]. Similarly, PMSC embedded in alginate incorporating nanosized calcium-deficient hydroxyapatite (nCDHA) and/or a recombinant protein containing arginine-glycine-aspartate (RGD) and seeded over poly(D,L-lactide-co-glycolide) (PLGA) gave rise to cartilage formation [96].
The use of nanoparticles for gene/drug delivery can significantly contribute to the advance of regenerative medicine. The use of stem cells as carriers of NPs containing biologically active molecules (e.g., pro-survival, anti-inflammatory) or chemicals such as anticancer drugs is very promising. PMSC have been employed as a platform to load mesoporous silica nanoparticles. NP loading did not affect the chemotactic ability of PMSC toward tumors in vitro and in vivo. When carrying doxorubicin-loaded NP, PMSC promoted breast cancer cells death in a co-culture system [97]. In a proof of concept, ultrasound-responsive NPs loaded with antitumor drugs were transported to tumor tissues by PMSC, and the cargo was released by NPs only after ultrasound application [98].
In vivo monitoring of cells, after transplant, is needed and NP-based probes are useful for this purpose. They offer the possibility of tracking the bio-distribution and engraftment of cells into the body with minimally invasive techniques. However these probes have to ensure minimal changes in cell phenotype [97]. PMSC have been efficiently labeled with albumin-conjugated fluorescent nanodiamonds (FNDs) [99], with silica-coated magnetic nanoparticles incorporating rhodamine B isothiocyanate, MNPs@SiO2(RITC) [100], with rhodamine B labeled mesoporous silica nanoparticles [98] and with human serum albumin coated iron oxide nanoparticles (HSA-IONPs) [101] without any detrimental effect.
Based on the benefits produced by transplanted PMSC in different animal models resembling human diseases, some clinical studies have been carried out and there are also an increasing number of ongoing clinical trials. The web pages
Intracoronary infusion of UC-MSC in MI patients resulted in safe and significantly improved myocardial viability and the perfusion within the infarcted area. Improvement in some parameters such as the increase in the left ventricular ejection fraction (LVEF) and decreases in end-diastolic volumes and LV end-systolic volumes were observed up to 18 months after treatment [102]. RIMECARD is a phase I/II clinical trial that has demonstrated the safety and efficacy of the intravenous infusion of UC-MSC in patients with chronic heart failure and reduced ejection fraction. Improvements in left ventricular function, functional status, and the quality of life were observed in treated subjects [103].
Cell therapy has been introduced as a new therapeutic attempt to restore blood flow and attenuate ischemia promoting collateral vessel formation in CLI. In January 2017, a Phase III study of PLX-PAD cells1 in the treatment of critical limb ischemia (CLI) has been cleared by the U.S. Food and Drug Administration (FDA). Data from previous studies have shown that by increasing tissue perfusion, PMSC may improve the healing of wounds in CLI patients, and could allow for significant delays in events of amputation and death.
Safety and efficacy of UC-MSC infusion in patients with decompensated liver cirrhosis have been reported in a 1-year follow-up study. There were no significant side effects or complications and there was a significant reduction in the volume of ascites and improvement in liver function, as indicated by the increase of serum albumin levels and a decrease in total serum bilirubin levels [104].
Therapeutic effects of PMSC transplantation in MS patients have been evaluated in different studies. Intravenous infusion of UC-MSC appears to be safe and well tolerated in patients with MS, and the overall symptoms of treated patients remained stable or improved compared to the control group [105]. In another clinical trial, patients with relapsing-remitting MS or with secondary progressive MS randomly received PMSC (PDA-001)2 and most treated subjects had stable or decreasing Expanded Disability Status Scale scores [106].
OA affecting the hip can mean, in many cases, the need for a total hip replacement (THR). A frequent side effect of THR is a gluteus medius injury. PMSC administered directly to the injured muscle during surgery have demonstrated their safety and efficacy inducing a greater increase in the gluteus medius muscle strength than placebo, and a significant improvement in muscle volume based on MRI. EudraCT Number: 2011-003934-16.
Safety of the intravenous administration of PMSC (PDA001) to moderate-to-severe Crohn’s disease patients unresponsive to other therapies has been demonstrated and some remission rates of the disease have been reported [107]. Likewise, in a randomized controlled clinical trial, intravenous injection of PMSC patient condition improved significantly allowing a significant reduction in steroid dosage. Additionally, several patients with anal fistula showed remarkable improvement [108].
PMSC are promising candidates for use in regenerative medicine in humans. Cell therapy using PMSC is based mostly on three important characteristics of these types of cells: (i) their inherent reparative capacities or by secretion of paracrine factors; (ii) their homing and engraftment abilities; and (iii) their immune modulation capacities. However, clinical use of PMSC is still in its infancy and most of the trials are, to date, under development. Most studies of cellular therapy have been realized with autologous cells. Nevertheless, the use of patient’s own cells has several limitations. First, there is a time-limiting factor as the expansion and quality control of autologous cells may require several weeks. Furthermore, the cells can show less potency due to inherent aging aspects and, even, certain characteristics of the subject may render autologous transplantation unfeasible as occurs in the case of elderly patients and those having a specific systemic disease such as diabetes. In contrast, allogeneic MSC have the potential to be mass-produced rapidly so they can be readily available and administered immediately. They can be obtained under more standardized and strictly validated conditions and probably reduce costs. To date, published data regarding reliability of treatment with PMSC indicate that the use of PMSC is safe and therefore there are already products “off-the-shelf.” Although most clinical trials are ongoing or have no published results, there are some favorable data regarding to the efficacy of treatments with PMSC.
Stem cell nanomedicine is a very promising field that at the preclinical level has yielded very encouraging results. Treatment of certain pathologies can benefit from the use of scaffolds that provide a three-dimensional structure to give support to the cells, promoting their adhesion and growth, so definitely improving the engraftment and therefore the therapeutic results. Besides the use of cells as carriers of nanoparticles to deliver drugs inside the injured tissue and, even more, the possibility of stimulus-controlled release of the drug appears exciting.
This work was funded by project PI15/01803 [Instituto de Salud Carlos III (Ministry of Economy, Industry and Competitiveness) and cofunded by the European Regional Development Fund]; and by project Multimat Challenge (S2013/MIT-2862-CM, funded by the Regional Government of Madrid and EU Structural Funds), and approved by the Ethics Committee of our Institution.
The authors are very grateful to Ian Ure for proofreading the English version of this chapter.
The authors declare no conflict of interest.
The world population is projected to increase by more than 1 billion people in the next 15 years, reaching 8.5 billion in 2030 and 9.7 billion in 2050 [1]. This forecasted growth in population points to an increase in demand for housing where a growing proportion of the population will live in cities. The projection points to an increase from the current 54 to 66% living in cities by the middle of this century [2]. Cities will continue to be the arena for residence and for commercial activities, a place with needs for sustainable changes.
\nSustainable construction, for residential and commercial needs, can be seen as an opportunity for the construction industry. According to Bordeau [3, p. 364], the main challenge is “to transform the demand for sustainable development into an opportunity, to create and access new markets, and to innovate responses which satisfy traditional industry demands and the new societal demands for sustainable development.” It is claimed that the construction and utilization of buildings could be reduced as much as 40% of the energy consumption, the use of extracted materials can be reduced by 50%, and the total GHG emission could be reduced 35% [4]). The call for sustainable methods in construction is clear, and goals are set up globally in Sustainable Development Goals as well as locally in political goals and corporate objectives.
\nIn recent years, a positive spread of wooden multistorey construction (WMC) in the Nordic countries points to business opportunities as part of an emerging forest-based bioeconomy [5]. However, changes in construction practices in multistorey construction for residential use are slow. The aim of this chapter is to explain factors that influence consumer behavior, focused on purchasing an apartment in a wooden multistorey construction (house), which ultimately may decide how markets for WMC develop.
\nThe following text starts with a brief overview of factors that influence the development of markets for wood-based residential construction. Perspectives on wood as a construction material, policy aspects, and market development serve as a background for understanding how consumer perceptions are developed. The following subchapters account for a theoretical understanding of consumer behavior, an empirical study in light of local market development and a discussion of what can be learned from the case study with regard to the consumers’ roles in the development of markets for WMC. A case study of Växjö in Sweden serves as inspiration for learning about market development for WMC.
\nPerceptions of physical properties of wood-based materials influence the current practices as well as the development of policies that regulate the use of wood in construction. Properties of wood can be divided in accordance with a number of factors related to, for example, the production of the raw materials (wood), use of raw materials in construction of houses, use of the house or the apartment in the house itself, and last but not least, deconstruction of the house when it is no longer needed. A brief overview of wood properties that have a bearing on its use in construction from a product-dominant logic perspective is provided in Table 1.
\nCharacteristics | \nEffects | \nPerspective | \n
---|---|---|
Renewable, part of a circular bioeconomy | \nCarbon sink, an arena for ecosystem services (other productions on the same land), part of bioeconomy system and partial solution to some of the Sustainable Development Goals (SDGs) in more local political objectives and agendas | \nSociety | \n
Traditional and suitable material for house construction | \nTraditional material that is culturally grounded and part of architectural practices Skills are well developed for family housing construction but less so for multistorey house construction Part of the local construction culture Suitable (light weight) material for prefabrication and fast on-site assembly | \nSociety Industry Consumer | \n
Physical properties with regard to temperature, sound, and weight | \nProduct and process innovation has paved the way for fire-resistant alternatives and safe use of wood in construction frames Offers possibilities for modular prefabrication construction where the efficiency in material use is higher Flexibility in the construction process makes it easier to adapt to the physical context for the construction. Wood is also a lighter material than concrete, which points to usefulness when the grounds are not stable Wood materials offer a nice atmosphere when used internally in a construction. Moisture, fire, and sound properties need to be taken into account in the adaptation of the production as well as use of the house | \nSociety Industry Consumer | \n
Availability and ownership of wood materials | \nWood is naturally occurring in Sweden and the ownership structure promotes development of markets. In the future, forest-based resources may be given additional importance as part of creating bio-based economies | \nSociety Industry Forest owner | \n
Perceptions of wood properties in light of use in multistorey construction based on a review with minor modifications from Sjöström [6].
