Boundary conditions of the three types of LC gratings φ(x) at z = 0 and z = d.
\\n\\n
Dr. Pletser’s experience includes 30 years of working with the European Space Agency as a Senior Physicist/Engineer and coordinating their parabolic flight campaigns, and he is the Guinness World Record holder for the most number of aircraft flown (12) in parabolas, personally logging more than 7,300 parabolas.
\\n\\nSeeing the 5,000th book published makes us at the same time proud, happy, humble, and grateful. This is a great opportunity to stop and celebrate what we have done so far, but is also an opportunity to engage even more, grow, and succeed. It wouldn't be possible to get here without the synergy of team members’ hard work and authors and editors who devote time and their expertise into Open Access book publishing with us.
\\n\\nOver these years, we have gone from pioneering the scientific Open Access book publishing field to being the world’s largest Open Access book publisher. Nonetheless, our vision has remained the same: to meet the challenges of making relevant knowledge available to the worldwide community under the Open Access model.
\\n\\nWe are excited about the present, and we look forward to sharing many more successes in the future.
\\n\\nThank you all for being part of the journey. 5,000 times thank you!
\\n\\nNow with 5,000 titles available Open Access, which one will you read next?
\\n\\nRead, share and download for free: https://www.intechopen.com/books
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Preparation of Space Experiments edited by international leading expert Dr. Vladimir Pletser, Director of Space Training Operations at Blue Abyss is the 5,000th Open Access book published by IntechOpen and our milestone publication!
\n\n"This book presents some of the current trends in space microgravity research. The eleven chapters introduce various facets of space research in physical sciences, human physiology and technology developed using the microgravity environment not only to improve our fundamental understanding in these domains but also to adapt this new knowledge for application on earth." says the editor. Listen what else Dr. Pletser has to say...
\n\n\n\nDr. Pletser’s experience includes 30 years of working with the European Space Agency as a Senior Physicist/Engineer and coordinating their parabolic flight campaigns, and he is the Guinness World Record holder for the most number of aircraft flown (12) in parabolas, personally logging more than 7,300 parabolas.
\n\nSeeing the 5,000th book published makes us at the same time proud, happy, humble, and grateful. This is a great opportunity to stop and celebrate what we have done so far, but is also an opportunity to engage even more, grow, and succeed. It wouldn't be possible to get here without the synergy of team members’ hard work and authors and editors who devote time and their expertise into Open Access book publishing with us.
\n\nOver these years, we have gone from pioneering the scientific Open Access book publishing field to being the world’s largest Open Access book publisher. Nonetheless, our vision has remained the same: to meet the challenges of making relevant knowledge available to the worldwide community under the Open Access model.
\n\nWe are excited about the present, and we look forward to sharing many more successes in the future.
\n\nThank you all for being part of the journey. 5,000 times thank you!
\n\nNow with 5,000 titles available Open Access, which one will you read next?
\n\nRead, share and download for free: https://www.intechopen.com/books
\n\n\n\n
\n'}],latestNews:[{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"}]},book:{item:{type:"book",id:"1052",leadTitle:null,fullTitle:"Appendicitis - A Collection of Essays from Around the World",title:"Appendicitis",subtitle:"A Collection of Essays from Around the World",reviewType:"peer-reviewed",abstract:"This book is a collection of essays and papers from around the world, written by surgeons who look after patients of all ages with abdominal pain, many of whom have appendicitis. All general surgeons maintain a fascination with this important condition because it is so common and yet so easy to miss. All surgeons have a view on the literature and any gathering of surgeons embraces a spectrum of opinion on management options. Many aspects of the disease and its presentation and management remain controversial. This book does not answer those controversies, but should prove food for thought. The reflections of these surgeons are presented in many cases with novel data. The chapters encourage us to consider new epidemiological views and explore clinical scoring systems and the literature on imaging. Appendicitis is discussed in patients of all ages and in all manner of presentations.",isbn:null,printIsbn:"978-953-307-814-4",pdfIsbn:"978-953-51-6628-3",doi:"10.5772/1552",price:119,priceEur:129,priceUsd:155,slug:"appendicitis-a-collection-of-essays-from-around-the-world",numberOfPages:238,isOpenForSubmission:!1,isInWos:1,hash:"2c04233afb0bbc6d4f43db5690040f88",bookSignature:"Anthony Lander",publishedDate:"January 11th 2012",coverURL:"https://cdn.intechopen.com/books/images_new/1052.jpg",numberOfDownloads:81899,numberOfWosCitations:8,numberOfCrossrefCitations:6,numberOfDimensionsCitations:14,hasAltmetrics:0,numberOfTotalCitations:28,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"January 26th 2011",dateEndSecondStepPublish:"February 23rd 2011",dateEndThirdStepPublish:"June 30th 2011",dateEndFourthStepPublish:"July 30th 2011",dateEndFifthStepPublish:"November 27th 2011",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,editors:[{id:"68773",title:"Dr.",name:"Anthony",middleName:null,surname:"Lander",slug:"anthony-lander",fullName:"Anthony Lander",profilePictureURL:"https://mts.intechopen.com/storage/users/68773/images/system/68773.jpg",biography:"Consultant Paediatric Surgeon Birmingham Children's Hospital. Previous Raven Tutor in Paediatric Surgery at the Royal College of Surgeons.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1021",title:"Hepatology",slug:"gastroenterology-hepatology"}],chapters:[{id:"25837",title:"Epidemiologic Features of Appendicitis",doi:"10.5772/26110",slug:"epidemiologic-features-of-appendicitis",totalDownloads:5312,totalCrossrefCites:1,totalDimensionsCites:4,signatures:"Robert B. Sanda",downloadPdfUrl:"/chapter/pdf-download/25837",previewPdfUrl:"/chapter/pdf-preview/25837",authors:[{id:"65006",title:"Dr.",name:"Robert",surname:"Sanda",slug:"robert-sanda",fullName:"Robert Sanda"}],corrections:null},{id:"25838",title:"Diagnostic Challenges in Acute Appendicitis",doi:"10.5772/25696",slug:"diagnostic-challenges-in-acute-appendicitis",totalDownloads:5887,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Sanjay Harrison and Harrison Benziger",downloadPdfUrl:"/chapter/pdf-download/25838",previewPdfUrl:"/chapter/pdf-preview/25838",authors:[{id:"64209",title:"Mr.",name:"Sanjay",surname:"Harrison",slug:"sanjay-harrison",fullName:"Sanjay Harrison"},{id:"119201",title:"Mr.",name:"Harrison",surname:"Benziger",slug:"harrison-benziger",fullName:"Harrison Benziger"}],corrections:null},{id:"25839",title:"Imaging in Suspected Appendicitis",doi:"10.5772/26112",slug:"imaging-in-suspected-appendicitis",totalDownloads:3087,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Nadim M. Muallem, Antoine N. Wadih and Maurice C. Haddad",downloadPdfUrl:"/chapter/pdf-download/25839",previewPdfUrl:"/chapter/pdf-preview/25839",authors:[{id:"65584",title:"Prof.",name:"Maurice",surname:"Haddad",slug:"maurice-haddad",fullName:"Maurice Haddad"},{id:"119626",title:"Dr.",name:"Nadim",surname:"Muallem",slug:"nadim-muallem",fullName:"Nadim Muallem"},{id:"119627",title:"Dr.",name:"Antoine",surname:"Wadih",slug:"antoine-wadih",fullName:"Antoine Wadih"}],corrections:null},{id:"25840",title:"Clinical Scoring Systems in the Management of Suspected Appendicitis in Children",doi:"10.5772/25485",slug:"clinical-scoring-systems-in-the-management-of-suspected-appendicitis-in-children",totalDownloads:5915,totalCrossrefCites:3,totalDimensionsCites:6,signatures:"Graham Thompson",downloadPdfUrl:"/chapter/pdf-download/25840",previewPdfUrl:"/chapter/pdf-preview/25840",authors:[{id:"63485",title:"Dr.",name:"Graham",surname:"Thompson",slug:"graham-thompson",fullName:"Graham Thompson"}],corrections:null},{id:"25841",title:"Recent Trends in the Treatment of the Appendicular Mass",doi:"10.5772/25576",slug:"recent-trends-in-the-treatment-of-the-appendicular-mass",totalDownloads:19304,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Arshad M. Malik and Noshad Ahmad Shaikh",downloadPdfUrl:"/chapter/pdf-download/25841",previewPdfUrl:"/chapter/pdf-preview/25841",authors:[{id:"63407",title:"Dr.",name:"Arshad",surname:"Malik",slug:"arshad-malik",fullName:"Arshad Malik"}],corrections:null},{id:"25842",title:"What Is the Role of Conservative Antibiotic Treatment in Early Appendicitis?",doi:"10.5772/25687",slug:"what-is-the-role-of-conservative-antibiotic-treatment-in-early-appendicitis-",totalDownloads:3150,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Inchien Chamisa",downloadPdfUrl:"/chapter/pdf-download/25842",previewPdfUrl:"/chapter/pdf-preview/25842",authors:[{id:"64179",title:"Dr.",name:"Inchien",surname:"Chamisa",slug:"inchien-chamisa",fullName:"Inchien Chamisa"}],corrections:null},{id:"25843",title:"Appendicitis in the Elderly",doi:"10.5772/25945",slug:"appendicitis-in-the-elderly",totalDownloads:11187,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Stephen Garba and Adamu Ahmed",downloadPdfUrl:"/chapter/pdf-download/25843",previewPdfUrl:"/chapter/pdf-preview/25843",authors:[{id:"62672",title:"Dr",name:"Adamu",surname:"Ahmed",slug:"adamu-ahmed",fullName:"Adamu Ahmed"},{id:"65051",title:"Prof.",name:"Stephen",surname:"Garba",slug:"stephen-garba",fullName:"Stephen Garba"}],corrections:null},{id:"25844",title:"Appendicitis in Children",doi:"10.5772/26578",slug:"appendicitis-in-children",totalDownloads:3107,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Ngozi Joy Nwokoma",downloadPdfUrl:"/chapter/pdf-download/25844",previewPdfUrl:"/chapter/pdf-preview/25844",authors:[{id:"26574",title:"Mrs",name:"Ngozi",surname:"Nwokoma",slug:"ngozi-nwokoma",fullName:"Ngozi Nwokoma"}],corrections:null},{id:"25845",title:"Demographic and Epidemiologic Features of Acute Appendicitis",doi:"10.5772/26184",slug:"demographic-and-epidemiologic-features-of-acute-appendicitis",totalDownloads:7057,totalCrossrefCites:2,totalDimensionsCites:2,signatures:"Barlas Sulu",downloadPdfUrl:"/chapter/pdf-download/25845",previewPdfUrl:"/chapter/pdf-preview/25845",authors:[{id:"65782",title:"Dr.",name:"Barlas",surname:"Sulu",slug:"barlas-sulu",fullName:"Barlas Sulu"}],corrections:null},{id:"25846",title:"Current Evidence and Recommendations for Laparoscopic Appendectomy",doi:"10.5772/26210",slug:"current-evidence-and-recommendations-for-laparoscopic-appendectomy",totalDownloads:6239,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Hurng-Sheng Wu, James Wall, Hung-Wen Lai and Jacques Marescaux",downloadPdfUrl:"/chapter/pdf-download/25846",previewPdfUrl:"/chapter/pdf-preview/25846",authors:[{id:"65870",title:"Dr.",name:"Hurng-Sheng",surname:"Wu",slug:"hurng-sheng-wu",fullName:"Hurng-Sheng Wu"},{id:"118376",title:"Dr.",name:"James",surname:"Wall",slug:"james-wall",fullName:"James Wall"},{id:"123119",title:"Prof.",name:"Jacques",surname:"Marescaux",slug:"jacques-marescaux",fullName:"Jacques Marescaux"},{id:"123121",title:"Dr.",name:"Hung-Wen",surname:"Lai",slug:"hung-wen-lai",fullName:"Hung-Wen