Marpol annex VI fuel sulphur limits [4].
\r\n\t
",isbn:"978-1-83969-221-5",printIsbn:"978-1-83969-220-8",pdfIsbn:"978-1-83969-222-2",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"ec438b5e4be44dc63870c1ace6a56ed2",bookSignature:"Dr. Marcos Roberto Tovani Palone",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10710.jpg",keywords:"Orofacial Cleft, Cleft Lip, Surgery, Cleft Palate, Oral Surgical Procedures, Orthodontics, Dental Treatment, Comprehensive Dental Care, Speech Therapy, Speech-Language Pathology, Pediatric Treatment, Therapy",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 3rd 2021",dateEndSecondStepPublish:"March 3rd 2021",dateEndThirdStepPublish:"May 2nd 2021",dateEndFourthStepPublish:"July 21st 2021",dateEndFifthStepPublish:"September 19th 2021",remainingDaysToSecondStep:"3 days",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Dr. Marcos Roberto Tovani Palone received his Ph.D. from Ribeirão Preto Medical School, University of São Paulo, Brazil. He has published more than 70 papers in reputed journals.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"221178",title:"Dr.",name:"Marcos Roberto",middleName:null,surname:"Tovani Palone",slug:"marcos-roberto-tovani-palone",fullName:"Marcos Roberto Tovani Palone",profilePictureURL:"https://mts.intechopen.com/storage/users/221178/images/system/221178.jpg",biography:"Marcos Roberto Tovani Palone completed his MSc from the Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo, Brazil, and his PhD in Experimental Pathology from Ribeirão Preto Medical School, University of São Paulo, Brazil. He is DDS, and specialist in pediatric dentistry, syndromes and craniofacial anomalies, and health management. His main research interests are pediatric pathology, orofacial clefts, dentistry, general medicine, and public health. He has published more than 70 papers in reputed journals and has been serving as an editorial board member of BMC Public Health, Biomolecules, and Electronic Journal of General Medicine.",institutionString:"University of Sao Paulo",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Sao Paulo",institutionURL:null,country:{name:"Brazil"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"345821",firstName:"Darko",lastName:"Hrvojic",middleName:null,title:"Mr.",imageUrl:"//cdnintech.com/web/frontend/www/assets/author.svg",email:"darko@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"69237",title:"Some Methods to Prevent the Wear of Piston-Cylinder When Using Low Sulphur Fuel Oil (LSFO) for All Ships Sailing on Emission Control Areas (ECAs)",doi:"10.5772/intechopen.89400",slug:"some-methods-to-prevent-the-wear-of-piston-cylinder-when-using-low-sulphur-fuel-oil-lsfo-for-all-shi",body:'\nMarine engines are generally compression ignited two- and four-stroke diesel engines. From the environmental and economic point of view, the Specific Fuel Oil Consumption (SFOC, measures unit in gram fuel oil/kWh) of engine is one of the important factors that contribute to the energy efficiency of ships [1]. On the other hand, the other important factors are the emissions of other gases such as NOx, SOx and PM (particulate matter). Some factors depend on the quality of fuel oil and some on the combustion process in the combustion chamber of the engines [2].
\nThe sulphur content of heavy fuel oil is determined through the content of SOx into the exhaust gas from diesel engine combustion process. In the combustion chamber, the sulphur content of heavy fuel oil is being oxidised into the primary SO2. A much smaller portion, some 3–5% is further oxidised into SO3. SO2 and SO3 together are called SOx. The lubrication oil cylinder contains substances to neutralise the sulphur thus preventing the damage caused by sulphuric acid in the engine. Only a very small portion of SOx is neutralised into calcium sulphate and is considered insignificant.
\nThe exhaust gas emissions are often directly related to the impurities contained in fuels that are being used. The high level of sulphur oxides SOx and nitrogen oxides NOx is an inevitable result of using heavy fuel oil (HFO). Maximum emissions of these oxides are regulated by IMO (International Maritime Organization). The requirements for reducing SOx emissions in certain areas of navigation have resulted in using low sulphur fuel oils in diesel engine operation. The use of HFO with high sulphur contents become unacceptable after adopting the regulations brought by Annex VI of International Convention for the Prevention of Pollution from Ships (MARPOL 73/78) at some sensitive areas (emission control areas—ECAs), and after introducing the monitoring of emissions from ships in ECAs. The maximum sulphur content in fuel oil is regulated in European ECAs that amounts to 0.10% for ships in ports and all inland waterways across the European Union.
\nFollowing the new requirements relate to sulphur content emissions that forced into all ships when sailing in emission control areas (ECAs) on January 2015, namely that ships trading have to use the heavy fuel oil and marine diesel oil with a low sulphur content of no more than 0.10%, do not, strictly speaking, alter the regulatory environment.
\nHowever, using low sulphur content fuel oil will cause some troubles for technical engine condition.
\nAt the request of California Air Resources Board, following a series of problems that occurred on ship due to fuel switching after the introduction of regulations on using low sulphur fuel oils within 24 miles of the California coastline, a research was conducted from 2009 to 2010; according to the research findings indicated, the fuel switching causes [3]:
Loss of propulsion and operation instability as the engine reduces speed to come to dead slow or slow astern, resulting in revolution per minute (rpm) fluctuations or stopping the engine, whereas the engine operation was stable at high rpm.
Failures to start events, including difficulties in starting the engine or inability to start the engine due to low pressures in fuel systems, low viscosity of fuel, problems related to high-pressure fuel pump operation, fuel injection, leakage of oil in the fuel systems, and leakage of sealing rings.
Inability to reach maximum speed, inability to reserve the engine Ahead/Astern, most commonly due to pressure of fuel injection.
This chapter is based on the effects of using low sulphur fuel oil to engine operation. It is significant to give the method to restrict the negative forces to the engine technique condition when operation.
\nThe diesel engine is an internal combustion engine in which the fuel ignition has been conducted into the combustion chamber at high temperature. The ignition process of diesel engine takes place in the combustion chamber. The operational principle of diesel engines is carried out throughout 4 cycles: suction—compression—ignition—exhaust.
\nThe compression-ignition engine has the highest thermal efficiency (engine efficiency) of any practical internal or external combustion engine due to its high expansion ratio and inherent lean burn which enables heat dissipation by the excess air. The low-speed compression-ignition engines (as used in ships and other applications, where overall engine weight is relatively unimportant) can have a thermal efficiency that exceeds 50%.
\nThe compression-ignition engines are manufactured in two-stroke and four-stroke versions. They were originally used as more efficient replacement for stationary steam engines. Since the 1910s, they have been used in submarines and ships. The use of locomotives, trucks, heavy equipment and electricity generation plants followed later. The structure of marine diesel engine is described in Figure 1. The main marine diesel engine is a two-stroke diesel engine type with large size, slow speed, high power engine that installed on large size ship.
\nThe structure of diesel engine.
In the true diesel engine, only air is initially introduced into the combustion chamber. The air is then compressed with a compression ratio typically between 15:1 and 23:1. The high compression causes the temperature of the air to rise. At about the top of the compression stroke, fuel is injected directly into the compressed air in the combustion chamber. This may be into a (typically toroidal) void in the top of the piston or a pre-chamber depending upon the design of the engine. The fuel injector ensures that the fuel is broken down into small droplets, and that the fuel is distributed evenly. The heat of the compressed air vaporises fuel from the surface of the droplets. The vapour is then ignited by the heat from the compressed air in the combustion chamber, the droplets continue to vaporise from their surfaces and burn, getting smaller, until all the fuel in the droplets has been burnt. Combustion occurs at a substantially constant pressure during the initial part of the power stroke. The start of vaporisation causes a delay before ignition and the characteristics diesel knocking sound as the vapour reaches ignition temperature and causes an abrupt increase in pressure above the piston (not shown on the P-V indicator diagram).
\nWhen the combustion process is complete, the combustion gases expand as the piston descends further, the high pressure in the cylinder drives the piston downward, supplying power to the crankshaft. The working cycle of two-stroke diesel engine has been described on P-V (pressure-volume) diagram in Figure 2.
\nP-V diagram of 2-stroke diesel engine.
As well as the high level of compression allowing combustion to take place without a separate ignition system, a high compression ratio greatly increases the engine’s efficiency. Increasing the compression ratio in a spark-ignition engine where fuel and air are mixed before entry to the cylinders is limited by the need to prevent damaging pre-ignition. Since only air is compressed in a diesel engine and fuel is not introduced into the cylinder until shortly before top dead center (TDC), premature detonation is not a problem and compression ratios are much higher.
\nThe International Maritime Organization (IMO) member states acknowledged the low quality of heavy fuel oil in the field of connection with the high sulphur content of fuel on boards. Since the low quality of fuel oil will bring to producing exhaust gas fumes such as SOx that leads to acid rain phenomenon. So, it is main reason that the most straightway form of reducing acid rain effects is to life creatures due to change-over high sulphur content fuel oil to low sulphur content fuel oil at present.
\nMARPOL 73/78, Annex VI entered into force on May 19, 2005. Regulations 14 and 18 define the method of controlling sulphur oxide (SOx) emissions on a global basis and in defined protected areas called sulphur emission control areas (SECAs or ECAs).
\nThe aim of the legislation is to reduce SOx emissions from ships to reduce the acidification of the atmosphere and the resulting acid rain. This is to be achieved by setting a limit on the sulphur content in marine fuels.
\nMarpol Annex VI, Regulation 14 requires the following:
A limit on the sulphur content on any fuel used onboard ship, this must not exceed 4.5% m/m until January 1, 2012 (currently 3.5% max sulphur).
The sulphur content on any fuel used onboard a ship operating in a SECA must not exceed 1.5% m/m.
Alternatively, an exhaust gas cleaning system or other approved technological method of reducing total SOx emissions from main and auxiliary engines and boilers to a maximum of 6.0 g SOx/kWh when operating in a SECA. Controls are also set on effluent discharges from such cleaning systems.
Details of the change-over operation from high sulphur fuel to low sulphur fuel when entering a SECA are to be recorded in a log book and also when changing over to high sulphur fuel when leaving a SECA for an uncontrolled area. The procedure is to ensure that all fuels exceeding the 1.5% sulphur limit are flushed out of the fuel system prior to entering a SECA.
Marpol Annex VI, Regulation 18 establishes requirements for the quality, sampling and delivery of fuel oil and the keeping of bunker deliver note records.
\nOn the other hand, Annex VI regulations include caps on sulphur content of fuel oil when ships sail on ECAs with the SOx emissions and indirectly, PM emissions. Special fuel quality provisions exist for SOx emission control areas (SOx ECA or SECA). The sulphur limits and implementation dates are listed in Table 1 and illustrated in Figure 3.
\nDate | \nSulphur limit in fuel (% m/m) | \n|
---|---|---|
SOx ECA (%) | \nGlobal (%) | \n|
2000 | \n1.5 | \n4.5 | \n
2010.07 | \n1.0 | \n|
2012 | \n3.5 | \n|
2015 | \n0.1 | \n|
2020 | \n0.5 | \n
Marpol annex VI fuel sulphur limits [4].
Marpol annex VI sulphur content limit [4].
Heavy fuel oil (HFO) is used popularly but this fuel needs to meet the requirements of MARPOL 83/78 when sailing on ECAs. In addition, the alternative measures are also allowed (in the SOx ECAs and global) to reduce sulphur emissions, such as through the use of scrubbers.
\nEspecially, the Marine Environment Protection Committee, session 69th (MEPC 69) on April 18–22, 2016 has adopted the limit of low sulphur content fuel oil used for marine engines through Table 1 and Figure 3. The MEPC 69 has supplied some contents such as mandatory system for collecting ships’ fuel consumption data, reduction of Greenhouse Gas (GHG) emissions from ships, the establishment of effective dates for the Baltic Sea Special Area, the implementation of the BWM (Ballast Water Management) Convention, the energy efficiency of international shipping, etc. [5]. In where, the fuel oil quality was concerned more since the cost of ship operation will be increased due to the requirement of high quality fuel oil. The low sulphur content fuel oil will be regulated detail in MEPC 69. Following that, to 2020 global sulphur cap implementation date decided in aims with sea environmental protection and human health. Due to, January 1st 2020 was confirmed as the implementation data for a significant reduction in the sulphur content fuel oil used on ships. In addition, the decision about limit of a global sulphur cap of 0.50% m/m (mass/mass) in 2020 will be applied to all ships. Following discussion, the Committee encouraged the fuel oil supply industry to develop the draft best practice for fuel oil providers and submit this best practice to the Committee for consideration at a future session.
\nThe date of 2020 was agreed in amendments adopted in 2008. In then, those amendments were adopted. If it was also agreed that a review should be carried out by 2018 in order to assess whether the sufficient compliant fuel oil would be available to meet the 2020. On the other hand, the review completed in 2016 and submitted to the Marine Environment Protection Committee, session 70th (MEPC 70) organised in London. So, the new global limit about sulphur content in fuel oil of no more than 0.50% m/m in 2020. It is contrasting the current limit of 3.50% applied from January 1, 2012 [6].