The list of characteristics of wood can be made much longer, but these properties have a bearing for the empirical study and the context in which it is conducted (Sweden). The perceived characteristics are by no means static, which indicate that as new technologies, products as well as techniques, are developed, some of the perceptions of wood are renegotiated, which may lead to changes in policy and legislation.
\nHistorically, wood and stone have served mankind as construction materials for residential housing as well as commercial buildings. The tradition of building residential single houses in wood is well established in Sweden [6] where about 90% of new residential houses are built in wood (wooden frames and/or wood exterior and interior as a major part of the construction material). However, the development of multistorey constructions has been slow in progress in spite of promotional activities to spur market development.
\nSince 1994 when the legislation for multistorey construction was altered in Sweden, to allow for wood as a construction material (again) in multistorey housing in Sweden, the market has been very slow in development. Promotional activities sanctioned by the Ministry of Industry in 2002 were followed up by more local initiatives, neither of which led to any major market developments. Lately, however, additional governmental efforts, based on political objectives in line with Sustainable Development Goals (SDG) and an increased insight in how forestry may serve in the development of bioeconomies, are made to promote wood as a construction material for WMC, for local as well as international markets [7].
\nWith a forecasted annual need for 93,000 new homes per year in Sweden, the predicted construction of 120,000 homes for 2018–2019 does not cover the forecasted market needs. Of these new homes, about 10% are currently flats in WMC apartment houses [6]. With an understanding of wood as a construction material and a political will to develop WMC markets, what are the views of consumers?
\nConsumers’ views are greatly influenced by norms in society [8]. An increased awareness of human influence on sustainable development is reflected in societal dialog in channels such as media, social media, NGO influences, and more traditional elements of culture such as family and traditions. Consumer expectations, values, and communicational traditions are therefore of tremendous importance for understanding decision-making in purchasing an apartment (often referred to as an example of an investment product).
\nCommunication is seen as key in the purchasing process since it concerns a lot of money, and a product that consumers may not be capable of evaluating all aspects of ex ante. We assume that consumers need information to make a well-grounded decision about a major investment, their new home [9]. Given the understanding of wood properties, a need for housing, and consumers’ need for information about an investment, their home, our aim is to explain the perceived advantages among apartment owners in wooden multistorey houses.
\nAn empirical case study was conducted with the ambitions to investigate consumer perceptions of the apartment they own (in a wooden multistorey house) [9]. A small town in Sweden, Växjö, was selected because the WMC tradition was well developed. Växjö is often referred to as “wood construction town”, and it is seen as a forerunner for urban development in Sweden.
\nThree WMCs were selected (Strandsnäckan, Wälludden, and Portvakten), and in these houses, (11, 14, and 17, respectively), randomly selected residents were willing to contribute to the project in an interview (in February–March, 2018). After receiving an informed consent from the respondents and a promise for the respondents to be anonymous, the interview was made as a leisure dialog, based on open-ended thematic questions. Themes for the interview covered were connected to factors that the literature review had pointed to as key for making a residential purchasing decision (Table 2).
\nThemes for questions | \nTheoretical starting point | \n
---|---|
Awareness of living in a WMC apartment Where did you get information about the wooden construction of the house? | \nConsumer awareness of alternatives in consumption [10] | \n
Information about climate-related properties of a wooden house | \nInformation about wood properties [11, 12] | \n
Channel for information (about wood properties and climate properties) | \nChannel for communication [8] | \n
Factors that influenced the decision to buy the apartment | \nDecision-making [10, 13, 14] | \n
Themes for the interview with residents in apartments in multistorey constructions, in Växjö and theoretical origin for the theme [9].
The result from the interviews in the selected houses and randomly selected residents does not lend itself to generalization. It should be seen as indicative of what might have explanatory power and what we need to investigate further.
\nMarket development can be explained from various perspectives. Policy instruments, such as taxes, information campaigns, and legislation play instrumental roles in promoting desired behaviors. Industrial development such as research and public private partnerships may also account for market development. In this case, our focus rests on the role of the consumer.
\nA traditional view of a theory for consumers’ purchasing behaviors for investment products is described in these phases [10] as part of a planned behavior (theory of planned behavior):
Need recognition
Searching and gathering information
Evaluating the alternatives
Actual purchase of the product or the service
Postpurchase evaluation
Although the process appears to be linear, it is normally an iterative process, in which the consumer gains additional understanding of choices made and choices to be made. Communication fills important roles throughout the purchasing process [13]. It may seem strange that we did not focus on phase II–IV but rather on V, the after-purchase evaluation in our study. This is explained by our understanding that consumers’ postpurchase behavior is assumed to influence their future purchases as well as in their roles as ambassadors, in communication with other consumers.
\nThe marketing mix (product, price, promotion, and place) [10] serves as a starting point in the purchasing process. This model offers an understanding of marketing from a producer perspective. The classical model is reinterpreted, focusing on the four P\'s in terms of customer perspectives as customer solutions, customer costs, communications, and convenience [13] in order to understand consumer views. The big difference in perspective, from P:s to C:s, deserves to be emphasized as it gives the consumer a key role in a possible market development for the WMC apartments.
\nThe markets for residential constructions, houses as well as apartments in multistorey constructions in Sweden, are changing slowly and it does not meet captured in the word, shortage. The housing situation varies from one municipality to another, which in part can be explained by political ambitions and by corporate investments. In the metropolitan regions of Stockholm, Gothenburg, and Malmö, housing construction is expected to increase significantly over the coming years to meet the current housing shortage in the country [15] illustrated in Figure 1.
\nThe relationship between completed housing construction and the forecasted need for housing up to the year 2025 [15].
The needs for residential house construction in Figure 1 are clear. According to this forecast, some 90,000 additional homes are needed annually between 2018 and 2024 [15, p. 20]. Looking more closely on what has been completed in terms of residential houses since the late 1930s (Figure 2) further supports the understanding of market development needs [16].
\nNumber of completed apartments in multifamily houses and single-family houses from 1938 to 2017 in Sweden [16].
Figure 2 shows the number of apartments and single-family houses since the 1940s in Sweden. The new residential construction has been below the needs of markets since the 1970s. The graph also indicates that since 2010 the rate of construction for multistorey houses (apartment homes) is increasing. In 2017, some 51,500 new homes were completed in Sweden, which is a much needed increase. This is explained by a population growth and continued movement of individuals to urban contexts, especially metropolitan areas, from rural areas. However, even with this increase in new homes, it does not cover the forecasted needs of 90,000 new (additional) homes on an annual basis [15].
\nA tradition to use wood in house construction in Sweden is well established. Of the approximately 10,000 new single houses that are built in Sweden on an annual basis, some 90% are built in wood [17]. The situation for multistorey construction is quite different. Due to fear of fire, a legislation has been limiting construction in wood (over two levels). However, since 1994, it is permitted to use wood as a bearing material in multistorey residential construction in Sweden. Development of new techniques, materials, and tests of the properties of wood in construction has proven that wood serves as a safe and esthetically pleasing material, in addition to the properties that benefit sustainable development.
\nThe ban to use wood in multistorey construction has had consequences on the market in terms of a deprived skills and technological development [13]. Other construction materials, such as concrete and steel, have taken the lead in practices for multistorey construction. When the legislation was altered in 1994, the market did not respond, which is explained by a change of practices and skills in major stakeholder groups (construction workers, engineers, architects as well as in procurement stakeholders representing municipalities) [18].
\nPolitical efforts were made to support the reestablishment of wood practices in multistorey construction in Sweden. In 2002, the Ministry of Enterprise and Innovation presented a proposal to develop a strategy for increased wood construction in Sweden, “More wood in construction DS2004:1” [19]. It was based on the understanding of a need to meet needs of needs of homes located in urban areas, land use, and sustainable development objectives for construction. In spite of political efforts on national and local levels, the market development has remained very moderate.
\nIn 2018, the Swedish Ministry of Industry presented a policy document “Focus on Wood Construction” [20], which clearly voices the understanding of needs for multistakeholder dialogues in order to promote a market development. It points to key stakeholders as forest-based industry corporations, municipalities, architects, and consumers as drivers of a change in construction practices. Representing the government, representatives of the Ministry describe perceived benefits in terms of creating new jobs, technological development, and increased housing production, with an understanding of these outcomes as part of sustainable development.
\nAt a local level, Swedish municipalities address political objectives related to sustainable development and residential construction with different objectives. One of the municipalities that has worked with wood in multistorey construction in a very structured way is Växjö.
\nThe town, Växsjö, is often referred to as a “wood construction town” with an ambition to be a center for wood construction expertise. It is located in the southern part of Sweden, surrounded by forests, which explains the well-developed industrial system that uses the forest resources. Municipal ambitions of sustainable development efforts as well as traditions may account for politically well-founded public procurement efforts for wooden multistorey constructions (WMCs). Their local strategies have supported WMC for a long time [21] with ambitious goals set for 50% of the new constructions of multistorey homes to be in wood by 2020. Municipal bold objects set in 2013 and efforts to follow up on progress have resulted in 44% new WMC already by 2015 [22]. The efforts continue to reach the 50% target by 2020 [23].
\nAssuming that municipal politics and actions reflect consumer values and needs, this pilot study set out to investigate consumer perspectives of WMC. The interviewed residents of apartments in WMC houses were interviewed, and Table 3 provides an overview of the results [9]. The 42 interviews in three residential areas are merged, as they did not show any major differences from one residential area to another.