Lai"}],corrections:null},{id:"25847",title:"Laparoscopic Appendicectomy",doi:"10.5772/28258",slug:"laparoscopic-appendicectomy",totalDownloads:5422,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Maheswaran Pitchaimuthu",downloadPdfUrl:"/chapter/pdf-download/25847",previewPdfUrl:"/chapter/pdf-preview/25847",authors:[{id:"73273",title:"Dr.",name:"Maheswaran",surname:"Pitchaimuthu",slug:"maheswaran-pitchaimuthu",fullName:"Maheswaran Pitchaimuthu"}],corrections:null},{id:"25848",title:"An Animal Model of Sepsis in Appendicitis: Assessment of the Microcirculation",doi:"10.5772/26642",slug:"an-animal-model-of-sepsis-in-appendicitis-assessment-of-the-microcirculation",totalDownloads:1668,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Eduardo Ryoiti Tatebe, Priscila Aikawa, José Jukemura, Paulina Sannomiya and Naomi Kondo Nakagawa",downloadPdfUrl:"/chapter/pdf-download/25848",previewPdfUrl:"/chapter/pdf-preview/25848",authors:[{id:"67407",title:"Prof.",name:"Naomi Kondo",surname:"Nakagawa",slug:"naomi-kondo-nakagawa",fullName:"Naomi Kondo Nakagawa"},{id:"73954",title:"Prof.",name:"Paulina",surname:"Sannomiya",slug:"paulina-sannomiya",fullName:"Paulina Sannomiya"},{id:"73955",title:"Mr.",name:"Eduardo",surname:"Tatebe",slug:"eduardo-tatebe",fullName:"Eduardo Tatebe"},{id:"127508",title:"Dr.",name:"Priscila",surname:"Aikawa",slug:"priscila-aikawa",fullName:"Priscila Aikawa"}],corrections:null},{id:"25849",title:"Parasitic Appendicitis",doi:"10.5772/25483",slug:"parasitic-appendicitis",totalDownloads:4571,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Omer Engin, Bulent Calik and Sebnem Calik",downloadPdfUrl:"/chapter/pdf-download/25849",previewPdfUrl:"/chapter/pdf-preview/25849",authors:[{id:"63481",title:"Dr.",name:"Omer",surname:"Engin",slug:"omer-engin",fullName:"Omer Engin"},{id:"70705",title:"Dr.",name:"Bulent",surname:"Calik",slug:"bulent-calik",fullName:"Bulent Calik"},{id:"70706",title:"Dr",name:"Sebnem",surname:"Calik",slug:"sebnem-calik",fullName:"Sebnem Calik"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"1807",title:"New Advances in the Basic and Clinical Gastroenterology",subtitle:null,isOpenForSubmission:!1,hash:"a7ec52cb83e9fc2064e573afcfc87a71",slug:"new-advances-in-the-basic-and-clinical-gastroenterology",bookSignature:"Thomas Brzozowski",coverURL:"https://cdn.intechopen.com/books/images_new/1807.jpg",editedByType:"Edited by",editors:[{id:"35854",title:"Prof.",name:"Tomasz",surname:"Brzozowski",slug:"tomasz-brzozowski",fullName:"Tomasz Brzozowski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"225",title:"Peptic Ulcer Disease",subtitle:null,isOpenForSubmission:!1,hash:"d739f4ee9bd8e8521a50ab44d67dd160",slug:"peptic-ulcer-disease",bookSignature:"Jianyuan Chai",coverURL:"https://cdn.intechopen.com/books/images_new/225.jpg",editedByType:"Edited by",editors:[{id:"28281",title:"Dr.",name:"Jianyuan",surname:"Chai",slug:"jianyuan-chai",fullName:"Jianyuan Chai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1304",title:"New Techniques in Gastrointestinal Endoscopy",subtitle:null,isOpenForSubmission:!1,hash:"e108f32556a501bd10550b95901980b2",slug:"new-techniques-in-gastrointestinal-endoscopy",bookSignature:"Oliviu Pascu and Andrada Seicean",coverURL:"https://cdn.intechopen.com/books/images_new/1304.jpg",editedByType:"Edited by",editors:[{id:"62220",title:"Prof.",name:"Oliviu",surname:"Pascu",slug:"oliviu-pascu",fullName:"Oliviu Pascu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"351",title:"Gastritis and Gastric Cancer",subtitle:"New Insights in Gastroprotection, Diagnosis and Treatments",isOpenForSubmission:!1,hash:"ecadad30b73c5ffe72063ea31898fb3e",slug:"gastritis-and-gastric-cancer-new-insights-in-gastroprotection-diagnosis-and-treatments",bookSignature:"Paola Tonino",coverURL:"https://cdn.intechopen.com/books/images_new/351.jpg",editedByType:"Edited by",editors:[{id:"53066",title:"Dr.",name:"Paola",surname:"Tonino",slug:"paola-tonino",fullName:"Paola Tonino"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"831",title:"Liver Biopsy in Modern Medicine",subtitle:null,isOpenForSubmission:!1,hash:"7b41e87c701a255c1a5ef8c5a15a3a56",slug:"liver-biopsy-in-modern-medicine",bookSignature:"Yoshiaki Mizuguchi",coverURL:"https://cdn.intechopen.com/books/images_new/831.jpg",editedByType:"Edited by",editors:[{id:"62797",title:"Dr.",name:"Yoshiaki",surname:"Mizuguchi",slug:"yoshiaki-mizuguchi",fullName:"Yoshiaki Mizuguchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"932",title:"Acute Pancreatitis",subtitle:null,isOpenForSubmission:!1,hash:"b9e4aebaf0e8a2dd617fe38a5d3b2bff",slug:"acute-pancreatitis",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/932.jpg",editedByType:"Edited by",editors:[{id:"73208",title:"Prof.",name:"Luis",surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"933",title:"Trends in Alcoholic Liver Disease Research",subtitle:"Clinical and Scientific Aspects",isOpenForSubmission:!1,hash:"1b11a77470f94ddffbd265cfa618a414",slug:"trends-in-alcoholic-liver-disease-research-clinical-and-scientific-aspects",bookSignature:"Ichiro Shimizu",coverURL:"https://cdn.intechopen.com/books/images_new/933.jpg",editedByType:"Edited by",editors:[{id:"69084",title:"Dr.",name:"Ichiro",surname:"Shimizu",slug:"ichiro-shimizu",fullName:"Ichiro Shimizu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3317",title:"Current Topics in Gastritis",subtitle:"2012",isOpenForSubmission:!1,hash:"f771281e35f030a6438b269e736f910d",slug:"current-topics-in-gastritis-2012",bookSignature:"Gyula Mozsik",coverURL:"https://cdn.intechopen.com/books/images_new/3317.jpg",editedByType:"Edited by",editors:[{id:"58390",title:"Dr.",name:"Gyula",surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3382",title:"Inflammatory Bowel Disease",subtitle:null,isOpenForSubmission:!1,hash:"d7ba93337eb94136699c1003881b1236",slug:"inflammatory-bowel-disease",bookSignature:"Imre Szabo",coverURL:"https://cdn.intechopen.com/books/images_new/3382.jpg",editedByType:"Edited by",editors:[{id:"159290",title:"Dr.",name:"Imre",surname:"Szabo",slug:"imre-szabo",fullName:"Imre Szabo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"709",title:"Inflammatory Bowel Disease",subtitle:"Advances in Pathogenesis and Management",isOpenForSubmission:!1,hash:"1de8990091dba1201a8eb37b102ee41a",slug:"inflammatory-bowel-disease-advances-in-pathogenesis-and-management",bookSignature:"Sami Karoui",coverURL:"https://cdn.intechopen.com/books/images_new/709.jpg",editedByType:"Edited by",editors:[{id:"73275",title:"Dr.",name:"Sami",surname:"Karoui",slug:"sami-karoui",fullName:"Sami Karoui"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"71744",slug:"corrigendum-to-technical-advances-in-chloroplast-biotechnology",title:"Corrigendum to: Technical Advances in Chloroplast Biotechnology",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/71744.pdf",downloadPdfUrl:"/chapter/pdf-download/71744",previewPdfUrl:"/chapter/pdf-preview/71744",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/71744",risUrl:"/chapter/ris/71744",chapter:{id:"65358",slug:"technical-advances-in-chloroplast-biotechnology",signatures:"Muhammad Sarwar Khan, Ghulam Mustafa and Faiz Ahmad Joyia",dateSubmitted:"June 12th 2018",dateReviewed:"August 31st 2018",datePrePublished:"January 25th 2019",datePublished:"October 23rd 2019",book:{id:"6976",title:"Transgenic Crops",subtitle:"Emerging Trends and Future Perspectives",fullTitle:"Transgenic Crops - Emerging Trends and Future Perspectives",slug:"transgenic-crops-emerging-trends-and-future-perspectives",publishedDate:"October 23rd 2019",bookSignature:"Muhammad Sarwar Khan and Kauser Abdulla Malik",coverURL:"https://cdn.intechopen.com/books/images_new/6976.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"212511",title:"Prof.",name:"Muhammad Sarwar",middleName:null,surname:"Khan",slug:"muhammad-sarwar-khan",fullName:"Muhammad Sarwar Khan"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"211046",title:"Dr.",name:"Ghulam",middleName:null,surname:"Mustafa",fullName:"Ghulam Mustafa",slug:"ghulam-mustafa",email:"drmustafa8@gmail.com",position:null,institution:{name:"University of Agriculture Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"212508",title:"Dr.",name:"Faiz",middleName:null,surname:"Ahmad",fullName:"Faiz Ahmad",slug:"faiz-ahmad",email:"faizahmad1980@gmail.com",position:null,institution:null},{id:"212511",title:"Prof.",name:"Muhammad Sarwar",middleName:null,surname:"Khan",fullName:"Muhammad Sarwar Khan",slug:"muhammad-sarwar-khan",email:"sarwarkhan_40@hotmail.com",position:null,institution:{name:"University of Agriculture Faisalabad",institutionURL:null,country:{name:"Pakistan"}}}]}},chapter:{id:"65358",slug:"technical-advances-in-chloroplast-biotechnology",signatures:"Muhammad Sarwar Khan, Ghulam Mustafa and Faiz Ahmad Joyia",dateSubmitted:"June 12th 2018",dateReviewed:"August 31st 2018",datePrePublished:"January 25th 2019",datePublished:"October 23rd 2019",book:{id:"6976",title:"Transgenic Crops",subtitle:"Emerging Trends and Future Perspectives",fullTitle:"Transgenic Crops - Emerging Trends and Future Perspectives",slug:"transgenic-crops-emerging-trends-and-future-perspectives",publishedDate:"October 23rd 2019",bookSignature:"Muhammad Sarwar Khan and Kauser Abdulla Malik",coverURL:"https://cdn.intechopen.com/books/images_new/6976.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"212511",title:"Prof.",name:"Muhammad Sarwar",middleName:null,surname:"Khan",slug:"muhammad-sarwar-khan",fullName:"Muhammad Sarwar Khan"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"211046",title:"Dr.",name:"Ghulam",middleName:null,surname:"Mustafa",fullName:"Ghulam Mustafa",slug:"ghulam-mustafa",email:"drmustafa8@gmail.com",position:null,institution:{name:"University of Agriculture Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"212508",title:"Dr.",name:"Faiz",middleName:null,surname:"Ahmad",fullName:"Faiz Ahmad",slug:"faiz-ahmad",email:"faizahmad1980@gmail.com",position:null,institution:null},{id:"212511",title:"Prof.",name:"Muhammad Sarwar",middleName:null,surname:"Khan",fullName:"Muhammad Sarwar Khan",slug:"muhammad-sarwar-khan",email:"sarwarkhan_40@hotmail.com",position:null,institution:{name:"University of Agriculture Faisalabad",institutionURL:null,country:{name:"Pakistan"}}}]},book:{id:"6976",title:"Transgenic Crops",subtitle:"Emerging Trends and Future Perspectives",fullTitle:"Transgenic Crops - Emerging Trends and Future Perspectives",slug:"transgenic-crops-emerging-trends-and-future-perspectives",publishedDate:"October 23rd 2019",bookSignature:"Muhammad Sarwar Khan and Kauser Abdulla Malik",coverURL:"https://cdn.intechopen.com/books/images_new/6976.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"212511",title:"Prof.",name:"Muhammad Sarwar",middleName:null,surname:"Khan",slug:"muhammad-sarwar-khan",fullName:"Muhammad Sarwar Khan"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"8843",leadTitle:null,title:"Mucosal Immunology",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tThis book will focus on the wide specter of mucosal inflammation intending to provide the reader with a comprehensive overview of the current knowledge on the topic. More and more studies are focused on finding different aspects of mucosal inflammation since it is involved in the pathogenesis of many diseases - from gut to lungs, urogenital system, etc. To better understand the causes of its occurrence as well as the search for therapeutic strategies, many resources are invested in scientific developments in this field.
