Summary of the electronic properties of the FeCl3-doped SLG used.
\r\n\tTopics that are welcome in the book address challenges that are not yet fully described in existing Baltic Sea compilations, but are present in scientific literature for some time.
",isbn:null,printIsbn:"979-953-307-X-X",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"61d96e65b2fc43a8c2c681cb2c353e02",bookSignature:"Dr. Magdalena Bełdowska and Dr. Jacek Bełdowski",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/8761.jpg",keywords:"Wrecks, Toxic Substances, Microplastics, Endocrine Disrupting Chemicals, Pharmaceuticals, Biomagnification, Bioacumulation, Fisheries, Icing Changes, Elongated Vegetative Season, Biodiversity, Shipping",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 29th 2018",dateEndSecondStepPublish:"December 20th 2018",dateEndThirdStepPublish:"February 18th 2019",dateEndFourthStepPublish:"May 9th 2019",dateEndFifthStepPublish:"July 8th 2019",remainingDaysToSecondStep:"2 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"176840",title:"Dr.",name:"Magdalena",middleName:null,surname:"Bełdowska",slug:"magdalena-beldowska",fullName:"Magdalena Bełdowska",profilePictureURL:"https://mts.intechopen.com/storage/users/176840/images/system/176840.jpeg",biography:"Associated professor dr hab Magdalena Bełdowska conducted her Ph.D and habilitation in Faculty of Oceanography and Geography University of Gdańsk, Poland. During her professional career, she has carried out research on toxic metals cycling in marine environment (especially in Baltic Sea). The research includes transboundary transport in the atmosphere, input of contaminations to the sea, bioaccumulation and biomagnification int marine trophic chain, deposition/ remobilization to/from the sediments. During that period she was leading several projects funded by National Science Centre (NCN, Poland). She has been involved in teaching students in the field of Chemical hazards in the aquatic environment; Metals cycling as a function of climate change; Environmental protection. She has published over 50 papers in indexed journals and international conferences",institutionString:"Institute of Oceanography of the University of Gdańsk",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Gdańsk",institutionURL:null,country:{name:"Poland"}}}],coeditorOne:{id:"276044",title:"Dr.",name:"Jacek",middleName:null,surname:"Bełdowski",slug:"jacek-beldowski",fullName:"Jacek Bełdowski",profilePictureURL:"https://mts.intechopen.com/storage/users/276044/images/system/276044.jpeg",biography:"Assistant Professor, Dr hab. Jacek Bełdowski completed his PhD at the University of Gdańsk and Habilitation at Institute of Oceanology, PAS. His studies concentrated at mercury cycle in marine systems, Carbon cycle influence on Climate change (during 2 year postdoc at Institute for Baltic Sea Research, Warnemuende, Germany) and dumped chemical munitions. He has participated in three national and six EU projects devoted to contaminant cycles in the Baltic Sea and led two EU (CHEMSEA, DAIMON) and one NATO SPS (MODUM) projects, dealing with risk assessment of chemical and conventional munitions dumped at sea. He also served as co-chairman of HELCOM special working groups MUNI and SUBMERGED. During his career he has published over 40 peer revieved papers and book chapters, and led 25 Scientific cruises.",institutionString:"Institute of Oceanology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"839",title:"Oceanography",slug:"oceanography"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"280415",firstName:"Josip",lastName:"Knapic",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/280415/images/8050_n.jpg",email:"josip@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copy-editing and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6195",title:"Sea Level Rise and Coastal Infrastructure",subtitle:null,isOpenForSubmission:!1,hash:"4eb2fa7c0bf9d4a493375ee47276aa38",slug:"sea-level-rise-and-coastal-infrastructure",bookSignature:"Yuanzhi Zhang, Yijun Hou and Xiaomei Yang",coverURL:"https://cdn.intechopen.com/books/images_new/6195.