\nThematic questions | \nResults from interviews (in total 42) | \n
---|---|
Awareness of living in a WMC apartment Source of information about WMC apartment | \n34 knew they lived in a WMC apartment 6 thought it was a concrete house 3 did not know about the construction material 12 persons are aware of having been given information about WMC Oral information from sales agent and printed information from the house association | \n
Information about climate-related properties of a wooden house | \n14 are aware of having been given information 22 do not recall any information 6 do not know | \n
Channel for information (about wood properties and climate properties) | \n21 prefer to get information in personal dialogs (word of mouth) 12 would prefer to get information on a web page 11 request printed information and 7 reply that TV and radio is a good channel for communication | \n
Factors that influenced the decision to buy the apartment | \nThe location of the apartment (34) Size of apartment (16) Price (13) Atmosphere (13) Environmental properties (6) | \n
Results from interview with 42 residents in apartments in wooden multistorey constructions (WMCs) in Växjö (February–March, 2018) [9].
Empirical results (Table 3) from the interviews indicate that a majority of the apartment residents are aware of that they live in a WMC apartment. The source of that information is less clear, which might be explained by some time having passed since the purchase was made or not being the first owners of the apartment.
\nChannels for information about climate properties of wood construction is preferred in word of mouth dialogs, web pages, printed matters, and media information in general.
\nThe last theme for the interview, the factors that were of major importance for purchasing an apartment or not, points to the importance of the location of the apartment. Size, price, and atmosphere also play important roles. The last listed factor, environmental properties, offers some food for thought.
\nThe development of a market can be seen from many perspectives. Starting with a product-dominant logic, focusing on the product (an apartment in a WMC house), we continue the discussion with a more service-dominant logic [21] perspective focusing on societal and consumer needs.
\nThis project set out with an understanding of the importance of commutation as means to promote consumer behavior. Previous research on consumer awareness in purchasing apartments in WMC [24, 25, 26, 27, 28, 29] points to shortcomings in communication regarding climate effects.
\nOur empirical study shows that efforts to communicate have been made, which is to be expected in a “wood town” like Växjö, but the consumers’ recollection of the information from the purchasing situation was not very clear. This may be explained by some time having passed since the purchasing decision was made, information materials that were not tailored to the needs of the consumers, the interviewee not being the person that made the purchasing decision or information that was provided in a communication channel that was not suitable. The level of awareness of benefits related to wood as a construction material in WMC appears to be limited. Consumers’ limited insight to technical production-related benefits is expected, but the awareness of physical properties in use and environmental benefits with WMC also appears to be moderate among the interviewees. There is, clearly, room for improvements if consumer awareness is seen as important.
\nThe last question in the empirical study, about factors that determine a purchasing decision of an apartment in a WMC house, points to needs to rethink our understanding of what influences market development. The first thing we need to problematize is that of the difference between preference and actual purchasing decision. Housing preferences are influenced by a number of factors [14], for example, household size, transparency of the housing market, availability of alternative housing options, and lifestyle-related factors. All of the above, in addition to personal budget constraints, financial institute conditions for taking loans and governmental policy systems that may or may not offer tax deductions and subsidies, on the other hand, influence purchasing decisions. It seems that studies of conditions of consumer awareness of environmental aspects of WMC require a contextual understanding of institutional conditions for making decisions.
\nWorth noticing is that the consumers did not mention health aspects influencing their purchasing decision in our empirical study, which is somewhat surprising. After all, the indoor environment is important for an individual’s life, especially in temperate climate such as that of Sweden. Burnard and Kutnar [28] point to health aspects in terms of wood as a construction material that may relax stress.
\nGiven the current shortage of housing alternatives in Sweden [15], there might not be a need to communicate WMC benefits. Consumers in need of an apartment will buy it, independent of construction materials used in the house [9]. Furthermore, the importance of location points to that this will be key if consumers are given alternatives.
\nAs pointed out by Jansen et al. [14], availability of housing alternatives plays a key role. If there are no WMC apartment available in a particular geographical area, of a requested size and price range, that will limit the consumer’s possible choice of a WMC apartment. The logic is the same as that of buying food in a food store. It is the management’s portfolio decisions in a food store that will set the limits to what products that I may purchase in that food store.
\nIn this case, goals for expanding markets for WMC were set on a national level as a way to meet forecasted housing demands, preferences, and work toward sustainability objectives in an industry that uses a substantial amount of resources. Some municipalities, like Växjö, picked up on these national objectives and made it their local agenda, but the vast majority of municipalities in Sweden have not.
\nA service-dominant logic starts with consumer needs and looks for ways in which these needs can be met. With an understanding of consumers’ limited capacity to influence the material choice in house construction, it seems that other economic and macrolevel incentives are needed. Standards and sustainability ecolabels would be one way to go [30], but Hurmenkoski et al. [27] call for regulatory frameworks to support the WMC market developments. Although the environmental benefits in using wood for house constructions are associated with societal benefits [31], it cannot be assumed that consumers fully comprehend the benefits or are willing to pay extra, which points to needs for policy instruments to be used such as taxes and subsidies to promote market development in a direction toward sustainable development.
\nLooking into the future, Høibø et al. [32] suggest that future generations are more environmentally aware when it comes to paying attention to house construction materials. Their findings support other researchers’ views [8, 13, 14] that younger generations, the future inhabitants of apartments in WMC houses, future generation of business leaders, and politicians will be more aware of SDGs in their private life as well as in their professional conduct. Given the lasting character of a house that may last for hundreds of years, it is important to include educated guesses of where the future is taking us in strategic choices.
\nCommunicating climate effects of WMC appears to be critical in business to business (B2B) relations, in private and public procurement. Consumers are not making the portfolio decisions related to building WMC houses. It is the construction agents, municipal planning board, and suppliers in the construction industry, like architects, construction planners, and construction workers who set the market in which consumers usually only can make a choice of an apartment. That is to say that in a town that does not have political objectives to develop WMC, there will be less apartment in wooden houses (WMC) and the consumer would have to make a choice from what is available on the market.
\nIn the presented case of Växjö [9], bold political objectives were set up and communicated. They serve as an action plan and a collective contract to work toward sustainable development in the construction of residential housing as part of what Beltz and Peattie [13] refer to as sustainability marketing transformations.
\nShortcomings in development of a housing market with options for the consumer to make a choice from (WMC or concrete buildings) are clear. They can be explained by a number of factors, for example, relating to:
current practices in the construction industry (ongoing contracts and habitual practices) [3]
organizational arrangements [6]
skills that are built up over time using the current materials [18]
training programs of professionals, architects, construction planners as well as construction workers [18, 33]
political objectives and priorities (what is built where) [3, 29]
the current housing situation reflected on the market [14]
All of these factors may serve as market development constraints, and they need to be further investigated to provide an understanding of the context for WMC market developments.
\nIn conclusion, wood offers superior qualities with regard to developments of circular bioeconomies, as part of sustainable development. Consumer awareness of WMC as means to make choices in support of sustainable development is important. Consumers may not influence the current market offers directly in their purchasing decisions, in a short time frame. They will have to make a choice among the current offers if they need a house or an apartment now, but they may still influence political policies and actions in voting procedures, NGO engagement, and taking the role as a WMC ambassador in everyday dialogs.
\nContinued research is needed to explain policy implications of stimulating the market for WMC. Examples of such areas have to do with organizational aspects as well as policy implications of market transitions toward sustainable development, where an increased use of WMC is seen in models for circular bioeconomy. Organizational aspects of markets where the WMC has been successful are associated with collaboration efforts in so-called public-private partnerships [6]. Experiences from recent political efforts of market transitions [13, 34] are seen in banning the old light bulbs, stimulating markets for solar panels and bicycles with batteries through subsidies. All of these examples might serve as inspiration to forecast how policy instruments can be used efficiently to promote sustainable development in the development of WMC markets.
\nBook - collection of Works distributed in a book format, whose selection, coordination, preparation, and arrangement has been performed and published by IntechOpen, and in which the Work is included in its entirety in an unmodified form along with one or more other contributions, each constituting separate and independent sections, but together assembled into a collective whole.
",metaTitle:"Attribution Policy",metaDescription:"DEFINITION OF TERMS",metaKeywords:null,canonicalURL:"/page/attribution-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"Work - a book Chapter (as well as Conference Papers), including any and all content, graphics, images and/or other materials forming part of, or accompanying, the Chapter/Conference Paper.
\\n\\nAttribution – appropriate credit for the used Work or book.
\\n\\nCreative Commons licenses – enable licensors to retain copyright while allowing others to use their Works in an appropriate way.
\\n\\nWith the purpose of protecting Authors' copyright and the transparent reuse of OA (Open Access) content, IntechOpen has developed Rules of Attribution of Works licensed under Creative Commons licenses.
\\n\\nIn case you reuse or republish any of the Works licensed under CC licenses, you must abide by the guidelines outlined below:
\\n\\nAll rights to Books and other compilations published on the IntechOpen platform and in print are reserved by IntechOpen. The Copyright to Books and other compilations is subject to a separate Copyright from any that exists in the included Works.
\\n\\nA Book in its entirety or a significant part of a Book cannot be translated freely without specific written consent by the publisher. Further information can be obtained at permissions@intechopen.com.
\\n\\nIn instances where permission is obtained from the publisher for reusing or republishing the Book, or significant parts of the Book, all of the following conditions apply:
\\n\\nEvery single Work that is used has to be attributed in the way described. If you are unsure about proper attribution, please write to permissions@intechopen.com.
\\n\\nIndividual Works originally published in IntechOpen books are licensed under Creative Commons licenses and can be freely used under terms of the respective CC license, if properly attributed. In order to properly attribute the Work you must respect all the conditions outlined below:
\\n\\nEvery single Work that is used has to be attributed in the way as described. If you are unsure about proper attribution, please contact Us at permissions@intechopen.com.
\\n\\nIn the event that you use more than one of IntechOpen's Works published in one or more books (but not a significant part of the book that is under separate Copyright), each of these have to be properly attributed in the way described.
\\n\\nIntechOpen does not have any claims on newly created copyrighted Works, but the Works originally published by IntechOpen must be properly attributed.
\\n\\nAll these rules apply to BOTH online and offline use.