\r\n\r\n\tFacts about the role of calprotectin and other biomarkers were accumulated. Participation of neutrophils appears an attractive way to explain the involvement of different subpopulations of immunocompetent cells and cytokines in mucosal inflammation. Over the last five years, scientific developments in the field have discovered more genes involved in the pathogenesis of mucosal inflammation elucidating the interaction of innate immune mechanisms with the microorganisms in the gut and their role in maintaining intestinal homeostasis. Besides, the science aims at identifying and characterizing immune and non-immune cells involved in the emergence and maintenance of chronic inflammation.
\r\n\r\n\tThe book aims to cover the developing diagnostic methods for identifying the mucosal inflammation, towards a better analysis of the inflammation, understanding of the relationship between genetic and proteomic markers and response to therapy; and improving therapeutic options for patients who have mucosal inflammation.
",isbn:null,printIsbn:"979-953-307-X-X",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"2e7bde3621cdf64518356b76e3132542",bookSignature:"Dr. Tsvetelina Velikova",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/8843.jpg",keywords:"Inflammation, Neutrophils, Cytokines, Mucosal Biomarkers, Gut Tolerance, Antigen Tolerance, Mayo Score, Lesions, Acute Inflammation, Chronic Inflammation, Gut Permeability, Asthma",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 16th 2020",dateEndSecondStepPublish:"July 7th 2020",dateEndThirdStepPublish:"September 5th 2020",dateEndFourthStepPublish:"November 24th 2020",dateEndFifthStepPublish:"January 23rd 2021",remainingDaysToSecondStep:"8 months",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:"Dr. Velikova research focuses on autoimmune disorders, such as celiac disease, IBD, diabetes, asthma, as well as on the delicate autoimmunity mechanisms involving Th17 and Treg cells, cytokines, biomarkers, novel biologic therapies. She has been engaged in fifteen projects in the field of immunology and internal medicine. She is an editorial board member and reviewer for several medical journals and has publications in eminent journals and book chapters in the field of gastrointestinal immunology.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"180979",title:"Dr.",name:"Tsvetelina",middleName:null,surname:"Velikova",slug:"tsvetelina-velikova",fullName:"Tsvetelina Velikova",profilePictureURL:"https://mts.intechopen.com/storage/users/180979/images/system/180979.jpg",biography:"Dr. Tsvetelina Velikova received her MD and Ph.D. degrees, both with honors, from the Medical University of Sofia, Bulgaria. Subsequently, she became involved in active immunology research and teaching. Dr. Velikova also received advanced training in Clinical Immunology at University Hospital St. Ivan Rilski, Sofia, Bulgaria. \r\nShe is currently an assistant professor of Clinical immunology affiliated to the Sofia University and University Hospital Lozenetz, Bulgaria. \r\nHer research focuses on autoimmune disorders, such as celiac disease, IBD, diabetes, asthma, as well as on the delicate autoimmunity mechanisms involving Th17 and Treg cells, cytokines, biomarkers, novel biologic therapies and their implication in clinical practice.\r\nDr. Velikova has been engaged in fifteen projects in the field of immunology and internal medicine. She is an editorial board member and reviewer for several medical journals and has publications in eminent journals and book chapters in the field of gastrointestinal immunology.",institutionString:"Lozenetz Hospital",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Lozenetz Hospital",institutionURL:null,country:{name:"Bulgaria"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"177731",firstName:"Dajana",lastName:"Pemac",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/177731/images/4726_n.jpg",email:"dajana@intechopen.com",biography:"As a Commissioning Editor at IntechOpen, I work closely with our collaborators in the selection of book topics for the yearly publishing plan and in preparing new book catalogues for each season. This requires extensive analysis of developing trends in scientific research in order to offer our readers relevant content. Creating the book catalogue is also based on keeping track of the most read, downloaded and highly cited chapters and books and relaunching similar topics. I am also responsible for consulting with our Scientific Advisors on which book topics to add to our catalogue and sending possible book proposal topics to them for evaluation. Once the catalogue is complete, I contact leading researchers in their respective fields and ask them to become possible Academic Editors for each book project. Once an editor is appointed, I prepare all necessary information required for them to begin their work, as well as guide them through the editorship process. I also assist editors in inviting suitable authors to contribute to a specific book project and each year, I identify and invite exceptional editors to join IntechOpen as Scientific Advisors. I am responsible for developing and maintaining strong relationships with all collaborators to ensure an effective and efficient publishing process and support other departments in developing and maintaining such relationships."}},relatedBooks:[{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"54099",title:"One-Step Holographic Photoalignment for Twisted Nematic Liquid Crystal Gratings",doi:"10.5772/67293",slug:"one-step-holographic-photoalignment-for-twisted-nematic-liquid-crystal-gratings",body:'Control of the various parameters, such as amplitude, polarization states, wavelength, and propagation direction of the light wave, is of great importance in a wide range of fields, including the optoelectronics field. In particular, diffractive optical elements, in which light wave propagation is controlled by diffraction phenomena, are expected to realize such a function. Generally, light propagating inside the diffractive optical element is diffracted by inducing a phase difference to the light propagating through a medium whose shape or isotropic refractive index is periodically modulated. In addition, anisotropic diffractive optical elements in which the optical anisotropy is periodically modulated have been reported [1–10]. Anisotropic diffractive optical elements show the polarization controllability which the diffraction efficiency and polarization states depend on the polarization states of the incident beams. This is because various modulations of an effective refractive index along a grating vector depend on incident electric field vectors.
Structures, fabrication techniques, and materials of anisotropic diffraction gratings are wide ranging. In particular, polarization holographic recordings on an azobenzene-containing material are a typical fabrication technique and materials [1]. When two orthogonally (i.e., the product of the electric field vector and the complex conjugate of the other electric field vectors is zero) polarized beams interfere with each other, the polarization state is periodically modulated in the interference field; however, the intensity is not modulated. Therefore, with simultaneously induced photoisomerization reactions depending on a direction of incident polarized light, a periodically modulated anisotropic structure is fabricated by exposure of azobenzene polymer films to the orthogonal polarization interference field. In addition, liquid crystal (LC) gratings, in which LC directors are periodically modulated by periodically aligned films, are mentioned as an example of anisotropic diffractive optical elements [2–10]. Photoalignment by holographic exposure [2, 4, 8, 9], photo-masking exposure [3], microrubbing method [5], and using an interdigitated electrode [6] are the common methods of the fabrication methods of LC gratings. Photoreactive polymer LCs are mentioned as materials to use for alignment films other than azobenzene-containing material [2–4, 7–10]. LC gratings can be applied to optical switching elements by applying a voltage [2, 4–6]. Moreover, control of diffraction properties and wavelength selection properties is realized by birefringence control in LC gratings using temperature control [10]. In addition, diffraction efficiencies of each diffraction order (i.e., the direction of propagation) can be controlled by the incident polarization in LC gratings in which the LC directors continuously rotate along the grating vector [2, 4, 7, 8]. LC grating is not limited to a transmission type; there is also a reflection type [4]. The diffraction efficiency of LC grating is higher than the anisotropic diffractive optical elements of thin film type. This is because the thickness of the structure LC grating induces a large phase difference due to a thick structure. Based on these, LC gratings are suitable to be applied to optical elements that can simultaneously control the parameters of a light wave. However, fabricating an LC grating requires periodically and finely alignment processing in two alignment films and accurate fabrication technique so as not to shift the two alignment patterns.
In this chapter, we propose the efficient yet practical method for fabricating LC gratings containing a twisted nematic (TN) alignment structure using polarization holographic photoalignment and photocrosslinkable polymer LC (PCLC) synthesized by us as alignment films. First, as a preliminary experiment, we experimentally demonstrate that different patterns between two alignment substrates can be applied by one-step linearly polarized UV beam irradiation to an empty glass cell whose inner walls are coated with PCLC films. In addition, we show that fabrication of three types of LC gratings by one-step exposure of the empty glass cells to polarized interference UV fields. The periodic director distributions of the resultant LC gratings are observed experimentally by polarized light microscopy and are analyzed based on the elastic continuum theory. Furthermore, the polarization diffraction properties are measured experimentally by the incident of a visible laser and analyzed theoretically by Jones calculus.
In this chapter, a PCLC with 4-(4-methoxycinnamoyloxy)biphenyl side groups (P6CB) is adopted as materials of alignment substrates. The chemical structure of P6CB is shown in Figure 1. The synthetic method and the details of the characteristics can be found in reference [11]. In the P6CB alignment films after linearly polarized UV light exposure, axis-selective cross-linked LC mesogens act as a trigger, the cooperative reorientation of the side chains is induced during the annealing process as shown in Figure 2. The LC mesogen alignment due to the cross-linking reaction is thermally and long-term stable. P6CB shows the absorption in the ultraviolet light; however, it does not show absorption in the visible region. Therefore, P6CB is suitable for application to optical elements. In addition, the order parameter of P6CB depends on cross-linking density, which is proportional to the exposure dose. When the exposure dose is greater than 100 mJ/cm2, mesogens of P6CB are oriented parallel to the polarization direction of linearly polarized UV after the annealing process. However, when the exposure dose is less than 100 mJ/cm2, mesogens are oriented perpendicularly to the polarization direction of the linearly polarized UV.
Chemical structure of PCLC with 4-(4-methoxycinnamoyloxy)biphenyl side groups (P6CB).
Schematic illustration of alignment mechanism and dependence of alignment direction on exposure dose in the P6CB.
By applying the feature of P6CB described above, we propose a one-step photoalignment method as shown in Figure 3. In this one-step photoalignment method, orthogonal alignment direction between the two P6CB substrates is applied by linearly polarized UV beam irradiation to an empty glass cell whose inner walls are coated with P6CB. The one-step photoalignment method is realized by leveraging the phenomenon that the exposure dose between the two P6CB films is different due to the light absorption in the front P6CB film as shown in Figure 3. Therefore, a TN-aligned LC cell can be fabricated by injecting low-molecular-mass LCs in the empty glass cell. The experimental procedure and results of the demonstration experiment of the one-step photoalignment are described below.
Schematic illustration of fabrication procedure of TN-LC cell by one-step photoalignment method.
P6CB substrates were prepared by spin coating, a solution of 1.5 wt% P6CB in methylene chloride on cleaned glass substrates. The spin coating in the first step is carried out for 3.0 s at 500 rpm, and then the second step is carried out for 40.0 s at 1500 rpm; these steps are continuous. The thickness of the resultant P6CB films on the glass substrates was 0.3 μm. An empty glass cell was fabricated by interposing 12 μm-thick spacers between two P6CB substrates, and then these were adhered using an epoxy-based adhesive. The empty glass cell was exposed to the linearly polarized UV beam as shown in Figure 3. A 325 nm wavelength He-Cd laser, which operates in TEM00 mode and emits a linear polarization, was used as the light source. The cross-sectional area of the beam was set to 0.04 cm2 using two planoconvex lenses with different focal lengths. The beam intensity was set to 50 mW/cm2. In this experiment, the exposure dose varied from 90 to 525 mJ/cm2 in 72.5 mJ/cm2 steps by changing the exposure time from 1.8 to 10.5 s. After laser irradiation, the empty glass cell was annealed at 150°C for 15 min. After cooling to room temperature, the empty glass cell was filled with the nematic LC 4-pentyl-4′-cyanobiphenyl (5CB, Merck Japan K-15) through capillary action. The transmitted light from the resultant LC cell was observed by crossed Nichols method when a white light was used as the light source. In addition, the polarization state of the transmitted light was measured by the rotation-analyzer method using a Glan-Thompson prism as the analyzer. A 633 nm wavelength linearly polarized He-Ne laser, which was incident normal to the plane of the P6CB substrates, was used as the probe beam.