\nThe following IMO’s regulations about the International Convention for the Prevention of Pollution from Ships, 1974 as modified by the Protocol of 1978 (MARPOL 73/78) is one of the most important international marine environmental conventions. This convention was developed by the International Maritime Organization (IMO) with a lot of delegates from different country where the diversity of ships and nation’s border lies on the sea.
\nSOx and particular matter (PM) emission controls are applied to all fuel oil, combustion equipment and devices due to both of main engine and auxiliary engine together generate the harmful gas emission in where contain a lot of other elements not only above ones but also carbon dioxide, nitrogen oxide, etc.
\nAmong the SOx controls, the level of sulphur content must be controlled in fuel oil varies for designated emission control area (ECA). The existing controls are in Table 2.
\nEffective date | \nArea other than designated emission control area | \nDesignated emission control area | \n
---|---|---|
Before 1 July 2010 | \n4.50% | \n1.50% | \n
On and after 1 July 2010 | \n↓ | \n1.00% | \n
On and after 1 January 2012 | \n3.50% | \n↓ | \n
On and after 1 January 2015 | \n↓ | \n0.10% | \n
On and after 1 January 2020 | \n0.50% | \n↓ | \n
Controls on the concentration of sulphur content in fuel oil.
Under the provisions of MARPOL 73/78, Annex VI, Regulation 14, the availability of fuel oil to meet the global 0.50% sulphur content in fuel oil used. It is determined by the Committee in 2018. Moreover, a Steering Committee (regionally represented by Member States) began reviewing of the availability of 0.50% sulphur fuel oil under terms of reference agreed at MEPC 68 with a report submitted to MEPC 70 held in October 2016 [7].
\nDuring the period of session time of MEPC 60 has been held from March 22 to 26, 2010, a lot of views were given out by delegates, a proposal has been adopted to amend the MARPOL Convention by designating the areas within 200 nautical miles from the coasts of North America and Canada (excluding a part of the areas such as the West Coast of Alaska) as the North American Emission Control Area for controlling the emissions of NOx, SOx and PM (particulate matter) from August 1, 2012 (see Figure 4).
\nThe emission control area (ECA).
Besides that, IMO (International Maritime Organization) also has given out the latest emission control regulations about the limit of SOx content exhaust gas emission next time. Annex VI, MARPOL 73/78, Regulations for the Prevention of Air Pollution from Ships, has been applied since May 2005.
\nThe emission control areas (ECAs) are the Baltic Sea, North Sea and English Channel, possibly Mediterranean in August 2007, 200 nautical mile zone at the US coast; Californian Air Resources Board (CARB), it is 24 nautical miles of the Californian baseline.
\nThus, the sulphur oxides (SOx) limit applies to all vessels in the category of ships with an engine power output of more than 130 kW. In the regulation 13 of Annex VI, MARPOL 73/78 has indicated that NOx emission control requirements for all ships installed 130 kW engine. So, the SOx emission control must be complied.
\nThe international general limit on sulphur is reduced from 5% to 4.5% through the ISO 8217 fuel standard. International Maritime Organization has specified that in the future, this limitation will be imposed on SOx as well as the other components into exhaust gas.
\nToday, ECAs comprise the Baltic Sea, the English Channel and the North Sea, however, more areas will be added to these in the future.
\nCalifornia Air Resources Board (CARB) has introduced limits on the use of sulphur for distillates [8].
\nPorts in the European Union Area (European Union—EU) includes EU member states, Norway, the Faroe Islands and Iceland applied the regulations about using the low sulphur content in shipping transportation industries.
\nIn addition, Ports in Turkey include Istanbul & Marmara, Aegean, Mediterranean and Black Sea Regions also admit the limit of sulphur content fuel oil in the emission control areas (ECAs).
\nThe sulphur content of marine fuel depends on the crude oil fuel and the refining process. In the combustion process of the engine, sulphur contains into the fuel, mixed with oxide after that converted into the sulphur oxides. These oxides are corrosive to engine piston liner and must be neutralised by the cylinder lubricant. If the correct lubricant is used, the sulphur content of marine fuels is technically not important, but sulphur oxides do have environmental implications. Fuel is the specification of ISO 8217:2010 that is not necessary for compliance with the regulations in force at the vessel’s location. IMO sets the limitation regarding the sulphur content of any fuel oil used on board ships. However, the low sulphur content fuel oil may have a negative impact on different fuel properties depending on the fuel type. Table 3 shows the relation between fuel properties and fuel types.
\nFuel properties | \nFuel types | \n
---|---|
Low viscosity | \nMDO | \n
Lubricity | \nMGO/MDO | \n
Acidity | \nMGO/MDO/HFO | \n
Flash point | \nHGO/MDO/HFO | \n
Ignition and combustion quality | \nHFO | \n
Increased catalytic fines | \nHFO | \n
Relation between the fuel properties and fuel types.
The types of marine fuel are being used on vessels in order to meet the requirements of MARPOL 73/78 Annex VI about low sulphur content fuel oil limit including marine gas oil (MGO) and marine diesel oil (MDO). In where, the MGO includes DMA, DMX, and DMZ grade. The MDO has DMB grade according to ISO 8217. Especially, the ultralow sulphur fuel oil (ULSFO) is a new fuel type with sulphur content of no more 0.10% (m/m). It is not traditional distillates, but blended products are from refinery streams that have not previously been utilised extensively in marine fuel oils [9]. These main properties of fuels above are introduced in Table 4.
\nGrade | \nMGO | \nMDO | \nULSFO | \n||
---|---|---|---|---|---|
DMX | \nDMA | \nDMZ | \nDMB | \n||
Sulphur content % (m/m) | \nmax. 1.00 | \nmax. 1.50 | \nmax. 1.50 | \nmax. 2.00 | \nmax. 0.10 | \n
Viscosity at 40°C (cSt) | \nmin. 1.40 max. 5.50 | \nmin. 1.50 max. 6.00 | \nmin. 3.00 max. 6.00 | \nmax. 11.0 | \nmin. 40 max. 75 | \n
Flash point (°C) | \nmin. 43 | \nmin. 60 | \nmin. 60 | \nmin. 60 | \nmin.70 | \n
Main properties of fuel oil defined in ISO 8217 (2010) [10].
The characteristics of ultralow sulphur fuel oil (ULSFO) differ completely compared with types of fuel MGO and MDO [11]. There are some other characteristics of fuel oil but in Table 4 only uses the main characteristics include the sulphur content, viscosity at 40°C, and flash point of fuel oil. In reality, the ultralow sulphur fuel oil is suitable to use low sulphur fuel oil for vessels with advantageous characteristics.
\nEmission control areas (ECAs) are designed at sea in order to follow the MARPOL 73/78 regulations about reducing of SOx and NOx emissions. In this researching, the article is referred to SOx emission into the environment by ships due to using the high sulphur content of heavy fuel oil for equipment.
\nSome local laws regarding air pollution are more stringent than those laid down by the IMO. For example, in Europe while the ship is at the port, all the running of machinery consumes the type of fuel oil must be less than 0.10% sulphur content.
\nAs the SOx emission is purely dependent on the quality and sulphur content of the fuel, while entering emission control areas. It is required to change-over for a low sulphur content fuel oil including flushing of fuel from the system with sulphur content more than 1.0% sulphur before entering the emission control areas (ECAs).
\nFor the changing-over to low sulphur fuel oil for main engine is carried out under supervising of Chief Engineer. To consider that most of the ships today run at high sulphur fuel oil, changing over of fuel at the appropriate time is very important. Moreover, looking at today’s economic condition of the industry, it s imperative to change over the fuel from high to low sulphur at the correct time as an early change-over will lead to loss of low sulphur oil, which is quite expensive, whereas a delay in the changeover procedure will lead to violation of MARPOL Annex VI. This is to be done along with using other technologies to reduce SOx and NOx from ships.
\nAlmost all ships are usually installed one service tank and more setting tanks. The changing-over of fuel is conducted between tanks each other on ships. So, the mixture of two different grades of fuel oils will be happened in order to decrease the low sulphur content of fuel oil on ships nowadays [12].
\nOn the other hand, it is provided with changing-over to low sulphur fuel oil calculator which tells the correct changing-over time at a certain case that before entering an emission control areas (ECAs). This system requires some important factors [3]:
The sulphur content of high sulphur fuel currently in the system;
The sulphur content of low sulphur fuel;
The fuel capacities of the main engine system including setting tank, service tank, main engine piping and transfer piping from service tank to main engine;
The capacity of transfer equipment—fuel oil transfers pump and fuel oil separators.
Once the change-over time is computed which also accounts for the time of intermixing of two different sulphur grades oil (let us suppose 48 h) following action are to be taken 48 h prior.
Ensure that no transfer of high sulphur fuel is carried out any further to settling tank;
Ensure that the low sulphur bunker tank steam is open for transfer and purification of fuel should not have any problem;
If two separate settling tanks are present, once can be dedicated to low sulphur oil which will reduce the changeover period;
Keep running the separator till the settling tank level reaches minimum;
If filling of service tank with HSFO increases the calculated time period of changeover then stop the separator and drain the settling tank;
Settling tank can be first drained into fuel oil overflow tank, and then the oil drained can be transferred to bunkers tanks containing same grade of oil;
Once the settling tank is drained from heavy sulphur oil, fill the settling tank with low sulphur fuel oil via transfer pump;
As the separator are stopped, service tank oil will be consumed by main engine system;
Remember not to lower the level of service tank below which the fuel pumps cannot take suction;
Start separators from settling to service tank which be now filling low sulphur fuel oil;
Fill the low sulphur fuel oil into settling tank and service tank as per quantity required to cross the ECA calculated by the Chief Engineer as per the voyage plan.
Firstly, to understand the effects of using low sulphur fuel oil to piston-cylinder liner component, need to regime of high sulphur content of fuel oil on ship operations [9].
\nThe greatest environmental problem of maritime transport is heavy fuel oil (HFO) with high value of sulphur content and used popularly for diesel engine. Merchant vessels consume the heavy fuel for the marine engines and auxiliary engines in order to generate the energy for ship propulsion and electricity, respectively, on board. On the other hand, the unwanted properties elements like as incombustible transition metals, polycyclic aromatic hydrocarbons and sulphur also exist in heavy fuel oil which are residual oil from petroleum refining process to produce the marine diesel oil (MDO), marine gas oil (MGO) and other distillate oil.
\nThe unwanted properties make HFO price cheaper than distillate fuel oil. Intermediate Fuel Oil (IFO) 380 is the most commonly used for ocean-going vessels. Nowadays, some ships usually carry out bunkering oil in Singapore, China, Netherland, etc. In reality, the price of fuel oil at some places is different. For example, the price of IFO 380 is $311.50/tonne in then the price of DO is $487.00/tonne in port of Singapore in the year 2017. Port of Rotterdam, the price of IFO 380 is $282.00/tonne, DO is $460.00/tonne in the year 2017 [13]. The cheaper price of HFO is an advantage for ship operators to lower fuel costs considering incremental fuel costs if the engine consumes distilled products. It is the main reason why HFO is used by most ocean going ships. In fact, fuel costs are a dominant proportion of voyage costs accounting for 47%, while voyage costs contribute roughly 40% of the total operational costs [14]. Consequently, the fuel costs is the most important factor in the voyage costs which should be maintained as low as possible, otherwise it will bring negative effects on the total operational costs.
\nNevertheless, HFO entails several drawbacks in shipping operation. For example, the heavy fuel oil must be heated before injected into the engine combustion chamber with the temperature approximately 140°C because of its viscous. Besides that it is necessary to equip the sludge tanks to accommodate the sludge of HFO which cannot be burnt during combustion process of engine and it must be moved on shore. The methods which are treated include as burning into an incinerator on ship or transferred to the reception facilities. So, the exhaust fumes are released from the combustion process using HFO in diesel engines which is vastly more harmful to human health and life environment.
\nUntil now, marine low speed engines and their lubricants have been optimised for operation on heavy fuel oil (HFO) with a high sulphur S content. During the combustion process is happening, the sulphur S is converted to the sulphur trioxide (SO3). In combination with water from the combustion and the scavenge air, SO3 forms sulphuric acid (H2SO4) is be generated.
\nWhen the liner temperature drops below the dew point of sulphuric acid and water, a corrosive on the liner wall. The high alkaline lubricants (high-BN oils) neutralise the acid and prevent corrosion of piston rings and cylinder liner surfaces.
\nSecondly, when operating on fuels with less than 0.10% S, such as distillates, ultra-low sulphur fuel oil (ULSFO) with less than 0.10% S, LNG, methanol, ethane and LPG, only small amounts of sulphuric acid are formed in the combustion chamber. The cylinder lube oil additives are then not used for the designed purpose and they tend to build up as deposits. These deposits may disturb the lube oil film and obstruct the piston ring movement, which could lead to micro-seizures on the piston rings and liner and increase the risk of scuffing. Deposit formation and the total lack of corrosion increase the risk of bore-polishing, which could also lead to increased wear and scuffing. For engines operating continuously on fuels with less than 0.10% S.
