Core genome analysis based on 365 Salmonella genome sequences.
\r\n\tThis book is intended to provide a series of peer reviewed chapters that the guest editor believe will aid in increasing the quality of the research focus across the growing field of grain and seeds compound functionality research. Overall, the objective of this project is to serve as a reference book and as an excellent resource for students, researchers, and scientists interested and working in different functional aspects of grain and seed compounds, and particularly for the scientific community to encourage it to continue publishing their research findings on grain and seed and to provide basis for new research, and the area of sustainable crop production.
\r\n\t
The genus Salmonella belongs to the Enterobacteriaceae, a large family within the gamma-proteobacteria to which E. coli also belongs. Since its first characterization in 1884 from diseased pigs by scientists working in the group of Daniel Salmon (after whom the genus is named), Salmonella species have been known to cause disease, notably typhoid fever and food poisoning. Pathogenic Salmonella types can be found in a wide range of animal hosts and often infect humans via contaminated food; they are responsible for more than a million infections in the United States every year. Infections vary from (long-term) asymptomatic carriage and self-limiting salmonellosis to life-threatening conditions and fatal typhoidal fever [1].
\nHistorically, many species of this genus were recognized, at first based on the clinical symptoms typical for their infections and it was soon recognized that these correlated with their serotype. However, based on sequence analysis, in 1973, it was proposed that all these Salmonella serotypes belonged to the same species [2]. This resulted, in 2005, to the designation of Salmonella enterica as the type species for the genus, as described by the International Committee on Systematics of Procaryotes [3]. Only one other species is currently formally recognized within the genus: Salmonella bongori, which lives in cold-blooded reptiles. S. enterica is further divided into six subspecies, of which S. enterica subsp. enterica is clinically most relevant. The names originally used to describe clinically distinct ‘species’ live on as serovars or serotypes. All Salmonella bacteria are none spore-forming, chemotrophic, facultative anaerobes, which survive in their host intracellularly [1].
\nThe number of Salmonella genome sequences available in GenBank is constantly increasing. At the time of writing their number reached five thousand, the vast majority of which were obtained from S. enterica. As of September 15, 2016, there were 4934 genomes of this species in GenBank, with three additional genomes from S. bongori. Only a small fraction of these genomes are submitted as complete sequences without gaps and fulfilling all criteria set by GenBank for a genome to be listed as ‘complete’ (201 genomes at the time of writing, corresponding to 4% of the total). In this chapter, we employ whole-genome methods to compare complete Salmonella genomes in order to produce insights into the genomic diversity of this genus.
The first approach was aimed to show the overall relatedness of all species belonging to the Enterobacteriaceae family, based on their (completely sequenced) genomes. For this, we collected up to ten genome sequences per species, as far as these were available, which led to 255 genome sequences to be compared. The comparison was based on average amino acid identity (AAI) comparison, a method that uses all annotated protein genes in a given genome, producing more robust trees than methods based on direct alignments or concatenated protein sequence alignments [4]. The resulting tree is presented with collapsed branches for redundant species (Figure 1). The Salmonella genus, shown in red, is positioned on a cluster together with Citrobacter, with Escherichia/Shigella as the closest neighbors. These genera are supposed to have been separated for tens of millions of years [5]. The close relationship between Citrobacter and Salmonella has been observed before, and it was proposed that recombination between these and to a lesser extent with Escherichia, has been frequent in the past, during a process of fragmented speciation [5].
Tree based on average amino acid identity (AAI) of 255 genomes from members of the Enterobacteraceae. Branches were collapsed at the species level. The branch with the two Salmonella species is colored and some distinct genus clusters are labeled.
Next, we extracted all 201 complete genomes from the Salmonella genus (in May 2016), combined with 164 ‘nearly completed’ genomes. The latter were extracted from GenBank as good quality draft sequences only, retrieved from GenBank when selecting for genomes of ‘chromosome’ quality; all contained one contiguous sequence, without gaps. These 365 Salmonella genomes represent only a tiny fraction of what is available. Apart from the nearly 5000 Salmonella genomes available in GenBank, there are currently more than 62,000 Salmonella enterica genomes stored in the Sequence Read Archive. However, in principle, the complete genome sequences should be of high quality and reliable in terms of annotation; therefore, we restricted the analysis to complete genomes.
\nAn AAI tree was constructed to establish the interrelationship of the 365 complete genomes, representing 33 different serovars including 36 Typhimurium and 6 Typhi genomes. The branches of the AAI tree were collapsed at serovar level. This produced a tree with 62 branches, as shown in Figure 2. As can be observed, by and large the tree clustered the genomes according to serovars, though the separation is not absolute and some serovars end up in mixed clusters. This was to be expected, as the analysis is based on the complete annotated proteome (capturing all protein-coded sequences), while the phenotypic characteristics that determine a serovar are determined by a limited number of genes only, that produce the surface antigens captured by serotyping. Of the 36 S. enterica sv. Typhimurium genomes (represented on 13 branches, blue in the figure), 32 cluster together on 10 branches (together with four branches of non-specified serovars), while four are placed on three branches outside the Typhimurium cluster. A distinct cluster is also observed containing the serovars Enteritidis, Pullorum, Gallinarum and Dublin (colored green in the figure) which together are known as ‘group D Salmonella’ [6]. The first three of these are adapted to the chicken host, but serovar Dublin is mostly colonizing cattle, and other serovars frequently found in chickens are placed outside the group D cluster. It has been suggested that the serovars Paratyphi and Choleraesuis, both with a narrow host range (for humans and pigs, respectively) are phylogenetically related, a conclusion that was based on SNP analysis [6]. Indeed, we observe that one Paratyphi genome clusters with a Choleraesuis, but two other Paratyphi and another Choleraesuis genome are more distinct (colored red in Figure 2).\x3c!-- Please check the term “Cholerasuis” for clarity.
AAI tree of 365 Salmonella genomes representing 33 serovars of S. enterica (abbreviated as ‘SE’) subsp enterica. Indentical branches were collapsed per serotype. For explanation of the colors, see text.
What makes a Salmonella a Salmonella? There are of course particular biochemical characteristics that can be used for identification, but can we recognize a set of genes that are always conserved, required and necessary for a Salmonella to be called that? And how many of those genes would be essential for growth and survival of the bacteria? These questions are addressed in this and the next session. Here, we start with genes proposed to be essential for survival under laboratory conditions, based on experimental data.
\nTraditionally, targeted mutagenesis has been used to determine if a gene from a given Salmonella strain were essential for infection, an approach that restricted the analyses to low numbers of genes only. An alternative approach was published in 2004 (based on previously developed techniques) to identify larger numbers of essential genes, by insertion of conditional lethal mutations into random gene fragments in a S. typhimurium strain [7]. The conditional switch used here was growth temperature, while tetracycline-dependent expression was used by others [8], although they only reported findings for four essential genes. A few years later, transposon (Tn) mutagenesis combined with high-throughput sequencing became available and this was applied to S. enterica strains [9–12]. Typically, in this approach mutants are screened for growth in LB broth. With a sufficiently high density of transposon insertions, genes that have not received insertions can be considered essential, as their inactivation had resulted in mutants unable to multiply under the conditions applied. Yet another approach was followed by Thiele and coworkers, who used metabolic reconstruction (MR) to extract a list of essential genes in S. Typhimurium that could be possible drug targets [13].
\nThe experimental approaches reported in the literature are not without difficulties, as realized by their authors. For instance, polarity of transposon insertions in operons containing multiple genes can result in genes being scored as essential only because they are positioned downstream of an inactivated essential gene; attempts have been made to correct for this. Gene orthologs can further complicate findings, whereby one copy of an essential gene can be inactivated as long as a second copy remains intact. When an obtained mutant library is cultured for several generations, some mutants that originally survived will be removed from the population because their deletions are disadvantageous though not directly lethal. Such genes are typically scored as being under strong selection, an analysis that has been performed for S. Typhimurium strain ATCC 14028 and S. Thyphi strain Ty2 [11].
\nThat experimental wet-laboratory data can be controversial is demonstrated by the fact that 26 of the 28 genes in S. Typhimurium strain ATCC 14028 that Knuth and coworkers reported as essential [7] could nevertheless be inactivated by site-directed mutagenesis [14].
\nSome research groups selected for conditions more closely resembling natural conditions of infection, for instance growth at 42°C instead of 37°C, to resemble the body temperature of mice that S. Typhimurium would typically encounter, or in the presence of bile acid ([10], work conducted with strain ATCC 14028). Exposure to low pH has also been tested [8]. Moreover, even ‘essential’ genes can often endure a transposon insertion without complete loss of function. If only those genes would be scored as essential that were truly resistant to Tn insertions from high-throughput mutagenesis, the essential gene pool would be very small indeed: only 96 genes from S. Typhi strain Ty2 and 57 genes from S. Typhimurium strain SL3261 remained free of Tn insertions under conditions that were considered to have reached Tn saturation [12]. Thus, a small number of insertions can be permitted, even in genes considered essential for life in laboratory medium. Since the chance to receive a Tn insertion depends on gene length, a highly variable parameter, the number of observed insertions needs to be corrected for gene length [9]. This produces an insertion index, where the number of observed insertions is divided by gene length. In addition, a likelihood can be calculated from the ratio of observed versus expected number of Tn insertions, to predict the chance of a gene being essential [9, 12]. For this approach, a cutoff value is required, to bin genes as either essential or not. The problem with this is that the used parameter (likelihood P value, Tn-insertion index or both) is a continuously increasing value. This makes the choice of the cutoff inevitably arbitrarily: There is no biological reason why genes bordering this cutoff would or would not be essential.