Figure 4 shows the photograph of the resultant LC cell under crossed Nicol polarizers and the polarization states of the incident and transmitted beams. The polarization direction of the irradiated linearly polarized UV beam in the photoalignment process is parallel to the transmission axis of the analyzer as shown in Figure 4(a). Therefore, the bright fields and the dark fields are 90° TN alignment and 0° planar alignment, respectively. The 0° planar alignment structure can be also fabricated. This is because the sufficient exposure dose to align the P6CB along the polarization direction of the irradiated UV beam in the behind substrates can be given by increasing the exposure dose to the empty glass cell. The transmittance of the 325 nm wavelength UV beam in the front P6CB substrate is approximately 30%; however, the transmittance increases gradually during UV irradiation. The alignment structures are different between the inside and the outside of the exposed spots because the transverse mode of the irradiated UV laser is TEM00 (i.e., an intensity distribution in accordance with a Gaussian function exists in the beam cross section). Figure 4(b) shows the polarization states of the incident and transmitted beams which through the spots are exposed at 235 mJ/cm2 (TN, the third spot from the left) and 525 mJ/cm2 (planar, the rightmost) in the photoalignment process. The polar plot represents the azimuthal distribution of the measured light intensity. The polarization azimuth of the probe beam which was transmitted through the TN alignment regions rotates 90°. Note that, the probe beam is not completely rotated 90° because the resultant LC cell does not strictly satisfy Morgan condition. Moreover, in the 0° planar alignment regions, the polarization states do not vary. These results indicate that the 90° TN and 0° planar alignment can be fabricated by one-step photoalignment method.
(a) Photograph of the resultant LC cell fabricated by one-step photoalignment under crossed Nicol polarizers. (b) Polarization states of the input and the output beams.
LC gratings containing the TN alignment can be fabricated by extended to an interference exposure from the single beam one-step photoalignment described above. By exposure of the empty glass cell to UV interference beam in which polarization states are periodically modulated, LC gratings are fabricated accurately and efficiently. In the present study, three types of LC gratings, which hereafter referred to as the “continuous,” “binary,” and “planar TN,” are fabricated. These LC gratings are fabricated using the common two-beam interference optical system shown in Figure 5. The light source was He-Cd laser which was the same as that used in the previous experiment of the one-step photoalignment. The cross-sectional area of the beam was expanded to 0.04 cm2. The crossing angle was 0.3°, and the resultant modulation period of the electric field was 60 μm. The polarization states of the interfering beams were adjusted using the half-/quarter-wave plates. The intensity ratio of the interfering beams can be controlled by adjusting the polarization azimuth, which was an incident on the polarization beam splitter, using the half-wave plate. The one-step holographic photoalignment for the fabrication of the three types of LC gratings is described below individually. The empty glass cells used in the present experiment were the same as that described in Section 2.2. Moreover, the annealing process after the UV exposure and the injection process of nematic LCs were also the same.
Optical system for two-beam interference exposure. NDF, M, PBS, and H/QWP represent the neutral-density filter, mirror, polarization beam splitter, and half-/quarter-wave plates.
Figure 6 shows the fabrication procedure for the continuous LC grating with 0° planar or with 90° TN alignment. In the continuous LC grating, LC directors are constantly rotated along the grating vector. These were fabricated by one-step circular polarization interference exposure. When two orthogonally circular polarized beams interfere with each other, the polarization azimuth of the linear polarization in the interference field is continuously modulated; however, the polarization ellipticity and the intensity are not modulated. Therefore, the periodic alignment process, in which alignment directions are continuously rotated along the grating vector, can be simultaneously applied to two P6CB alignment films in the empty glass cell. Moreover, the same alignment pattern and the orthogonal pattern with each other (i.e., the period of the pattern is shifted by a half period with each other) can be applied into the empty glass cell by adjusting the exposure dose as shown in Figure 6(b). In this experiment, the beam powers of both interfering two beams were set to 2 mW. The exposure doses to fabricate the continuous LC grating with planar and with TN alignment were set to 400 mJ/cm2 and 200 mJ/cm2, and the exposure times were set to 8.0 s and 4.0 s, respectively. The self-diffraction from the front P6CB substrate during the photoalignment process does not occur because the optical anisotropy of P6CB is induced after annealing. The continuous LC gratings with planar or with TN alignment were fabricated by injecting the nematic LC after annealing process as shown in Figure 6(c).
Figure 7 shows the fabrication procedure for the binary LC grating with 0° planar or with 90° TN alignment. In the binary LC grating, LC directors are changed periodically and discretely by 90° in the grating vector. These were fabricated by one-step exposure of the empty glass cells to the UV interference field obtained by the interference of linearly polarized beams which were inclined +45° and −45° from the x-axis. The interference field periodically modulates the polarization states only because the +45° and −45° linear polarizations are orthogonality relation. The polarization ellipticity in the interference field is continuously modulated in the range from 0.0 to 1.0, and the polarization azimuth is discretely changed by 90° at the boundary point where the polarization ellipticity is 1.0; the polarization state changes between ±S3 via ±S1 in Poincaré sphere. Considering that the alignment direction of P6CB in the alignment films is predominantly in the longitudinal direction of the irradiated elliptical polarization, the alignment direction in the alignment films is periodically and discretely changed by 90° after annealing as shown in Figure 7(b). However, the regions in the alignment films which were irradiated elliptical or circular polarization involve the decline in the anchoring energy. In this experiment, the exposure doses to fabricate the continuous grating with planar and with TN alignment were set to 600 mJ/cm2 and 200 mJ/cm2. Other experimental conditions and fabrication procedure were identical to those for the previously described continuous LC gratings.
Figure 8 shows the fabrication procedure for the planar-TN-LC grating. In the planar-TN-LC grating, 0° planar and 90° TN alignment are periodically intermixed in the grating vector. This was fabricated by one-step exposure of the empty glass cell to the UV interference field obtained by the interference of linearly polarized beams which were inclined 90° from the x-axis. The interference field periodically modulates the intensity only. When the beam powers of interfering two beams are the same, the visibility of the interference field is maximum. This indicates that there are regions where the intensity in the interference field is nearly zero; the photoalignment is not applied in these regions. Therefore, the beam power ratio of the interfering linearly polarized beams was intentionally shifted from 1:1 to reduce the visibility from 1.0. Moreover, the planar-TN-LC grating can be fabricated by adjusting to the appropriate beam power ratio because the exposure dose varies along the x-axis position. The maximum intensity Imax and minimum intensity Imin in the interference field can be calculated as
where I1 and I2 represent the beam intensities of the interfering beams. As calculation conditions, Imax = 600 mJ/cm2 and Imin = 200 mJ/cm2 were set. From these conditions, I1 and I2 were determined to be 2.5 mW/cm2 and 37.5 mW/cm2, and the derived exposure time is 10 s. However, in the result of the preliminary experiment based on this condition, planar areas were larger than the TN areas in the resultant planar-TN-LC grating (i.e., an overall ratio of the planar and the TN areas was not 1:1). Therefore, the exposure time was experimentally determined in 8.0 s to achieve an overall 1:1 ratio of the planar and the TN areas. Other experimental conditions and fabrication procedure were identical to those for the previously described continuous LC gratings.
Figure 9(a) and (b) shows the photographs of the continuous LC grating with planar and with TN alignment, respectively. The transmittance in the photographs continuously varies along the grating vector. The full dark fields, where the LC directors incline by 0° or 90° with respect to the transmission axes of the polarizer and the analyzer, exist in the planar alignment of the continuous LC grating as shown in Figure 9(a). Note that the transmittance of the bright fields, where the LC directors incline by 45° with respect to the transmission axes, depends on the retardation of the LC grating. This is because the polarization state of output electric field changes between ±S3 in Poincaré sphere depending on the retardation when the linear polarization inclined by 45° with respect to an optical axis is incident. In the TN alignment shown in Figure 9(b), when the LC directors of the alignment film interface incline by 0° or 90° with transmission axes of the polarizer and the analyzer, the transmittance of white light is maximized. Full dark fields do not exist. Figure 9(c) and (d) shows the photographs of the binary LC grating with planar and with TN alignment, respectively. For the reasons described above, the entire region can be seen as full dark fields in the planar alignment as shown in Figure 9(c), and the entire region can be seen as bright fields in the TN alignment as shown in Figure 9(d). Moreover, vertical lines extending perpendicular to the grating vector direction are observed. These lines represent the “transition regions” between the binary regions, which will be detailed later. Figure 9(e) shows the photographs of the planar-TN-LC grating. The full dark fields and the bright fields are seen to alternate, and the distribution of full dark fields and bright fields is inverted by interchanging the crossed Nicol and parallel Nicol polarizers, as shown in Figure 9(e-1) and (e-2). These results indicated that the director distributions of the resultant LC gratings were nearly the same as the initially designed director distributions shown in Figures 6(c), 7(c), and 8(c).
Photographs of the resultant LC gratings observed by polarized light microscopy. (a) Continuous LC gratings with planar alignment and (b) TN alignment. (c) Binary LC gratings with planar alignment and (d) TN alignment. (e) Planar-TN-LC gratings under (e-1) crossed Nicol polarizers and (e-2) parallel Nicol polarizers. The part of the figure is reproduced by the kind permission of The Optical Society of America from Applied Optics 54, 6010-6018 (2015).
It is important to consider quantitatively the observed director distributions of the resultant LC gratings based on a physical theory. The director distributions of the LC gratings are not determined uniquely and strictly by only patterns of alignment films. Therefore, in some case, the slightly different director distributions from the ideal distributions were obtained as described in Section 3.2. In this section, the estimation method of the static director distributions based on the elastic continuum theory of a nematic LCs is described below.
In LC gratings, LCs are anchored by alignment films, and then spatial nonuniformities in LC directors are induced. Since LCs have elastic properties, restoring forces and elastic free energies are increased by these elastic deformations. Moreover, when the spatial nonuniformities (i.e., total elastic free energies) are minimized, the periodic director distributions of the LC gratings are stable. Therefore, the detailed director distributions can be estimated by calculating the condition which the total free energy is minimized. The total elastic free energy of the LC grating is obtained by spatially integrating the elastic free energy per unit volume shown in the following equation:
where K1, K2, and K3 represent the elastic constants the splay, twist, and bend of nematic LCs, respectively. n represents the director of the nematic LCs in the xyz coordinate frame. The x-axis is parallel to the grating vector, and the z-axis is parallel to the thickness direction which follows to the definition shown in Section 3.1. Based on the premise that the director is not tilted in the z-axis, the director n is defined as n = (cosφ, sinφ, 0), where φ represents the angle between the x-axis and the director n. By substituting the director n into Eq. (2), we obtain
where K1 = 6.4 pN, K2 = 3.0 pN, and K3 = 10.0 pN [12]. The total elastic free energy F of one period is obtained by spatially integrating Eq. (3) as given by
where d and Λ represent the cell gap and the grating pitch of LC gratings, respectively. As described above, the director distribution is determined by calculating φ when the total elastic free energy is minimized. Specifically, the director distribution can be calculated as ∂F = 0. We adopted the finite element method to solve this variational problem of the functional. In this numerical calculation, we applied periodic boundary conditions for speeding up the calculation. Moreover, we set fixed boundary conditions in the alignment substrates at z = 0 and z = d by assuming strong anchoring conditions of P6CB alignment films shown in Table 1.