\nEmission control area (ECA) has been adopted by IMO members, the countries need follow the IMO’s regulations about using low sulphur content fuel oil from now until 2020.
\nThe availability of low sulphur fuel oil is a major issue in ECA implementation. For this purpose, EPA (Environmental Protection Agency) confirms LSFO under 1% available within the US ECA [15]. Therefore, Canada should also be able to provide adequate LSFO in the ports in its territorial waters. Since the scheme requires more stringent control of sulphur content in fuel to 0.10% from 2015, due to the fuel consumption is the greatest problem for all ships and ship owners under pressure of high fuel price nowadays (Figure 5). Table 5 describes the cost of SOx and NOx emission regulation.
\nType of cost | \nCompliance strategy | \nCost in 2020 (billions USD) | \n
---|---|---|
Operating costs (apply to all ships) | \nFuel switching | \n$ 1.9 | \n
Urea consumption (for SCR-equipped engines) | \n$ 0.17 | \n|
Hardware costs (apply to ships built in 2020) | \nFuel switching | \n$ 0.03 | \n
SCR | \n$ 1.1 | \n|
Total costs | \n$ 3.2 | \n
The total of compliant SOx and NOx emission regulation.
The diagram of sulphur content limit in ECAs.
Table 5 shows that operating costs will attribute to the total costs to comply with ECA standard. For the existing ships, the changeable prices will be varied around $2.07 billions in 2020. In then, the new building ships will spend at least $3.2 billions to install appropriate hardware and to use distillate fuel and urea in 2020.
\nLubricity is the ability to generate a hydrodynamic lubrication film (oil wedge). To ensure that a given low sulphur marine gas oil, the significant value of the lubrication oil needs to provide enough. Following the fuel is tested under the ISO 12156-1 (EN 590) High Frequency Reciprocating Rig (HFRR) protocol. This standard is required at a maximum wear scare rate if 460 μm. However, the refineries add a lubricity additive in case of EN 590 requirements are not completed. The higher value of HFRR is showed in Figure 6.
\nHFRR test.
The reduction of the lubricity in low sulphur fuel oil will be risked to the marine fuel oil pump system. Its result will be caused the excessive wear and premature failure. So, the special lubrication oil must be used to add lubricity and prevent carbon deposition that is called lacquering. On the other hand, the largest contribution to diesel engine lubricity system comes from the trace amounts of surface-active polar compounds forming a protective layer on the metal surface, thus enhancement of the boundary lubrication. The most active polar materials naturally occurring in diesel fuel are hetero-compounds containing nitrogen and oxygen. The hydro-desulphurization (HDS) process which removes sulphur content also removes these polar compounds, resulting in very poor lubricity characteristics and exposing pumping systems to damage and potential catastrophic failure. It is main reason that the lower fuel lubricity can be seen as abrasive wear of fuel system components. It is not sufficient fuel to supply to the plungers, barrels and injectors.
\nThe proper lubrication in a marine plunger/barrel fuel pump depends on a balance between both hydrodynamic lubrication (Figure 7) and boundary lubrication (Figure 8). Hydrodynamic lubrication occurs when two surfaces are in motion to each other and are separated by a liquid film that carries the applied load. The result is collected to make a low friction and minimal wear between two surfaces (Figure 7).
\nHydrodynamic lubrication.
Boundary lubrication.
In contrast, the boundary lubrication happens when the liquid film becomes thin to the point that it attains the same thickness as the surface roughness of the high points of the two interfacing solid surface contact, the fuel must have sufficient lubricity to prevent increased friction and wear. The boundary lubrication is critical in three different situations, namely on initial start-up with insufficient liquid film, at low speed operations when not enough fuel is pumped to provide a satisfactory film and at very high speed operation when high pressure within the pump diminishes the film thickness (Figure 8).
\nA viscosity range 12–16 centistokes is sufficient to provide adequate hydrodynamic lubrication. Viscosity of low sulphur MGO varies from 1.5 to 3.0 cSt. In that case the protective fuel film between the surfaces of the barrel and plunger becomes dangerously thinner resulting is increased metal to metal contact even if fuel viscosity is increased through chilling or cooling. The difference between boundary and hydrodynamic lubrication is depicted.
\nUnfortunately the IMO regulation only regulates the sulphur content and no other fuel specifications are addressed. Low sulphur fuel with good lubricity characteristics is expected to be more expensive. Owners should not opt for less expensive fuel quantities, which will result in wear of fuel pump and injection components, bad combustion and engine wear and damages.
\nThe hydro-desulphurization (HDS) removes a large measure of aromatic content, resulting in reduced ignition quality. It also removes naturally occurring anti-oxidants that provide both physical and thermal stability of the fuel. Absence of natural anti-oxidants leads to the formation of hyper-peroxides, which can result in acid corrosion attach of fuel pump systems and pump seal failure. Especially, the formation of hyper-peroxide in fuel oil happens quickly at high temperature and it causes the negative influence on the fuel oil system. Oxidation process also produces gums, polymers and other insolubles. Standards to detect hyper-peroxide contamination are available.
\nThe inherent instability of low sulphur fuel poses four critical threats to safe marine engine operation, namely degraded ignition quality, excessive engine deposits, an increase in visible particular emissions and excessive sludge production and fuel system fouling. Reduced stability of the fuel can also result increased emissions. Low sulphur marine fuels often produce excessive unburned hydrocarbon and visible particulate emissions (smoke opacity). Poor stability may result in the formation of gum and sludge during storage as well as deposit formation on injection nozzles and gumming of valves.
\nPoor physical stability can result in problems with fuel compatibility, particular when transitioning from operation on heavy fuel to low sulphur marine gas oil. Since some marine gas oils will be stored aboard the vessel for prolonged time periods, fuels of poor stability characteristics will suffer accelerated degradation, resulting in reduced ignition quality and degraded engine operation.
\nLow sulphur distillates have relatively low viscosity, ranging from 1.5 to 3.0 cSt. Fuel pumps depend upon an appropriate viscosity to meet required volumetric capacity, an especially important consideration in maintaining proper feed rates. ISO 8217 states minimum viscosities for DMX, Distillate Marine Oil of Class X, of 1.4 cSt at 40°C and DMA, Distillate Marine Oil of Class A, of 1.5 cSt at 40°C. A rule of thumb value advised by the makers is 2 cSt at engine inlet [10]. Ambient temperature in an engine room easily reaches 40°C and sometimes even higher—in some cases as much as 55°C. Adding excessive heat from pipes and engines will raise the temperature even further and as consequence viscosity will fall, causing a significant change of operating conditions in the system. Mercifully, the lower the viscosity at 40°C the more gradual the fall of viscosity with temperature rise as depicted in Figure 9.
\nViscosity versus temperature [16].
The lower viscosity will reduce the film thickness between the fuel pump plunger and casing and in the fuel valves leading to excessive wear and possible sticking, causing failure of the fuel pump. Special fuel injection pumps may be available that are more suitable for this type of fuel, such as tungsten carbide coated pumps, or a fuel pump lubrication system could be installed. Any new types of fuel injection equipment installed to address lubrication issues shall be certified by the engine maker to maintain engine compliance with emission standards and may require re-certification of engines.
\nFollowing the operation experience associates with the properties of the low sulphur fuel oil. The use of low sulphur fuel oil for marine diesel engine has caused the corrosion between piston-cylinder liner components due to the cylinder liner lubrication oil with low BN (Base Number). It is primarily obtained from stationary engines, operating at 100% load and 100% rpm in high ambient conditions.
\nUsing of low sulphur fuel oil for marine diesel engine will be momentum for causing the sulphuric acid (H2SO4) in the combustion chamber. This process is made from the progress chain in Figure 10.
\nChemical conversion of sulphur to sulphuric acid.
To neutralise the acid generated, the cylinder liner lubrication oil must contain alkaline components by mean of using calcium salts. Normally, the Base Number (BN or TBN) is a measure of the cylinder liner lubrication oil’s ability to neutralise acid because the higher BN, the more acid can be neutralised.
\nSo the Base Number (BN) is very important parameter in controlling the corrosion on the cylinder liner surface. To control corrosion is not avoiding corrosion so it is important to ensure the proper tribology needed for creation of the lubrication oil film. It the neutralisation of the acid is too efficient, the cylinder liner surface has a risk of being polished. It is leading to the lubrication oil film damaged and the risk of the scuffing increases.
\nOn the other hand, the operation of engine with an unmatched BN/fuel sulphur content could increase the risk of either scuffing or excessive corrosive wear.
\nTo make a comparison between using of the different BN lubrication oil for the cylinder line with the same type of low sulphur fuel oil.
\nLike as Figures 11 and 12, it is used the different BN lubrication oil will make the changeable graphite structure on the cylinder liner surface. By using of BN40 lubrication oil will create the ‘open’ graphite structure with good tribological abilities in contrast to using BN70 lubrication oil has the ‘closed’ graphite structure with reduced tribological abilities.
\nCylinder liner surface with BN40. ‘Open’ graphite structure with good tribological abilities.
Cylinder liner surface with BN70. ‘Closed’ graphite structure with reduced tribological abilities.
It is essential for a good cylinder condition and performance that keeps an ‘open’ graphic structure on the cylinder liner surface so that a hydro-dynamic oil film is always kept between the piston-rings and cylinder walls at all times.
\nTherefore, it runs on low sulphur fuel oil that is considered more complex due to the relationship between liner corrosion and scuffing resistance, dry lubrication properties from elements in the fuel (or lack of same), the interaction between the BN in the cylinder oil and the detergency level, possible sulphur of alkaline additives, the piston ring pack, etc.
\nThe appropriate operation of diesel engine is very important especially when it operate at the low sulphur fuel oil. Due to the selection of the low BN cylinder liner lubrication oil is carried out carefully. In this research, OEMs (Original Equipment Manufactures) recommend the regular testing of scrape down oil for residual BN and Fe content and adjustments to BN of cylinder oil and feed rate to suit. They provide the charts showing the safe zones for the results of the testing and adjustments. In Figure 13, the blending on board system is given out in aim with regulating the lubricating oil quality for main diesel engines according to the use of low sulphur content fuel oil nowadays.
\nThe blend on board (BOB) system for main diesel engine lubricating oil.
The lubricating oil for main diesel engine is regulated through onboard blender from using the system lubricating oil and additives. This task will meet the BN characteristics of lubricating oil in process of using low sulphur content fuel oil for main diesel engines. The scheme of blend on board system is represented in Figure 13.
\nThe use of BOB system will get benefit to obtain the lubricating oil feed rate depending on variable BN characteristic. And then, it will increase the lubricity of lubricating oil for main diesel engines in case of using low sulphur content fuel oil onboards.
\nIn a result, it is recommended for using the BN40-BN70 for cylinder liner lubrication oil at feed rate of large bore (Figure 14). The selection of appropriate lubrication oil depends on the low sulphur content in marine fuel.
\nUse of BN40, BN50, BN60 and BN70 for cylinder liner lubrication oil.
The fuel oil viscosity is very important because it decides the ignition quality of fuel oil in diesel engine combustion chamber. Since the main engine must change-over to low sulphur fuel oil when the ship sails into the emission control areas (ECAs) with low viscosity. So, the best method that has solved this problem is the cooler in the fuel oil system.
\nIt is necessary to instant cooler in the fuel oil system in order to maintain the required viscosity at the engine inlet fuel oil (Figure 15).
\nFuel oil system with fuel oil cooler.
On the other hand, the hydrodynamic characteristics of fuel oil are completely dependent on the fuel oil temperature and fuel oil viscosity. The fuel oil system contains supporting equipment such as pumps (transfer pump, supply pump, booter pump, fuel oil pump, etc.), filters, heaters and coolers. So it is necessary to concern about the fuel oil viscosity. In this chapter, it describes the depend between the fuel oil viscosity and temperature in Figure 16. It is useful to ensure the appropriate temperature of fuel oil flows in the system.
\nFuel oil temperature and viscosity [9].
The horizontal axis shows the fuel viscosity in cSt. Its value is taken from the bunker analysis report. In the case if the temperature of the MGO (marine gas oil) is below the lower blue curve at engine inlet, the viscosity must be above 3 cSt.
\nFurthermore, the black thick line shows the viscosity at reference condition at 40°C according to ISO 8217. Minimum viscosity for marine distillate DMX, DMA, DMB and DMZ are indicated.
\nMoreover, there are a lot of factors that influence the viscosity tolerance during the engine operation during of the time from the start point to the normal operation. These include engine condition and maintenance, fuel pump wear, engine pump wear, engine adjustment, actual fuel temperature in the fuel system, human factor, etc.
\nThe effective operation plays an important role to maintain in good condition for devices and equipment in the fuel oil system. The makers of marine diesel engine (MAN B&W) recommend to operate the engine with viscosity of fuel oil above 3 cSt when using the low sulphur content fuel oil.