\nTo illustrate the difficulty, we plotted the P value reported by Barquist and colleagues [12], who provided the most elaborate list of Tn mutants available to date (Figure 3). Panel A of the figure shows how the P value of all genes of S. Typhimurium steadily increases. Similar results are obtained for S. Typhi (not shown), and even for those genes that have very low P values, there is a continuous increase, as shown in Panel B. Note that in this figure, the log10 value was plotted for clarity, and the cutoff value corresponding to a P value of <0.05 is indicated by the red line. Clearly, this value is artificial, since there is no noticeable increment around this value.
The continuous increase of P values of Tn insertions. In Panel A, P values of all 4463 genes of S. Typhimurium are plotted. In Panel B, a selection of 2675 S. Typhimurium genes is shown with P values >0 but <0.1, plotted for the exponent (log10) of the P values for clarity. The red line indicates the cutoff of P < 0.05, corresponding with a log10 value of −1.3 that was used by the authors. Data after Ref. [12].
A slightly different picture emerges when the Tn-insertion index is plotted, as shown in Figure 4. Although the increase in this index is also continuous, the shape of the obtained curve is slightly sigmoidal at the beginning, suggesting a trend toward saturation of the index value around 0.03, before it increases again. This trend is stronger for S. Typhi (Panel 4A) than for S. Typhimurium (Panel 4B). Based on these findings, a cutoff value of 0.25 and 0.03 for the Tn index, respectively, might be appropriate for these species. We therefore recorded genes with a Tn index <0.25 for S. Typhi (n = 545 genes) and with a Tn index <0.30 for S. Typhimurium (n = 445), based on the data from Barquist and coworkers [12]. The Tn index of these genes is shown in Panels C and D of Figure 4. We further recorded the genes that Barquist and colleagues had originally selected (301 genes from S. Typhi and 299 for S. Typhimurium) which contained a reanalysis of the data from Langridge [9], as well as all genes previously identified as ‘essential’ by Knuth [7], Khatiwari [10], Canals [11] and Thiele [13], regardless of whether such genes were successfully inactivated by others. This produced an ‘all inclusive’ list of 847 genes putatively essential for growth and survival, or under strong selection, in LB medium. Relatively few genes were consistently recorded as essential by all or most authors; most genes were found in two independent approaches or were single findings (results not shown).
Analysis of transposon insertion frequency for genes of S. Typhi (left) and S. Typhimurium (right), based on data published by [12]. In Panels A and B, all genes are sorted for Tn index. The bottom Panels C and D show an enlargement of the part in the red square of A and B, respectively. For more explanation, see text.
A word of caution is needed here. It turned out to be rather cumbersome to identify the genes mentioned in the original published data (mostly using the supplementary tables provided with the publications) and to compare the findings with those of others, because genes were mostly described by gene names, which are by no means suitable as unique identifiers. For instance, the large operon for LPS-biosynthesis is called waa in S. Typhi but rfb in S. Typhimurium; the essential gene mrdA of E. coli is called that in S. typhimurium, but it is pbpA in S. Typhimurium. The gene that is called ribE in both Salmonella genomes is essential, but it is called ribC in E. coli, while ribE in the latter species is called ribH in Salmonella (also essential). This makes it very risky to assume two genes are the same if they have the same name, or different if they do not. In most reports, a short protein functional description is provided, which can assist in correct identification, but many genes have very general functional characteristics, or are of unknown function. In such cases, the only way to identify which gene was meant is to use the gene location, but even that information does not always prove to be sufficient, for instance, when authors have re-annotated a genome but did not make this annotation public.
\nIn conclusion, it is tedious and sometimes impossible to connect the findings from one study to those of another. Genes scored as ‘essential’ by one group can be inactivated without consequences on viability by another group. Moreover, most so-called essential genes endure a low number of transposon insertions without the loss of viability.
The second approach to identify essential genes in Salmonella is based on bioinformatical analysis of published genome sequences. If a gene is essential for growth, one can expect it to be strictly conserved between genomes, so a comparison on gene conservation can identify possible candidates. This is also not a completely unambiguous approach and depends on a number of choices that have to be made. For instance, one must define homologs between genomes in order to assess if genes are conserved, but this requires a defined percentage of homology that must be allowed and required for genes to be combined into a gene family. In addition, how should one deal with very short open reading frames, in other words, what is the minimum length of genes included, without adding too many artificial short open reading frames? And should one use original gene annotations, which is a transparent procedure that is easily reproducible, or is it better to re-annotate genomes using a standardized procedure to reduce variation? The latter approach produces more robust data as it no longer depends on variable gene calling, but it is less transparent when the used re-annotations are not made public. When core genomes are being defined from a set of highly different organisms, it may be required to allow for genes that are missing in a low number of analyzed genomes. However, when dealing with a single species, one could apply a strict requirement of presence in all genomes to produce a realistic core, especially if only fully sequenced genomes, re-annotated with a standardized algorithm, are included.
\nFor this chapter, we decided to use publically available annotations, to aim for maximum transparency, and we further illustrate the effect of different core genome definitions. The core genome was established based on the annotations of the 362 completely sequenced Salmonella enterica genomes that were used to construct Figure 2, complemented with the three S. bongori genomes. Protein-coding genes were binned into gene families by the use of the program USEARCH [15] such that members of each family have at least 50% sequence identity and at least 50% alignment length of the best hit against the centroid of the family. Using a strict definition of required presence in all analyzed genomes, a so-called 100% core genome could be identified that consisted of 1061 gene families. Although this seems an impressive number, it is lower than expected, probably because of variations in the used gene annotations. Based on our experience with core-genome determination from many bacterial genera, we were expecting the core genome of S. enterica to be larger, as the species contains relatively closely related organisms. Thus, we relaxed the requirement to allow gene presence in 344 or 95% of the investigated genomes. This produced a core genome of 3499 gene families, a size that is comparable with the preliminary core established for thousands of sequenced Salmonella genomes (S-R Jun and DW Ussery, unpublished data). We also constructed the core genome for S. bongori, but with only three genomes available, this core is relatively large, as a core genome usually decreases with an increasing number of included genomes. For the core genome of the complete Salmonella genus, these two datasets were combined. The results are summarized in Table 1.
\nTable 1 further lists that 11 genes from the 95% core were not annotated in the reference genome of the species typestrain S. enterica subsp enterica Typhimurium LT2. Originally, this number was much higher: There appeared to be 141 of the 3499 core genes missing in the annotated S. Typhimurium LT2 genome. However, when the DNA sequences of these genes were checked against the reference genome, 130 were actually present but not annotated. Thus, only 11 core genes remained that appear to be truly missing in the reference genome. This number did not change for core gene families based on S. enterica or the complete Salmonella genome (Table 1).
Dataset | Core genome size in 100% of dataset | Core genome size in 95% of dataset | Number of core genes missing in reference genome |
---|---|---|---|
362 S. enterica genomes | 1061 gene families | 3499 gene families | 11 core genes out of 3499 are missing in S. Typhimurium LT2 |
3 S. bongori genomes | 3368 gene families | 3368 gene families | n.a. |
365 Salmonella genomes | 1009 gene families | 3470 gene families | 11 core genes out of 3470 are missing in S. Typhimurium LT2 |
Core genome analysis based on 365 Salmonella genome sequences.
It was further checked if core gene families in the reference genome contained multiple entries, in other words, whether those core gene families contained orthologs or paralogs. This was the case for 120 gene families. When the function of these gene copies is interchangeable, these orthologs can be considered as ‘back-up’ copies, possibly maintained in the genome to protect against loss of essential function; alternatively, the genome can contain orthologs to allow for a higher production of the gene product. The multiple copies of the ribosomal RNA genes would be a nice example of the latter, though they are not captured in our core genome analysis, which was restricted to protein-coding genes only. To give another example, multiple copies of ferric enterobactin (enterochelin) transporters were found. Such orthologs of essential genes can complicate the outcome of in vitro mutagenesis analyses, as discussed above. However, not all orthologous genes are duplicated because they are essential, so it is not a predictive characteristic.
\nThe genomes used for Table 1 were not only used to select conserved core genomes, but also to define the pan genome, containing all gene families of the Salmonella genus. This is visually represented in Figure 5. The pan genome increases in size until approximately 180 genomes have been added, at which stage it reaches a plateau and is hardly affected by addition of further S. enterica genomes. It increases again when S. enterica Infantis and especially when S.bongori genomes are added, as these introduce novel gene families to the pan genome. Panel B of Figure 5 illustrates the validity of defining a 95% core, instead of applying the strict requirement of presence in 100% of all genomes. The 100% core genome steadily decreases with the cumulative addition of the genomes analyzed here (the order of the genomes is the same as for Panel A) and decreases sharply to approximately 1000 gene families after addition of the S. bongori genomes. Instead, in the 95%, core genome is quite robust and remains more or less constant at around 3470 gene families (Figure 5).
Pan-core plots based on 365 Salmonella genomes. Panel A shows the pan genome of Salmonella, with S. bongori added last. Panel B shows the core genome of the 365 Salmonella genomes with 95 and 100% conservation.
As was discussed in the previous section, the literature findings on essential genes are often controversial, for reasons discussed, while core genome determination is also not without caveats. Importantly, one can assume that all genes required for growth in LB medium must be conserved in all genomes and thus be part of the core, though the reverse may not be true: Not all core genes will be essential for growth and survival under these laboratory conditions. Therefore, we checked which of the essential genes reported in the literature were actually present in the core genome. For this, we used the 95% core genome, though core genes missing in the original annotation of the reference genome of S. Typhimurium LT2 were added manually. A total of 683 core genes could with reasonable confidence be identified that at least by one approach was found as putatively essential (results not shown). Conversely, of the 870 genes that were identified as essential by any of the methods discussed in the previous section, 694 were identified as part of the 95% core. The least reliable prediction of ‘essential’ genes turned out to be a low P value of Tn insertion, as this contained the highest fraction of genes that were not part of the core.