Boundary position | Continuous | Binary | Planar-TN | ||
---|---|---|---|---|---|
Planar | TN | Planar | TN | ||
z = 0 | πx/Λ | πx/Λ | 0 (0 ≤ x < Λ/2) π/2 (Λ/2 ≤ x ≤ Λ) | 0 (0 ≤ x < Λ/2) π/2 (Λ/2 ≤ x ≤ Λ) | π/2 |
z = d | πx/Λ | πx/Λ + π/2 | 0 (0 ≤ x < Λ/2) π/2 (Λ/2 ≤ x ≤ Λ) | π/2 (0 ≤ x < Λ/2) 0 (Λ/2 ≤ x ≤ Λ) | 0 (0 ≤ x < Λ/2) π/2 (Λ/2 ≤ x ≤ Λ) |
Boundary conditions of the three types of LC gratings φ(x) at z = 0 and z = d.
Figure 10 shows a cross-sectional view of the director distributions in the LC gratings over one period as calculated by the elastic continuum theory of nematic LCs. The ideal director distributions shown in Section 3.1 were obtained. However, especially in the binary LC gratings [Figure 10(c) and (d)], the LC directors do not change abruptly at the boundary of two regions (i.e., previously described “transition regions”). These results indicate that LC directors in the LC grating are not induced steep elastic deformations in order to prevent increasing locally elastic free energies.
Cross-sectional view of the director distributions calculated from the elastic continuum theory. (a) Continuous LC gratings with planar alignment and (b) TN alignment. (c) Binary LC gratings with planar alignment and (d) TN alignment. (e) Planar-TN-LC gratings. Fixed boundary conditions shown in Table 1 are applied in gray regions. The part of the figure is reproduced by the kind permission of The Optical Society of America from Applied Optics 54, 6010-6018 (2015).
To consider quantitatively the effects on the diffraction properties due to transition regions, the numerical solutions of the diffraction properties are calculated on the basis of Jones calculus using the obtained director distribution shown in Figure 10. To calculate the phase distributions of the nematic LC phases, we consider the birefringence plate of n layers, and the Jones matrix W of the LC gratings can be written as
where Win and Wout are Jones matrices for the P6CB alignment films at the input and output sides, respectively, and Wm represents the LC phase of the mth layer. These are given by
where R represents the coordinate rotation matrix. Δn and ΔnP are the optical anisotropy of the nematic LCs and the P6CB alignment films, respectively. λ is the wavelength of the probe beam. dm and dP represent the thicknesses of the nematic LC layers (d/n = dm) and P6CB alignment films, respectively. The parameters used in the calculation are Δn = 0.18, ΔnP = 0.2, dP = 300 nm, and λ = 633 nm. The electric field transmitted through the LC gratings is obtained by multiplying the incident electric field vector by the Jones matrices W. The diffraction properties are obtained by Fourier transform of the spatial distributions of the output electric field vector. The resultant numerical solutions of the diffraction properties will be described later in conjunction with the measurement results.
It is important to obtain mathematically the analytical solutions of diffraction properties to give exact theoretical solutions. In this section, the analytical solutions of the resultant LC gratings are derived using Jones calculus. However, the transition regions are not considered in this analysis, and the ideal director distributions shown in Section 3.1 are analyzed. Comparisons of the analytical solutions and the numerical solutions will be described in Section 3.5. The variables which are defined in the previous section are taken over.
In the resultant continuous LC gratings, the alignment direction of the 0° planar alignment or 90° TN alignment is rotated continuously along the grating vector [Figure 6(a)]. Therefore, rotation matrix which depends on the position ξ (=2πx/Λ) in the grating vector is introduced into the Jones matrix of the continuous LC gratings as shown in the following:
where WPlanar and WTN represent Jones matrices of the 0° planar and 90° TN alignment, respectively, as shown in the following:
where Γ (=2πΔnd/λ) stands for the phase retardation, Φ (=π/2) represents the twisted angle in the TN alignment, and X is defined as
and
The electric field vector of the ±1st-order diffracted beam is derived by multiplying the electric field vector of the incident beam shown in the following:
where Ψ and δ represent the amplitude ratio angle and the phase difference. Therefore, the electric field vector of the ±1st-order diffracted beams are given by
and
These analytical solutions indicate that the polarization states of the ±1st-order diffracted beams from both the planar and the TN alignment are always circular polarization, and this property does not depend on the polarization states of the incident beams. Either of +first- or −first-order diffraction beam only diffracts when the circular polarization is incident (i.e., δ = π/2, and Ψ = π/4); both +first- and −first-order diffraction beams diffract when the linear polarization is incident (i.e., δ = 0). In the case of the entering the circular polarization, the diffraction efficiency is twice in comparison with the diffraction efficiency when the linear polarization is incident; these are obtained by squaring the electric field of the ±1st-order diffracted beams shown in Eqs. (14) and (15).
Both the binary and the planar-TN-LC gratings are classified into the diffraction gratings in which the amount of the phase shift is rectangularly modulated along the grating vector. The diffraction properties of thin anisotropic diffraction gratings, in which two different anisotropic regions are periodically arranged, can also be analyzed by Jones calculus [12]. Diffraction properties of the binary LC gratings and the planar-TN-LC grating are given by the sum of the emitted electric fields from the two anisotropic regions. Therefore, the Jones matrix WN of the Nth-order diffracted beam is given by Fourier transform when the Jones matrices of the two anisotropic regions are defined as WA and WB and can be written as
where ζ is the boundary position of the two anisotropic regions and defined as (− 1/2 ≤ ζ ≤ 1/2). Note that the Jones matrices WA and WB are not dependent on the x position in the integration interval. The Jones matrix W is given by
Eq. (17) can also be applied to any grating when WA and WB in an anisotropic diffraction grating are known. Moreover, when the area ratio of the two anisotropic regions of WA and WB is 1:1 (i. e., ζ = 0), even-order diffracted beams are not diffracted as shown in Eq. (17). This is because the even-order diffracted beams are negated by the anti-phase emitted electric field.
To derive the Jones matrices of the binary LC grating with 0° planar and with 90° TN alignments, WA are defined by the right-hand side of the Eqs. (9) and (10) described in the previous section, respectively. On the other hand, the alignment directions of WB are inclined by 90° with the alignment directions of WA, and WB are given by
The Jones matrices of the ±1st-order diffraction from the binary LC grating with 0° planar and with 90° TN alignments are given by substituting the Jones matrices described in Eqs. (9) or (10) and (18) into Eq. (17) and can be written as
and
The Jones vectors for ±1st-order diffraction is derived by multiplying the electric field vector of the incident beam shown in Eq. (13) and can be written as
and
The sign of the y component in Jones vector for the planar alignment shown in Eq. (21) is different than the Jones vector of the probe beam. On the other hand, the Jones vector for the TN alignment shown in Eq. (22) is the same as the probe beam Jones vector where the x and y components are interchanged. These results indicate that the binary gratings have diffraction properties which convert the polarization azimuth and the rotational direction of the polarized probe beam.
In the planar-TN-LC grating, WA and WB in the Eq. (17) are given by Eqs. (9) and (10), respectively. In the same way, the Jones vector for the ±1st-order diffraction from the planar-TN-LC grating is given by
In the planar-TN-LC gratings, analytical solutions of the diffraction properties cannot be derived unconditionally because the diffraction properties depend on the phase retardation Γ, as shown in Eq. (23). The diffraction properties can be analyzed by fitting to the experimental results using the phase difference (especially the cell gap, d) as a fitting parameter.
The ±first-order diffracted beams from the resultant LC gratings were probed experimentally with He-Ne laser beam with a wavelength of 633 nm. The polarization states of the probe beam were adjusted to a linear or a circular polarization using a half-wave plate and a quarter-wave plate. The polarization azimuth of the probe beam was defined as the inclination angle of the polarization director with respect to the grating vector. The probe beam was incident normal to the plane of the substrate including the grating vector. The ±first-order diffracted beams were separated from other orders using a pinhole. The diffracted beam intensities were measured using an optical power meter. The polarization states of diffracted beams were measured by a rotating analyzer method using a Glan-Thompson prism as the analyzer.
Figure 11(a) shows the measurement and the calculation results of polarization states of the ±first-order diffracted beams from the continuous LC gratings. The calculated results are obtained from the numerical solutions described in Section 3.3 and the analytical solutions described in Section 3.4. The calculated diffraction efficiencies were fitted to the experimental results using the cell gaps as the fitting parameter, and the optimum cell gaps in the planar and TN alignment obtained by fitting were 13.2 μm and 13.1 μm, respectively. The polarization states of the ±first-order diffracted beams from both the planar and the TN alignments are always circular polarization, and this property does not depend on the polarization states of the incident beams. Either of +first- or −first-order diffraction beam only diffracts when the circular polarization is incident; both +first- and −first-order diffraction beams diffract when the linear polarization is incident. The diffraction efficiency when the circular polarization is incident is twice in comparison with the diffraction efficiency when the linear polarization is incident.
Polar plots of the ±1st-order diffracted beam for the resultant LC gratings. Open circles, red solid curves, and blue broken lines represent the experimental data, theoretical solution, and numerical solution, respectively. The numerical values below the polar plots represent the experimental results of diffraction efficiency. (a) Continuous LC gratings and (b) binary LC gratings with planar alignment and with TN alignment. (c) Planar-TN-LC gratings. The part of the figure is reproduced by the kind permission of The Optical Society of America from Applied Optics 54, 6010-6018 (2015).
Figure 11(b) shows the measurement and the calculation results of polarization states of the ±1st-order diffracted beams from the binary LC gratings. The polarization ellipticity of the diffracted beam is conserved from the probe beam, although the rotation direction is inverted from the probe beam. The polarization azimuth of the diffracted beam varies over a range from 0° to 90° depending on the polarization azimuth of the probe beam. Furthermore, the polarization azimuth of the diffracted beams is 90° offset from the planar and TN alignment when the probe beam is linearly polarized. The diffraction properties in the positive and negative diffraction orders were the same. The polarization states of the diffracted beam do not depend on the phase difference. The calculated diffraction efficiencies were fitted to the experimental results using the cell gaps as the fitting parameter, and the optimum cell gaps in both the planar and TN alignments obtained by fitting were 13.4 μm. There were slight differences in some results between the experimental results and the calculation results. These discrepancies can be mainly attributed to the transition regions at the boundary of the two alignment regions. In the calculated results, there were only slightly differences between the analytical and numerical solutions because the transition regions were considered in the numerical solutions. Specifically, with circular polarization of the probe beam, the polarization ellipticity of the diffracted beams determined with the analytical solution was 1.0; the numerical solution yielded 0.97. From that above, the cause of the slight deviation between the experimental results and the theoretical expectations is that the transition regions in the resultant binary LC gratings were slightly larger than the estimated director distributions.
Figure 11(c) shows the measured and the calculated results of the planar-TN-LC grating. There is good agreement between the measured results and the analytical and numerical solutions. When the probe beam was right- and left-hand circularly polarized, the elliptically polarized beams, with polarization azimuths offset by 90°, were diffracted depending on the rotation direction of the probe beams. The polarization azimuth of both probe beam and the diffracted beam is inversely related. The polarization ellipticity of the diffracted beams periodically varies over the range of 0.0–0.2 depending on the polarization azimuth of the probe beam. When the probe beams were 0° and 90° linearly polarized, the polarization ellipticity of diffracted beams was 0.0. On the other hand, when the probe beams were ±45° linearly polarized, the ellipticity was 0.2. It was found from the theoretical analysis that the polarization ellipticity of the diffracted beam varies over the 0.0–0.9 range, depending on the phase difference when the probe beam was ±45° linearly polarized. In addition, when the probe beams are 0° and 90° linearly polarized, the diffracted beams are always linearly polarized and do not depend on the phase difference. The calculated diffraction properties were fitted to the experimental results using the cell gap as the fitting parameter, and the optimum cell gap in the planar-TN-LC grating obtained by fitting was 14.8 μm. The diffraction properties in the positive and negative diffraction orders were the same.
Schematic of the fabrication procedure for the continuous LC grating. (a) One-step exposure of an empty glass cell to a UV interference beam obtained by interfering reverse rotated circularly polarized beams with each other, (b) periodic alignment patterns after annealing in the P6CB films, and (c) director distributions after injecting with a nematic LC (5CB).