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7606",title:"Coastal and Marine Environments",subtitle:"Physical Processes and Numerical Modelling",isOpenForSubmission:!1,hash:"dd1227726856d58b88116129b0de8384",slug:"coastal-and-marine-environments-physical-processes-and-numerical-modelling",bookSignature:"José Simão Antunes Do Carmo",coverURL:"https://cdn.intechopen.com/books/images_new/7606.jpg",editedByType:"Edited by",editors:[{id:"67904",title:"Prof.",name:"José Simão",surname:"Antunes Do Carmo",slug:"jose-simao-antunes-do-carmo",fullName:"José Simão Antunes Do Carmo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2221",title:"Tsunami - Analysis of a Hazard",subtitle:"From Physical Interpretation to Human Impact",isOpenForSubmission:!1,hash:"a7ce45cda9743300d394136417028a84",slug:"tsunami-analysis-of-a-hazard-from-physical-interpretation-to-human-impact",bookSignature:"Gloria I. Lopez",coverURL:"https://cdn.intechopen.com/books/images_new/2221.jpg",editedByType:"Edited by",editors:[{id:"146976",title:"Dr.",name:"Gloria",surname:"López",slug:"gloria-lopez",fullName:"Gloria López"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8669",title:"Coastal Environment, Disaster, and Infrastructure",subtitle:"A Case Study of China's Coastline",isOpenForSubmission:!1,hash:"52abc534177a147ffd3154db2f4f4ba1",slug:"coastal-environment-disaster-and-infrastructure-a-case-study-of-china-s-coastline",bookSignature:"X. San Liang and Yuanzhi Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/8669.jpg",editedByType:"Edited by",editors:[{id:"210315",title:"Prof.",name:"X. San",surname:"Liang",slug:"x.-san-liang",fullName:"X. San Liang"}],productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"9280",title:"Underwater Work",subtitle:null,isOpenForSubmission:!1,hash:"647b4270d937deae4a82f5702d1959ec",slug:"underwater-work",bookSignature:"Sérgio António Neves Lousada",coverURL:"https://cdn.intechopen.com/books/images_new/9280.jpg",editedByType:"Edited by",editors:[{id:"248645",title:"Dr.",name:"Sérgio António",surname:"Neves Lousada",slug:"sergio-antonio-neves-lousada",fullName:"Sérgio António Neves Lousada"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8007",title:"Estuaries and Coastal Zones",subtitle:"Dynamics and Response to Environmental Changes",isOpenForSubmission:!1,hash:"ec140486c42d62e69ef428e6cf71b6d7",slug:"estuaries-and-coastal-zones-dynamics-and-response-to-environmental-changes",bookSignature:"Jiayi Pan and Adam Devlin",coverURL:"https://cdn.intechopen.com/books/images_new/8007.jpg",editedByType:"Edited by",editors:[{id:"179303",title:"Prof.",name:"Jiayi",surname:"Pan",slug:"jiayi-pan",fullName:"Jiayi Pan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6012",title:"Morphodynamic Model for Predicting Beach Changes Based on Bagnold's Concept and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"79ce8dc1cde58947a61fe4aea725d437",slug:"morphodynamic-model-for-predicting-beach-changes-based-on-bagnold-s-concept-and-its-applications",bookSignature:"Takaaki Uda, Masumi Serizawa and Shiho Miyahara",coverURL:"https://cdn.intechopen.com/books/images_new/6012.jpg",editedByType:"Authored by",editors:[{id:"13491",title:"Dr.",name:"Takaaki",surname:"Uda",slug:"takaaki-uda",fullName:"Takaaki Uda"}],productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"72548",title:"Vertical-Type Organic Light-Emitting Transistors with High Effective Aperture Ratios",doi:"10.5772/intechopen.92833",slug:"vertical-type-organic-light-emitting-transistors-with-high-effective-aperture-ratios",body:'\nIn recent years, researchers of state-of-the-art electronics utilizing organic semiconducting materials have succeeded in advancing various devices, such as organic light-emitting diodes (OLEDs), photovoltaic cells, organic thin-film transistors (OTFTs), and sensors, among others [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Among these, intensive efforts in OLEDs have led to high brightness, efficiency, and full-color electroluminescent (EL) emissions for various light-emitting optoelectronic devices [7, 8, 9, 10]. The advantages of such OLEDs over conventional liquid crystal displays (LCDs) are well known, especially for high-quality displays in terms of their viewing angle, response time, thickness, and contrast ratio [11]. For instance, small OLED displays are constructed on an array of thin-film transistor (TFT) switches, allowing precise control of the states of the pixels [12, 13, 14]. In such active-matrix OLEDs (AM-OLEDs), the OLED is driven in the current mode; thus, at least two TFTs, in this case a switching TFT to select a pixel and a driving TFT to operate the OLED, are required, as shown in Figure 1(a) [12, 13]. Perhaps unexpectedly, however, the complexity of such pixel circuit designs with their sophisticated procedures has led to a significantly limited light-emitting area and aperture ratio (the light-emitting area as a fraction of the total area of the device, typical aperture ratios: 25–34%) [13, 14, 15], introducing severe problems associated with limited device performance and limited display sizes for AM-OLEDs. Besides these issues, fundamental factors related to the architecture of the OLED itself, such as exciton quenching and photon loss, also still limit the efficiency and brightness of these devices.