This chapter started with a comparison of all Enterobacteriaceae, to illustrate the close relationship between Salmonella, Citrobacter and Escherichia. But how close are Salmonella and Escherichia, in terms of conserved proteins? To address this question, the core genes of S. enterica Typhimurium LT2 (the type strain of the species) were compared to the core genes recently defined for E. coli (using the same definitions and parameters) [16], which we applied to the species typestrain E. coli DSM 30083. As reported in Table 1, the 95% core genome of all Salmonella comprises 3470 gene families, of which 11 are missing in Typhimurium LT2. This strain thus contains 3459 core gene families, while the E. coli typestrain contains 3100 core gene families. When these were compared, it was found that 2615 of these are shared, which corresponds to 75.6% of the S. Typhimurium LT2 core gene families, 84.4% of E. coli DSM 30083 and 66.3% of the total gene families assessed for these two species. This is illustrated in Panel A of Figure 6. The definition for gene families applied here is the same as for Table 1 and Figure 5, but as explained above, this requires a defined cutoff for sequence similarity. The biological function of proteins is mostly defined by their functional domains, which is sometimes only a fraction of the total protein sequence. Thus, we narrowed this analysis down, to define the common core genome based on functional domains only, using Pfam domains. Since a Pfam domain is not described for all core genes, there were fewer domains captured in this comparison (2416 for S. typhimurium LT2 and 2263 for E. coli DSM 30083). Panel B of Figure 6 shows that there are 2142 shared protein domains, corresponding to 88.7% of the S. Typhimurium LT2 core proteins, 94.7% of the E. coli DSM 30083 core proteins, and 84.4% of the total number of functional domains captured here. Interestingly, the fractions of shared core genes and shared functional domains are larger for the E. coli typestrain than for the Salmonella enterica typestrain. We believe this is caused by the larger diversity of the E. coli species, compared to S. enterica. As a consequence, the core genome of E. coli is smaller, even at 95%, which means a larger fraction of these is shared with S. enterica.
Comparison of Salmonella and E. coli core genes, using the type strains for both species. Panel A shows the size and overlap of the core gene families. Panel B shows the comparison using PfamA domains. Panel C summarizes how many metabolic pathways are shared in the Salmonella and E. coli cores.
We further investigated the functions of the Salmonella core gene families in S. Typhimurium LT2 and found that most of them related to cellular metabolism. The core genome of S.Typhimurium LT2 was mapped to the genome-scale metabolic model SMT_v1.0 [13], which resulted in a total of 1271 genes and 2545 metabolic reactions. As shown in Panel C of Figure 6, 1012 genes from the S. Typhimurium LT2 core genome have a metabolic function (~80% of total genes in the model) and these account for 2358 metabolic reactions (93% of total reactions in the model). When comparing this with the E. coli core genome, S. Typhimurium LT2 has 156 unique metabolic genes, responsible for 452 metabolic reactions. The unique metabolic reactions that were identified here are mostly involved in transport systems across the inner membrane as well as the outer membrane (porins), specific transport of inorganic ions, and the recycling of lipopolysaccharide biosynthesis components. Such analyses can share light on the biochemical and metabolic properties that Salmonella is specialized in, related to its intracellular lifestyle.
So far, all analyses were based on the annotated proteomes of the Salmonella genomes, but genes that code for RNA as the final product should not be ignored. A genome annotation would not be complete without its ribosomal RNA genes, coding for 5S, 16S and 23S RNA, as well as the tRNA genes. Salmonella enterica contains 7 rrn operons, which is more than can be found in many bacterial species but certainly is not a maximum, as some soil bacteria can contain up to 15 copies of the rRNA genes. The number of rrn copies of bacterial species has been related to their capacity to change their metabolism to use available resources [17]. Although it is often assumed that these gene duplications are all identical, in fact some degree of sequence variation can be observed, even within a genome. For Salmonella, it was reported that the gene encoding 16S rRNA (which is typically used for taxonomic description) is conserved for 97% only [18]. The gene coding for 23S rRNA is also not strictly conserved in Salmonella, as it contains both point mutations and indels [19].
\nThe number of tRNA genes present in the Salmonella reference genome is 85, representing 47 different tRNA molecules that together cover the 40 required anticodons [20]. These numbers can vary between genomes and serovars. But these are not the only bacterial genes that are never translated into protein. In addition to essential RNA genes such as the gene coding for tmRNA (transfer-messenger RNA, required for correct protein translation), it is now recognized that bacterial genomes contain a large number of small RNA genes (sRNA) that are not always annotated. These are often involved in post-transcriptional regulation of gene expression [21]. As a final analysis, we decided to assess the conservation of these, incorrectly neglected, RNA genes.
\nThe bioinformatic analysis performed was based on a publication where transcription start sites were identified from 31 Salmonella genomes [22]. We analyzed those 113 RNA genes in the 201 completely sequenced genomes. For this analysis, we excluded the nearly completed sequences that had been included in the analyses resulting in Figures 2 and 5, because genome assembly is biased toward protein-coding regions, so that regions on which sRNA genes may reside are likely to be missed, unless a genome is truly completed. For comparison, eight other Enterobacteriaceae were included. The results are presented in a matrix heat map (Figure 7). Based on their sRNA content, most of the genomes neatly clustered according to their serotype, with only few exceptions. Interestingly, the genomes of strains FORC-015 and FORC-020, which are annotated as Typhimurium, are placed outside the Typhimurium cluster in Figure 7, and these were also placed outside the main Typhimurium cluster in the AAI tree of Figure 2. Thus, it can be questioned if the serotype of these two strains was correctly identified. That most of the Salmonella genomes are nicely clustered according to their serotype in Figure 7 is surprising, as the nonprotein coding sRNA genes analyzed here do not have a specific role in expression of surface antigens. The correlation identified here is in line with a publication that sRNA genes can be used as targets for serotype-specific PCR detection of Typhi and Paratyphi [23]. It was recently described that some sRNA genes of S. Typhimurium are under regulation of Sigma 28, and there is extensive cross talk between genes of the Salmonella pathogenicity pathways SPI1 and SPI2 and particular sRNA genes [24]. In this context, it is surprising that the sRNA genes are so strongly conserved throughout the Salmonella genomes (illustrated by the dominant red in Figure 7), whereas the presence of SPIs widely varies across serotypes [24]. This suggests that sRNA genes are strongly conserved and may well belong to the collection of essential genes, though this has not yet been experimentally demonstrated. The analysis further showed that the sRNA genes are specific for the Salmonella genus, and bear relatively little resemblance with the other Enterobacteriacea members included at the bottom of the figure.
Conserved sRNAs across 201 Salmonella genomes. The tree to the left mostly clusters serotypes together, based on their sRNA genes. Two wrongly placed S. Typhimurium genomes are pointed out by the arrows to the right. The tree at the top identifies clusters of related sRNA genes. The eight genomes at the bottom are from other Enterobacteriaceae.
Based on genomic average amino acid identity (AAI), Salmonella genomes appear as a distinct clade within the enterics, closely related to the Citrobacter genus. The serovars of S.enterica subsp. enterica generally cluster together when analyzed for AAI. There is a stable core set of about 3400 gene families, found in nearly all Salmonella enterica genomes, and these genes are on average 99% or more identical to each other across all the Salmonella genomes. Further, many of these genes seem to be involved in metabolic processes, and the core genes account for about 80% of the total genes of the Salmonella genome-scale metabolic model. Finally, we examined small RNA conservation and found the same clustering of outlier genomes (e.g., particular S. Typhimurium strains) that were observed in the AAI analysis.
This work has been funded in part by The Arkansas Research Alliance and UAMS.
Whatever its cause, pain, both acute and chronic, often emerges from multiple pathogenic pathways [1], which makes drug treatment particularly difficult [2]. In recent decades, the pharmacological arsenal against pain, in addition to traditional nonsteroidal anti-inflammatory drugs (NSAIDs) and paracetamol, has been enriched, on the one hand with molecules operating on different pain mechanisms (as anticonvulsants and antidepressants), and on the other hand with opioids [3]. However, the single-agent approach to pain remains quite challenging, since a single drug, acting on a single pain component, is generally not successful to achieve a clinically meaningful pain reduction, whereas its use at high doses may cause significant side effects [2]. On the other hand, the increasing prescription of opioids for noncancer chronic pain, besides providing limited clinical advantage compared with non-opioid alternatives [4], has opened the door to problematic opioid use and addiction problems: up to 50% of patients on long-term opioid therapy develop physical dependence or tolerance, leading to problematic opioid use in 5–10% of patients and to addiction in 1–2% [5]. As a consequence, pain management is far from being optimal and patients are exposed to the risks associated with misuse of single agents [6, 7].
Considering the complexity of pain pathogenesis, which involves multiple pathways [1], and the difficulty to reach complete symptoms control, especially for chronic pain which still affects 25–35% of adults in Europe [8], multimodal pharmacological analgesia may represent a possible solution to the still unsolved problem of pain management, thanks to a number of potential advantages: first, a decrease of the administered doses of the individual components; second, the reduction of side effects; and third, a simultaneous action on different pain components [9]. Thanks to these features, multimodal pharmacological therapy gives clinicians the opportunity to make a further step forward to a fully individualized therapy of pain in its various components and clinical manifestations [3].
In this chapter, we will present the therapeutic strategies currently available to address the specific needs in the treatment of different painful conditions and the new possibilities for pain intervention according to the multimodal approach.