Schematic of the fabrication procedure for the binary LC grating. (a) One-step exposure of an empty glass cell to a UV interference beam obtained by interfering orthogonal linearly polarized beams with each other, (b) periodic alignment patterns after annealing in the P6CB films, and (c) director distributions after injecting with a nematic LC (5CB).
Schematic of the fabrication procedure for the planar-TN-LC grating. (a) One-step exposure of an empty glass cell to a UV interference beam obtained by interfering parallel linearly polarized beams with each other, (b) periodic alignment patterns after annealing in the P6CB films, and (c) director distributions after injecting with a nematic LC (5CB).
We demonstrated the efficient yet practical method for fabricating the LC gratings containing a TN alignment using one-step polarization holographic photoalignment. In addition, the director distributions of the resultant LC gratings are analyzed based on the elastic continuum theory and observed experimentally using a polarized light optical microscope. Furthermore, the polarization diffraction properties were measured experimentally by the incident of a visible laser and analyzed theoretically by Jones calculation. This study is of significance in that the various LC gratings containing TN alignments can be fabricated by simultaneous exposure of two P6CB substrates to the polarization interference beams. In the resultant continuous gratings, the polarization conversion properties to the circular polarization and the dependence of the propagation direction on the polarization states of the probe beams are obtained. In the resultant binary LC grating, the polarization azimuth of the diffracted beam changed ranging from 0° to 90° depending on the polarization azimuth of the probe beam. Moreover, when the probe beam is elliptical or circularly polarized, the rotation direction of the diffracted beam is converted. In the resultant planar-TN-LC grating, the polarization azimuth of both the probe beam and the diffracted beam showed an inverse relationship. In addition, the polarization ellipticity varied depending on the polarization azimuth of the probe beam. These polarization diffraction properties are well explained by theoretical analysis based on Jones calculus. These resultant LC gratings exhibit great potential for application as a diffractive optical element that can simultaneously control the various parameters of the light wave, such as amplitude, polarization states, and propagation direction.
The mechanisms behind the clinical improvements following exercise and the possible roles of endothelium and adipose tissue towards tissue re-modeling and regeneration are poorly understood.
\nThe cellular changes resulting from exercise in overweight or obese population are not fully documented. However, the incidence of overweight and obese population who are insulin resistant is gradually increasing. There seems to be an intimate relationship between fat hypertrophy, fat inflammation, and vascular supply in metabolic syndrome states such as prediabetes. The vasculature and endothelium in metabolic syndrome or subjects with prediabetes and insulin resistance are prone to ROS accumulation and inflammation. Exercise appears to improve endothelial dysfunction in insulin resistant cohort though cell-based data is lacking. The favorable impact of exercise on cardio-metabolic health depends in part on the concomitant exercise-induced reduction of adiposity and fat-based inflammation and insulin resistance.
\nInsulin acts as a vascular hormone, mediating its action by several mechanisms including its effect on cardiac output, endothelium, type and location of vessel, and skeletal muscle [1].
\nCardiac output: it has been established that insulin combined with glucose infusion causes an increase in cardiac output (CO) [2]. High concentrations of insulin in humans of 70 μU/mL cause a 15% rise in CO by increasing heart rate and stroke volume [3]. The rise in CO is associated with a decrease in mean arterial pressure and in turn, a reduction in systemic vascular resistance.
\nEndothelium: insulin directly acts on the vascular endothelium by binding to insulin receptors, insulin-like growth factor I (IGF-I) receptors and hybrid insulin/IGF-I receptors [4]. With the binding of insulin to these endothelial receptors, both vasodilator (i.e., nitric oxide, NO) and vasoconstrictor (i.e., endothelin 1, ET-1) substances are released to balance vascular tone. NO causes vasodilation of the vessels via the activation of insulin receptor substrate-1 (IRS-1) leading to phosphatidylinositol 3-kinase (PI-3 kinase)/protein kinase B (Akt.) phosphorylation of endothelial NO synthase (eNOS) whereas the ET-1 signaling pathway involves the mitogen activated protein kinase (MAPK) (Figure 1). During states of high insulin concentrations, as seen in euglycemic hyperinsulinemic clamp studies or postprandially, insulin’s vasodilatory effect through NO predominates. NO not only decreases vascular tone but also decreases vascular smooth muscle cell (VSMC) proliferation and reduces binding of inflammatory cells and platelet aggregation [5].
\nType and location of vessels: insulin’s action on the vasculature varies depending on its site of action along the arterial tree which can include the conduit arteries, the resistance arterioles, precapillary arterioles and the capillaries (Table 1). It also acts on the skeletal muscle vasculature and can have effects locally.
The conduit arteries are large arteries which regulate arterial compliance in response to the ejection volume and stretch in order to maintain blood pressure. Insulin increases compliance by vasodilation of these vessels in response to NO release. In human studies with insulin infusion, the responsiveness of the femoral artery to methacholine-induced vasodilation is increased [4].
The resistance arterioles regulate blood pressure and total blood flow to tissues. They determine vascular resistance as a change in the size of the vessel (lumen size) can significantly increase or decrease resistance and thus the amount of blood supply to the tissues. Insulin via NO production causes dilation of these vessels, decreases resistance, and increases blood flow.
The microvasculature including the terminal arterioles, capillary networks and venules regulate insulin delivery to muscle tissues. Insulin action here promotes glucose uptake, recruitment of muscle vasculature and its own trans-endothelial transport [4]. This allows for exchange of nutrients, oxygen, and hormones to the muscle with removal of metabolic waste.
\nSkeletal muscle: during exercise, skeletal muscle blood flow, capillary recruitment, and GLUT4 translocation to the sarcolemma and T-tubules are augmented which is essential for glucose uptake and oxidation. Insulin targets the skeletal muscle by increasing blood flow and glucose uptake, the latter mediated by translocation of GLUT4 transporters to the sarcolemma and transverse tubules as well as to the surface of the cell (independent of insulin).
Pathway of insulin-mediated release of nitric oxide (NO) and endothelin-1 (ET-1), two peptides that influence vasomotor tone and risk of atherosclerosis. Insulin directly affects the vascular endothelium by binding to receptors present on the endothelium which expresses not only insulin receptors but also insulin-like growth factor I (IGF-I) receptors and hybrid insulin/IGF-I receptors. These hybrid receptors are expressed 5- to 10-fold higher concentration than insulin receptors. Potentially, an over-abundance of IGF-1 receptor may result in vascular insulin resistance by promoting hybrid receptor formation which does not respond to physiological insulin concentrations while decreasing insulin receptor availability. As described in the text, insulin initiates an intracellular cascade of steps resulting in NO or ET-1. GLUT-4 transports glucose across the cellular membrane following insulin activation or muscle contraction via a complex of intermediary substrates. The former is initiated by the PI3K pathway, while muscle contraction by a PI3K independent pathway.
Vessel | \nRole | \nInsulin action | \nMechanism | \n
---|---|---|---|
Conduit arteries | \nRegulate arterial compliance, blood pressure | \nIncreases relaxation, increases compliance | \nLikely NO | \n
Resistance arterioles | \nDetermines vascular resistance | \nDilation, decrease vascular resistance | \nNO | \n
Terminal arterioles, capillaries | \nRegulate insulin delivery to muscle. Also exchange nutrients, oxygen and hormones with muscle | \nMuscle glucose uptake, recruit muscle microvasculature | \nInsulin, muscle contraction, angiotensin GLP1, adiponectin | \n
Skeletal muscle | \nMuscle contraction | \nIncrease blood flow, increase glucose uptake | \nNO, translocation of GLUT4 receptors | \n
Role of insulin on various vessels and mechanism.
Insulin resistance is characterized by a state of compensatory hyperinsulinemia due to changes in insulin secretion and/or insulin clearance [6] leading to mild forms of glucose intolerance, dyslipidemia (high triglycerides, low HDL, small dense LDL), and hypertension termed the “insulin resistance syndrome”. As discussed, during physiological conditions, insulin binding to endothelial receptors leads to phosphorylation of downstream substrates including activation of the IRS-1, PI3K pathway and subsequent recruitment of GLUT4 to mediate glucose transport into muscle and other tissues [7]. However, In the IR state, the IRS-1-PI3K-Akt-NO pathway is muted while the MAPK pathway remains intact [8]. The unopposed action of ET-1 leads to a shift towards vasoconstriction, increased arterial stiffness, hypertension, and tissue hypoxia. In addition to this decrease in NO bioavailability, increases in oxidative stress, inflammatory markers, and pro-thrombotic mediators (i.e., increased plasma von Willebrand factor, decreased lipoprotein lipase activity) are seen. More direct evidence for endothelial IR was shown in freshly isolated arterial endothelial cells where the insulin-induced eNOS-phosphorylation was negatively associated with oxidative stress markers [9].
\nDuring states of IR each vascular site becomes affected and contributes to an increase in atherosclerosis. At the level of the conduit arteries, IR causes decreased compliance with a concomitant increase in vessel stiffness, which is a predictor of coronary artery disease and stroke [10]. The impaired vasodilatory action of insulin on the resistance arterioles leads to decrease in blood flow to the tissues it supplies. For example, Baron et al. demonstrated that the inhibition of NO production (similar to states of IR) causes a decrease in blood flow and glucose uptake in the leg. The terminal arterioles in patients with IR showed a blunted response to mixed meal in brachial blood flow and forearm microvascular recruitment compared to lean subjects [3].
\n\nOxidative stress: hyperglycemia due to IR also induces generation of reactive oxygen species (ROS) by activation of the NADPH oxidase system. ROS activates multiple pathways linked with cell growth, proliferation and modifies NO bioavailability. One such pathway includes the renin-angiotensin system which is inappropriately activated in settings of IR. Interestingly, during continuous insulin infusion, Angiotensin 2 receptor antagonism resulted in whole-body insulin resistance and attenuation of microvasculature recruitment [5]. The mechanism may involve increased binding to Angiotensin 1 receptors, which have been shown to increases oxidative stress and cause vasoconstriction through decreased bioavailability of eNOS and increased ROS. Chai et al. has shown that when AT2R is blocked, there is decreased microvascular blood flow by 80% along with reduced glucose extraction [11].
\nIt is well established that exercise augments insulin signaling independent of PI3K, while the combination of skeletal muscle contraction and insulin additively enhances glucose transport via GLUT4 translocation. A plethora of studies have reported that regular physical activity is effective in patients with IR, such as type 2 diabetes, prediabetes and metabolic syndrome, in improving glucose tolerance, insulin sensitivity, glycosylated hemoglobin levels (HbA1c) and morbidity and mortality [12]. For instance, adults with IR were found to have improvements in hepatic and peripheral insulin sensitivity after 12 weeks of aerobic exercise. Shorter term studies (i.e., 7 days) have also demonstrated similar improvements in insulin sensitivity in obese patients [13]. Lifestyle interventions such as diet modifications added to 12 weeks exercise training showed further enhancements in addition to insulin sensitivity including fatty acid oxidation, post-prandial hyperinsulinemia and systolic resting blood pressure [14].
\n\nExercise and the endothelium: exercise causes several adaptations to IR in the vasculature in both the skeletal muscle and endothelium. Vessel wall shear stress generated by exercise activates the PI3k/Akt/NO signaling pathway resulting in increased expression of eNOS and improved endothelial vasodilation and vascular remodeling [15]. Vessels with high shear stress are considered anti-atherogenic (low ET-1, high NO bioavailability) as opposed to low shear stress environments (high ET-1, low NO bioavailability). In patients with Type 2 diabetes, 8 weeks of combined aerobic and resistance exercises improved flow mediated dilation (FMD) of the brachial artery suggesting increased shear stress and improved endothelial vasodilation [16]. Exercise improved FMD, microvascular perfusion in muscles of older adults relative to sedentary adults in nondiabetic subjects with metabolic syndrome [14]. Finally, insulin sensitization without exercise also augments FMD in prediabetes [17].