\n(a) A conventional two TFTs + one capacitor AM-OLED pixel circuit diagram with a switching TFT and driving TFT. (b) A simple AM-OLET pixel circuit of an integrated OLET and a switching TFT.
To overcome some of the limitations of (AM-)OLEDs, research on different structures and materials is currently yielding new developments [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. Among these, organic light-emitting transistors (OLETs), such as static-induction-transistor OLETs (SIT-OLETs) [17, 18], metal-insulator-semiconductor OLETs (MIS-OLETs) [19], lateral-type OLETs [20, 21, 22, 23, 24, 25, 26, 27, 28, 29], and vertical-type OLETs (VOLETs) [30], have been devised by integrating the capability of the OLED to generate EL light with the switching functionality of a field-effect transistor (FET) into a single device structure. In these OLETs, the current that flows through emissive semiconductor channel layers can be controlled by the gate voltage, which can also change the EL emission brightness state from the dark off- to the bright on-state. The on-state implies that holes and electrons injected into the channel layer form excitons that recombine radiatively to generate EL light [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. These OLETs are of key interest; not only do they provide a novel device architecture to investigate fundamental optoelectronic properties related to charge carrier injection, transport, and radiative exciton recombination processes in organic semiconducting materials, at the same time OLETs can also be used to develop highly integrated organic optoelectronic devices such as highly bright and efficient light sources, optical communication systems, and electrically driven organic lasers [21, 22, 23, 24, 25, 26, 27, 28, 29, 30].
\nIn principle, the luminance from OLETs can be modulated by the gate voltage without any additional driving devices; thus, displays using OLETs have the advantage of greatly reducing both the number of TFTs and the circuit complexity (Figure 1(b)), thereby providing an effective means of increasing the aperture ratio [29]. Hence, OLETs could be a key part of the development of next-generation AM display technology [29]. Indeed, a proof-of-principle device was recently developed using carbon nanotubes (CNTs, Figure 2), delivering a CNT-based vertical-type OLET (CNT-VOLET) [31, 32, 33, 34]. In the CNT-VOLET, a dilute network of CNTs is used as a source electrode, leading to several improvements, such as a high on/off ratio, attributed to the gate-bias-induced modulation of the lateral (or horizontal) Schottky barrier height [31, 32]. Nevertheless, the improvement of the effective aperture ratio (
The structure of carbon nanotube (CNT), single-layer graphene (SLG), and bilayer graphene (BLG).
In this chapter, for the VOLET, the use of a nonporous, homogeneous, smooth, and easily processable graphene layer is described as the source contact, together with an emissive channel layer. Here, the graphene is a two-dimensional (2D) material in the form of a single atomic layer of carbon with a hexagonal lattice structure bonded in the sp2 configuration (Figure 2) [36, 37, 38]. Despite the similar low dimensionality of graphene to CNTs [36, 37], the optoelectric properties of a VOLET based on graphene have not yet been fully characterized. Herein, the fabrication and characterization are described for a simple VOLET with a single-layer graphene (SLG) source contact (Gr-VOLET), capable of efficiently modulating device performance levels with high luminance on/off ratios (~104) upon the application of a gate voltage. The Gr-VOLETs with doped SLG sources with FeCl3 are demonstrated to exhibit greatly improved device performance, especially in their enhanced current efficiency and
\n
\n
In this study, a transferred SLG was investigated as a source contact, where the FeCl3 doping is processed spontaneously during the graphene transfer process [40]. The basic properties of the three SLG sources are shown in Figures 3 and 4 and are summarized in Table 1.