Despite the multiple treatment options available, pain remains a mostly unresolved topic in every day clinical practice. The analgesic efficacy of single drug treatment is often not sufficient to provide an adequate pain relief, since most analgesic drugs cannot be prescribed at unlimited doses due to the ceiling effect and safety concerns. Another limitation of single-agent analgesia is that it cannot address the multiple pathways underlying pain pathogenesis. Combining drugs from different classes, with different and complementary mechanisms of action, may provide a better opportunity for effective analgesia at reduced doses of individual agents, with a potential reduction of dose-related adverse events.
Based on these considerations, clinical practice is gradually moving from a traditional one-fits-all approach to a more tailored strategy. The traditional approach to pain management refers to the three-step World Health Organization (WHO) pain ladder, which recommends the following regimen, based on the intensity of the patient’s pain [10]:
Step I: a non-opioid analgesic should be used for moderate pain, with co-analgesics if necessary.
Step II: if pain persists or increases, a weak opioid may be added.
Step III: if pain still persists, then a change should be made to a strong opioid.
By contrast, newer guidelines aim at treating pain according to the mechanism or mechanisms involved, i.e., neuropathic, nociceptive, or a combination of both [11]. Clinicians should seek to identify the basic pain mechanisms and treat the patient, accordingly, choosing the drug with the most appropriate mechanism of action [6].
Pain is a complex construct with sophisticated transmission pathways in the nervous system, which can be altered physiologically or pharmacologically [2]. Modulation of the transmission of pain can be divided into three approaches:
Modulating the upward transmission
Altering perception centrally
Modulating descending inhibitory pathways
Intervening in all three areas with multiple drugs is more effective than single drug treatment, and it allows to reduce the total dose of any one drug, thereby limiting unwanted effects [9].
Different drugs act at different areas:
Peripherally acting drugs:
Local anesthetics
NSAIDS
Drugs acting in the spinal cord:
Opiates
NSAIDS
N-methyl-D-aspartate (NMDA) receptor antagonists
Gabapentinoids
Drugs acting centrally:
Opiates
Paracetamol
Drugs acting on descending pathways:
Tramadol
Clonidine
5HT3 antagonists
The principle of multimedia analgesia is the use of a number of drugs (analgesic or adjuvant) in combination to achieve the best pain relief in acute or chronic pain. Combining analgesics that act by different mechanisms of action allows modulating multiple transmission pathways and enables individual agents to act with potentially additive or synergistic effects [12].
Multimodal analgesia is widely acknowledged to be superior to a single drug approach, having demonstrated improved pain relief, with the fewest side effects [2]. This concept was pharmacologically studied in the 1960s by Houde et al. [13], then clinically suggested (especially in postoperative pain) in the 1980s [14], and a few years later diffused by Kehlet and Dahl [9], who first introduced the term “multimodal” or “blended” analgesia. Since then, multimodal analgesia has been deeply studied, demonstrating a broader spectrum of action, greater efficacy, better patient compliance, and an improved efficacy/safety ratio compared with monotherapy [12]. As a result, analgesic combinations are recommended by the WHO, American Pain Society (APS), and American College of Rheumatology (ACR) [15, 16, 17] and are commonly used in clinical practice. As regards the ease of use, fixed-dose combinations (FDCs) may offer additional advantages, including ease of administration, reduction of pill burden, and improved adherence [18].
The pharmacological therapeutic approach of multimodal analgesia includes all the frontline drugs available, used alone or in combination according to the specific needs of the patient [19].
Drugs for pain control fall into four main categories [20]:
weak analgesics (paracetamol and metamizole)
NSAIDs (ibuprofen, diclofenac, ketoprofen, and dexketoprofen)
opioids (morphine, hydromorphone, and oxycodone)
adjuvant drugs (antidepressant, antiepileptic medications, corticosteroids, colchicine, neurotrophine, and biologic drugs)
The choice of the most appropriate drug combination should consider the pathogenic mechanisms of pain and satisfy the following criteria:
The drugs to be combined should have different mechanisms of action and preferably act at different sites;
The drugs to be combined should not interfere with the preexisting comorbidities of the patient; and
FDCs should be preferred, if available, aiming at improving patient adherence to therapy.
Different drugs with different mechanism(s) of action may be combined for enhanced efficacy [20]. Analgesics relieve pain through a variety of mechanisms of action along multiple sites of the nociceptive pathway (Table 1) [3].
Drug | Mechanism of action |
---|---|
Paracetamol | Inhibits prostaglandin synthesis in the central nervous system. |
NSAIDs | Inhibit prostaglandin production by blocking cyclooxygenase both peripherally and centrally. |
Opioids | Have multiple sites of action:
|
Anticonvulsants | Inhibit high-frequency neuronal firing by blocking sodium channels and reducing neuron hyperexcitability. |
NMDA-receptor antagonists (ketamine) | Bind to the NMDA receptor, thereby inhibiting glutamate activation. Glutamate is an excitatory amino acid found in laminae I, II, and III of the dorsal horn of the spinal cord, where it activates primary afferent neurons. |
Alpha-2 adrenergic agonists | Act on the descending pain pathways supra-spinally, activating receptors to stimulate acetylcholine release, and on the ascending pain pathways, by inhibiting substance P release from the primary afferent neurons, thus reducing transmission of pain. |
Antidepressants | Alter neurotransmitters that affect pain pathways by inhibiting presynaptic neuronal reuptake of serotonin and norepinephrine at the descending pain pathway, resulting in improved inhibition of pain. |
Mechanism of action of different analgesics (elaborated from text in Ref. [3]).
Analgesic combinations are currently recommended by several guidelines and are used in clinical practice [21]. In patients with moderate-to-severe pain, the general recommendation is the combination of opioid and non-opioid analgesics [22]:
Among the possible combinations, paracetamol has been associated with weak (e.g., codeine or tramadol) or strong (e.g., morphine or oxycodone) opioids. Besides being less effective than NSAIDs [23, 24], paracetamol may cause gastrointestinal (GI), cardiovascular (CV), and hepatic adverse effects [25, 26].
NSAID/opioid combinations have the advantage of anti-inflammatory and additive analgesic effect, along with a well-demonstrated opioid-sparing activity [27]. Currently available NSAID/opioid FDCs include:
Hydrocodone/ibuprofen (7.5/400 mg) and oxycodone/ibuprofen (5/400 mg) are two oral, fixed-dose combination formulations, approved for the short-term management of acute, moderate-to-severe pain. A single tablet provided better analgesia than low-dose hydrocodone/oxycodone or ibuprofen administered alone, in most trials, and appeared to be more effective than a single dose of some other fixed-dose combination analgesics [28, 29, 30, 31].
An FDC of the fast-acting NSAID, dexketoprofen trometamol, and the long-acting opioid, tramadol hydrochloride, have been recently developed to generate multimodal analgesia at lower and better tolerated doses than those of the single agents used alone. The different modes and sites of action of the two components, together with their complementary pharmacokinetic profiles, and the lower incidence of the typical side effects of each class [32, 33, 34, 35] provides physicians with an effective and safe analgesic for the treatment of moderate-to-severe acute pain [36]. This FDC provides a comprehensive multimodal approach for moderate-to-severe acute pain, thanks to the central analgesic effect, peripheral analgesic action, and anti-inflammatory activity [21].
Thanks to the possibility to minimize drug dosages optimizing efficacy, multimodal therapy is useful in various medical field, from acute pain management to post-trauma or postsurgical pain treatment, besides control of chronic pain and its exacerbations or reduction of pain associated with post-immobilization rehabilitation [19]. Each type of pain requires a specific analgesic therapy, which should also be personalized according to the patient’s profile. The main applications of multimodal therapy to different pain conditions are the following.
Given the multiplicity of mechanisms responsible for MP, the combination of analgesics with different mechanisms of action for the relief of acute and chronic skeletal muscle pain is often recommended, with the possible advantage of pharmacokinetic synergy and improved patient adherence.
The main pharmacological associations currently available for the treatment of MP are [19]:
codeine 30 mg + paracetamol 500 mg,
ibuprofen 150 mg + paracetamol 500 mg,
codeine 30 mg + ibuprofen 400 mg,
tramadol 37.5 mg + paracetamol 325 mg,
tramadol 75 mg + dexketoprofen 25 mg, and
oxycodone 5 mg (10 and 20 mg) + paracetamol 325 mg.
For all these combinations, careful monitoring must be performed in order to assess whether continuation of therapy, suspension, or transition to a strong opioid is necessary [19].
Pain associated with rheumatologic conditions has a strong peripheral nociceptive component, although recent data also suggest a central sensitization [37]. Ideal treatment of rheumatic pain should be through a multimodal approach, integrating non-pharmacologic and pharmacologic treatments [38]. In the context of rheumatological painful conditions, the association of dexketoprofen and tramadol may represent an attractive medication for acute exacerbations of OA pain, due to its pharmacological profile: the combination of dexketoprofen and tramadol, targeting different sites of action, is suitable for OA type of pain, arising from different body structures (joints, muscles, ligaments, etc.) [21]. The rapid onset of analgesic effect of dexketoprofen, with its anti-inflammatory activity, associated to the sustained action of tramadol, makes their combination a valuable tool to achieve multimodal analgesia in OA patients [21].