\\n\\nParts of the Rules of Attribution are based on Work Attributing Creative Commons Materials published by the Australian Research Council Centre of Excellence for Creative Industries and Innovation, in partnership with Creative Commons Australia, which can be found at creativecommons.org.au licensed under Creative Commons Attribution 2.5 Australia license, and Best practices for attribution published by Creative Commons, which can be found at wiki.creativecommons.org under the Creative Commons Attribution 4.0 license.
\\n\\nAll the above rules are subject to change, IntechOpen reserves the right to take appropriate action if any of the conditions outlined above are not met.
\\n\\nPolicy last updated: 2016-06-09
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Work - a book Chapter (as well as Conference Papers), including any and all content, graphics, images and/or other materials forming part of, or accompanying, the Chapter/Conference Paper.
\n\nAttribution – appropriate credit for the used Work or book.
\n\nCreative Commons licenses – enable licensors to retain copyright while allowing others to use their Works in an appropriate way.
\n\nWith the purpose of protecting Authors' copyright and the transparent reuse of OA (Open Access) content, IntechOpen has developed Rules of Attribution of Works licensed under Creative Commons licenses.
\n\nIn case you reuse or republish any of the Works licensed under CC licenses, you must abide by the guidelines outlined below:
\n\nAll rights to Books and other compilations published on the IntechOpen platform and in print are reserved by IntechOpen. The Copyright to Books and other compilations is subject to a separate Copyright from any that exists in the included Works.
\n\nA Book in its entirety or a significant part of a Book cannot be translated freely without specific written consent by the publisher. Further information can be obtained at permissions@intechopen.com.
\n\nIn instances where permission is obtained from the publisher for reusing or republishing the Book, or significant parts of the Book, all of the following conditions apply:
\n\nEvery single Work that is used has to be attributed in the way described. If you are unsure about proper attribution, please write to permissions@intechopen.com.
\n\nIndividual Works originally published in IntechOpen books are licensed under Creative Commons licenses and can be freely used under terms of the respective CC license, if properly attributed. In order to properly attribute the Work you must respect all the conditions outlined below:
\n\nEvery single Work that is used has to be attributed in the way as described. If you are unsure about proper attribution, please contact Us at permissions@intechopen.com.
\n\nIn the event that you use more than one of IntechOpen's Works published in one or more books (but not a significant part of the book that is under separate Copyright), each of these have to be properly attributed in the way described.
\n\nIntechOpen does not have any claims on newly created copyrighted Works, but the Works originally published by IntechOpen must be properly attributed.
\n\nAll these rules apply to BOTH online and offline use.
\n\nParts of the Rules of Attribution are based on Work Attributing Creative Commons Materials published by the Australian Research Council Centre of Excellence for Creative Industries and Innovation, in partnership with Creative Commons Australia, which can be found at creativecommons.org.au licensed under Creative Commons Attribution 2.5 Australia license, and Best practices for attribution published by Creative Commons, which can be found at wiki.creativecommons.org under the Creative Commons Attribution 4.0 license.
\n\nAll the above rules are subject to change, IntechOpen reserves the right to take appropriate action if any of the conditions outlined above are not met.
\n\nPolicy last updated: 2016-06-09
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:null},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5318},{group:"region",caption:"Middle and South America",value:2,count:4830},{group:"region",caption:"Africa",value:3,count:1469},{group:"region",caption:"Asia",value:4,count:9372},{group:"region",caption:"Australia and Oceania",value:5,count:837},{group:"region",caption:"Europe",value:6,count:14789}],offset:12,limit:12,total:108346},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"8"},books:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!0,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:null,bookSignature:"Ph.D. Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:null,editors:[{id:"178316",title:"Ph.D.",name:"Sergey",surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7702",title:"Electrolysis of Water",subtitle:null,isOpenForSubmission:!0,hash:"7532579d8c6881554d1812b55d0e8d4d",slug:null,bookSignature:"Prof. Fumio Okada",coverURL:"https://cdn.intechopen.com/books/images_new/7702.jpg",editedByType:null,editors:[{id:"147954",title:"Prof.",name:"Fumio",surname:"Okada",slug:"fumio-okada",fullName:"Fumio Okada"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8085",title:"Photochemistry and Photophysics - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"d12a01a39921705f78e98baf99705b4e",slug:null,bookSignature:"Dr. Satyen Saha and Dr. Ravi Kumar Kanaparthi",coverURL:"https://cdn.intechopen.com/books/images_new/8085.jpg",editedByType:null,editors:[{id:"226917",title:"Dr.",name:"Satyen",surname:"Saha",slug:"satyen-saha",fullName:"Satyen Saha"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8199",title:"Hydroxyapatite - Properties and Functions",subtitle:null,isOpenForSubmission:!0,hash:"6a3c2d529bd0b7fb6d259f00b4562d77",slug:null,bookSignature:"Dr. Claudia Manuela da Cunha Ferreira Botelho",coverURL:"https://cdn.intechopen.com/books/images_new/8199.jpg",editedByType:null,editors:[{id:"258963",title:"Dr.",name:"Claudia Manuela",surname:"da Cunha Ferreira Botelho",slug:"claudia-manuela-da-cunha-ferreira-botelho",fullName:"Claudia Manuela da Cunha Ferreira Botelho"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8486",title:"Toxicity in Food",subtitle:null,isOpenForSubmission:!0,hash:"6d7b03f7f7bc6bda7523eeca2dbc3ba6",slug:null,bookSignature:"Prof. Mohammed Muzibur Rahman, Dr. Inamuddin Inamuddin, Dr. Anish Khan and Dr. Abdullah M. Asiri",coverURL:"https://cdn.intechopen.com/books/images_new/8486.jpg",editedByType:null,editors:[{id:"24438",title:"Prof.",name:"Mohammed",surname:"Rahman",slug:"mohammed-rahman",fullName:"Mohammed Rahman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8492",title:"Ammonia - Properties and Use",subtitle:null,isOpenForSubmission:!0,hash:"60ee20d7f06bb9fc8b6a4dff9182f1f1",slug:null,bookSignature:"Dr. Kafa Khalaf",coverURL:"https://cdn.intechopen.com/books/images_new/8492.jpg",editedByType:null,editors:[{id:"209244",title:"Dr.",name:"Kafa",surname:"Khalaf",slug:"kafa-khalaf",fullName:"Kafa Khalaf"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8497",title:"Metalloproteins",subtitle:null,isOpenForSubmission:!0,hash:"1a8a35c5fe647362c031ee6da23b5a27",slug:null,bookSignature:"Dr. Takashiro Akitsu",coverURL:"https://cdn.intechopen.com/books/images_new/8497.jpg",editedByType:null,editors:[{id:"147861",title:"Dr.",name:"Takashiro",surname:"Akitsu",slug:"takashiro-akitsu",fullName:"Takashiro Akitsu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8764",title:"Methanol Chemistry",subtitle:null,isOpenForSubmission:!0,hash:"87db86b0b044f975cb3fc7e0e6af01a2",slug:null,bookSignature:"Associate Prof. Kasibhatta Siva Kumar and Dr. Sreenivasulu Karlapudi",coverURL:"https://cdn.intechopen.com/books/images_new/8764.jpg",editedByType:null,editors:[{id:"293276",title:"Associate Prof.",name:"Kasibhatta",surname:"Siva Kumar",slug:"kasibhatta-siva-kumar",fullName:"Kasibhatta Siva Kumar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9183",title:"Nematic Liquid Crystals",subtitle:null,isOpenForSubmission:!0,hash:"c9adbbaa21f66dbafc6074bb74a893a3",slug:null,bookSignature:"Prof. Irina Carlescu",coverURL:"https://cdn.intechopen.com/books/images_new/9183.jpg",editedByType:null,editors:[{id:"258032",title:"Prof.",name:"Irina",surname:"Carlescu",slug:"irina-carlescu",fullName:"Irina Carlescu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9187",title:"Spiro Compounds/Spiranes",subtitle:null,isOpenForSubmission:!0,hash:"fa002b6b35caf5b7eca35ab6e1387909",slug:null,bookSignature:"Dr. Nguyen Xuan Nhiem",coverURL:"https://cdn.intechopen.com/books/images_new/9187.jpg",editedByType:null,editors:[{id:"66831",title:"Dr.",name:"Nguyen Xuan",surname:"Nhiem",slug:"nguyen-xuan-nhiem",fullName:"Nguyen Xuan Nhiem"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9198",title:"Chemistry of Indoles",subtitle:null,isOpenForSubmission:!0,hash:"fa213f54dd56cefc6bfb783edf4de62d",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/9198.