\nThe use of low sulphur content fuel oil will be applied widely for all ships operate outside the emission control areas (ECAs) from 2020 with no more of 0.50% m/m. This regulation will impact positively on the environment due to the reduction of sulphur dioxide (SO2) emissions from engine exhaust gas. However, there will be a lack of lubrication oil. Its effect includes abnormal friction and operational defects, crucial parts of engines such as the fuel-supply pumps and fuel-injection pumps. As a result, the additives for low sulphur diesel oil are used in order to improve the lubricity of low sulphur marine gas oils with aims in keeping the safe vessel operations as well as protecting the environment.
\nYunic 700LS is used in order to improve the lubricity for low sulphur marine gas oil (LSMGO) and low sulphur marine diesel oil (LSMDO) with standard dosing rate of 1/2500 (Figure 17). Its effect is addressed to prevent the abnormal wear and stick the fuel injection pump and fuel pump of marine diesel engine by the low lubricity of fuel oil. There are lots of other similar products which are used for increasing the lubricity ability of low sulphur diesel oil. The comparison between other products is showed in Table 6.
\nYunic 700LS.
Products | \nAdvantages | \nInconvenients | \n
---|---|---|
Yunic 700LS | \nImprove the lubricity of low sulphur fuel oil Prevent the stick phenomenon of fuel oil injection pumps | \nDisable to prevent the emulsion phenomenon Disable to prevent the sludge dispersion of low sulphur heavy fuel oil Lower price than Yunic 750 LS-F | \n
Yunic 300 | \nSeparate the water out of oil from emulsion phenomenon | \nDisable to increase the lubricity ability of low sulphur fuel oil | \n
Yunic 555D | \nIncrease the sludge dispersion of low sulphur heavy fuel oil Improve the combustion process of diesel engine when using low sulphur fuel oil | \nDisable to increase the lubricity ability of low sulphur fuel oil | \n
Yunic 650-II | \nIncrease the sludge dispersion of low suphur fuel oil Increase the melting point of ash factor of low sulphur fuel oil | \nDisable to increase the lubricity ability of low sulphur fuel oil | \n
Yunic 600S-II | \nIncrease the melting point of ash factor of low sulphur fuel oil Decrease the gas leakage phenomenon from exhaust valve of diesel engine | \nDisable to increase the lubricity ability of low sulphur fuel oil | \n
Yunic 600SX | \nPrevent the slag formation with high content of vanadium of low sulphur fuel oil | \nDisable to increase the lubricity ability of low sulphur fuel oil Normally used for marine boiler | \n
Yunic 750LS-F | \nIncrease the lubricity ability of low sulphur fuel oil Prevent the mould sludge of fuel oil | \nDisable to prevent the emulsion phenomenon Disable to prevent the sludge dispersion of low sulphur heavy fuel oil | \n
The comparison between same other products.
In addition, the blending Yunic 700LS into the low sulphur, the low lubricity ability of marine gas oils (MGO) was verified through an HFRR (High Frequency Reciprocating Rig) test (Figure 18). The HFRR is currently approved and then it is a standard index for evaluating lubricative ability of low sulphur fuel oil. In particular, the HFRR uses a ball in which a load is applied. Then, the ball will reciprocate on a metal surface immersed in the test of fuel oil. Finally, the size of the scars created on the ball is used to assess the lubricative ability of fuel oil.
\nHigh Frequency Reciprocating Rig (HFRR) test method.
In HFRR test, the lubricity indexes of light fuel oil are tested, the wear scar diameter of low sulphur fuel oil is about 600 μm. Addition of 200 pm with 1/5000 is standard addition rate of Yunic 700LS, the wear scar diameter is reduced to 460 μm or less, which is the specification recommended by engine manufacturers (Figure 19).
\nRelationship of addition rate of Yunic 700LS and HFRR.
So, the engine manufacturers suggest using with HFRR wear scar diameter of 460–520 μm or less. In reality, the use of fuel oil has a lower lubricity that will lead to the corrosion of fuel injection pump and fuel pump of main diesel engine on ships.
\nThe Alpha Lubricator System is available for all MAN B&W MC/MC-C two-stroke diesel engines (Figure 20) [16].
\nAlpha lubricator system.
The Alpha Lubricator System has an algorithm controlling cylinder oil dosage proportional to the sulphur content in the fuel. And, this algorithm is considered as Alpha Adaptive Cylinder-oil Control (Alpha ACC).
\nThe advantage of Alpha Adaptive Cylinder-oil Control (Alpha ACC) in field of saving cylinder oil then a large scale testing programme is in progress on MAN B&W MC/MC-C type engines in service for a number of owners. In addition, to save the cylinder oil consumption will protect the environment from impacting on ship operation by Alpha Lubricator System.
\nThe testing programme includes large bore engines for both container ships (K-MC/MC-C) and for VLCC propulsion (S-MC/MC-C), as well as small and medium bore MC/MC-C engines [16].
\nThe cylinder oil dosage is proposed to an amount of sulphur content percentage in fuel oil. The cylinder oil dosage shall be proportional to the sulphur percentage in the fuel oil in Figure 21. On the other hand, the cylinder oil dosage shall be proportional to the engine load like this amount of fuel admitted into the cylinders. This one will decide an optimal cylinder oil dosage with sulphur content in the fuel oil admitted into the cylinders.
\nCylinder oil dosage versus sulphur percentage in the fuel oil.
Furthermore, it is very important to determine the cylinder oil dosage admitted into the cylinder line in aims with saving amount of cylinder oil following the sulphur content percentage in fuel oil used.
\nInFigure 22, the control of cylinder oil dosage proportional to the engine load together with revolution per minute (rpm)-proportional and mep-proportional lubrication. In case of part load, load-proportional cylinder oil dosage will provide large cost saving and reduce environmental pollution due to excessive lubrication. Additionally, if it is below 25% load, the load-proportional lubrication will stop and rpm-proportional lubrication will take over.
\nLoad-proportional cylinder oil dosage is used by alpha ACC.
In this chapter, the new regulations for sea environment protection have been introduced through IMO and MARPOL 73/78 for all vessels that operate on special areas (ECAs). Especially, the IMO decision of 0.50% m/m sulphur content limit in marine fuel oil after 2020 is definite and no further decision till the date has happened. So, some methods have been represented including the use of an appropriate lubrication oil quality for diesel engine on ships, installing the cooler in fuel oil system, improving the additive for low sulphur fuel oil and using the alpha adaptive cylinder oil control (Alpha ACC). This research will be meaningful solutions for all ships to comply with the new regulations when sailing on ECAs.
\nThe author wants to thank Chief Engineer, MSc, Thuy.H.V of M/V NSU JUSTICE, who gave meaningful suggestion to complete this study. Furthermore, I acknowledge all colleagues at Reliability Engineering Institute and Key Laboratory of Marine Power Engineering & Technology (Ministry of Transportation), School of Energy and Power Engineering, Wuhan University of Technology, 430063 Wuhan, P.R. China. Finally, I would like to thank reviewers for valuable comments for revised manuscript.
\n\n alpha adaptive cylinder oil control Ballast Water Management Base Number/Total Base Number California Air Resources Board emission control areas Environmental Protection Agency high sulphur fuel oil heavy fuel oil High Frequency Reciprocating Rig hydro-desulphurization International Maritime Organisation International Standard Organisation Intermediate Fuel Oil Greenhouse Gas low sulphur fuel oil liquefied petroleum gas liquefied natural gas Marine Environment Protection Committee marine gas oil marine diesel oil International Convention for the Prevention of Pollution from Ships particulate matter revolution per minute specific fuel oil consumption ultra low sulphur fuel oil
Cadmium (Cd) is an element which is extremely toxic to humans and can cause adverse effects even in small doses. Cadmium is a non-essential trace metal, which plays no recognized role in human, plant and animal development and growth. Various Environmental Protection Agency classified Cd as one of the pollutant element and include it in the list of 126 priority pollutants [1]. Lithosphere, hydrosphere and atmosphere take part in the exchange of Cd in its bio-geo-chemical cycle [2]. The aggregate industrial emission of Cd is vast and significantly contributed to bio-geo-chemical cycles, resulting Cd deposition in many ecosystems and hastening buildup of Cd both in nature and human food chain. Therefore, a variety of detrimental health effects of Cd have been identified in various parts of the world and these symptoms are increases progressively [3]. Cadmium (Cd), a hazardous heavy metal, falls into Group IIB of the periodic table and, its amounts ranging from 0.1 to 1 mg kg−1 in environment [4]. According to recent data collected in 2011, 7500, 2500 and 2000 t of Cd was emitted by China, Republic of Korea and Japan whereas globally it was 21,500 t yr.−1. After the industrial revolution, man-made activities have greatly intensified the CD level in environment. The produce and use of Cd containing batteries, dyes, electroplating, combustion of crude oil, paints (Cd use as stabilizer), phosphate fertilizer processing and waste water applications have added 3–10 folds higher Cd than natural methods to the ecology. The release of Cd into to the soil environment is responsible for some natural disasters, such as volcanic eruption, sea salt spray, wild fires, weathering of Cd containing minerals and rock, transportation and accumulation of Cd-polluted soil by water and wind [5]. Cadmium, resulting from occupational and non-occupational contact, has detrimental impact on human health through build-up of Cd in human body. Occupational contamination is primarily observed by the extraction and smelting of non-ferrous metals, the manufacturing and handling of composite-containing CDs, and e-waste recycling activities. Non-occupational Cd contamination is mainly done by smoking, feeding behavior and atmospheric Cd particles [5]. Cadmium is ingested into multiple organs within the human body i.e., kidney, liver, lungs, thymus testes, heart, epididymis, prostate, and salivary glands, leading to malfunctioning of multi-organ and ultimately death [6, 7]. The Itai-Itai epidemic with 184 patients and 388 possible victims was a well-known environmental hazard associated with Cd infection. Faulty farming practices and the use of hazardous plant agro-chemicals allow Cd to invade the food chain of humans. Commonly, trace elements level is typically higher in the roots, however in certain leafy vegetables (e.g., lettuce and spinach), Cd is accumulated in plant leaves owing to its fast absorption and mobility within the plant system [8]. The estimation of quantities of Cd content in food materials indicates that vegetables and grains are the key factor of Cd in the food material, even though they are often present in animal products with a low quality. It is estimated that the everyday Cd ingestion by food material is 10.0–30.0 μg for adults in various countries [9, 10] (Table 1). Satarug et al. [20] reported that Cd level in vegetables varied from 0.001 to 0.124 mg kg−1 and intake of vegetables accounts >70–90% Cd susceptibility to humans. Remediation measures like washing the matrix, excavation and burial, and filed mechanization techniques have been followed in both limited and commercial scale but, not economically viable. An alternative strategy to mitigate the harmful effects Cd on soil–plant could be the use of bioremediation using suitable plants and microbes. So, in this chapter in brief the importance of Cd as a toxic element, its dynamics in the soil and plant and environment friendly measures to eliminate Cd pollution is discussed.
Country | Adults N 19 | Children | Adolescent 14–18 years | References |
---|---|---|---|---|
MAL/RDAa | 5.0E−02b | — | — | [11] |
RfD (oral reference dose) | 1.0E−03 | 1.0E−03 | — | [12] |
Netherland | 2.01E−02 | 4.10E−02 | 1.60E−02 | [13] |
USA | 1.08E−05 | 2.21E−05 | 8.63E−06 | [14] |
Bangladesh | 5.17E−05 | 1.06E−04 | 4.13E−05 | [15] |
Italy | 1.54E−05 to 5.48E−05 | 3.16E−05 to 1.12E−04 | 1.23E−05 4.38E−05 | [16] |
Ethiopia | 1.16E−04 | 2.37E−04 | 9.24E−05 | [17] |
Zimbabwe | 8.87E−04 | 1.81E−03 | 7.09E−04 | [18] |
China | 2.05E−04 to 2.805E−03 | 4.18E−04 to 5.72E−03 | 1.63E−04 2.23E−03 | [19] |
Sweden | 6.95E−05 | 1.42E−04 | 5.55E−05 | [14] |
Uganda | 8.22E−05 | 1.68E−04 | 6.56E−05 | [11] |
India | 8.03E−04 to 4.92E−03 | 1.64E−03 to 1.00E−02 | 6.41E−04 3.93E−03 | [13] |
Pakistan | 3.67E−05 to 8.10E−04 | 7.49E−05 to 1.66E−03 | 2.93E−05to 6.47E−04 | [17] |
France | 5.78E−03 | 1.18E−02 | 4.62E−03 | [12] |
Daily dietary intake of Cd (mg kg−1 day−1) through consumption of Cd contaminated vegetables.
MAL/RDA maximum allowable limit/recommended dietary allowance.
E−02 represents 1 × 10−2.