Back problems are the third reason for seeking medical help, with about 90% of people suffering from them at some point in their lives [39, 40]. Most episodes of back pain are short lasting with little or no consequence, but recurrent episodes are common and back pain is increasingly understood as a long-lasting condition with a variable course rather than episodes of unrelated occurrences [41]. The complexity of chronic back pain management highlights the need for early intervention in patients with acute back pain in order to prevent progression to chronic back pain [42]. Chronic low back pain has been shown to be secondary to both neuropathic and nociceptive pain mechanisms [43]: a multimodal approach is therefore appropriate. The pain treatment armamentarium for both acute and chronic back pain includes NSAIDs, opioids, steroids, topical medicines, and adjuvants: the choice of medication depends on a number of factors, including the duration of symptoms, severity of symptoms, expected benefits, prior response to medications, adverse effect profile, presence of comorbidities, costs, and degree of supporting evidence [44]. Most guidelines endorse (NSAIDs) and weak opioids for short periods when there is contraindication or lack of improvement with NSAIDs [45].
Fibromyalgia is mainly a centralized pain disorder, accompanied by fatigue, sleep disturbance, and memory and mood difficulties [43]. Effective drugs combinations for this condition include tramadol + paracetamol [46], cyclobenzaprine + fluoxetine [47], pregabalin added to either quetiapine or trazodone [48], and fluoxetine + amitriptyline [49].
Surgical pain may be nociceptive, neuropathic, mixed, psychogenic, or idiopathic, depending on the surgical procedure. The value of balanced analgesia in treating postoperative pain was recognized by Kehlet and Dahl [9] over two decades ago. Non-opioid analgesics are the cornerstone of postsurgical pain multimodal management: in addition to their opioid-sparing effects, many of these agents are highly effective in reducing postoperative pain and allowing for faster mobilization [50].
Many current multimodal protocols include paracetamol [51, 52, 53], based on its opioid-sparing effects, despite the risk of GI, CV, and hepatic adverse events [25, 26].
NSAIDs represent another class of medication that is highly effective for perioperative pain management: despite concerns about the increased risk of postoperative bleeding with NSAIDs, a meta-analysis revealed that ketorolac does not increase the risk of perioperative bleeding [54]. Nevertheless, this drug has shown several other side effects. Preoperative COX inhibitors (primarily selective COX-2 inhibitors) [55] and postoperative nonselective and selective NSAIDs [56] have been associated with reduced postoperative opioid consumption [57]. The combination of NSAIDs with opioids represents another tool to limit opioid use: in particular, the combination dexketoprofen/tramadol was shown to be superior vs. single components in terms of control of moderate-to-severe acute pain after abdominal hysterectomy [58] and total hip arthroplasty [59], with a safety profile fully in line with that previously known for the single agents in monotherapy. Recently, the analgesic efficacy of dexketoprofen/tramadol was compared in a head-to-head study (DAVID study) to that of tramadol/paracetamol combination in moderate-to-severe pain following surgical removal of impacted lower third molar, showing the greatest sustained analgesia during the 6-hour post dose period [60].
Another class of analgesics commonly used in multimodal analgesic protocols is the gabapentinoids, which include gabapentin and pregabalin. Meta-analyses have demonstrated that gabapentin [61] and pregabalin [62] improve postoperative pain when part of a multimodal regimen but are associated with sedation, particularly in elderly patients.
Other agents to consider in multimodal protocols include NMDA antagonists, such as ketamine. Ketamine has a clear opioid-sparing effect in the perioperative period [63] and may reduce long-term opioid consumption in opioid-tolerant patients [64] as well as persistent postsurgical pain when used intravenously [65].
Multimodal and preemptive analgesia as part of an ERAS (Enhanced Recovery after Surgery) protocol facilitates early mobility and early return of bowel function and decreases postoperative morbidity [66].
The International Association for the Study of Pain defines neuropathic pain as “Pain caused by a lesion or disease of the somatosensory system.” This includes central disorders (e.g., spinal cord injury pain, multiple sclerosis pain, and poststroke thalamic pain) as well as peripheral disorders (e.g., diabetic neuropathy and postherpetic neuralgia) [43].
Both tricyclic antidepressants and gabapentinoids are proposed as firstline agents for neuropathic pain [67]. These medications have completely different mechanisms of actions:
gabapentinoids are alpha-2-delta calcium channel modulators;
tricyclic antidepressants have multiple mechanisms of action, including norepinephrine and serotonin reuptake inhibition, and so are logical candidates for combination therapy.
Opioids and gabapentinoids were also studied for neuropathic pain and the combination was found to be positive [68, 69, 70]. However, given the limited trial size and the short duration of the studies conducted so far, it is not possible to make recommendations for any specific combination for neuropathic pain [43].
As illustrated above, in recent years, the WHO ladder approach has gradually been replaced with the multimodal approach, customized from patient to patient taking into account the characteristics of pain (based on pain generator, its cause, type, and intensity) and patient comorbidity. This allows to control not only chronic pain but also its exacerbations, through the association to long-term analgesic therapy of additional drugs for acute pain as needed. In this respect, multimodal therapy represents a useful tool, not only for specialists but for general practitioners as well to personalize analgesic treatment according to the patient’s characteristics and needs [71].
The availability of FDCs of most recommended combinations may help in the implementation of multimodal analgesia in clinical practice, improving patient adherence to treatment and contributing to the optimization of pain management.
The authors are particularly grateful to ContentEdNet for the editorial support. Editing has also been supported by Paolo Procacci Foundation (Via Tacito 7, 00193 Roma, Italy).
The authors do not have any potential conflict of interest related to this chapter.
As an Open Access publisher, IntechOpen is dedicated to maintaining the highest ethical standards and principles in publishing. In addition, IntechOpen promotes the highest standards of integrity and ethical behavior in scientific research and peer-review. To maintain these principles IntechOpen has developed basic guidelines to facilitate the avoidance of Conflicts of Interest.
",metaTitle:"Conflicts of Interest Policy",metaDescription:"As an Open Access publisher, IntechOpen is dedicated to maintaining the highest ethical standards and principles in publishing. In addition, IntechOpen promotes the highest standards of integrity and ethical behavior in scientific research and peer-review.",metaKeywords:null,canonicalURL:"/page/conflicts-of-interest-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"In each instance of a possible Conflict of Interest, IntechOpen aims to disclose the situation in as transparent a way as possible in order to allow readers to judge whether a particular potential Conflict of Interest has influenced the Work of any individual Author, Editor, or Reviewer. IntechOpen takes all possible Conflicts of Interest into account during the review process and ensures maximum transparency in implementing its policies.
\\n\\nA Conflict of Interest is a situation in which a person's professional judgment may be influenced by a range of factors, including financial gain, material interest, or some other personal or professional interest. For IntechOpen as a publisher, it is essential that all possible Conflicts of Interest are avoided. Each contributor, whether an Author, Editor, or Reviewer, who suspects they may have a Conflict of Interest, is obliged to declare that concern in order to make the publisher and the readership aware of any potential influence on the work being undertaken.
\\n\\nA Conflict of Interest can be identified at different phases of the publishing process.
\\n\\nIntechOpen requires:
\\n\\nCONFLICT OF INTEREST - AUTHOR
\\n\\nAll Authors are obliged to declare every existing or potential Conflict of Interest, including financial or personal factors, as well as any relationship which could influence their scientific work. Authors must declare Conflicts of Interest at the time of manuscript submission, although they may exceptionally do so at any point during manuscript review. For jointly prepared manuscripts, the corresponding Author is obliged to declare potential Conflicts of Interest of any other Authors who have contributed to the manuscript.
\\n\\nCONFLICT OF INTEREST – ACADEMIC EDITOR
\\n\\nEditors can also have Conflicts of Interest. Editors are expected to maintain the highest standards of conduct, which are outlined in our Best Practice Guidelines (templates for Best Practice Guidelines). Among other obligations, it is essential that Editors make transparent declarations of any possible Conflicts of Interest that they might have.
\\n\\nAvoidance Measures for Academic Editors of Conflicts of Interest:
\\n\\nFor manuscripts submitted by the Academic Editor (or a scientific advisor), an appropriate person will be appointed to handle and evaluate the manuscript. The appointed handling Editor's identity will not be disclosed to the Author in order to maintain impartiality and anonymity of the review.
\\n\\nIf a manuscript is submitted by an Author who is a member of an Academic Editor's family or is personally or professionally related to the Academic Editor in any way, either as a friend, colleague, student or mentor, the work will be handled by a different Academic Editor who is not in any way connected to the Author.
\\n\\nCONFLICT OF INTEREST - REVIEWER
\\n\\nAll Reviewers are required to declare possible Conflicts of Interest at the beginning of the evaluation process. If a Reviewer feels he or she might have any material, financial or any other conflict of interest with regards to the manuscript being reviewed, he or she is required to declare such concern and, if necessary, request exclusion from any further involvement in the evaluation process. A Reviewer's potential Conflicts of Interest are declared in the review report and presented to the Academic Editor, who then assesses whether or not the declared potential or actual Conflicts of Interest had, or could be perceived to have had, any significant impact on the review itself.
\\n\\nEXAMPLES OF CONFLICTS OF INTEREST:
\\n\\nFINANCIAL AND MATERIAL
\\n\\nNON-FINANCIAL
\\n\\nAuthors are required to declare all potentially relevant non-financial, financial and material Conflicts of Interest that may have had an influence on their scientific work.
\\n\\nAcademic Editors and Reviewers are required to declare any non-financial, financial and material Conflicts of Interest that could influence their fair and balanced evaluation of manuscripts. If such conflict exists with regards to a submitted manuscript, Academic Editors and Reviewers should exclude themselves from handling it.
\\n\\nAll Authors, Academic Editors, and Reviewers are required to declare all possible financial and material Conflicts of Interest in the last five years, although it is advisable to declare less recent Conflicts of Interest as well.
\\n\\nEXAMPLES:
\\n\\nAuthors should declare if they were or they still are Academic Editors of the publications in which they wish to publish their work.