\n\nSkeletal muscle: during exercise, blood flow to the skeletal muscle increases up to 100-fold through vasodilation and recruitment of capillaries to help maximize oxygen extraction as well as insulin delivery to the skeletal muscle [5]. Pivotal studies investigated the vascular effects of exercise training on insulin [7, 15, 18]. Single leg cycle exercises over a 10-week period improved insulin stimulated glucose uptake and vasodilation in the trained limb post exercise training for both healthy and IR subjects. Moreover, insulin stimulated vasodilation in the lower limb is greater in endurance trained athletes compared to otherwise healthy sedentary controls [7].
\nEndothelial cells constitute the innermost layer of blood vessel and promote vascular homeostasis and angiogenesis. Endothelial cells can secrete several mediators that can alternatively mediate vasoconstrictors, such as endothelin-1 and thromboxane A2, or vasodilators, such as NO, prostacyclin, and endothelium-derived hyperpolarizing factor. Since hyperglycemia and IR can negatively impact NO secretion from the endothelium, with vasoconstriction, vessel wall stiffness, platelet aggregation and diminished angiogenesis, there is a counter-regulatory reparatory cellular response by circulating endothelial progenitor cells (EPCs). These are immature bone marrow derived cells that can differentiate into mature endothelial cells. These cells home in on areas that experience vascular injury or ischemia by way of circulating growth factors and cytokines to initiate repair of the endothelial surface and stimulate neovascularization and angiogenesis. In conditions such as diabetes with vascular damage, the presence of diminished circulating EPCs constitute cellular biomarkers of compromised cardiovascular health [19]. In subjects with IR such as metabolic syndrome, decreased EPC number and impaired functionality prognosticates increased cardiovascular risk [20]. Interestingly, exercise promotes the production and numbers of EPCs [19, 21] putatively related to the anti-apoptotic effect of NO [22]. EPCs are also stimulated by exercise in aging studies. Moreover, the migratory function of EPCs is improved by exercise in subjects with IR [19, 23]. The degree of exercise dose appears to influence the overall EPC response [23]. In presence of insulin resistance but not overt diabetes, CPAP therapy improves endothelial health and EPC parameters [24].
\nExercise, endothelium and fat derived mesenchymal stromal cells (MSCs): clinical trials are necessary to investigate the possible cellular and molecular pathways that may impact endothelium and fat metabolism. Identification of the pathways that influence crosstalk between endothelium and fat, and thereby improve cardio-metabolic health in the elderly and young subjects is important to identify. The process will help to identify genes and cell differentiation pathways that may change fat derived stem cell differentiation, following exercise training in the elderly and the young subject cohorts, which will subsequently influence the mesenchymal structures of our body. Our study [25] appears to indicate that exercise promotes osteogenic differentiation but not myogenic differentiation in the middle-aged veteran population with mean age of 51 years. However, whether osteogenic differentiation of adipose tissue derived mesenchymal stromal cells (MSCs) also occurs in young and the elderly is unknown. Myogenic differentiation in response to exercise is well documented [26], and different types of exercise appear to influence the differentiation depending on plasma-based differentiation factors [26]. However, the exact mechanism of how exercise modifies mesenchymal stromal cell (MSC) differentiation in the body needs further investigation. Prior to our recent studies, we would have hypothesized that exercise will promote myogenic differentiation in all age groups, however the differentiation of stem cells may be dependent upon the need of the body to regenerate a particular tissue lineage at a particular age. For example, exercise promotes myogenic differentiation in the young [26] whereas endothelial function improvement and bone regeneration may be more important in the elderly [27, 28].
\nExercise is an important modifiable risk factor that significantly attenuates cardiovascular morbidity and mortality. Physical activity is associated with enhanced cardiorespiratory fitness which significantly attenuates IR, and some of these effects are mediated by augmented endothelial action of insulin. These vascular effects of exercise include an increase in endothelium-dependent vasodilation through increased NO bioavailability, suppression of ET-1, increased capillary density, and reduction in ROS.
\nFinally, exercise appears to rejuvenate endothelial function by recruitment of exercise responsive EPCs and influences MSC differentiation.
\nNone.
\nIf you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links.
",metaTitle:"List of Institutions by Country",metaDescription:"If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links. However, if your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).",metaKeywords:null,canonicalURL:"open-access-funding-institutions-list",contentRaw:'[{"type":"htmlEditorComponent","content":"Book Chapters and Monographs
\\n\\nBook Chapters
\\n\\nMonographs Only
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\nMonographs Only
\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nCSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\n\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nThe Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nThe University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nThe University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nMonographs Only
\\n\\n\\n\\nImportant: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Book Chapters and Monographs
\n\n\n\nBook Chapters
\n\nMonographs Only
\n\n\n\nBook Chapters and Monographs
\n\nMonographs Only
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nCSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\n\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\nThe Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nThe University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nThe University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nMonographs Only
\n\n\n\nImportant: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10366},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15789}],offset:12,limit:12,total:118187},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"23"},books:[{type:"book",id:"10656",title:"Intellectual Property",subtitle:null,isOpenForSubmission:!0,hash:"135df9b403b125a6458eba971faab3f6",slug:null,bookSignature:"Dr. Sakthivel Lakshmana Prabu and Dr. Suriyaprakash TNK",coverURL:"https://cdn.intechopen.com/books/images_new/10656.jpg",editedByType:null,editors:[{id:"91590",title:"Dr.",name:"Sakthivel",surname:"Lakshmana Prabu",slug:"sakthivel-lakshmana-prabu",fullName:"Sakthivel Lakshmana Prabu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10658",title:"Multilingualism",subtitle:null,isOpenForSubmission:!0,hash:"a6bf171e05831c00f8687891ab1b10b5",slug:null,bookSignature:"Prof. Xiaoming Jiang",coverURL:"https://cdn.intechopen.com/books/images_new/10658.jpg",editedByType:null,editors:[{id:"189844",title:"Prof.",name:"Xiaoming",surname:"Jiang",slug:"xiaoming-jiang",fullName:"Xiaoming Jiang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10662",title:"Pedagogy",subtitle:null,isOpenForSubmission:!0,hash:"c858e1c6fb878d3b895acbacec624576",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10662.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10913",title:"Indigenous Populations",subtitle:null,isOpenForSubmission:!0,hash:"c5e8cd4e3ec004d0479494ca190db4cb",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10913.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10914",title:"Racism",subtitle:null,isOpenForSubmission:!0,hash:"0737383fcc202641f59e4a5df02eb509",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10914.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:14},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:6},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:5},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9043",title:"Parenting",subtitle:"Studies by an Ecocultural and Transactional Perspective",isOpenForSubmission:!1,hash:"6d21066c7438e459e4c6fb13217a5c8c",slug:"parenting-studies-by-an-ecocultural-and-transactional-perspective",bookSignature:"Loredana Benedetto and Massimo Ingrassia",coverURL:"https://cdn.intechopen.com/books/images_new/9043.jpg",editors:[{id:"193200",title:"Prof.",name:"Loredana",middleName:null,surname:"Benedetto",slug:"loredana-benedetto",fullName:"Loredana Benedetto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5227},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"158",title:"Metals and Nonmetals",slug:"metals-and-nonmetals",parent:{title:"Materials Science",slug:"materials-science"},numberOfBooks:113,numberOfAuthorsAndEditors:2715,numberOfWosCitations:2995,numberOfCrossrefCitations:2014,numberOfDimensionsCitations:4557,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"metals-and-nonmetals",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editedByType:"Edited by",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8787",title:"Bismuth",subtitle:"Fundamentals and Optoelectronic Applications",isOpenForSubmission:!1,hash:"7751170d0b538f61d14a27a56e6567a5",slug:"bismuth-fundamentals-and-optoelectronic-applications",bookSignature:"Yanhua Luo, Jianxiang Wen and Jianzhong Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/8787.jpg",editedByType:"Edited by",editors:[{id:"226148",title:"Dr.",name:"Yanhua",middleName:null,surname:"Luo",slug:"yanhua-luo",fullName:"Yanhua Luo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9949",title:"Lead Chemistry",subtitle:null,isOpenForSubmission:!1,hash:"b2f999b9583c748f957f612227976570",slug:"lead-chemistry",bookSignature:"Pipat Chooto",coverURL:"https://cdn.intechopen.com/books/images_new/9949.jpg",editedByType:"Edited by",editors:[{id:"197984",title:"Ph.D.",name:"Pipat",middleName:null,surname:"Chooto",slug:"pipat-chooto",fullName:"Pipat Chooto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9190",title:"Stability and Applications of Coordination Compounds",subtitle:null,isOpenForSubmission:!1,hash:"3f07c532e478beb8fcd2fe53b8c9bcfd",slug:"stability-and-applications-of-coordination-compounds",bookSignature:"Abhay Nanda Srivastva",coverURL:"https://cdn.intechopen.com/books/images_new/9190.jpg",editedByType:"Edited by",editors:[{id:"293623",title:"Dr.",name:"Abhay Nanda",middleName:"Nanda",surname:"Srivastva",slug:"abhay-nanda-srivastva",fullName:"Abhay Nanda Srivastva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7787",title:"Rare Earth Elements and Their Minerals",subtitle:null,isOpenForSubmission:!1,hash:"7ba4060b0830f7a68f00557da8ed8a39",slug:"rare-earth-elements-and-their-minerals",bookSignature:"Michael Aide and Takahito Nakajima",coverURL:"https://cdn.intechopen.com/books/images_new/7787.jpg",editedByType:"Edited by",editors:[{id:"185895",title:"Dr.",name:"Michael",middleName:"Thomas",surname:"Aide",slug:"michael-aide",fullName:"Michael Aide"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7722",title:"Recent Advancements in the Metallurgical Engineering and Electrodeposition",subtitle:null,isOpenForSubmission:!1,hash:"0d7ff67bd6f4c13830658bc6f9a75851",slug:"recent-advancements-in-the-metallurgical-engineering-and-electrodeposition",bookSignature:"Uday Basheer Al-Naib, Dhanasekaran Vikraman and K. Karuppasamy",coverURL:"https://cdn.intechopen.com/books/images_new/7722.jpg",editedByType:"Edited by",editors:[{id:"182041",title:null,name:"Uday",middleName:"M.",surname:"Basheer Al-Naib",slug:"uday-basheer-al-naib",fullName:"Uday