Cadmium (Cd) is a hazardous trace element disseminated extensively in the environment and causes implacable impact on human health even in very minute content [21]. Cadmium in lithosphere, sedimentary rocks and soil content 0.2, 0.3 and 0.53 mg kg−1 however in soil water and groundwater 5.0 and 1 μg L−1, respectively [22, 23]. Cadmium contamination in soils and groundwater arises due to both natural and anthropogenic activities and cause harmful impact as its goes into human body through drinking water and foods [24]. Cadmium is mostly geogenic by origin whereas, majority comes from natural weathering and other sources are mining, casting and smelting, irrigation with sewage water, factories and vehicular discharges, and agrochemicals are major man-made causes of Cd pollution [25, 26]. Moreover, unmonitored and unsafe garbage dumping activities have intensely raised Cd levels in soil and water bodies. At end of 1980’s it was reported that geogenic and anthropogenic sources mobilizes Cd to the biosphere 24,000 and 4.5 t yr.−1, respectively which depicted the supremacy of man-made activity [27].
Among the natural sources windblown soil particles are the main reason for atmospheric Cd contamination followed by wildfires, sea spray, volcanic emissions, and meteoric dust. In California, Burke et al. [28] estimated that forest fire enhanced the average Cd level in water bodies by 2 folds. Pacyna and Pacyna [29] and Richardson et al. [30] reported that the Global average annual emission of natural Cd is about 1400 t however, from anthropogenic sources it was 2983 t. In nature, Cd is present ubiquitously in all areas and interestingly it’s presence can be seen in remote places like ice peak of the Himalaya and North and South poles [31]. In southern Germany mainly relies on agricultural activities has Cd concentration in soil deposition was upto 0.25 g (ha*a)−1 however, in industrial western Germany the Cd deposition was quite high upto 1.4 g (ha*a)−1 [32]. Thus, indicates that anthropogenic activities have greater potential in Cd pollution.
Cadmium content in the soil is positively correlated with the weathering of parent material but, unscientific practices have worsen the input, output balance i.e., input through atmospheric precipitation, factory or agricultural operations, minus its output through leaching, erosion and uptake by the crops [33]. The average Cd concentration in unpolluted soils in worldwide is 3.6%, while amounts which might be differ across continents, countries and type of soils. Cadmium in soil >30% is critically consider as Cd pollution limit, however, it was found that Cd level in soil reduces proportionately as the distance between manufacturing units and urban areas increases [34, 35]. In soil, the predominant source of Cd contamination is through weathering of various rocks and minerals present in the soil [25]. Maximum quantity of Cd was found in sedimentary rocks (0.1 to 26%) as compared to metamorphic and igneous rocks which contains Cd in the range of 1.1–10% and 0.7–2.5%, respectively [36, 37]. Similarly, Liu et al. [36] reported that in mudstone and siltstone has higher Cd content (46%) whereas, carbonate rocks has only 17% Cd content. He et al. [38] documented that soils generated from metamorphic rock like shales are highly prone to Cd toxicity. The Table 2 illustrated the various Cd containing rocks and minerals that may be recognize important for the incidence of Cd in the soil and water. Zinc (Zn) from sphalerite (ZnS) or smithsonite (ZnCO3), and iron (Fe) from pyrite (FeS2) and hydrous oxides of iron can be easily substituted by Cd [39]. Due to similarity in ionic radius Cd can able to replace several divalent cations (i.e., Ca, Fe, Zn, Pb, and Co) from their rocks [37]. Gnandi and Tobschall [40] stated that Ca in apatite mineral can be substituted by Cd therefore Cd may be a natural adulteration in phosphate (P) minerals and phosphorite rocks that are essential for the manufacture of phosphate fertilizers. Unlike Eastern Europe, there is considerably higher Cd in agricultural fields of Western European and one of the reasons for this is use of P fertilizer from distinct source [41]. The Cd bioavailability is governed by several factors such as: pH, moisture content, soil texture, clay content and type, cation exchange capacity, quantity and type of organic matter (OM), hydrous oxides, etc. [38]. Cadmium is easily mobilize in the soil due to its weaker bonding between soil exchange sites (i.e., OM, carbonate, and hydrous oxide) [42] and that is the key factor to increase bio-availability of Cd to plants, ground water as well as plant products.
Rock type | Average Cd content (%) | Mineral | Composition | Average Cd content (%) |
---|---|---|---|---|
Carbonate stone | 0.1 | Apatite | Ca5(F,Cl)(PO4)3 | 1.4–1.5 |
Ultramafic rocks | 0.2 | Sphalerite | (Zn,Cd)S | 2 |
Schists | 0.2 | Smithonite | ZnCO3 | < 2.35 |
Sandstone | 0.3 | Magnetite | Fe3O4 | < 3.1 |
Red shales | 0.3 | Silicates | — | 0.3–58 |
Gneisses | 0.4 | Arsenopyrite | FeAsS | < 50 |
Mafic rocks | 1.1 | Scorodite | FeAsO4. 2H2O | < 10–58 |
Granitic rocks | 1.2 | Otavite | CdCO3 | 65.2 |
Basalt | 2.2 | Greenockite | CdS | 77.8 |
Obsidian | 2.5 | Pyromorphite | Pb5Cl(PO4)3 | < 10–80 |
Organic sediment | 5.0 | Calcite | CaCO3 | < 10–230 |
Red clay | 5.6 | Marcasite | FeS2 | < 500 |
Bituminous shale | 8.0 | Chalcopyrite | CuFeS2 | < 1100 |
Limestone | 10 | Bindheimite | Pb2Sb2O6(O,OH) | 1000–10,000 |
Shale and claystone | 10 | Tetrahedrite | (Cu,Fe,Zn,Ag)12SbAs4S13 | 800–20,000 |
Bentonite | 14 | Anglesite | PbSO4 | 1200 to >10,000 |
Marlstone | 26 | Mn-oxides | MnO. nH2O | < 10,000 |
Oceanic manganese oxides | 80 | Limonite | FeO(OH). nH2O | < 10,000 |
Phosphorites | 250 | Galena | PbS | < 30,000 |
Cadmium contents in different rocks and minerals.
Geogenic sources input only 10 percent Cd in the environment however, man-made emission input 90 percent Cd in the environment. Among the various man-made sources major contribution is from manufacturing and application of P fertilizers, petroleum oil burning, smelting and casting industries, effluents from cement factories, vehicular emission, sewage sludge, landfills, municipality solid wastes, and mining activities [43, 44]. The Table 3 explained various anthropogenic activities and their impact on Cd build-up in soil and groundwater. Cadmium is mainly used in stabilization of plastics, pigments manufacturing, solar panels, nickel-cadmium batteries, and rust resistant steel production, agri-chemicals, solders, engine oil, and rubber and fabric industries [78, 79]. Brown et al. [80] reported that in 2015, globally Cd manufacture was ~24,900 metric tons and it was increases in the coming years. Among the anthropogenic sources mining and metal industries are the main reason for environmental Cd pollution followed by textiles industries, nonmetallic mineral products, fertilizers and agro-chemicals production, and leathers industries [81]. Landfills and municipal solid waste deposition are the major causes of soil pollution with Cd and in European countries municipal solid waste contain Cd level up to 3 to 12% [62]. Leachates from various sources are the main cause of Cd pollution in groundwater and Belon et al. [35] estimated that leachate form FYM, atmospheric deposition, inorganic fertilizers and municipal solid waste ranges from 10 to 25, 15–50, 30–55 and 2–5%, respectively. Another important source of Cd pollution in soil through the use of P fertilizers and P fertilizer used in various countries like Eastern Mediterranean countries, European countries and Germany the Cd content is as high as 770, 360 and 600%, respectively [37, 82]. Cadmium discharge and emitted from multiple sources gradually enters into the soil and then eventually bio-accumulates in food grains which ultimately leads to human health hazard.
Source | Type of pollution | Country/Area | Maximum Cd level | Reference |
---|---|---|---|---|
Mining | ||||
Pb mining and refinery | Atmospheric deposition | Příbram, Czech Republic | Soil: 48 mg kg−1 | [45] |
Cu mining | Waste water | Canchaque, Peru | Soil: 499 mg kg−1 | [28] |
Pb–Zn mining/refinery | Waste water | Coeur d’Alene basin, Idaho, USA | Groundwater: 77 μg L−1 | [46] |
Fe–Ni–Co mining | Waste material | Several sites in Albania | Soil: 14 mg kg−1 | [47] |
Au–Ag–Pb–Zn mining | Waste water | Chloride, Arizona USA | Groundwater: 19 μg L−1 | [48] |
As refinery | Waste material | Reppel, Belgium | Soil: 79 mg kg−1 | [49] |
Phosphorite mining | Mining waste, transport | Kpogamé, Hahotoé, Togo | Soil: 43 mg kg−1 | [50] |
Zn smelter | Atmospheric deposition | Hezhang County, China | Soil: 74 mg kg−1 | [51] |
Zn smelter | Waste material | Celje, Slovenia | Soil: 344 mg kg−1 | [52] |
Pb–Zn mining/refinery | Atmospheric deposition and waste water | Jinding, China | Soil: 531 mg kg−1 | [53] |
Mining activities | Waste water | BacKan province, North Vietnam | Soil: 4.26 mg kg−1 Irrigation water: 2.51 μg L−1 | [54] |
Au–Cu mining | Waste water | Bolnisi, Georgia | Soil: 121.5 mg kg−1 | [55] |
Coal mining | Mining waste and deposition | Anhui province, eastern China | Soil: 0.05–0.87 mg kg−1 | [56] |
Cu, Mo and Ni mining | Mining waste and deposition | Yangjiazhangzh and Dexing, China | Soil: 22.8 mg kg−1 Sediment: 66.1 mg kg−1 | [57] |
Coal mines | Atmospheric deposition and waste water | Singrauli, India | Groundwater: 108 ppb | [58] |
Industries | ||||
Cement factory | Atmospheric deposition | Qadissiya, Jordan | Soil: 13 mg kg−1 | [59] |
Various (e.g., textile, electroplating) | Waste water | Coimbatore, India | Soil: 12.8 mg kg−1 | [42] |
Ceramic industry | Sewage sludge | Castellon, Spain | Soil: 72 mg kg−1 | [60] |
Pigment manufacture | Atmospheric deposition | Staffordshire, UK | Soil: 16 mg kg−1 | [61] |
Textile industry | Waste water | Haridwar, India | Soil: 83.6 mg kg−1 Groundwater: 40 μg L−1 | [62] |
Metal industry | Atmospheric deposition | Unnao, India | Groundwater: 74 μg L−1 | [63] |
Ceramic industry | Atmospheric deposition | Yixing, China | Soil: 5.9 mg kg−1 | [64] |
Paper mill | Waste water | Morigaon, India | Soil: 31.01 mg kg−1 | [65] |
Power industry and industrial plants | Atmospheric deposition and waste water | Malopolska province, southern Poland | Soil: 16.9 mg kg−1 | [66] |
Zinc-smelter plant | Irrigation through industrial effluents | Rajasthan, India | Soil: 96.8 mg kg−1 | [67] |
Atlas Cycle factory | Irrigation through industrial effluents | Haryana, India | Soil: 9.81 mg kg−1 | [67] |
Waste management | ||||
Disposal facilities | Leachate | Great lakes region, USA | Soil: 32 mg kg−1 | [40] |
Household wastes | Waste water | Ikare, Nigeria | Groundwater: 580 μg L−1 | [6] |
Landfill | Leachate | Taoyuan, Taiwan Alexandria, Egypt | Soil: 378 mg kg−1 Groundwater: 51 μg L−1 | [68] |
Sewage and waste disposal | Waste water | Sekondi-Takoradi Metropolis, Ghana | Groundwater: 90 μg L−1 | [69] |
Sewage disposal | Waste water and physical mixing | Sundarban, India | Soil: 1.70 mg kg−1 | [70] |
Brownfield | Waste water | Xiangjiang River, China | Groundwater: 474 μg L−1 | [71] |
Oil spill accident | Waste deposition and physical mixing | Sundarban, Bangladesh | Sediment: 0.82 mg kg−1 | [38] |
Electronical waste recycling | Waste water | Krishna Vihar, India | Soil: 47.7 mg kg−1 Groundwater: 280 μg L−1 | [72] |
Agriculture | ||||
Sewage sludge application | Irrigation | Several sites in Spain | Soil: 90 mg kg−1 | [73] |
P fertilizer production | Atmospheric deposition | Rio Grande, Brazil | Soil: 9.3 mg kg−1 Groundwater: 3 μg L−1 | [32] |
P fertilizer application | Infiltration | Cauvery River basin, India | Groundwater: 60 μg L−1 | [74] |
Urban agriculture | Atmospheric pollution and soil contamination | Belo Horizonte, Brazil | Soil: 0.20 mg kg−1 | [75] |
Sewage sludge application | Soil application | Jiangsu Province, China | Leachate: 0.14 mg kg−1 | [76] |
Urban areas | ||||
Sewerage | Leakage | Rastatt, Germany | Groundwater: 5 μg L−1 | [1] |
Road traffic | Infiltration | Celle, Germany | Groundwater: 2.34 μg L−1 | [9] |
Over populated, E-wastes and industrialized | Infiltration and physical mixing | Western Uttar Pradesh, India | Groundwater: 0.07 mg L−1 | [77] |
Various types of cadmium contamination in soil and waterbodies.