\\n\\nAuthors should declare if they are board members of an organization that could benefit financially or materially from the publication of their work.
\\n\\nAcademic Editors should declare if they were coauthors or they have worked on the research project with the Author who has submitted a manuscript.
\\n\\nAcademic Editors should declare if the Author of a submitted manuscript is affiliated with the same department, faculty, institute, or company as they are.
\\n\\nPolicy last updated: 2016-06-09
\\n"}]'},components:[{type:"htmlEditorComponent",content:"In each instance of a possible Conflict of Interest, IntechOpen aims to disclose the situation in as transparent a way as possible in order to allow readers to judge whether a particular potential Conflict of Interest has influenced the Work of any individual Author, Editor, or Reviewer. IntechOpen takes all possible Conflicts of Interest into account during the review process and ensures maximum transparency in implementing its policies.
\n\nA Conflict of Interest is a situation in which a person's professional judgment may be influenced by a range of factors, including financial gain, material interest, or some other personal or professional interest. For IntechOpen as a publisher, it is essential that all possible Conflicts of Interest are avoided. Each contributor, whether an Author, Editor, or Reviewer, who suspects they may have a Conflict of Interest, is obliged to declare that concern in order to make the publisher and the readership aware of any potential influence on the work being undertaken.
\n\nA Conflict of Interest can be identified at different phases of the publishing process.
\n\nIntechOpen requires:
\n\nCONFLICT OF INTEREST - AUTHOR
\n\nAll Authors are obliged to declare every existing or potential Conflict of Interest, including financial or personal factors, as well as any relationship which could influence their scientific work. Authors must declare Conflicts of Interest at the time of manuscript submission, although they may exceptionally do so at any point during manuscript review. For jointly prepared manuscripts, the corresponding Author is obliged to declare potential Conflicts of Interest of any other Authors who have contributed to the manuscript.
\n\nCONFLICT OF INTEREST – ACADEMIC EDITOR
\n\nEditors can also have Conflicts of Interest. Editors are expected to maintain the highest standards of conduct, which are outlined in our Best Practice Guidelines (templates for Best Practice Guidelines). Among other obligations, it is essential that Editors make transparent declarations of any possible Conflicts of Interest that they might have.
\n\nAvoidance Measures for Academic Editors of Conflicts of Interest:
\n\nFor manuscripts submitted by the Academic Editor (or a scientific advisor), an appropriate person will be appointed to handle and evaluate the manuscript. The appointed handling Editor's identity will not be disclosed to the Author in order to maintain impartiality and anonymity of the review.
\n\nIf a manuscript is submitted by an Author who is a member of an Academic Editor's family or is personally or professionally related to the Academic Editor in any way, either as a friend, colleague, student or mentor, the work will be handled by a different Academic Editor who is not in any way connected to the Author.
\n\nCONFLICT OF INTEREST - REVIEWER
\n\nAll Reviewers are required to declare possible Conflicts of Interest at the beginning of the evaluation process. If a Reviewer feels he or she might have any material, financial or any other conflict of interest with regards to the manuscript being reviewed, he or she is required to declare such concern and, if necessary, request exclusion from any further involvement in the evaluation process. A Reviewer's potential Conflicts of Interest are declared in the review report and presented to the Academic Editor, who then assesses whether or not the declared potential or actual Conflicts of Interest had, or could be perceived to have had, any significant impact on the review itself.
\n\nEXAMPLES OF CONFLICTS OF INTEREST:
\n\nFINANCIAL AND MATERIAL
\n\nNON-FINANCIAL
\n\nAuthors are required to declare all potentially relevant non-financial, financial and material Conflicts of Interest that may have had an influence on their scientific work.
\n\nAcademic Editors and Reviewers are required to declare any non-financial, financial and material Conflicts of Interest that could influence their fair and balanced evaluation of manuscripts. If such conflict exists with regards to a submitted manuscript, Academic Editors and Reviewers should exclude themselves from handling it.
\n\nAll Authors, Academic Editors, and Reviewers are required to declare all possible financial and material Conflicts of Interest in the last five years, although it is advisable to declare less recent Conflicts of Interest as well.
\n\nEXAMPLES:
\n\nAuthors should declare if they were or they still are Academic Editors of the publications in which they wish to publish their work.
\n\nAuthors should declare if they are board members of an organization that could benefit financially or materially from the publication of their work.
\n\nAcademic Editors should declare if they were coauthors or they have worked on the research project with the Author who has submitted a manuscript.
\n\nAcademic Editors should declare if the Author of a submitted manuscript is affiliated with the same department, faculty, institute, or company as they are.
\n\nPolicy last updated: 2016-06-09
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5699},{group:"region",caption:"Middle and South America",value:2,count:5172},{group:"region",caption:"Africa",value:3,count:1689},{group:"region",caption:"Asia",value:4,count:10244},{group:"region",caption:"Australia and Oceania",value:5,count:888},{group:"region",caption:"Europe",value:6,count:15650}],offset:12,limit:12,total:117315},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"16"},books:[{type:"book",id:"7829",title:"Psychosis - Phenomenology, Psychopathology and Pathophysiology",subtitle:null,isOpenForSubmission:!0,hash:"a211068a33e47af974e3823f33feaa43",slug:null,bookSignature:"Dr. Kenjiro Fukao",coverURL:"https://cdn.intechopen.com/books/images_new/7829.jpg",editedByType:null,editors:[{id:"32519",title:"Dr.",name:"Kenjiro",surname:"Fukao",slug:"kenjiro-fukao",fullName:"Kenjiro Fukao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9016",title:"Psychoneuroendocrinology",subtitle:null,isOpenForSubmission:!0,hash:"cb4ce09b8e853bef06c572df42933500",slug:null,bookSignature:"Dr. Ifigenia Kostoglou-Athanassiou",coverURL:"https://cdn.intechopen.com/books/images_new/9016.jpg",editedByType:null,editors:[{id:"307495",title:"Dr.",name:"Ifigenia",surname:"Kostoglou-Athanassiou",slug:"ifigenia-kostoglou-athanassiou",fullName:"Ifigenia Kostoglou-Athanassiou"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9046",title:"Amyloidosis History and Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"371a4ad514bb6d6703406741702a19d0",slug:null,bookSignature:"Dr. Jonathan Harrison",coverURL:"https://cdn.intechopen.com/books/images_new/9046.jpg",editedByType:null,editors:[{id:"340843",title:"Dr.",name:"Jonathan",surname:"Harrison",slug:"jonathan-harrison",fullName:"Jonathan Harrison"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9493",title:"Periodontology - Fundamentals and Clinical Features",subtitle:null,isOpenForSubmission:!0,hash:"dfe986c764d6c82ae820c2df5843a866",slug:null,bookSignature:"Prof. Petra Surlin",coverURL:"https://cdn.intechopen.com/books/images_new/9493.jpg",editedByType:null,editors:[{id:"171921",title:"Prof.",name:"Petra",surname:"Surlin",slug:"petra-surlin",fullName:"Petra Surlin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9504",title:"Evidence-Based Approaches to Effectively Respond to Public Health Emergencies",subtitle:null,isOpenForSubmission:!0,hash:"355f26e9a65d22c4de7311a424d1e3eb",slug:null,bookSignature:"Dr. Erick Guerrero",coverURL:"https://cdn.intechopen.com/books/images_new/9504.jpg",editedByType:null,editors:[{id:"294761",title:"Dr.",name:"Erick",surname:"Guerrero",slug:"erick-guerrero",fullName:"Erick Guerrero"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9567",title:"Edema",subtitle:null,isOpenForSubmission:!0,hash:"6d99048aa5e82a78c20f48c8e64ace0d",slug:null,bookSignature:"Dr. Robson Faria",coverURL:"https://cdn.intechopen.com/books/images_new/9567.jpg",editedByType:null,editors:[{id:"79615",title:"Dr.",name:"Robson",surname:"Faria",slug:"robson-faria",fullName:"Robson Faria"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9577",title:"Confocal Laser Scanning Microscopy",subtitle:null,isOpenForSubmission:!0,hash:"d0f227eb9f3fc8c85c7757257b6e966a",slug:null,bookSignature:"Dr. Natalia