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9452",title:"Hydrazones",subtitle:null,isOpenForSubmission:!0,hash:"a0096875b03aeb5da7c7da8a7620de4b",slug:null,bookSignature:"Dr. Ranjan Kumar Kumar Mohapatra",coverURL:"https://cdn.intechopen.com/books/images_new/9452.jpg",editedByType:null,editors:[{id:"91752",title:"Dr.",name:"Ranjan Kumar",surname:"Mohapatra",slug:"ranjan-kumar-mohapatra",fullName:"Ranjan Kumar Mohapatra"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:35},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:32},{group:"topic",caption:"Business, Management and Economics",value:7,count:10},{group:"topic",caption:"Chemistry",value:8,count:30},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:13},{group:"topic",caption:"Engineering",value:11,count:66},{group:"topic",caption:"Environmental Sciences",value:12,count:12},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:35},{group:"topic",caption:"Mathematics",value:15,count:14},{group:"topic",caption:"Medicine",value:16,count:132},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:6},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:8},{group:"topic",caption:"Physics",value:20,count:20},{group:"topic",caption:"Psychology",value:21,count:2},{group:"topic",caption:"Robotics",value:22,count:6},{group:"topic",caption:"Social Sciences",value:23,count:13},{group:"topic",caption:"Technology",value:24,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3},{group:"topic",caption:"Insectology",value:39,count:1},{group:"topic",caption:"Genesiology",value:300,count:1},{group:"topic",caption:"Machine Learning and Data Mining",value:521,count:1},{group:"topic",caption:"Intelligent System",value:535,count:1}],offset:12,limit:12,total:46},popularBooks:{featuredBooks:[{type:"book",id:"7640",title:"Perspective of Carbon Nanotubes",subtitle:null,isOpenForSubmission:!1,hash:"8b85a9957fad5206369eadf0c1ffa27d",slug:"perspective-of-carbon-nanotubes",bookSignature:"Hosam El-Din Saleh and Said Moawad Mohamed El-Sheikh",coverURL:"https://cdn.intechopen.com/books/images_new/7640.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam El-Din",middleName:"M.",surname:"Saleh",slug:"hosam-el-din-saleh",fullName:"Hosam El-Din Saleh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7583",title:"Advanced Computational Fluid Dynamics for Emerging Engineering Processes",subtitle:"Eulerian vs. Lagrangian",isOpenForSubmission:!1,hash:"896509fa2e7e659811bffd0f9779ca9d",slug:"advanced-computational-fluid-dynamics-for-emerging-engineering-processes-eulerian-vs-lagrangian",bookSignature:"Albert S. Kim",coverURL:"https://cdn.intechopen.com/books/images_new/7583.jpg",editors:[{id:"21045",title:"Prof.",name:"Albert S.",middleName:null,surname:"Kim",slug:"albert-s.-kim",fullName:"Albert S. Kim"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7839",title:"Malaria",subtitle:null,isOpenForSubmission:!1,hash:"91cde4582ead884cb0f355a19b67cd56",slug:"malaria",bookSignature:"Fyson H. Kasenga",coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7698",title:"Educational Psychology",subtitle:"Between Certitudes and Uncertainties",isOpenForSubmission:!1,hash:"740943e2d029253e777150e98ebe2f0d",slug:"educational-psychology-between-certitudes-and-uncertainties",bookSignature:"Victori?a Trif",coverURL:"https://cdn.intechopen.com/books/images_new/7698.jpg",editors:[{id:"201656",title:"Ph.D.",name:"Victorița",middleName:null,surname:"Trif",slug:"victorita-trif",fullName:"Victorița Trif"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7000",title:"Legume Crops",subtitle:"Characterization and Breeding for Improved Food Security",isOpenForSubmission:!1,hash:"4d0f73bf883bbb984cc2feef1259a9a7",slug:"legume-crops-characterization-and-breeding-for-improved-food-security",bookSignature:"Mohamed Ahmed El-Esawi",coverURL:"https://cdn.intechopen.com/books/images_new/7000.jpg",editors:[{id:"191770",title:"Dr.",name:"Mohamed A.",middleName:null,surname:"El-Esawi",slug:"mohamed-a.-el-esawi",fullName:"Mohamed A. El-Esawi"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7093",title:"Pneumothorax",subtitle:null,isOpenForSubmission:!1,hash:"0b1fdb8bb0448f48c2f234753898f3f8",slug:"pneumothorax",bookSignature:"Khalid Amer",coverURL:"https://cdn.intechopen.com/books/images_new/7093.jpg",editors:[{id:"63412",title:"Dr.",name:"Khalid",middleName:null,surname:"Amer",slug:"khalid-amer",fullName:"Khalid Amer"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7612",title:"Electrospinning and Electrospraying",subtitle:"Techniques and Applications",isOpenForSubmission:!1,hash:"77e9708250507395a4bea2c17d012982",slug:"electrospinning-and-electrospraying-techniques-and-applications",bookSignature:"Sajjad Haider and Adnan Haider",coverURL:"https://cdn.intechopen.com/books/images_new/7612.jpg",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8323",title:"Traditional and Complementary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"60eadb1783d9bba245687adf284d4871",slug:"traditional-and-complementary-medicine",bookSignature:"Cengiz Mordeniz",coverURL:"https://cdn.intechopen.com/books/images_new/8323.jpg",editors:[{id:"214664",title:"Associate Prof.",name:"Cengiz",middleName:null,surname:"Mordeniz",slug:"cengiz-mordeniz",fullName:"Cengiz Mordeniz"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7646",title:"Scientometrics Recent Advances",subtitle:null,isOpenForSubmission:!1,hash:"86bbdd04d7e80be14283d44969d1cc32",slug:"scientometrics-recent-advances",bookSignature:"Suad Kunosic and Enver Zerem",coverURL:"https://cdn.intechopen.com/books/images_new/7646.jpg",editors:[{id:"88678",title:"Prof.",name:"Suad",middleName:null,surname:"Kunosic",slug:"suad-kunosic",fullName:"Suad Kunosic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8516",title:"Metacognition in Learning",subtitle:null,isOpenForSubmission:!1,hash:"5fa6eaad7b509b8b7ec5124d79e5f605",slug:"metacognition-in-learning",bookSignature:"Nosisi Feza",coverURL:"https://cdn.intechopen.com/books/images_new/8516.jpg",editors:[{id:"261665",title:"Prof.",name:"Nosisi",middleName:"N.",surname:"Feza",slug:"nosisi-feza",fullName:"Nosisi Feza"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7404",title:"Hysteresis of Composites",subtitle:null,isOpenForSubmission:!1,hash:"8540fa2378dbb92e50411cfebfb853a6",slug:"hysteresis-of-composites",bookSignature:"Li Longbiao",coverURL:"https://cdn.intechopen.com/books/images_new/7404.jpg",editors:[{id:"260011",title:"Dr.",name:"Li",middleName:null,surname:"Longbiao",slug:"li-longbiao",fullName:"Li Longbiao"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4406},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7640",title:"Perspective of Carbon Nanotubes",subtitle:null,isOpenForSubmission:!1,hash:"8b85a9957fad5206369eadf0c1ffa27d",slug:"perspective-of-carbon-nanotubes",bookSignature:"Hosam El-Din Saleh and Said Moawad Mohamed El-Sheikh",coverURL:"https://cdn.intechopen.com/books/images_new/7640.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam El-Din",middleName:"M.",surname:"Saleh",slug:"hosam-el-din-saleh",fullName:"Hosam El-Din Saleh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7583",title:"Advanced Computational Fluid Dynamics for Emerging Engineering Processes",subtitle:"Eulerian vs. Lagrangian",isOpenForSubmission:!1,hash:"896509fa2e7e659811bffd0f9779ca9d",slug:"advanced-computational-fluid-dynamics-for-emerging-engineering-processes-eulerian-vs-lagrangian",bookSignature:"Albert S. Kim",coverURL:"https://cdn.intechopen.com/books/images_new/7583.jpg",editors:[{id:"21045",title:"Prof.",name:"Albert S.",middleName:null,surname:"Kim",slug:"albert-s.-kim",fullName:"Albert S. Kim"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7839",title:"Malaria",subtitle:null,isOpenForSubmission:!1,hash:"91cde4582ead884cb0f355a19b67cd56",slug:"malaria",bookSignature:"Fyson H. Kasenga",coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7698",title:"Educational Psychology",subtitle:"Between Certitudes and Uncertainties",isOpenForSubmission:!1,hash:"740943e2d029253e777150e98ebe2f0d",slug:"educational-psychology-between-certitudes-and-uncertainties",bookSignature:"Victori?a Trif",coverURL:"https://cdn.intechopen.com/books/images_new/7698.jpg",editors:[{id:"201656",title:"Ph.D.",name:"Victorița",middleName:null,surname:"Trif",slug:"victorita-trif",fullName:"Victorița Trif"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7000",title:"Legume Crops",subtitle:"Characterization and Breeding for Improved Food Security",isOpenForSubmission:!1,hash:"4d0f73bf883bbb984cc2feef1259a9a7",slug:"legume-crops-characterization-and-breeding-for-improved-food-security",bookSignature:"Mohamed Ahmed El-Esawi",coverURL:"https://cdn.intechopen.com/books/images_new/7000.jpg",editors:[{id:"191770",title:"Dr.",name:"Mohamed A.",middleName:null,surname:"El-Esawi",slug:"mohamed-a.