Cadmium (Cd) is a potent pestilential metal which enters primarily via plant roots, get distributed and accumulated in plant parts in different proportions and concentrations, hampering crop yield and deteriorating the quality of produce. It ultimately makes it way to enter food chain thereby possessing serious threat to human and animal health. Cadmium ranks 7 among the top 20 toxins and it enter to arable land through various industrial processes and farming practices [83].
Accumulation of Cd in plant is facilitated by its mobilization, uptake and transport/distribution in various plant parts. Unscientific agricultural practices and industrial effluents are the major contributor of Cd in soil [84]. Phosphaic fertilizer and sewage-sludge contribute to Cd pollution in agricultural soil. Concentration of Cd in plants is also an indicative of its concentration in soil; however various other factors including soil pH, organic matter content, interaction with other ions and plant species govern its availability in plants [85, 86, 87]. Meta data analysis of 162 wheat and 215 barley grain samples by Adams and associates, [88] showed grain Cd concentration is positively correlated with soil total cd content and soil reaction (pH). They also highlighted the fact that higher microbial activity, nitrification and application of sewage sludge increased the chance of Cd toxicity but, reclaiming the soil with liming may abate the chance of toxicity. Sauvé et al. [89] found that organic matter had almost 30 times more sorption affinity for Cd when compared with mineral soil in Canada which indicates the importance of quality of organic matter in binding and accumulating Cd. It is assumed that lowering of pH will facilitate Cd availability to plants, but it might not hold true for soils with lower pH and high organic matter.
Before apprehending the mechanism of Cd accumulation in plants, one has to understand uptake and translocation of Cd inside plants. Ability of plants to take up Cd depends upon numerous factors like total Cd content in soil solution, soil reaction (pH), redox potential (Eh) and moisture content, soil organic carbon content, soil temperature, and last but not the least interaction among different elements. Primarily Cd enters plant through roots. Once in roots, Cd can get stored or exported to shoots through xylem. Cadmium is both xylem and phloem mobile [54, 74]. There are two possible mechanisms of Cd translocation into the plants and subsequently to the grains. These are: (i) Xylem mediated translocation to the sink i.e. grains (ii) Active transportation to various plant parts culm, rachis, flag leaves, external parts of the panicles and followed by phloem mediated mobilization to grains [90] and Schematic representation of Cd uptake and subsequent translocation in rice was shown in Figure 1. Root cell membrane located transporters take key role in Cd uptake in plants [91].
Schematic model of Cd uptake process from soil to grains in rice.
Cadmium uptake and accumulation in plants must undoubtedly be under control of multiple genes which contribute quantitatively in stage-specific, tissue-specific, environment-specific to Cd transport, accumulation and sequestration in plants [92]. In a study conducted by Hédiji et al. [72] on long term exposure of Cd on tomato (Solanumlycopersicum L.) concluded that, impact of Cd toxicity is highly dose specific and significantly correlated with soil nutrient status. Whereas, in higher dose severely affecting the plant growth and metabolism by altering the nutrient partitioning. Several genes are responsible to carry out these processes.
The impact of Cd toxicity in plants is still a closed book thing but, recent advances in plant physiological studies helped the researchers to answer the questions. Clemens [54] reported that the major influence on Cd toxicity in plants is nutrient imbalance by regulating the normal work of transporters peculiarly in fruit plants. For instance, the concentration of K, Zn, and Fe in developing fruits falls off drastically at the expense of Ca and Mg. The antagonistic relationship between Cd and K is well documented like sub-optimal K concentration in the pericarp which disrupts the normal bio-chemical cycles like bio-synthesis of protein, enzymatic activity and membrane bound activities such as sustaining cellular turgidity [54].
According to International Agency for Research on Cancer, Cd is highly inimical and labeled as class-I carcinogenic compound to mammalian health. Cadmium may not be toxic to the plants that accumulate it, yet are toxic to animals and humans feeding upon it. Cadmium makes it entry to human body either from food, water or breath and a little amount enters through skin. Majority of Cd entering to human body is either breathed out or excreted in feces, whereas only one-quarter of it gets into human body through breath and one-twentieth from food. People working in industries that release Cd are more prone to get affected by Cd toxicity because they might breath, eat or drink Cd in air, food or water. Cadmium with biological half-life of 10–30 years, generally gets accumulated in kidneys and liver and slowly leaves human body through urine or feces [93, 94]. Researches around the world indicate that daily cadmium intake from all sources is very low in case of general population which range between 10 and 25 μgday−1, however the tolerable daily intake established by WHO is 60 and 70 10–25 μg day−1 respectively, for adult women and men.
Human health due to Cd is an emerging issue and needs urgent attentions [52]. During the process, 10–50% of the cadmium dust is consumed according to the particle size. Digestion is higher for people that have an iron, calcium or zinc deficiency. The main source of human cadmium toxicity is considered to be tobacco smoking other than industrial exposures and food habit [95, 96, 97, 98]. Cd toxicity is developing gradually in the human body and eventually causes different negative health effects, particularly bone loss and nephron toxicity.
Cd is passed across the body after assimilation, usually linked with a bunch of sulfhydryl containing protein such as metalllothionine. Typically 30% stores in liver and kidney; the remaining spread across the body, with an independence half-life about a quarter of a century [99]. Blood, hair and urine Cd levels are indicator of potential toxicity but, to get the actual toxicity level urine stimulation test with the subjects body weight is highly important [100].
As previously mentioned, Cd induced epigenetic changes in DNA articulation by oxidative pressure, impediments or guidance for transport pathways particularly in the kidney [98] (Figure 2). Extreme impedance to the physiological function of Zn or Mg is introduced by other pathological mechanisms [99]. Restriction of the heme and the weakening of mitochondrial work which is likely to cause apoptosis [47]. Glutathione explosion has been found alongside the auxiliary protein contortion attributable to the official Cd in sulfhydryl bunches [100]. Cooperation with other hazardous metals, such as lead (Pb) and arsenis (As) hastens these impacts [101, 102].
Mechanisms of cadmium toxicity in humans.
The major site of Cd toxicity is kidney where a fragment S1 of the proximal tubule is a majorly targeted and disruption in mitochondrial protein synthesis due reabsorption of glucose, bicarbonate and phosphate clinically known as Fanconi disorder [76, 103]. Cadmium can also inhibit the digestion of vitamin D in the kidneys with progressively rises of issues like osteomalacia, osteoporosis, renal-around broking and calcium malabsorption [103, 105]. Cadmium has multiple deleterious effects on the cardiovascular framework like adverse impact on vascular endothelium consistency [95, 106]. Cd links to sudden coronary death marginal blood vessel dysfunction, increased intima media thickness and scattered myocardial necrosis [64, 107]. In comparison, low-recurrence listening was substantially decreased by people with elevated urinary Cd levels [108]. In comparison, high-urinary Cd rates have decreased cognitive power. Cadmium is assumed to be the carcinogenic agent Class B1 by the United States Environmental Protection Agency [46]. Conflicting research links Cd adoption and denies bosom malignant development [88, 94, 109]. Cd was associated to pancreas and lymphoma cell disturbance [88]. Vegetables developed in Cd-defiled soils can possibly cause toxicological issues in people particularly in developing women [110]. A few different components like low admission of Ca, vitamin D, and minor components, for example, Cu and Zn can build this sum. Thus, daily entry of Cd by Cd is exceptional due to the fusion of Cd in diets and the human dietary propensities. The mean daily use of Cd (DICd) uses the following formula as a general basis:
DICd symbolizes daily intake of Cd, CCdCofactor, intake of Dfood and Waverage weight are Cd fixations in vegetables, transition factor (new weight to dry weight), and human consumption of vegetables every day and regular body weight respectively. Table 2 describes the DICd figures given in different countries by the use of Cd-sullied vegetables. The number of inhabitants in the Netherlands unmistakably ingests the most notable Cd from the available information through defiled vegetables, followed by France and USA. The introduced data shows that the use of Cd contaminated nourishments is a significant implementation course. In these lines, in order to avoid harmful health consequences, the intake of infected vegetables should be reduced to the fullest degree possible. Different remediation steps can also be introduced in infected soil to carry the Cd concentration to a reasonable amount. In contrast, DICd’s principles are based on a few experiments worldwide. To describe incidents and potential dangers more thoroughly, further studies are needed. Furthermore, day-to-day vegetable intake, eating patterns, general status and the overall body weight of a person should be taken into account. Cadmium (Cd) is a toxicity ia result of long term exposure and “itai-itai” infection in Japan during 1950’s is an eye opening instance. Arrangement of rules and rules has been created in numerous nations and worldwide associations to manage the examination on wellbeing impact of Cd contamination [111].
According to EPA, bioremediation can be defined as “technique which uses naturally occurring microorganisms to break down hazardous substances into less toxic or non-toxic substances [111].”
Phytoremediation: Phytoremediation is an eco-friendly option for rejuvenating contaminated site using plants and microbes. Plants suitable for phytoremediation techniques must have important characters like high above ground biomass with vigorous growth, proliferated root system and metal accumulating characters [114].
Phytoextraction: Phytoextraction can be described as a metal extracting character by plant roots and subsequently plants are subjected to burial in some other place or incineration. Taxonomically plants species which are excellent metal extractor’s belongs to families like Scrophulariaceae, Lamiaceae, Asteraceae, Euphorbiaceae, and Brassicaceae. However, plant species like Celosia argentea L. [115], Salix mucronata L. [61], Cassia alata L. [116], Solanummelonaena L., Momordicacharantia L. [117], Kummerowiastriata L. [118], and Swieteniamacrophylla L. [65], may be used as potential plant choices to increase the process of Cd phytoextraction. Moreover, a sub-division of phytoextraction, known as chelate-assisted phytoextraction, is also used as a possible solution for metals that have no hyperaccumulator species using EDTA or citric acid [66, 119].
Microbe’s works in both active and passive mode and microbial species like bacteria, fungi and alage can be used as a potential option for eco-friendly remediation techniques [93]. Bacteria’s are very effective for cleaning contaminated site due to its unique metabolic characters and tolerance to harsh conditions [120]. Several heavy metals have been tested using bacteria species like Flavobacterium, Pseudomonas, Enterobacter, Bacillus, and Micrococcussp. Their great bio-sorption ability is due to high surface-to-volume ratios and the potential active chemosorption sites (teichoic acid) on the cell wall [121]. Abioye and his coworkers [122] reported successful use of bacterial species like Bacillus subtilis L., B. megaterium L., Aspergillusniger L., and Penicilliumsp. for revive soils contaminated with lead (Pb) and cadmium (Cd). Fungal species like Coprinopsisatramentariais L. can bio accumulate more than 75% of Cd of the contaminated site by 1 mg L−1 [123]. Goher and his co-authors [68] reported cleaning of Cd- contaminated site using dead algal cells of ChlorellavulgarisL.
This present chapter summarizes the various sources of Cd in environment and its toxic effects on plant and human being as well as suggested some approaches of bioremediation to mitigate the Cd pollution from environment. Anthropogenic activities are the key pathway to contaminate the environment with Cd which ultimately accumulated in various leafy vegetables and food grains. Consumption of this high Cd containing food causes several toxic symptoms in human being and leads to malfunctioning of multiple human organs. To reduce the Cd accumulation in food grain various amelioration strategies has been adopted among them use of microbes to decrease Cd uptake by plants seems to have great prospective. Moreover, some microbes may increase amounts of Cd due to their biochemical processes, and their implementation may also worsen problems with soil pollution. Use It is also suggested to characterize the microbes and tested them in laboratory and field condition prior to their use in agricultural soils, thus maintaining soil quality and food safety.
We believe financial barriers should not prevent researchers from publishing their findings. With the need to make scientific research more publicly available and support the benefits of Open Access, more and more institutions and funders are dedicating resources to assist faculty members and researchers cover Open Access Publishing Fees (OAPFs). In addition, IntechOpen provides several further options presented below, all of which are available to researchers, and could secure the financing of your Open Access publication.
",metaTitle:"Waiver Policy",metaDescription:"We feel that financial barriers should never prevent researchers from publishing their research. With the need to make scientific research more publically available and support the benefits of Open Access, more institutions and funders have dedicated funds to assist their faculty members and researchers cover the APCs associated with publishing in Open Access. Below we have outlined several options available to secure financing for your Open Access publication.",metaKeywords:null,canonicalURL:"/page/waiver-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"At IntechOpen, the majority of OAPFs are paid by an Author’s institution or funding agency - Institutions (73%) vs. Authors (23%).
\\n\\nThe first step in obtaining funds for your Open Access publication begins with your institution or library. IntechOpen’s publishing standards align with most institutional funding programs. Our advice is to petition your institution for help in financing your Open Access publication.