Basheer Al-Naib"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7775",title:"Metallic Glasses",subtitle:null,isOpenForSubmission:!1,hash:"665fb007e1e410d119fc09d709c41cc3",slug:"metallic-glasses",bookSignature:"Dragica Minić and Milica Vasić",coverURL:"https://cdn.intechopen.com/books/images_new/7775.jpg",editedByType:"Edited by",editors:[{id:"30470",title:"Prof.",name:"Dragica",middleName:"M",surname:"Minić",slug:"dragica-minic",fullName:"Dragica Minić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8653",title:"Electromagnetic Materials and Devices",subtitle:null,isOpenForSubmission:!1,hash:"0cc0489a203ae888b1105719a4e70ecd",slug:"electromagnetic-materials-and-devices",bookSignature:"Man-Gui Han",coverURL:"https://cdn.intechopen.com/books/images_new/8653.jpg",editedByType:"Edited by",editors:[{id:"250649",title:"Prof.",name:"Man-Gui",middleName:null,surname:"Han",slug:"man-gui-han",fullName:"Man-Gui Han"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8886",title:"Cobalt Compounds and Applications",subtitle:null,isOpenForSubmission:!1,hash:"0241f740fc6e17cd9dc69362ef388d04",slug:"cobalt-compounds-and-applications",bookSignature:"Yasemin Yıldız and Aynur Manzak",coverURL:"https://cdn.intechopen.com/books/images_new/8886.jpg",editedByType:"Edited by",editors:[{id:"208129",title:"Dr.",name:"Yasemin",middleName:null,surname:"Yıldız",slug:"yasemin-yildiz",fullName:"Yasemin Yıldız"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8416",title:"Non-Equilibrium Particle Dynamics",subtitle:null,isOpenForSubmission:!1,hash:"2c3add7639dcd1cb442cb4313ea64e3a",slug:"non-equilibrium-particle-dynamics",bookSignature:"Albert S. Kim",coverURL:"https://cdn.intechopen.com/books/images_new/8416.jpg",editedByType:"Edited by",editors:[{id:"21045",title:"Prof.",name:"Albert S.",middleName:null,surname:"Kim",slug:"albert-s.-kim",fullName:"Albert S. Kim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8408",title:"Titanium Alloys",subtitle:"Novel Aspects of Their Manufacturing and Processing",isOpenForSubmission:!1,hash:"e5533136b732dc4ada818553023d4d55",slug:"titanium-alloys-novel-aspects-of-their-manufacturing-and-processing",bookSignature:"Maciej Motyka, Waldemar Ziaja and Jan Sieniawsk",coverURL:"https://cdn.intechopen.com/books/images_new/8408.jpg",editedByType:"Edited by",editors:[{id:"101690",title:"Associate Prof.",name:"Maciej",middleName:null,surname:"Motyka",slug:"maciej-motyka",fullName:"Maciej Motyka"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:113,mostCitedChapters:[{id:"37067",doi:"10.5772/35482",title:"Fourier Transform Infrared Spectroscopy for Natural Fibres",slug:"fourier-transform-infrared-spectroscopy-for-natural-fibres",totalDownloads:8290,totalCrossrefCites:119,totalDimensionsCites:285,book:{slug:"fourier-transform-materials-analysis",title:"Fourier Transform",fullTitle:"Fourier Transform - Materials Analysis"},signatures:"Mizi Fan, Dasong Dai and Biao Huang",authors:[{id:"104647",title:"Prof.",name:"Mizi",middleName:null,surname:"Fan",slug:"mizi-fan",fullName:"Mizi Fan"}]},{id:"60680",doi:"10.5772/intechopen.76082",title:"Environmental Contamination by Heavy Metals",slug:"environmental-contamination-by-heavy-metals",totalDownloads:12266,totalCrossrefCites:65,totalDimensionsCites:115,book:{slug:"heavy-metals",title:"Heavy Metals",fullTitle:"Heavy Metals"},signatures:"Vhahangwele Masindi and Khathutshelo L. Muedi",authors:[{id:"225304",title:"Dr.",name:"Vhahangwele",middleName:null,surname:"Masindi",slug:"vhahangwele-masindi",fullName:"Vhahangwele Masindi"},{id:"241403",title:"M.Sc.",name:"Khathutshelo",middleName:"Lilith",surname:"Muedi",slug:"khathutshelo-muedi",fullName:"Khathutshelo Muedi"}]},{id:"46243",doi:"10.5772/57255",title:"Corrosion Inhibitors – Principles, Mechanisms and Applications",slug:"corrosion-inhibitors-principles-mechanisms-and-applications",totalDownloads:13e3,totalCrossrefCites:30,totalDimensionsCites:104,book:{slug:"developments-in-corrosion-protection",title:"Developments in Corrosion Protection",fullTitle:"Developments in Corrosion Protection"},signatures:"Camila G. Dariva and Alexandre F. Galio",authors:[{id:"169261",title:"Dr.",name:"Camila",middleName:"G.",surname:"Dariva",slug:"camila-dariva",fullName:"Camila Dariva"},{id:"170138",title:"Dr.",name:"Alexandre",middleName:"Ferreira",surname:"Galio",slug:"alexandre-galio",fullName:"Alexandre Galio"}]}],mostDownloadedChaptersLast30Days:[{id:"60680",title:"Environmental Contamination by Heavy Metals",slug:"environmental-contamination-by-heavy-metals",totalDownloads:12290,totalCrossrefCites:66,totalDimensionsCites:115,book:{slug:"heavy-metals",title:"Heavy Metals",fullTitle:"Heavy Metals"},signatures:"Vhahangwele Masindi and Khathutshelo L. Muedi",authors:[{id:"225304",title:"Dr.",name:"Vhahangwele",middleName:null,surname:"Masindi",slug:"vhahangwele-masindi",fullName:"Vhahangwele Masindi"},{id:"241403",title:"M.Sc.",name:"Khathutshelo",middleName:"Lilith",surname:"Muedi",slug:"khathutshelo-muedi",fullName:"Khathutshelo Muedi"}]},{id:"59905",title:"Synthesis of Silver Nanoparticles",slug:"synthesis-of-silver-nanoparticles",totalDownloads:5054,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"silver-nanoparticles-fabrication-characterization-and-applications",title:"Silver Nanoparticles",fullTitle:"Silver Nanoparticles - Fabrication, Characterization and Applications"},signatures:"Remziye Güzel and Gülbahar Erdal",authors:[{id:"226613",title:"Dr.",name:"Remziye",middleName:null,surname:"Güzel",slug:"remziye-guzel",fullName:"Remziye Güzel"},{id:"240772",title:"MSc.",name:"Gülbahar",middleName:null,surname:"Erdal",slug:"gulbahar-erdal",fullName:"Gülbahar Erdal"}]},{id:"59857",title:"Introductory Chapter: Introducing Heavy Metals",slug:"introductory-chapter-introducing-heavy-metals",totalDownloads:4331,totalCrossrefCites:3,totalDimensionsCites:9,book:{slug:"heavy-metals",title:"Heavy Metals",fullTitle:"Heavy Metals"},signatures:"Martin Koller and Hosam M. Saleh",authors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:"M.",surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}]},{id:"60518",title:"Synthetic Methods for Titanium Dioxide Nanoparticles: A Review",slug:"synthetic-methods-for-titanium-dioxide-nanoparticles-a-review",totalDownloads:3286,totalCrossrefCites:10,totalDimensionsCites:17,book:{slug:"titanium-dioxide-material-for-a-sustainable-environment",title:"Titanium Dioxide",fullTitle:"Titanium Dioxide - Material for a Sustainable Environment"},signatures:"Pardon Nyamukamba, Omobola Okoh, Henry Mungondori,\nRaymond Taziwa and Simcelile Zinya",authors:[{id:"196100",title:"Dr.",name:"Raymond",middleName:null,surname:"Taziwa",slug:"raymond-taziwa",fullName:"Raymond Taziwa"},{id:"219920",title:"Prof.",name:"Omobola",middleName:null,surname:"Okoh",slug:"omobola-okoh",fullName:"Omobola Okoh"},{id:"226567",title:"Dr.",name:"Pardon",middleName:null,surname:"Nyamukamba",slug:"pardon-nyamukamba",fullName:"Pardon Nyamukamba"},{id:"239758",title:"Mr.",name:"Simcelile",middleName:null,surname:"Zinya",slug:"simcelile-zinya",fullName:"Simcelile Zinya"}]},{id:"58868",title:"Iron Ore Pelletizing Process: An Overview",slug:"iron-ore-pelletizing-process-an-overview",totalDownloads:3186,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"iron-ores-and-iron-oxide-materials",title:"Iron Ores and Iron Oxide Materials",fullTitle:"Iron Ores and Iron Oxide Materials"},signatures:"Sandra Lúcia de Moraes, José Renato Baptista de Lima and Tiago\nRamos Ribeiro",authors:[{id:"216788",title:"Dr.",name:"Sandra",middleName:"Lúcia",surname:"De Moraes",slug:"sandra-de-moraes",fullName:"Sandra De Moraes"},{id:"233466",title:"Prof.",name:"José Renato Baptista",middleName:null,surname:"De Lima",slug:"jose-renato-baptista-de-lima",fullName:"José Renato Baptista De Lima"},{id:"233467",title:"MSc.",name:"Tiago Ramos",middleName:null,surname:"Ribeiro",slug:"tiago-ramos-ribeiro",fullName:"Tiago Ramos Ribeiro"}]},{id:"58797",title:"Green Corrosion Inhibitors, Past, Present, and Future",slug:"green-corrosion-inhibitors-past-present-and-future",totalDownloads:2788,totalCrossrefCites:5,totalDimensionsCites:7,book:{slug:"corrosion-inhibitors-principles-and-recent-applications",title:"Corrosion Inhibitors, Principles and Recent Applications",fullTitle:"Corrosion Inhibitors, Principles and Recent Applications"},signatures:"Omnia S. Shehata, Lobna A. Korshed and Adel Attia",authors:[{id:"220734",title:"Associate Prof.",name:"Omnia",middleName:null,surname:"Shehata",slug:"omnia-shehata",fullName:"Omnia Shehata"},{id:"227918",title:"Prof.",name:"Adel",middleName:null,surname:"Attia",slug:"adel-attia",fullName:"Adel Attia"},{id:"227919",title:"Dr.",name:"Lobna",middleName:null,surname:"Korshed",slug:"lobna-korshed",fullName:"Lobna Korshed"}]},{id:"51497",title:"The Review of Some Commonly Used Methods and Techniques to Measure the Thermal Conductivity of Insulation Materials",slug:"the-review-of-some-commonly-used-methods-and-techniques-to-measure-the-thermal-conductivity-of-insul",totalDownloads:4196,totalCrossrefCites:13,totalDimensionsCites:28,book:{slug:"insulation-materials-in-context-of-sustainability",title:"Insulation Materials in Context of Sustainability",fullTitle:"Insulation Materials in Context of Sustainability"},signatures:"Numan Yüksel",authors:[{id:"178245",title:"Dr.",name:"Numan",middleName:null,surname:"Yüksel",slug:"numan-yuksel",fullName:"Numan Yüksel"}]},{id:"70661",title:"Bioremediation Techniques for Polluted Environment: Concept, Advantages, Limitations, and Prospects",slug:"bioremediation-techniques-for-polluted-environment-concept-advantages-limitations-and-prospects",totalDownloads:195,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",title:"Trace Metals in the Environment",fullTitle:"Trace Metals in the Environment - New Approaches and Recent Advances"},signatures:"Indu Sharma",authors:[{id:"301262",title:"Associate Prof.",name:"Indu",middleName:null,surname:"Sharma",slug:"indu-sharma",fullName:"Indu Sharma"}]},{id:"47427",title:"Corrosion and Surface Treatment of Magnesium Alloys",slug:"corrosion-and-surface-treatment-of-magnesium-alloys",totalDownloads:3470,totalCrossrefCites:10,totalDimensionsCites:24,book:{slug:"magnesium-alloys-properties-in-solid-and-liquid-states",title:"Magnesium Alloys",fullTitle:"Magnesium Alloys - Properties in Solid and Liquid States"},signatures:"Henry Hu, Xueyuan Nie and Yueyu Ma",authors:[{id:"170745",title:"Prof.",name:"Henry",middleName:null,surname:"Hu",slug:"henry-hu",fullName:"Henry Hu"}]},{id:"58695",title:"Organic Corrosion Inhibitors",slug:"organic-corrosion-inhibitors",totalDownloads:3133,totalCrossrefCites:4,totalDimensionsCites:13,book:{slug:"corrosion-inhibitors-principles-and-recent-applications",title:"Corrosion Inhibitors, Principles and Recent Applications",fullTitle:"Corrosion Inhibitors, Principles and Recent Applications"},signatures:"Bogumił Eugeniusz Brycki, Iwona H. Kowalczyk, Adrianna Szulc,\nOlga Kaczerewska and Marta Pakiet",authors:[{id:"197271",title:"Prof.",name:"Bogumil E.",middleName:null,surname:"Brycki",slug:"bogumil-e.-brycki",fullName:"Bogumil E. Brycki"},{id:"207547",title:"Dr.",name:"Iwona",middleName:null,surname:"Kowalczyk",slug:"iwona-kowalczyk",fullName:"Iwona Kowalczyk"},{id:"207548",title:"Dr.",name:"Adrianna",middleName:null,surname:"Szulc",slug:"adrianna-szulc",fullName:"Adrianna Szulc"},{id:"207549",title:"Dr.",name:"Olga",middleName:null,surname:"Kaczerewska",slug:"olga-kaczerewska",fullName:"Olga Kaczerewska"},{id:"220728",title:"MSc.",name:"Marta",middleName:null,surname:"Pakiet",slug:"marta-pakiet",fullName:"Marta Pakiet"}]}],onlineFirstChaptersFilter:{topicSlug:"metals-and-nonmetals",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/91599/tandi-matsha",hash:"",query:{},params:{id:"91599",slug:"tandi-matsha"},fullPath:"/profiles/91599/tandi-matsha",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()