-el-esawi",fullName:"Mohamed A. El-Esawi"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7093",title:"Pneumothorax",subtitle:null,isOpenForSubmission:!1,hash:"0b1fdb8bb0448f48c2f234753898f3f8",slug:"pneumothorax",bookSignature:"Khalid Amer",coverURL:"https://cdn.intechopen.com/books/images_new/7093.jpg",editors:[{id:"63412",title:"Dr.",name:"Khalid",middleName:null,surname:"Amer",slug:"khalid-amer",fullName:"Khalid Amer"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7612",title:"Electrospinning and Electrospraying",subtitle:"Techniques and Applications",isOpenForSubmission:!1,hash:"77e9708250507395a4bea2c17d012982",slug:"electrospinning-and-electrospraying-techniques-and-applications",bookSignature:"Sajjad Haider and Adnan Haider",coverURL:"https://cdn.intechopen.com/books/images_new/7612.jpg",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8323",title:"Traditional and Complementary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"60eadb1783d9bba245687adf284d4871",slug:"traditional-and-complementary-medicine",bookSignature:"Cengiz Mordeniz",coverURL:"https://cdn.intechopen.com/books/images_new/8323.jpg",editors:[{id:"214664",title:"Associate Prof.",name:"Cengiz",middleName:null,surname:"Mordeniz",slug:"cengiz-mordeniz",fullName:"Cengiz Mordeniz"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7646",title:"Scientometrics Recent Advances",subtitle:null,isOpenForSubmission:!1,hash:"86bbdd04d7e80be14283d44969d1cc32",slug:"scientometrics-recent-advances",bookSignature:"Suad Kunosic and Enver Zerem",coverURL:"https://cdn.intechopen.com/books/images_new/7646.jpg",editors:[{id:"88678",title:"Prof.",name:"Suad",middleName:null,surname:"Kunosic",slug:"suad-kunosic",fullName:"Suad Kunosic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8516",title:"Metacognition in Learning",subtitle:null,isOpenForSubmission:!1,hash:"5fa6eaad7b509b8b7ec5124d79e5f605",slug:"metacognition-in-learning",bookSignature:"Nosisi Feza",coverURL:"https://cdn.intechopen.com/books/images_new/8516.jpg",editors:[{id:"261665",title:"Prof.",name:"Nosisi",middleName:"N.",surname:"Feza",slug:"nosisi-feza",fullName:"Nosisi Feza"}],productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7698",title:"Educational Psychology",subtitle:"Between Certitudes and Uncertainties",isOpenForSubmission:!1,hash:"740943e2d029253e777150e98ebe2f0d",slug:"educational-psychology-between-certitudes-and-uncertainties",bookSignature:"Victori?a Trif",coverURL:"https://cdn.intechopen.com/books/images_new/7698.jpg",editedByType:"Edited by",editors:[{id:"201656",title:"Ph.D.",name:"Victorița",middleName:null,surname:"Trif",slug:"victorita-trif",fullName:"Victorița Trif"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8747",title:"Asphalt and Asphalt Mixtures",subtitle:null,isOpenForSubmission:!1,hash:"6083f7c9881029f1e033a1e512af7e20",slug:"asphalt-and-asphalt-mixtures",bookSignature:"Haitao Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/8747.jpg",editedByType:"Edited by",editors:[{id:"260604",title:"Prof.",name:"Haitao",middleName:null,surname:"Zhang",slug:"haitao-zhang",fullName:"Haitao Zhang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8516",title:"Metacognition in Learning",subtitle:null,isOpenForSubmission:!1,hash:"5fa6eaad7b509b8b7ec5124d79e5f605",slug:"metacognition-in-learning",bookSignature:"Nosisi Feza",coverURL:"https://cdn.intechopen.com/books/images_new/8516.jpg",editedByType:"Edited by",editors:[{id:"261665",title:"Prof.",name:"Nosisi",middleName:"N.",surname:"Feza",slug:"nosisi-feza",fullName:"Nosisi Feza"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7000",title:"Legume Crops",subtitle:"Characterization and Breeding for Improved Food Security",isOpenForSubmission:!1,hash:"4d0f73bf883bbb984cc2feef1259a9a7",slug:"legume-crops-characterization-and-breeding-for-improved-food-security",bookSignature:"Mohamed Ahmed El-Esawi",coverURL:"https://cdn.intechopen.com/books/images_new/7000.jpg",editedByType:"Edited by",editors:[{id:"191770",title:"Dr.",name:"Mohamed A.",middleName:null,surname:"El-Esawi",slug:"mohamed-a.-el-esawi",fullName:"Mohamed A. El-Esawi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8292",title:"Oral Health by Using Probiotic Products",subtitle:null,isOpenForSubmission:!1,hash:"327e750e83634800ace02fe62607c21e",slug:"oral-health-by-using-probiotic-products",bookSignature:"Razzagh Mahmoudi",coverURL:"https://cdn.intechopen.com/books/images_new/8292.jpg",editedByType:"Edited by",editors:[{id:"245925",title:"Dr.",name:"Razzagh",middleName:null,surname:"Mahmoudi",slug:"razzagh-mahmoudi",fullName:"Razzagh Mahmoudi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8323",title:"Traditional and Complementary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"60eadb1783d9bba245687adf284d4871",slug:"traditional-and-complementary-medicine",bookSignature:"Cengiz Mordeniz",coverURL:"https://cdn.intechopen.com/books/images_new/8323.jpg",editedByType:"Edited by",editors:[{id:"214664",title:"Associate Prof.",name:"Cengiz",middleName:null,surname:"Mordeniz",slug:"cengiz-mordeniz",fullName:"Cengiz Mordeniz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8347",title:"Computer Architecture in Industrial, Biomechanical and Biomedical Engineering",subtitle:null,isOpenForSubmission:!1,hash:"3d7024a8d7d8afed093c9c79ec31f15a",slug:"computer-architecture-in-industrial-biomechanical-and-biomedical-engineering",bookSignature:"Lulu Wang and Liandong Yu",coverURL:"https://cdn.intechopen.com/books/images_new/8347.jpg",editedByType:"Edited by",editors:[{id:"257388",title:"Dr.",name:"Lulu",middleName:null,surname:"Wang",slug:"lulu-wang",fullName:"Lulu Wang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7583",title:"Advanced Computational Fluid Dynamics for Emerging Engineering Processes",subtitle:"Eulerian vs. Lagrangian",isOpenForSubmission:!1,hash:"896509fa2e7e659811bffd0f9779ca9d",slug:"advanced-computational-fluid-dynamics-for-emerging-engineering-processes-eulerian-vs-lagrangian",bookSignature:"Albert S. Kim",coverURL:"https://cdn.intechopen.com/books/images_new/7583.jpg",editedByType:"Edited by",editors:[{id:"21045",title:"Prof.",name:"Albert S.",middleName:null,surname:"Kim",slug:"albert-s.-kim",fullName:"Albert S. Kim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7839",title:"Malaria",subtitle:null,isOpenForSubmission:!1,hash:"91cde4582ead884cb0f355a19b67cd56",slug:"malaria",bookSignature:"Fyson H. Kasenga",coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",editedByType:"Edited by",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7093",title:"Pneumothorax",subtitle:null,isOpenForSubmission:!1,hash:"0b1fdb8bb0448f48c2f234753898f3f8",slug:"pneumothorax",bookSignature:"Khalid Amer",coverURL:"https://cdn.intechopen.com/books/images_new/7093.jpg",editedByType:"Edited by",editors:[{id:"63412",title:"Dr.",name:"Khalid",middleName:null,surname:"Amer",slug:"khalid-amer",fullName:"Khalid Amer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"492",title:"Solid-State Chemistry",slug:"chemistry-inorganic-chemistry-solid-state-chemistry",parent:{title:"Inorganic Chemistry",slug:"chemistry-inorganic-chemistry"},numberOfBooks:13,numberOfAuthorsAndEditors:295,numberOfWosCitations:181,numberOfCrossrefCitations:119,numberOfDimensionsCitations:265,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"chemistry-inorganic-chemistry-solid-state-chemistry",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7358",title:"Cerium Oxide",subtitle:"Applications and Attributes",isOpenForSubmission:!1,hash:"7d1cd9a9ecf46270e344d15f94bc66ef",slug:"cerium-oxide-applications-and-attributes",bookSignature:"Sher Bahadar Khan and Kalsoom Akhtar",coverURL:"https://cdn.intechopen.com/books/images_new/7358.jpg",editedByType:"Edited by",editors:[{id:"245468",title:"Dr.",name:"Sher Bahadar",middleName:null,surname:"Khan",slug:"sher-bahadar-khan",fullName:"Sher Bahadar Khan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6133",title:"Cobalt",subtitle:null,isOpenForSubmission:!1,hash:"96be0c35234ae3c889e6ce68b218fe04",slug:"cobalt",bookSignature:"Khan Maaz",coverURL:"https://cdn.intechopen.com/books/images_new/6133.jpg",editedByType:"Edited by",editors:[{id:"107765",title:"Dr.",name:"Khan",middleName:null,surname:"Maaz",slug:"khan-maaz",fullName:"Khan Maaz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6407",title:"Application of Titanium Dioxide",subtitle:null,isOpenForSubmission:!1,hash:"fdb4aecdbffe5d2f4415d8b36d71143d",slug:"application-of-titanium-dioxide",bookSignature:"Magdalena Janus",coverURL:"https://cdn.intechopen.com/books/images_new/6407.jpg",editedByType:"Edited by",editors:[{id:"199458",title:"Dr.",name:"Magdalena",middleName:null,surname:"Janus",slug:"magdalena-janus",fullName:"Magdalena Janus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5829",title:"Rare Earth Element",subtitle:null,isOpenForSubmission:!1,hash:"93922f185a0904a74542fd26ac1e241d",slug:"rare-earth-element",bookSignature:"Jose Edgar Alfonso Orjuela",coverURL:"https://cdn.intechopen.com/books/images_new/5829.jpg",editedByType:"Edited by",editors:[{id:"106069",title:"Dr.",name:"Jose Edgar Alfonso",middleName:null,surname:"Orjuela",slug:"jose-edgar-alfonso-orjuela",fullName:"Jose Edgar Alfonso Orjuela"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5985",title:"Titanium Dioxide",subtitle:null,isOpenForSubmission:!1,hash:"5d5a07758249f9e02ca1b83ee1f8efef",slug:"titanium-dioxide",bookSignature:"Magdalena Janus",coverURL:"https://cdn.intechopen.com/books/images_new/5985.jpg",editedByType:"Edited