\\n\\nHowever, as Open Access becomes a more commonly used publishing option for the dissemination of scientific and scholarly content, in addition to institutions, there are a growing number of funders who allow the use of grants for covering OA publication costs, or have established separate funds for the same purpose.
\\n\\nPlease consult our Open Access Funding page to explore some of these funding opportunities and learn more about how you could finance your IntechOpen publication. Keep in mind that this list is not definitive, and while we are constantly updating and informing our Authors of new funding opportunities, we recommend that you always check with your institution first.
\\n\\nFor Authors who are unable to obtain funding from their institution or research funding bodies and still need help in covering publication costs, IntechOpen offers the possibility of applying for a Waiver.
\\n\\nOur mission is to support Authors in publishing their research and making an impact within the scientific community. Currently, 14% of Authors receive full waivers and 6% receive partial waivers.
\\n\\nWhile providing support and advice to all our international Authors, waiver priority will be given to those Authors who reside in countries that are classified by the World Bank as low-income economies. In this way, we can help ensure that the scientific work being carried out can make an impact within the worldwide scientific community, no matter where an Author might live.
\\n\\nThe application process is open after your submitted manuscript has been accepted for publication. To apply, please fill out a Waiver Request Form and send it to your Author Service Manager. If you have an official letter from your university or institution showing that funds for your OA publication are unavailable, please attach that as well. The Waiver Request will normally be addressed within one week from the application date. All chapters that receive waivers or partial waivers will be designated as such online.
\\n\\nDownload Waiver Request Form
\\n\\nFeel free to contact us at oapf@intechopen.com if you have any questions about Funding options or our Waiver program. If you have already begun the process and require further assistance, please contact your Author Service Manager, who is there to assist you!
\\n\\nNote: All data represented above was collected by IntechOpen from 2013 to 2017.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'At IntechOpen, the majority of OAPFs are paid by an Author’s institution or funding agency - Institutions (73%) vs. Authors (23%).
\n\nThe first step in obtaining funds for your Open Access publication begins with your institution or library. IntechOpen’s publishing standards align with most institutional funding programs. Our advice is to petition your institution for help in financing your Open Access publication.
\n\nHowever, as Open Access becomes a more commonly used publishing option for the dissemination of scientific and scholarly content, in addition to institutions, there are a growing number of funders who allow the use of grants for covering OA publication costs, or have established separate funds for the same purpose.
\n\nPlease consult our Open Access Funding page to explore some of these funding opportunities and learn more about how you could finance your IntechOpen publication. Keep in mind that this list is not definitive, and while we are constantly updating and informing our Authors of new funding opportunities, we recommend that you always check with your institution first.
\n\nFor Authors who are unable to obtain funding from their institution or research funding bodies and still need help in covering publication costs, IntechOpen offers the possibility of applying for a Waiver.
\n\nOur mission is to support Authors in publishing their research and making an impact within the scientific community. Currently, 14% of Authors receive full waivers and 6% receive partial waivers.
\n\nWhile providing support and advice to all our international Authors, waiver priority will be given to those Authors who reside in countries that are classified by the World Bank as low-income economies. In this way, we can help ensure that the scientific work being carried out can make an impact within the worldwide scientific community, no matter where an Author might live.
\n\nThe application process is open after your submitted manuscript has been accepted for publication. To apply, please fill out a Waiver Request Form and send it to your Author Service Manager. If you have an official letter from your university or institution showing that funds for your OA publication are unavailable, please attach that as well. The Waiver Request will normally be addressed within one week from the application date. All chapters that receive waivers or partial waivers will be designated as such online.
\n\nDownload Waiver Request Form
\n\nFeel free to contact us at oapf@intechopen.com if you have any questions about Funding options or our Waiver program. If you have already begun the process and require further assistance, please contact your Author Service Manager, who is there to assist you!
\n\nNote: All data represented above was collected by IntechOpen from 2013 to 2017.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5775},{group:"region",caption:"Middle and South America",value:2,count:5239},{group:"region",caption:"Africa",value:3,count:1721},{group:"region",caption:"Asia",value:4,count:10411},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15810}],offset:12,limit:12,total:118378},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"24,11"},books:[{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!0,hash:"a5308884068cc53ed31c6baba756857f",slug:null,bookSignature:"Dr. Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:null,editors:[{id:"165328",title:"Dr.",name:"Vahid",surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10567",title:"Uncertainty Management in Engineering - Topics in Pollution Prevention and Controls",subtitle:null,isOpenForSubmission:!0,hash:"4990db602d31f1848c590dbfe97b6409",slug:null,bookSignature:"Prof. Rehab O. Abdel Rahman and Dr. Yung-Tse Hung",coverURL:"https://cdn.intechopen.com/books/images_new/10567.jpg",editedByType:null,editors:[{id:"92718",title:"Prof.",name:"Rehab",surname:"Abdel Rahman",slug:"rehab-abdel-rahman",fullName:"Rehab Abdel Rahman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10568",title:"Hysteresis in Engineering",subtitle:null,isOpenForSubmission:!0,hash:"6482387993b3cebffafe856a916c44ce",slug:null,bookSignature:"Dr. Giuseppe Viola",coverURL:"https://cdn.intechopen.com/books/images_new/10568.jpg",editedByType:null,editors:[{id:"173586",title:"Dr.",name:"Giuseppe",surname:"Viola",slug:"giuseppe-viola",fullName:"Giuseppe Viola"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!0,hash:"421757c56a3735986055250821275a51",slug:null,bookSignature:"Dr. Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editedByType:null,editors:[{id:"274242",title:"Dr.",name:"Meng",surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10769",title:"Supercapacitors",subtitle:null,isOpenForSubmission:!0,hash:"dda2f53b2c9ee308fe5f3e0d1638ff5c",slug:null,bookSignature:"Associate Prof. Daisuke Tashima",coverURL:"https://cdn.intechopen.com/books/images_new/10769.jpg",editedByType:null,editors:[{id:"254915",title:"Associate Prof.",name:"Daisuke",surname:"Tashima",slug:"daisuke-tashima",fullName:"Daisuke Tashima"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10370",title:"Advances in Fundamental and Applied Research on Spatial Audio",subtitle:null,isOpenForSubmission:!0,hash:"f16232a481c08a05cc191ac64cf2c69e",slug:null,bookSignature:"Dr. Brian FG Katz and Dr. Piotr Majdak",coverURL:"https://cdn.intechopen.com/books/images_new/10370.jpg",editedByType:null,editors:[{id:"278731",title:"Dr.",name:"Brian FG",surname:"Katz",slug:"brian-fg-katz",fullName:"Brian FG Katz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10681",title:"Biodegradation",subtitle:null,isOpenForSubmission:!0,hash:"9a6e10e02788092872fd249436898e97",slug:null,bookSignature:"Ph.D. Kassio Ferreira Mendes, Dr. Rodrigo Nogueira de Sousa and Dr. Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editedByType:null,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!0,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:null,bookSignature:"Prof. Hussain Al-Rizzo and Dr. Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",editedByType:null,editors:[{id:"153384",title:"Prof.",name:"Hussain",surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10683",title:"Hydropower",subtitle:null,isOpenForSubmission:!0,hash:"7ce7ad8768bd2cad155470fe1fd883f4",slug:null,bookSignature:"Dr. Yizi Shang, Dr. Ling Shang and Dr. Xiaofei Li",coverURL:"https://cdn.intechopen.com/books/images_new/10683.jpg",editedByType:null,editors:[{id:"349630",title:"Dr.",name:"Yizi",surname:"Shang",slug:"yizi-shang",fullName:"Yizi Shang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10810",title:"Modern Ship Engineering, Design and Operations",subtitle:null,isOpenForSubmission:!0,hash:"579a9da63aca2172c0f0584328ae91c1",slug:null,bookSignature:"Dr. Carlos Alberto Reusser",coverURL:"https://cdn.intechopen.com/books/images_new/10810.jpg",editedByType:null,editors:[{id:"209816",title:"Dr.",name:"Carlos",surname:"Reusser",slug:"carlos-reusser",fullName:"Carlos Reusser"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil - New Technologies and Recent Approaches",subtitle:null,isOpenForSubmission:!0,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:null,bookSignature:"Prof. Manar El-Sayed Abdel-Raouf and Dr. Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:null,editors:[{id:"102626",title:"Prof.",name:"Manar El-Sayed",surname:"Abdel-Raouf",slug:"manar-el-sayed-abdel-raouf",fullName:"Manar El-Sayed Abdel-Raouf"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10771",title:"Advancements Towards Sustainability of HVAC & R Systems",subtitle:null,isOpenForSubmission:!0,hash:"0718b748e10605d793d244c62797acf4",slug:null,bookSignature:"Dr. Ahmed Niameh Mehdy Alhusseny, Dr. Qahtan Al-Aabidy and Dr. Adel Gharib Nasser",coverURL:"https://cdn.intechopen.com/books/images_new/10771.jpg",editedByType:null,editors:[{id:"208783",title:"Dr.",name:"Ahmed",surname:"Alhusseny",slug:"ahmed-alhusseny",fullName:"Ahmed Alhusseny"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:18},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:5},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:20},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:27},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:21},popularBooks:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5249},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"265",title:"Education",slug:"social-sciences-education",parent:{title:"Social Sciences",slug:"social-sciences"},numberOfBooks:24,numberOfAuthorsAndEditors:410,numberOfWosCitations:118,numberOfCrossrefCitations:149,numberOfDimensionsCitations:235,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"social-sciences-education",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editedByType:"Edited by",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8283",title:"Innovations in Higher Education",subtitle:"Cases on Transforming and Advancing Practice",isOpenForSubmission:!1,hash:"9c8b8a6fe8578fbf2398932ce8c1b717",slug:"innovations-in-higher-education-cases-on-transforming-and-advancing-practice",bookSignature:"Dominique Parrish and Joanne Joyce-McCoach",coverURL:"https://cdn.intechopen.com/books/images_new/8283.jpg",editedByType:"Edited by",editors:[{id:"197795",title:"Associate Prof.",name:"Dominique",middleName:null,surname:"Parrish",slug:"dominique-parrish",fullName:"Dominique Parrish"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7906",title:"The Essence of Academic Performance",subtitle:null,isOpenForSubmission:!1,hash:"69e39465b02c12b562c004ed8d591710",slug:"the-essence-of-academic-performance",bookSignature:"Bernard Nchindila and Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/7906.jpg",editedByType:"Edited by",editors:[{id:"196855",title:"Prof.",name:"Bernard",middleName:"Mwansa",surname:"Nchindila",slug:"bernard-nchindila",fullName:"Bernard Nchindila"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7819",title:"Education Systems Around the World",subtitle:null,isOpenForSubmission:!1,hash:"c3d5598e631502952f75b2181873f6ea",slug:"education-systems-around-the-world",bookSignature:"Gilson Porto Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7819.jpg",editedByType:"Edited by",editors:[{id:"279817",title:"Dr.",name:"Gilson",middleName:null,surname:"Porto",slug:"gilson-porto",fullName:"Gilson Porto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7601",title:"Game Design and Intelligent Interaction",subtitle:null,isOpenForSubmission:!1,hash:"aef7c5d14fb716604538b9f7e1a3f2ef",slug:"game-design-and-intelligent-interaction",bookSignature:"Ioannis Deliyannis",coverURL:"https://cdn.intechopen.com/books/images_new/7601.jpg",editedByType:"Edited by",editors:[{id:"103622",title:"Dr.",name:"Ioannis",middleName:null,surname:"Deliyannis",slug:"ioannis-deliyannis",fullName:"Ioannis Deliyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8495",title:"Educational Leadership",subtitle:null,isOpenForSubmission:!1,hash:"387155f6ce16da4065319ac18ef9bf1f",slug:"educational-leadership",bookSignature:"Hülya Şenol",coverURL:"https://cdn.intechopen.com/books/images_new/8495.jpg",editedByType:"Edited by",editors:[{id:"240203",title:"Dr.",name:"Hülya",middleName:null,surname:"Şenol",slug:"hulya-senol",fullName:"Hülya Şenol"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8039",title:"Theorizing STEM Education in the 21st Century",subtitle:null,isOpenForSubmission:!1,hash:"0c99d528dbcc6ed5e8a26f96b36c812d",slug:"theorizing-stem-education-in-the-21st-century",bookSignature:"Kehdinga George Fomunyam",coverURL:"https://cdn.intechopen.com/books/images_new/8039.jpg",editedByType:"Edited by",editors:[{id:"267912",title:"Dr.",name:"Kehdinga George",middleName:null,surname:"Fomunyam",slug:"kehdinga-george-fomunyam",fullName:"Kehdinga George Fomunyam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9040",title:"Pedagogy in Basic and Higher Education",subtitle:"Current Developments and Challenges",isOpenForSubmission:!1,hash:"3ef45143bf2a8d798f0e423e098afe6c",slug:"pedagogy-in-basic-and-higher-education-current-developments-and-challenges",bookSignature:"Kirsi Tirri and Auli Toom",coverURL:"https://cdn.intechopen.com/books/images_new/9040.jpg",editedByType:"Edited by",editors:[{id:"234399",title:"Prof.",name:"Kirsi",middleName:null,surname:"Tirri",slug:"kirsi-tirri",fullName:"Kirsi Tirri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8645",title:"Contemporary Topics in Graduate Medical Education",subtitle:null,isOpenForSubmission:!1,hash:"76d224ba3c158c43fda8141a61ababd6",slug:"contemporary-topics-in-graduate-medical-education",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, James P. Orlando and Thomas J. Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/8645.jpg",editedByType:"Edited by",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6929",title:"Active Learning",subtitle:"Beyond the Future",isOpenForSubmission:!1,hash:"fe54807c3ff7c1b500127e814988f5e2",slug:"active-learning-beyond-the-future",bookSignature:"Sílvio Manuel Brito",coverURL:"https://cdn.intechopen.com/books/images_new/6929.jpg",editedByType:"Edited by",editors:[{id:"170935",title:"Ph.D.",name:"Sílvio Manuel",middleName:"Da Rocha",surname:"Brito",slug:"silvio-manuel-brito",fullName:"Sílvio Manuel Brito"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7804",title:"Teacher Education in the 21st Century",subtitle:null,isOpenForSubmission:!1,hash:"1722e45e6ebd731426bc0e4ac5c6eee2",slug:"teacher-education-in-the-21st-century",bookSignature:"Reginald Botshabeng Monyai",coverURL:"https://cdn.intechopen.com/books/images_new/7804.jpg",editedByType:"Edited by",editors:[{id:"210249",title:"Dr.",name:"Reginald",middleName:"Botshabeng",surname:"Monyai",slug:"reginald-monyai",fullName:"Reginald Monyai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:24,mostCitedChapters:[{id:"59705",doi:"10.5772/intechopen.74943",title:"Augmented Reality Trends in Education between 2016 and 2017 Years",slug:"augmented-reality-trends-in-education-between-2016-and-2017-years",totalDownloads:1647,totalCrossrefCites:14,totalDimensionsCites:17,book:{slug:"state-of-the-art-virtual-reality-and-augmented-reality-knowhow",title:"State of the Art Virtual Reality and Augmented Reality Knowhow",fullTitle:"State of the Art Virtual Reality and Augmented Reality Knowhow"},signatures:"Rabia M. Yilmaz",authors:[{id:"225838",title:"Dr.",name:"Rabia",middleName:null,surname:"Yilmaz",slug:"rabia-yilmaz",fullName:"Rabia Yilmaz"}]},{id:"59468",doi:"10.5772/intechopen.74344",title:"Virtual and Augmented Reality: New Frontiers for Clinical Psychology",slug:"virtual-and-augmented-reality-new-frontiers-for-clinical-psychology",totalDownloads:1573,totalCrossrefCites:5,totalDimensionsCites:10,book:{slug:"state-of-the-art-virtual-reality-and-augmented-reality-knowhow",title:"State of the Art Virtual Reality and Augmented Reality Knowhow",fullTitle:"State of the Art Virtual Reality and Augmented Reality Knowhow"},signatures:"Sara Ventura, Rosa M. Baños and Cristina Botella",authors:[{id:"106036",title:"Dr.",name:"Rosa Maria",middleName:null,surname:"Baños",slug:"rosa-maria-banos",fullName:"Rosa Maria Baños"},{id:"227763",title:"Ph.D. Student",name:"Sara",middleName:null,surname:"Ventura",slug:"sara-ventura",fullName:"Sara Ventura"},{id:"229056",title:"Dr.",name:"Cristina",middleName:null,surname:"Botella",slug:"cristina-botella",fullName:"Cristina Botella"}]},{id:"32519",doi:"10.5772/33745",title:"Self-Regulated Learning Activities: Supporting Success in Online Courses",slug:"self-regulated-learning-activities-supporting-success-in-online-courses-",totalDownloads:2280,totalCrossrefCites:1,totalDimensionsCites:10,book:{slug:"international-perspectives-of-distance-learning-in-higher-education",title:"International Perspectives of Distance Learning in Higher Education",fullTitle:"International Perspectives of Distance Learning in Higher Education"},signatures:"Maureen Snow Andrade",authors:[{id:"96902",title:"Dr.",name:"Maureen",middleName:null,surname:"Snow Andrade",slug:"maureen-snow-andrade",fullName:"Maureen Snow Andrade"}]}],mostDownloadedChaptersLast30Days:[{id:"58060",title:"Pedagogy of the Twenty-First Century: Innovative Teaching Methods",slug:"pedagogy-of-the-twenty-first-century-innovative-teaching-methods",totalDownloads:6971,totalCrossrefCites:3,totalDimensionsCites:6,book:{slug:"new-pedagogical-challenges-in-the-21st-century-contributions-of-research-in-education",title:"New Pedagogical Challenges in the 21st Century",fullTitle:"New Pedagogical Challenges in the 21st Century - Contributions of Research in Education"},signatures:"Aigerim Mynbayeva, Zukhra Sadvakassova and Bakhytkul\nAkshalova",authors:[{id:"201997",title:"Dr.",name:"Aigerim",middleName:null,surname:"Mynbayeva",slug:"aigerim-mynbayeva",fullName:"Aigerim Mynbayeva"},{id:"209208",title:"Dr.",name:"Zukhra",middleName:null,surname:"Sadvakassova",slug:"zukhra-sadvakassova",fullName:"Zukhra Sadvakassova"},{id:"209210",title:"Dr.",name:"Bakhytkul",middleName:null,surname:"Akshalova",slug:"bakhytkul-akshalova",fullName:"Bakhytkul Akshalova"}]},{id:"61746",title:"Facilitation of Teachers’ Professional Development through Principals’ Instructional Supervision and Teachers’ Knowledge- Management Behaviors",slug:"facilitation-of-teachers-professional-development-through-principals-instructional-supervision-and-t",totalDownloads:2147,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"contemporary-pedagogies-in-teacher-education-and-development",title:"Contemporary Pedagogies in Teacher Education and Development",fullTitle:"Contemporary Pedagogies in Teacher Education and Development"},signatures:"Chien-Chin Chen",authors:[{id:"232569",title:"Ph.D.",name:"Chien Chih",middleName:null,surname:"Chen",slug:"chien-chih-chen",fullName:"Chien Chih Chen"}]},{id:"59468",title:"Virtual and Augmented Reality: New Frontiers for Clinical Psychology",slug:"virtual-and-augmented-reality-new-frontiers-for-clinical-psychology",totalDownloads:1577,totalCrossrefCites:5,totalDimensionsCites:10,book:{slug:"state-of-the-art-virtual-reality-and-augmented-reality-knowhow",title:"State of the Art Virtual Reality and Augmented Reality Knowhow",fullTitle:"State of the Art Virtual Reality and Augmented Reality Knowhow"},signatures:"Sara Ventura, Rosa M. Baños and Cristina Botella",authors:[{id:"106036",title:"Dr.",name:"Rosa Maria",middleName:null,surname:"Baños",slug:"rosa-maria-banos",fullName:"Rosa Maria Baños"},{id:"227763",title:"Ph.D. Student",name:"Sara",middleName:null,surname:"Ventura",slug:"sara-ventura",fullName:"Sara Ventura"},{id:"229056",title:"Dr.",name:"Cristina",middleName:null,surname:"Botella",slug:"cristina-botella",fullName:"Cristina Botella"}]},{id:"52577",title:"A Review of Distance Learning and Learning Management Systems",slug:"a-review-of-distance-learning-and-learning-management-systems",totalDownloads:1920,totalCrossrefCites:1,totalDimensionsCites:5,book:{slug:"virtual-learning",title:"Virtual Learning",fullTitle:"Virtual Learning"},signatures:"Mümine Kaya Keleş and Selma Ayşe Özel",authors:[{id:"190444",title:"Dr.",name:"Mümine",middleName:null,surname:"Kaya Keleş",slug:"mumine-kaya-keles",fullName:"Mümine Kaya Keleş"},{id:"190656",title:"Associate Prof.",name:"Selma Ayşe",middleName:null,surname:"Özel",slug:"selma-ayse-ozel",fullName:"Selma Ayşe Özel"}]},{id:"58311",title:"Pedagogical and E-Learning Techniques for Quality Improvement of ICT Education",slug:"pedagogical-and-e-learning-techniques-for-quality-improvement-of-ict-education",totalDownloads:1072,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"advanced-learning-and-teaching-environments-innovation-contents-and-methods",title:"Advanced Learning and Teaching Environments",fullTitle:"Advanced Learning and Teaching Environments - Innovation, Contents and Methods"},signatures:"Mgnas Fernando",authors:[{id:"202152",title:"Dr.",name:"Fernando",middleName:null,surname:"Mgnas",slug:"fernando-mgnas",fullName:"Fernando Mgnas"}]},{id:"63639",title:"Cooperative Learning: The Foundation for Active Learning",slug:"cooperative-learning-the-foundation-for-active-learning",totalDownloads:2065,totalCrossrefCites:6,totalDimensionsCites:5,book:{slug:"active-learning-beyond-the-future",title:"Active Learning",fullTitle:"Active Learning - Beyond the Future"},signatures:"David W. Johnson and Roger T. Johnson",authors:[{id:"259976",title:"Dr.",name:"David",middleName:null,surname:"Johnson",slug:"david-johnson",fullName:"David Johnson"},{id:"263004",title:"Dr.",name:"Roger",middleName:null,surname:"Johnson",slug:"roger-johnson",fullName:"Roger Johnson"}]},{id:"59705",title:"Augmented Reality Trends in Education between 2016 and 2017 Years",slug:"augmented-reality-trends-in-education-between-2016-and-2017-years",totalDownloads:1655,totalCrossrefCites:14,totalDimensionsCites:17,book:{slug:"state-of-the-art-virtual-reality-and-augmented-reality-knowhow",title:"State of the Art Virtual Reality and Augmented Reality Knowhow",fullTitle:"State of the Art Virtual Reality and Augmented Reality Knowhow"},signatures:"Rabia M. Yilmaz",authors:[{id:"225838",title:"Dr.",name:"Rabia",middleName:null,surname:"Yilmaz",slug:"rabia-yilmaz",fullName:"Rabia Yilmaz"}]},{id:"57670",title:"Is Your Extra X Chromosome Holding You Back? An Insight into Female Education and Academic Careers in STEMM",slug:"is-your-extra-x-chromosome-holding-you-back-an-insight-into-female-education-and-academic-careers-in",totalDownloads:1489,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"new-pedagogical-challenges-in-the-21st-century-contributions-of-research-in-education",title:"New Pedagogical Challenges in the 21st Century",fullTitle:"New Pedagogical Challenges in the 21st Century - Contributions of Research in Education"},signatures:"Aziza Alibhai, Mariam Moiz Saigar, Emilia Harding and Catrin Sian\nRutland",authors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland"},{id:"219223",title:"Mrs.",name:"Aziza",middleName:null,surname:"Alibhai",slug:"aziza-alibhai",fullName:"Aziza Alibhai"},{id:"219226",title:"Dr.",name:"Emilia",middleName:null,surname:"Harding",slug:"emilia-harding",fullName:"Emilia Harding"},{id:"219227",title:"B.Sc.",name:"Mariam",middleName:"Moiz",surname:"Saigar",slug:"mariam-saigar",fullName:"Mariam Saigar"}]},{id:"69139",title:"Formative Assessment in Mathematics Education in the Twenty-First Century",slug:"formative-assessment-in-mathematics-education-in-the-twenty-first-century",totalDownloads:438,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"theorizing-stem-education-in-the-21st-century",title:"Theorizing STEM Education in the 21st Century",fullTitle:"Theorizing STEM Education in the 21st Century"},signatures:"Benard Chigonga",authors:[{id:"298587",title:"Dr.",name:"Benard",middleName:null,surname:"Chigonga",slug:"benard-chigonga",fullName:"Benard Chigonga"}]},{id:"60996",title:"Introductory Chapter: Enhancing Augmented Reality User Experience (AR-UX) with Design Thinking",slug:"introductory-chapter-enhancing-augmented-reality-user-experience-ar-ux-with-design-thinking",totalDownloads:827,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"state-of-the-art-virtual-reality-and-augmented-reality-knowhow",title:"State of the Art Virtual Reality and Augmented Reality Knowhow",fullTitle:"State of the Art Virtual Reality and Augmented Reality Knowhow"},signatures:"Nawaz Mohamudally",authors:[{id:"119486",title:"Dr.",name:"Nawaz",middleName:null,surname:"Mohamudally",slug:"nawaz-mohamudally",fullName:"Nawaz Mohamudally"}]}],onlineFirstChaptersFilter:{topicSlug:"social-sciences-education",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},route:{name:"profile.detail",path:"/profiles/85848/kang-tianhe",hash:"",query:{},params:{id:"85848",slug:"kang-tianhe"},fullPath:"/profiles/85848/kang-tianhe",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()