\n(a) Wide-scan XPS survey spectra of the studied SLG on a SiO2/Si substrate. AFM topographic image (5 μm × 5 μm) (b) and corresponding work function distribution (c) of the SLG on the VOLET substrate as measured by KPFM. (d) Transport characteristics of the SLG from liquid-gated lateral Gr-FETs at
(a) Raman spectra of the SLG transferred from the Cu foil onto the VOLET substrate. (b) Polarized optical microscope image of a spin-coated layer of commercial nematic liquid crystals on the SLG transferred to the VOLET substrate.
Work function [eV] | \nDirac point energy [eV] | \nHole mobility [cm2V−1 s−1] | \nSheet resistance, [kΩ square−1] | \n
---|---|---|---|
5.21 | \n4.89 | \n410 | \n1.20 | \n
Summary of the electronic properties of the FeCl3-doped SLG used.
In order to identify the SLG used, the surface composition of the SLG on the SiO2/Si substrates was analyzed by X-ray photoelectron spectroscopy (XPS). Figure 3(a) presents the wide-scan XPS spectra, showing strong photoelectron lines at binding energies of ~104, ~285, and ~531 eV, which are attributed to Si2p, C1s and O1s, respectively. Note that there is no Cu peak in the range of 932–935 eV (Cu2p and Cu2+), implying the complete etching of the Cu foil. In addition, the XPS spectra also revealed small but measurable amounts of Cl and Fe. These are likely residues of the etchant (FeCl3) used during the etching process. When such FeCl3 residues adsorb onto the SLG, the transfer of electrons to the Cl from the SLG (chlorination) [46] induces unintentional p-doping of the SLG.
\n\nFigure 3(b) shows the surface morphology of the SLG on the VOLET substrate as measured by a noncontact atomic force microscope (AFM). As indicated by the AFM morphology, the SLG samples exhibit a fairly smooth surface; the SLG presented an AFM morphology that was nearly identical at different positions on the investigated SLG samples with low RMS roughness levels of 1.4–2.0 nm.
\nThe surface-contact potential difference (
where
Next, the transport characteristics of the SLG used were observed by assessing a liquid-gated lateral FET with SLG channels, a Gr-FET, as shown in Figure 3(d). The lateral FET substrate was prepared using the VOLET substrate or a heavily doped n-type Si wafer substrate (0.05-ohm cm) with a thermally grown SiO2 layer (300-nm-thick) as the gate dielectric for the OTFT, together with a laterally patterned metal source and drain electrodes consisting of a Cr layer (5.5-nm-thick) and a Au layer (50-nm-thick) formed on the substrate via a vacuum deposition process with a mask. The channel length (
For the SLG used here, the Gr-FET showed a clear asymmetrical V-shaped
Here, 4.8 eV is the absolute energy level of the ferrocene and ferrocenium (Fc/Fc+) redox couple below the vacuum energy level, and
where
For the SLG studied here, Raman spectroscopy was also carried out using a confocal Raman system with a laser source operating at 514.5 nm (~1 mW on sample surface). As shown in Figure 4(a), the Raman spectra of the SLGs studied here have two strong characteristic peaks, a G band at around ~1580–1600 cm−1, due to the E2g vibration of sp2-bonded carbon atoms, and a 2D band at around ~2644–2665 cm−1, which is a second-order type of vibrational mode caused by the scattering of phonons at the zone boundary [54, 55]. It can be observed that there are very small disorder-induced D bands around ~1340–1350 cm−1, indicating the sparse formation of sp3 bonds due to the relatively few defects in the SLGs studied.
\nFrom the Raman peak intensities, it was found that the ratios of the integrated Raman intensities of the G band to the 2D band for the FeCl3-doped SLG were in the approximate range of 1.7–1.8, indicating that the SLGs studied here are high-quality monolayer graphene [55]. Moreover, from the peak positions, it was found that while the G and 2D peaks of the intrinsic undoped SLG are positioned at ~1579 cm−1 and ~2669 cm−1, respectively, the G and 2D peak positions of the SLG used are correspondingly upshifted to ~1585 cm−1 and ~2677 cm−1. Through a comparison of these with other examples in an earlier report of the relationship between the G and 2D peak positions of graphenes [55], it was verified that the SLG used here is p-type doped SLG.