Yu. Grigoryeva",coverURL:"https://cdn.intechopen.com/books/images_new/9577.jpg",editedByType:null,editors:[{id:"239430",title:"Dr.",name:"Natalia",surname:"Grigoryeva",slug:"natalia-grigoryeva",fullName:"Natalia Grigoryeva"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9614",title:"Candida albicans",subtitle:null,isOpenForSubmission:!0,hash:"31d6882518ca749b12715266eed0a018",slug:null,bookSignature:"Dr. Xinhui Wang",coverURL:"https://cdn.intechopen.com/books/images_new/9614.jpg",editedByType:null,editors:[{id:"296531",title:"Dr.",name:"Xinhui",surname:"Wang",slug:"xinhui-wang",fullName:"Xinhui Wang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9615",title:"Chikungunya",subtitle:null,isOpenForSubmission:!0,hash:"c960d94a63867dd12a8ab15176a3ff06",slug:null,bookSignature:"Dr. Jean Engohang-Ndong",coverURL:"https://cdn.intechopen.com/books/images_new/9615.jpg",editedByType:null,editors:[{id:"180733",title:"Dr.",name:"Jean",surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9791",title:"Multiple Myeloma",subtitle:null,isOpenForSubmission:!0,hash:"91ae15c94c1c8b771c959a4cee4ed8ba",slug:null,bookSignature:"Dr. Ota Fuchs",coverURL:"https://cdn.intechopen.com/books/images_new/9791.jpg",editedByType:null,editors:[{id:"36468",title:"Dr.",name:"Ota",surname:"Fuchs",slug:"ota-fuchs",fullName:"Ota Fuchs"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9796",title:"Cancers of Childhood and Adolescence - Epidemiology, Diagnosis, Treatment and Prognosis",subtitle:null,isOpenForSubmission:!0,hash:"7c90c97b84629336aa5af2e9797f4cf2",slug:null,bookSignature:"Prof. Dariusz Borys",coverURL:"https://cdn.intechopen.com/books/images_new/9796.jpg",editedByType:null,editors:[{id:"91258",title:"Prof.",name:"Dariusz",surname:"Borys",slug:"dariusz-borys",fullName:"Dariusz Borys"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9801",title:"A Comprehensive Review of Compartment Syndrome",subtitle:null,isOpenForSubmission:!0,hash:"ba676e67fb29de60aee9048ff13bf479",slug:null,bookSignature:"Dr. Saqeb Mirza and Dr. Khaled Elawady",coverURL:"https://cdn.intechopen.com/books/images_new/9801.jpg",editedByType:null,editors:[{id:"99767",title:"Dr.",name:"Saqeb",surname:"Mirza",slug:"saqeb-mirza",fullName:"Saqeb Mirza"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:15},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:6},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:4},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:56},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:5},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:96},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5145},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1161",title:"Andrology",slug:"andrology",parent:{title:"Urology",slug:"urology"},numberOfBooks:5,numberOfAuthorsAndEditors:142,numberOfWosCitations:25,numberOfCrossrefCitations:18,numberOfDimensionsCitations:54,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"andrology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7985",title:"Circumcision and the Community",subtitle:null,isOpenForSubmission:!1,hash:"023cc135aeeae6d2ea8cfc01ab3f4dc7",slug:"circumcision-and-the-community",bookSignature:"Ahmad Zaghal and Nishat Rahman",coverURL:"https://cdn.intechopen.com/books/images_new/7985.jpg",editedByType:"Edited by",editors:[{id:"240621",title:"Dr.",name:"Ahmad",middleName:null,surname:"Zaghal",slug:"ahmad-zaghal",fullName:"Ahmad Zaghal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7931",title:"Male Reproductive Health",subtitle:null,isOpenForSubmission:!1,hash:"5754baea5de6a634c66bae12a33d52d9",slug:"male-reproductive-health",bookSignature:"Wei Wu, Francesco Ziglioli and Umberto Maestroni",coverURL:"https://cdn.intechopen.com/books/images_new/7931.jpg",editedByType:"Edited by",editors:[{id:"178661",title:"Dr.",name:"Wei",middleName:null,surname:"Wu",slug:"wei-wu",fullName:"Wei Wu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6079",title:"Spermatozoa",subtitle:"Facts and Perspectives",isOpenForSubmission:!1,hash:"2d4488814a6ea68efcd3544209c9e4d2",slug:"spermatozoa-facts-and-perspectives",bookSignature:"Rosaria Meccariello and Rosanna Chianese",coverURL:"https://cdn.intechopen.com/books/images_new/6079.jpg",editedByType:"Edited by",editors:[{id:"143980",title:"Prof.",name:"Rosaria",middleName:null,surname:"Meccariello",slug:"rosaria-meccariello",fullName:"Rosaria Meccariello"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"972",title:"Male Infertility",subtitle:null,isOpenForSubmission:!1,hash:"92b68c49e083613bc65d3db92f6aca22",slug:"male-infertility",bookSignature:"Anu Bashamboo and Kenneth David McElreavey",coverURL:"https://cdn.intechopen.com/books/images_new/972.jpg",editedByType:"Edited by",editors:[{id:"87226",title:"Dr.",name:"Anu",middleName:null,surname:"Bashamboo",slug:"anu-bashamboo",fullName:"Anu Bashamboo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"686",title:"Erectile Dysfunction",subtitle:"Disease-Associated Mechanisms and Novel Insights into Therapy",isOpenForSubmission:!1,hash:"c5caa41eb9d576f7765dfcb06a6df94c",slug:"erectile-dysfunction-disease-associated-mechanisms-and-novel-insights-into-therapy",bookSignature:"Kenia Pedrosa Nunes",coverURL:"https://cdn.intechopen.com/books/images_new/686.jpg",editedByType:"Edited by",editors:[{id:"71405",title:"Dr.",name:"Kenia",middleName:"Pedrosa",surname:"Nunes",slug:"kenia-nunes",fullName:"Kenia Nunes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:5,mostCitedChapters:[{id:"30215",doi:"10.5772/39088",title:"\ufeffMechanisms in Erectile Function and Dysfunction: An Overview",slug:"mechanisms-in-erectile-function-and-dysfunction-an-overview",totalDownloads:7001,totalCrossrefCites:1,totalDimensionsCites:11,book:{slug:"erectile-dysfunction-disease-associated-mechanisms-and-novel-insights-into-therapy",title:"Erectile Dysfunction",fullTitle:"Erectile Dysfunction - Disease-Associated Mechanisms and Novel Insights into Therapy"},signatures:"Kenia Pedrosa Nunes and R. Clinton Webb",authors:[{id:"71405",title:"Dr.",name:"Kenia",middleName:"Pedrosa",surname:"Nunes",slug:"kenia-nunes",fullName:"Kenia Nunes"},{id:"134106",title:"Dr.",name:"R. Clinton",middleName:null,surname:"Weeb",slug:"r.-clinton-weeb",fullName:"R. Clinton Weeb"}]},{id:"36145",doi:"10.5772/32617",title:"Apoptosis, ROS and Calcium Signaling in Human Spermatozoa: Relationship to Infertility",slug:"apoptosis-ros-and-calcium-signaling-in-human-spermatozoa-relationship-to-infertility",totalDownloads:2584,totalCrossrefCites:3,totalDimensionsCites:8,book:{slug:"male-infertility",title:"Male Infertility",fullTitle:"Male Infertility"},signatures:"Ignacio Bejarano, Javier Espino, Sergio D. Paredes, Águeda Ortiz, Graciela Lozano, José Antonio Pariente, Ana B. Rodríguez",authors:[{id:"92130",title:"Dr.",name:"Ignacio",middleName:null,surname:"Bejarano",slug:"ignacio-bejarano",fullName:"Ignacio Bejarano"},{id:"98354",title:"MSc.",name:"Javier",middleName:null,surname:"Espino",slug:"javier-espino",fullName:"Javier Espino"},{id:"98356",title:"Dr.",name:"Sergio",middleName:null,surname:"Paredes",slug:"sergio-paredes",fullName:"Sergio Paredes"},{id:"98362",title:"MSc.",name:"Águeda",middleName:null,surname:"Ortiz",slug:"agueda-ortiz",fullName:"Águeda Ortiz"},{id:"98374",title:"Dr.",name:"Graciela",middleName:null,surname:"Lozano",slug:"graciela-lozano",fullName:"Graciela Lozano"},{id:"98375",title:"Prof.",name:"José Antonio",middleName:null,surname:"Pariente",slug:"jose-antonio-pariente",fullName:"José Antonio Pariente"},{id:"98376",title:"Prof.",name:"Ana Beatriz",middleName:null,surname:"Rodríguez",slug:"ana-beatriz-rodriguez",fullName:"Ana Beatriz Rodríguez"}]},{id:"30216",doi:"10.5772/30373",title:"Erectile Dysfunction Etiological Factors",slug:"erectile-dysfunction-etiological-factors",totalDownloads:2357,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"erectile-dysfunction-disease-associated-mechanisms-and-novel-insights-into-therapy",title:"Erectile Dysfunction",fullTitle:"Erectile Dysfunction - Disease-Associated Mechanisms and Novel Insights into Therapy"},signatures:"Rafaela Rosalba de Mendonça, Fernando Korkes and João Paulo Zambon",authors:[{id:"29233",title:"Dr.",name:"Fernando",middleName:null,surname:"Korkes",slug:"fernando-korkes",fullName:"Fernando Korkes"},{id:"82242",title:"Dr.",name:"Joao Paulo",middleName:null,surname:"Zambon",slug:"joao-paulo-zambon",fullName:"Joao Paulo Zambon"},{id:"82328",title:"Mrs.",name:"Rafaela",middleName:"Rosalba",surname:"Mendonça",slug:"rafaela-mendonca",fullName:"Rafaela Mendonça"}]}],mostDownloadedChaptersLast30Days:[{id:"57417",title:"Physiological and Pathological Roles of Free Radicals in Male Reproduction",slug:"physiological-and-pathological-roles-of-free-radicals-in-male-reproduction",totalDownloads:834,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"spermatozoa-facts-and-perspectives",title:"Spermatozoa",fullTitle:"Spermatozoa - Facts and Perspectives"},signatures:"Eva Tvrdá, Peter Massanyi and Norbert Lukáč",authors:[{id:"204993",title:"Dr.",name:"Eva",middleName:null,surname:"Tvrdá",slug:"eva-tvrda",fullName:"Eva Tvrdá"},{id:"206075",title:"Prof.",name:"Norbert",middleName:null,surname:"Lukáč",slug:"norbert-lukac",fullName:"Norbert Lukáč"},{id:"220755",title:"Prof.",name:"Peter",middleName:null,surname:"Massanyi",slug:"peter-massanyi",fullName:"Peter Massanyi"}]},{id:"59074",title:"The Role of Human Semen as an Early and Reliable Tool of Environmental Impact Assessment on Human Health",slug:"the-role-of-human-semen-as-an-early-and-reliable-tool-of-environmental-impact-assessment-on-human-he",totalDownloads:822,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"spermatozoa-facts-and-perspectives",title:"Spermatozoa",fullTitle:"Spermatozoa - Facts and Perspectives"},signatures:"Luigi Montano, Paolo Bergamo, Maria Grazia Andreassi and\nStefano Lorenzetti",authors:[{id:"206180",title:"M.D.",name:"Luigi",middleName:null,surname:"Montano",slug:"luigi-montano",fullName:"Luigi Montano"},{id:"222782",title:"Dr.",name:"Paolo",middleName:null,surname:"Bergamo",slug:"paolo-bergamo",fullName:"Paolo Bergamo"},{id:"222783",title:"Dr.",name:"Maria Grazia",middleName:null,surname:"Andreassi",slug:"maria-grazia-andreassi",fullName:"Maria Grazia Andreassi"},{id:"222784",title:"Dr.",name:"Stefano",middleName:null,surname:"Lorenzetti",slug:"stefano-lorenzetti",fullName:"Stefano Lorenzetti"}]},{id:"60076",title:"Introductory Chapter: Spermatozoa - Facts and Perspectives",slug:"introductory-chapter-spermatozoa-facts-and-perspectives",totalDownloads:511,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"spermatozoa-facts-and-perspectives",title:"Spermatozoa",fullTitle:"Spermatozoa - Facts and Perspectives"},signatures:"Rosanna Chianese and Rosaria Meccariello",authors:[{id:"143980",title:"Prof.",name:"Rosaria",middleName:null,surname:"Meccariello",slug:"rosaria-meccariello",fullName:"Rosaria Meccariello"},{id:"244717",title:"Dr.",name:"Rosanna",middleName:null,surname:"Chianese",slug:"rosanna-chianese",fullName:"Rosanna Chianese"}]},{id:"57694",title:"Ultrastructure of Spermatozoa from Infertility Patients",slug:"ultrastructure-of-spermatozoa-from-infertility-patients",totalDownloads:818,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"spermatozoa-facts-and-perspectives",title:"Spermatozoa",fullTitle:"Spermatozoa - Facts and Perspectives"},signatures:"Elizaveta E. Bragina and Elena N. Bocharova",authors:[{id:"207294",title:"Dr.",name:"Elizaveta",middleName:null,surname:"Bragina",slug:"elizaveta-bragina",fullName:"Elizaveta Bragina"}]},{id:"57404",title:"Assessment of Human Sperm Cells Morphological Parameters",slug:"assessment-of-human-sperm-cells-morphological-parameters",totalDownloads:571,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"spermatozoa-facts-and-perspectives",title:"Spermatozoa",fullTitle:"Spermatozoa - Facts and Perspectives"},signatures:"Kristina Lasiene",authors:[{id:"206099",title:"Dr.",name:"Kristina",middleName:null,surname:"Lasiene",slug:"kristina-lasiene",fullName:"Kristina Lasiene"}]},{id:"30219",title:"Erectile Dysfunction: A Chronic Complication of the Diabetes Mellitus",slug:"erectile-dysfunction-a-chronic-complication-of-the-diabetes-mellitus",totalDownloads:3763,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"erectile-dysfunction-disease-associated-mechanisms-and-novel-insights-into-therapy",title:"Erectile Dysfunction",fullTitle:"Erectile Dysfunction - Disease-Associated Mechanisms and Novel Insights into Therapy"},signatures:"Eulises Díaz-Díaz, Mario Cárdenas León, Nesty Olivares Arzuaga, Carlos M. Timossi, Rita Angélica Gómez Díaz, Carlos Aguilar Salinas and Fernando Larrea",authors:[{id:"85181",title:"Dr.",name:"Eulises",middleName:null,surname:"Díaz-Díaz",slug:"eulises-diaz-diaz",fullName:"Eulises Díaz-Díaz"},{id:"85572",title:"MSc.",name:"Mario",middleName:null,surname:"Cárdenas-León",slug:"mario-cardenas-leon",fullName:"Mario Cárdenas-León"},{id:"85574",title:"Dr.",name:"Nesty",middleName:null,surname:"Olivares-Arzuaga",slug:"nesty-olivares-arzuaga",fullName:"Nesty Olivares-Arzuaga"},{id:"91055",title:"Dr.",name:"Carlos",middleName:null,surname:"Aguilar-Salinas",slug:"carlos-aguilar-salinas",fullName:"Carlos Aguilar-Salinas"},{id:"91056",title:"Dr.",name:"Fernando",middleName:null,surname:"Larrea",slug:"fernando-larrea",fullName:"Fernando Larrea"},{id:"125201",title:"Dr.",name:"Carlos M.",middleName:null,surname:"Timossi",slug:"carlos-m.-timossi",fullName:"Carlos M. Timossi"},{id:"125203",title:"Dr.",name:"Rita Angélica",middleName:null,surname:"Gómez Díaz",slug:"rita-angelica-gomez-diaz",fullName:"Rita Angélica Gómez Díaz"}]},{id:"30216",title:"Erectile Dysfunction Etiological Factors",slug:"erectile-dysfunction-etiological-factors",totalDownloads:2357,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"erectile-dysfunction-disease-associated-mechanisms-and-novel-insights-into-therapy",title:"Erectile Dysfunction",fullTitle:"Erectile Dysfunction - Disease-Associated Mechanisms and Novel Insights into Therapy"},signatures:"Rafaela Rosalba de Mendonça, Fernando Korkes and João Paulo Zambon",authors:[{id:"29233",title:"Dr.",name:"Fernando",middleName:null,surname:"Korkes",slug:"fernando-korkes",fullName:"Fernando Korkes"},{id:"82242",title:"Dr.",name:"Joao Paulo",middleName:null,surname:"Zambon",slug:"joao-paulo-zambon",fullName:"Joao Paulo Zambon"},{id:"82328",title:"Mrs.",name:"Rafaela",middleName:"Rosalba",surname:"Mendonça",slug:"rafaela-mendonca",fullName:"Rafaela Mendonça"}]},{id:"30218",title:"The Role Erectile Dysfunction Plays in Cardiovascular Diseases",slug:"the-role-erectile-dysfunction-plays-in-cardiovascular-diseases",totalDownloads:2202,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"erectile-dysfunction-disease-associated-mechanisms-and-novel-insights-into-therapy",title:"Erectile Dysfunction",fullTitle:"Erectile Dysfunction - Disease-Associated Mechanisms and Novel Insights into Therapy"},signatures:"Sandra Crestani, Kenia Pedrosa Nunes, Maria Consuelo Andrade Marques, José Eduardo Da Silva Santos and R. Clinton Webb",authors:[{id:"71405",title:"Dr.",name:"Kenia",middleName:"Pedrosa",surname:"Nunes",slug:"kenia-nunes",fullName:"Kenia Nunes"},{id:"134106",title:"Dr.",name:"R. Clinton",middleName:null,surname:"Weeb",slug:"r.-clinton-weeb",fullName:"R. Clinton Weeb"},{id:"138293",title:"Dr.",name:"Sandra",middleName:null,surname:"Crestani",slug:"sandra-crestani",fullName:"Sandra Crestani"},{id:"151639",title:"Dr.",name:"Maria Consuelo",middleName:null,surname:"Andrade Marques",slug:"maria-consuelo-andrade-marques",fullName:"Maria Consuelo Andrade Marques"},{id:"151640",title:"Dr.",name:"José Eduardo",middleName:null,surname:"da Silva Santos",slug:"jose-eduardo-da-silva-santos",fullName:"José Eduardo da Silva Santos"}]},{id:"57682",title:"Environmental Factors and Male Infertility",slug:"environmental-factors-and-male-infertility",totalDownloads:704,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"spermatozoa-facts-and-perspectives",title:"Spermatozoa",fullTitle:"Spermatozoa - Facts and Perspectives"},signatures:"Qiuqin Tang, Wei Wu, Jing Zhang, Rong Fan and Mu Liu",authors:[{id:"178661",title:"Dr.",name:"Wei",middleName:null,surname:"Wu",slug:"wei-wu",fullName:"Wei Wu"},{id:"184798",title:"Ms.",name:"Qiuqin",middleName:null,surname:"Tang",slug:"qiuqin-tang",fullName:"Qiuqin Tang"},{id:"207434",title:"Mr.",name:"Mu",middleName:null,surname:"Liu",slug:"mu-liu",fullName:"Mu Liu"},{id:"218026",title:"Mrs.",name:"Jing",middleName:null,surname:"Zhang",slug:"jing-zhang",fullName:"Jing Zhang"},{id:"218027",title:"Mrs.",name:"Rong",middleName:null,surname:"Fan",slug:"rong-fan",fullName:"Rong Fan"}]},{id:"30223",title:"Surgical Treatment of Erectile Dysfunction",slug:"surgical-treatment-of-erectile-dysfunction",totalDownloads:4606,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"erectile-dysfunction-disease-associated-mechanisms-and-novel-insights-into-therapy",title:"Erectile Dysfunction",fullTitle:"Erectile Dysfunction - Disease-Associated Mechanisms and Novel Insights into Therapy"},signatures:"Faruk Kucukdurmaz and Ates Kadioglu",authors:[{id:"97397",title:"Prof.",name:"Ates",middleName:null,surname:"Kadioglu",slug:"ates-kadioglu",fullName:"Ates Kadioglu"},{id:"97423",title:"Dr.",name:"Faruk",middleName:null,surname:"Kucukdurmaz",slug:"faruk-kucukdurmaz",fullName:"Faruk Kucukdurmaz"}]}],onlineFirstChaptersFilter:{topicSlug:"andrology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/85585/brianna-heath",hash:"",query:{},params:{id:"85585",slug:"brianna-heath"},fullPath:"/profiles/85585/brianna-heath",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()