by",editors:[{id:"199458",title:"Dr.",name:"Magdalena",middleName:null,surname:"Janus",slug:"magdalena-janus",fullName:"Magdalena Janus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5211",title:"Chemical Vapor Deposition",subtitle:"Recent Advances and Applications in Optical, Solar Cells and Solid State Devices",isOpenForSubmission:!1,hash:"dc03fdc6ad1c27ebfcb54e337cbf03ce",slug:"chemical-vapor-deposition-recent-advances-and-applications-in-optical-solar-cells-and-solid-state-devices",bookSignature:"Sudheer Neralla",coverURL:"https://cdn.intechopen.com/books/images_new/5211.jpg",editedByType:"Edited by",editors:[{id:"128532",title:null,name:"Sudheer",middleName:null,surname:"Neralla",slug:"sudheer-neralla",fullName:"Sudheer Neralla"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4783",title:"Apatites and their Synthetic Analogues",subtitle:"Synthesis, Structure, Properties and Applications",isOpenForSubmission:!1,hash:"d435b3984fa4d5d2d6921679511fe384",slug:"apatites-and-their-synthetic-analogues-synthesis-structure-properties-and-applications",bookSignature:"Petr Ptacek",coverURL:"https://cdn.intechopen.com/books/images_new/4783.jpg",editedByType:"Authored by",editors:[{id:"76186",title:"Associate Prof.",name:"Petr",middleName:null,surname:"Ptáček",slug:"petr-ptacek",fullName:"Petr Ptáček"}],productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"4531",title:"Advanced Topics in Crystallization",subtitle:null,isOpenForSubmission:!1,hash:"c1b75a72987c71a8eb02ddb014b99882",slug:"advanced-topics-in-crystallization",bookSignature:"Yitzhak Mastai",coverURL:"https://cdn.intechopen.com/books/images_new/4531.jpg",editedByType:"Edited by",editors:[{id:"41724",title:"Prof.",name:"Yitzhak",middleName:null,surname:"Mastai",slug:"yitzhak-mastai",fullName:"Yitzhak Mastai"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2779",title:"Tungsten Carbide",subtitle:"Processing and Applications",isOpenForSubmission:!1,hash:"f0be5d1ab810ad901c2866bc030a903f",slug:"tungsten-carbide-processing-and-applications",bookSignature:"Kui Liu",coverURL:"https://cdn.intechopen.com/books/images_new/2779.jpg",editedByType:"Edited by",editors:[{id:"137537",title:"Dr.",name:"Kui",middleName:null,surname:"Liu",slug:"kui-liu",fullName:"Kui Liu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1980",title:"Crystallization",subtitle:"Science and Technology",isOpenForSubmission:!1,hash:"b512238b6bad61510871f4871c41dafe",slug:"crystallization-science-and-technology",bookSignature:"Marcello Rubens Barsi Andreeta",coverURL:"https://cdn.intechopen.com/books/images_new/1980.jpg",editedByType:"Edited by",editors:[{id:"114928",title:"Dr.",name:"Marcello",middleName:null,surname:"Andreeta",slug:"marcello-andreeta",fullName:"Marcello Andreeta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2283",title:"Advances in Crystallization Processes",subtitle:null,isOpenForSubmission:!1,hash:"fbac03612cea22d52fd05bd8ebace89c",slug:"advances-in-crystallization-processes",bookSignature:"Yitzhak Mastai",coverURL:"https://cdn.intechopen.com/books/images_new/2283.jpg",editedByType:"Edited by",editors:[{id:"41724",title:"Prof.",name:"Yitzhak",middleName:null,surname:"Mastai",slug:"yitzhak-mastai",fullName:"Yitzhak Mastai"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1509",title:"Supercooling",subtitle:null,isOpenForSubmission:!1,hash:"10935f2552a4b6f2c3045da88ebcb199",slug:"supercooling",bookSignature:"Peter Wilson",coverURL:"https://cdn.intechopen.com/books/images_new/1509.jpg",editedByType:"Edited by",editors:[{id:"92584",title:"Prof.",name:"Peter",middleName:null,surname:"Wilson",slug:"peter-wilson",fullName:"Peter Wilson"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:13,mostCitedChapters:[{id:"39143",doi:"10.5772/35844",title:"Thin Film Growth Through Sputtering Technique and Its Applications",slug:"thin-film-growth-through-sputtering-technique-and-its-applications",totalDownloads:6862,totalCrossrefCites:9,totalDimensionsCites:31,book:{slug:"crystallization-science-and-technology",title:"Crystallization",fullTitle:"Crystallization - Science and Technology"},signatures:"Edgar Alfonso, Jairo Olaya and Gloria Cubillos",authors:[{id:"106069",title:"Dr.",name:"Jose Edgar Alfonso",middleName:null,surname:"Orjuela",slug:"jose-edgar-alfonso-orjuela",fullName:"Jose Edgar Alfonso Orjuela"},{id:"108488",title:"Dr.",name:"Jairo",middleName:null,surname:"Olaya",slug:"jairo-olaya",fullName:"Jairo Olaya"},{id:"108490",title:"MSc.",name:"Gloria",middleName:null,surname:"Cubillos",slug:"gloria-cubillos",fullName:"Gloria Cubillos"}]},{id:"36355",doi:"10.5772/35347",title:"Crystallization Kinetics of Amorphous Materials",slug:"crystallization-kinetics-of-amorphous-materials",totalDownloads:8263,totalCrossrefCites:3,totalDimensionsCites:16,book:{slug:"advances-in-crystallization-processes",title:"Advances in Crystallization Processes",fullTitle:"Advances in Crystallization Processes"},signatures:"Miray Çelikbilek, Ali Erçin Ersundu and Süheyla Aydın",authors:[{id:"104015",title:"Dr.",name:"Miray",middleName:null,surname:"Çelikbilek Ersundu",slug:"miray-celikbilek-ersundu",fullName:"Miray Çelikbilek Ersundu"},{id:"112542",title:"Dr.",name:"Ali Erçin",middleName:null,surname:"Ersundu",slug:"ali-ercin-ersundu",fullName:"Ali Erçin Ersundu"},{id:"112543",title:"Prof.",name:"Suheyla",middleName:null,surname:"Aydin",slug:"suheyla-aydin",fullName:"Suheyla Aydin"}]},{id:"36368",doi:"10.5772/36540",title:"Synthetic Methods for Perovskite Materials; Structure and Morphology",slug:"synthetic-methods-for-perovskite-materials-structure-and-morphology",totalDownloads:5418,totalCrossrefCites:4,totalDimensionsCites:13,book:{slug:"advances-in-crystallization-processes",title:"Advances in Crystallization Processes",fullTitle:"Advances in Crystallization Processes"},signatures:"Ana Ecija, Karmele Vidal, Aitor Larrañaga, Luis Ortega-San-Martín and María Isabel Arriortua",authors:[{id:"108723",title:"Dr.",name:"Aitor",middleName:null,surname:"Larrañaga",slug:"aitor-larraaaga",fullName:"Aitor Larrañaga"},{id:"136538",title:"Mrs.",name:"Ana",middleName:null,surname:"Ecija",slug:"ana-ecija",fullName:"Ana Ecija"},{id:"136539",title:"Dr.",name:"Karmele",middleName:null,surname:"Vidal",slug:"karmele-vidal",fullName:"Karmele Vidal"},{id:"136540",title:"Dr.",name:"Luis",middleName:null,surname:"Ortega-San-Martín",slug:"luis-ortega-san-martin",fullName:"Luis Ortega-San-Martín"},{id:"136541",title:"Prof.",name:"María Isabel",middleName:null,surname:"Arriortua",slug:"maria-isabel-arriortua",fullName:"María Isabel Arriortua"}]}],mostDownloadedChaptersLast30Days:[{id:"51808",title:"Plasma-Enhanced Chemical Vapor Deposition: Where we are and the Outlook for the Future",slug:"plasma-enhanced-chemical-vapor-deposition-where-we-are-and-the-outlook-for-the-future",totalDownloads:4360,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"chemical-vapor-deposition-recent-advances-and-applications-in-optical-solar-cells-and-solid-state-devices",title:"Chemical Vapor Deposition",fullTitle:"Chemical Vapor Deposition - Recent Advances and Applications in Optical, Solar Cells and Solid State Devices"},signatures:"Yasaman Hamedani, Prathyushakrishna Macha, Timothy J. Bunning,\nRajesh R. Naik and Milana C. Vasudev",authors:[{id:"181604",title:"Dr.",name:"Milana",middleName:null,surname:"Vasudev",slug:"milana-vasudev",fullName:"Milana Vasudev"}]},{id:"55103",title:"Titanium Dioxide in Sunscreen",slug:"titanium-dioxide-in-sunscreen",totalDownloads:1223,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"application-of-titanium-dioxide",title:"Application of Titanium Dioxide",fullTitle:"Application of Titanium Dioxide"},signatures:"Megha Trivedi and Jenny Murase",authors:[{id:"67211",title:"Dr.",name:"Jenny",middleName:null,surname:"Murase",slug:"jenny-murase",fullName:"Jenny Murase"},{id:"202835",title:"Ms.",name:"Megha",middleName:null,surname:"Trivedi",slug:"megha-trivedi",fullName:"Megha Trivedi"}]},{id:"55832",title:"Advanced Hybrid Materials Based on Titanium Dioxide for Environmental and Electrochemical Applications",slug:"advanced-hybrid-materials-based-on-titanium-dioxide-for-environmental-and-electrochemical-applicatio",totalDownloads:1100,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"titanium-dioxide",title:"Titanium Dioxide",fullTitle:"Titanium Dioxide"},signatures:"Katarzyna Siwińska-Stefańska and Teofil Jesionowski",authors:[{id:"203551",title:"Ph.D.",name:"Katarzyna",middleName:null,surname:"Siwińska-Stefańska",slug:"katarzyna-siwinska-stefanska",fullName:"Katarzyna Siwińska-Stefańska"},{id:"203552",title:"Prof.",name:"Teofil",middleName:null,surname:"Jesionowski",slug:"teofil-jesionowski",fullName:"Teofil Jesionowski"}]},{id:"47969",title:"Advances in Lipids Crystallization Technology",slug:"advances-in-lipids-crystallization-technology",totalDownloads:2700,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"advanced-topics-in-crystallization",title:"Advanced Topics in Crystallization",fullTitle:"Advanced Topics in Crystallization"},signatures:"Maria Aliciane Fontenele Domingues, Ana Paula Badan Ribeiro,\nTheo Guenter Kieckbusch, Luiz Antonio Gioielli, Renato Grimaldi,\nLisandro Pavie Cardoso and Lireny Aparecida Guaraldo Gonçalves",authors:[{id:"104048",title:"Prof.",name:"Lisandro",middleName:"Pavie",surname:"Cardoso",slug:"lisandro-cardoso",fullName:"Lisandro Cardoso"},{id:"172507",title:"Dr.",name:"Ana Paula",middleName:"Badan",surname:"Ribeiro",slug:"ana-paula-ribeiro",fullName:"Ana Paula Ribeiro"},{id:"172508",title:"Dr.",name:"Lireny Aparecida Guaraldo",middleName:null,surname:"Gonçalves",slug:"lireny-aparecida-guaraldo-goncalves",fullName:"Lireny Aparecida Guaraldo Gonçalves"},{id:"172509",title:"Dr.",name:"Renato",middleName:null,surname:"Grimaldi",slug:"renato-grimaldi",fullName:"Renato Grimaldi"},{id:"172511",title:"Dr.",name:"Luiz Antonio",middleName:null,surname:"Gioielli",slug:"luiz-antonio-gioielli",fullName:"Luiz Antonio Gioielli"},{id:"172512",title:"Dr.",name:"Theo Guenter",middleName:null,surname:"Kieckbusch",slug:"theo-guenter-kieckbusch",fullName:"Theo Guenter Kieckbusch"},{id:"173134",title:"Dr.",name:"Maria Aliciane",middleName:null,surname:"Fontenele Domingues",slug:"maria-aliciane-fontenele-domingues",fullName:"Maria Aliciane Fontenele Domingues"}]},{id:"55390",title:"Rare Earth‐Doped Anatase TiO2 Nanoparticles",slug:"rare-earth-doped-anatase-tio2-nanoparticles",totalDownloads:1308,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"titanium-dioxide",title:"Titanium Dioxide",fullTitle:"Titanium Dioxide"},signatures:"Vesna Ðorđević, Bojana Milićević and Miroslav D. Dramićanin",authors:[{id:"183261",title:"Prof.",name:"Miroslav",middleName:null,surname:"Dramicanin",slug:"miroslav-dramicanin",fullName:"Miroslav Dramicanin"},{id:"203163",title:"Dr.",name:"Vesna",middleName:null,surname:"Đorđević",slug:"vesna-djordjevic",fullName:"Vesna Đorđević"},{id:"203164",title:"MSc.",name:"Bojana",middleName:null,surname:"Milićević",slug:"bojana-milicevic",fullName:"Bojana Milićević"}]},{id:"57464",title:"General Aspects of the Cobalt Chemistry",slug:"general-aspects-of-the-cobalt-chemistry",totalDownloads:795,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"cobalt",title:"Cobalt",fullTitle:"Cobalt"},signatures:"Yasemin Yildiz",authors:[{id:"208129",title:"Dr.",name:"Yasemin",middleName:null,surname:"Yıldız",slug:"yasemin-yildiz",fullName:"Yasemin Yıldız"}]},{id:"55276",title:"Mesoporous Titania: Synthesis, Properties and Comparison with Non-Porous Titania",slug:"mesoporous-titania-synthesis-properties-and-comparison-with-non-porous-titania",totalDownloads:1328,totalCrossrefCites:3,totalDimensionsCites:6,book:{slug:"titanium-dioxide",title:"Titanium Dioxide",fullTitle:"Titanium Dioxide"},signatures:"Barbara Bonelli, Serena Esposito and Francesca S. Freyria",authors:[{id:"202875",title:"Associate Prof.",name:"Barbara",middleName:null,surname:"Bonelli",slug:"barbara-bonelli",fullName:"Barbara Bonelli"},{id:"203501",title:"Dr.",name:"Serena",middleName:null,surname:"Esposito",slug:"serena-esposito",fullName:"Serena Esposito"},{id:"203503",title:"Dr.",name:"Francesca",middleName:null,surname:"Freyria",slug:"francesca-freyria",fullName:"Francesca Freyria"}]},{id:"49964",title:"Mining and Beneficiation of Phosphate Ore",slug:"mining-and-beneficiation-of-phosphate-ore",totalDownloads:2884,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"apatites-and-their-synthetic-analogues-synthesis-structure-properties-and-applications",title:"Apatites and their Synthetic Analogues",fullTitle:"Apatites and their Synthetic Analogues - Synthesis, Structure, Properties and Applications"},signatures:"Petr Ptáček",authors:[{id:"76186",title:"Associate Prof.",name:"Petr",middleName:null,surname:"Ptáček",slug:"petr-ptacek",fullName:"Petr Ptáček"}]},{id:"48408",title:"Role of Crystallization in Genesis of Diverse Crystal Forms of Antidiabetic Agents",slug:"role-of-crystallization-in-genesis-of-diverse-crystal-forms-of-antidiabetic-agents",totalDownloads:2017,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"advanced-topics-in-crystallization",title:"Advanced Topics in Crystallization",fullTitle:"Advanced Topics in Crystallization"},signatures:"Renu Chadha, Dimpy Rani and Parnika Goyal",authors:[{id:"97013",title:"Prof.",name:"Renu",middleName:null,surname:"Chadha",slug:"renu-chadha",fullName:"Renu Chadha"},{id:"172781",title:"Dr.",name:"Dimpy",middleName:null,surname:"Rani",slug:"dimpy-rani",fullName:"Dimpy Rani"},{id:"172782",title:"Dr.",name:"Parnika",middleName:null,surname:"Goyal",slug:"parnika-goyal",fullName:"Parnika Goyal"}]},{id:"39130",title:"Crystallization Kinetics of Chalcogenide Glasses",slug:"crystallization-kinetics-of-chalcogenide-glasses",totalDownloads:4799,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"crystallization-science-and-technology",title:"Crystallization",fullTitle:"Crystallization - Science and Technology"},signatures:"Abhay Kumar Singh",authors:[{id:"102499",title:"Dr.",name:"Abhay",middleName:"Kumar",surname:"Singh",slug:"abhay-singh",fullName:"Abhay Singh"}]}],onlineFirstChaptersFilter:{topicSlug:"chemistry-inorganic-chemistry-solid-state-chemistry",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10080",title:"Vortex Dynamics",subtitle:null,isOpenForSubmission:!0,hash:"ea97962e99b3e0ebc9b46b48ba5bea14",slug:null,bookSignature:"Dr. Zambri Harun",coverURL:"https://cdn.intechopen.com/books/images_new/10080.jpg",editedByType:null,editors:[{id:"243152",title:"Dr.",name:"Zambri",middleName:null,surname:"Harun",slug:"zambri-harun",fullName:"Zambri Harun"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8903",title:"Carbon Based Material for Environmental Protection and Remediation",subtitle:null,isOpenForSubmission:!0,hash:"19da699b370f320eca63ef2ba02f745d",slug:null,bookSignature:"Dr. Mattia Bartoli and Dr. Marco Frediani",coverURL:"https://cdn.intechopen.com/books/images_new/8903.jpg",editedByType:null,editors:[{id:"188999",title:"Dr.",name:"Mattia",middleName:null,surname:"Bartoli",slug:"mattia-bartoli",fullName:"Mattia Bartoli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8771",title:"Raman Scattering",subtitle:null,isOpenForSubmission:!0,hash:"1354b3097eaa5b27d9d4bd29d3150b27",slug:null,bookSignature:"Dr. Samir Kumar and Dr. Prabhat Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/8771.jpg",editedByType:null,editors:[{id:"296661",title:"Dr.",name:"Samir",middleName:null,surname:"Kumar",slug:"samir-kumar",fullName:"Samir Kumar"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10073",title:"Recent Advances in Nanophotonics-Fundamentals and Applications",subtitle:null,isOpenForSubmission:!0,hash:"aceca7dfc807140870a89d42c5537d7c",slug:null,bookSignature:"Dr. Mojtaba Kahrizi and Ms. Parsoua Abedini Sohi",coverURL:"https://cdn.intechopen.com/books/images_new/10073.jpg",editedByType:null,editors:[{id:"113045",title:"Dr.",name:"Mojtaba",middleName:null,surname:"Kahrizi",slug:"mojtaba-kahrizi",fullName:"Mojtaba Kahrizi"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10132",title:"Applied Computational Near-surface Geophysics - From Integral and Derivative Formulas to MATLAB Codes",subtitle:null,isOpenForSubmission:!0,hash:"38cdbbb671df620b36ee96af1d9a3a90",slug:null,bookSignature:"Dr. Afshin Aghayan",coverURL:"https://cdn.intechopen.com/books/images_new/10132.jpg",editedByType:null,editors:[{id:"311030",title:"Dr.",name:"Afshin",middleName:null,surname:"Aghayan",slug:"afshin-aghayan",fullName:"Afshin Aghayan"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10110",title:"Advances and Technologies in Building Construction and Structural Analysis",subtitle:null,isOpenForSubmission:!0,hash:"df2ad14bc5588577e8bf0b7ebcdafd9d",slug:null,bookSignature:"Dr. Ali Kaboli and Dr. Sara Shirowzhan",coverURL:"https://cdn.intechopen.com/books/images_new/10110.jpg",editedByType:null,editors:[{id:"309192",title:"Dr.",name:"Ali",middleName:null,surname:"Kaboli",slug:"ali-kaboli",fullName:"Ali Kaboli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10175",title:"Ethics in Emerging Technologies",subtitle:null,isOpenForSubmission:!0,hash:"9c92da249676e35e2f7476182aa94e84",slug:null,bookSignature:"Prof. Ali Hessami",coverURL:"https://cdn.intechopen.com/books/images_new/10175.jpg",editedByType:null,editors:[{id:"108303",title:"Prof.",name:"Ali",middleName:null,surname:"Hessami",slug:"ali-hessami",fullName:"Ali Hessami"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9284",title:"Computational Aeroacoustics",subtitle:null,isOpenForSubmission:!0,hash:"7019c5e5985faef7dc384c87dca5c8ef",slug:null,bookSignature:"Prof. Ramesh K. Agarwal",coverURL:"https://cdn.intechopen.com/books/images_new/9284.jpg",editedByType:null,editors:[{id:"38519",title:"Prof.",name:"Ramesh K.",middleName:null,surname:"Agarwal",slug:"ramesh-k.-agarwal",fullName:"Ramesh K. Agarwal"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:16},humansInSpaceProgram:{},teamHumansInSpaceProgram:{},route:{name:"profile.detail",path:"/profiles/92227/carlo-salustri",hash:"",query:{},params:{id:"92227",slug:"carlo-salustri"},fullPath:"/profiles/92227/carlo-salustri",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()