\nSubsequently, the densities of the defects, the distances between the defects, and the porosities of nano-defects for the SLG were estimated from the ratio of the Raman intensities of the G bands to the D bands, ID/IG, as shown in the Raman spectra above. The density of the defects (
Next, for this SLG, polarized optical microscopy was also carried out using SLG covered with commercial nematic liquid crystals (NLCs, Merck LC ZLI-2293) in a crossed polarization state [58]. As shown in Figure 4(b), the polarized optical microscopic image of a spin-coated NLC layer on the SLG shows large graphene domains (with an average radius of the domains >100 μm) in the form of highly uniform optical retardation, in addition to small domains of several hundreds of nanometers in size [59, 60], clearly indicating that the SLG studied here is high-quality graphene with large-area graphene domains.
\n\nFigure 5 presents a schematic illustration of the structure used and the stages of the fabrication of the SLG-based VOLETs (Gr-VOLETs) with an ITO gate separated by an Al2O3 gate dielectric layer, a SLG source, organic channel layers, and an Al drain. The fabrication steps of the Gr-VOLET investigated are described below. To construct the Gr-VOLET, SLG (4 mm by 20 mm) was transferred onto a VOLET substrate, as mentioned above (Steps 1, 2). The source electrode used was FeCl3-doped SLG. Next, organic semiconducting materials were deposited over the SLG source electrode regions; a channel layer of poly(para-phenylene vinylene) copolymer (known as SY, 70-nm-thick) was coated as an emissive channel layer by spin coating (Step 3), after which a 2-nm-thick electron injection layer of CsF and a 80-nm-thick drain electrode of Al were deposited on the top of the SY channel layer in sequence via thermal deposition at a rate of 0.05 nm s−1 under a base pressure of less than 2.7 × 10−4 Pa (Step 4). Finally, the fabricated device was encapsulated with an epoxy resin in a glove box. The photograph in Figure 5 shows the microscopic morphology of the device cross section as observed by field emission scanning electron microscopy (SEM).
\nSchematic illustration of the fabrication steps of a Gr-VOLET and a cross-sectional scanning electron microscopy (SEM) image of the Gr-VOLET with stacked layers of an ITO gate separated with an Al2O3 gate dielectric, a SLG source, organic channel layers, and an Al drain.
The operating characteristics of the Gr-VOLET were observed using a luminance meter in conjunction with two source meters. To operate the Gr-VOLETs, source-drain voltage
\nFigure 6 shows the EL light emissions of a Gr-VOLET operating under different
EL light emission from a Gr-VOLET for different gate voltages,
The output current and luminance characteristics of the Gr-VOLET were investigated as described below. For comparative purposes, the diode characteristics of the Gr-VOLET were also observed with the gate electrodes isolated from the external circuits (Gr-OLED). As shown in Figure 7, the current density-voltage (
Gate-voltage (
Interestingly, as shown in Figure 7, at
Next, the device performance,
\n
Devices | \nReference | \nSource type | \n\n | \n\n | \n
---|---|---|---|---|
TFT + OLED | \n[15] | \n\n | \n | 53 | \n
MIS-OLET | \n[19] | \n\n | \n | 51 | \n
CNT-VOLET\na\n\n | \n[32] | \nPorous CNT networks | \n98 | \n6.2 | \n
Gr-VOLET | \nThis work [49] | \nFeCl3-doped SLG | \n154 | \n5.2 | \n
Comparison of the effective aperture ratio,
Reference devices used the green phosphorescent emitter Ir(ppy)3.
Next, the
At this point, our investigation turns to the hole injection mechanism at the interface between the SY channel layer and the SLG source. To be injected across the interface (SLG/SY), the holes must overcome the barrier height at the interface either via thermionic emission or tunneling processes [63, 64, 65, 66, 67, 68]. Figure 9(a) shows examples of Fowler-Nordheim (F-N) curves [63, 64, 65, 66, 67] for the Gr-VOLET at various
(a) Fowler-Nordheim plots of the Gr-VOLET with the SLG source with various
where
The observations above show the working principle of the Gr-VOLET, as illustrated in the energy-level diagrams in Figure 10. At a given
Energy-level diagrams of the Gr-VOLET for high (a) and low
In addition, notable instances of hysteresis were clearly observed, as shown above. Thus, bistable-like switching operations of a Gr-VOLET can allow novel applications for simple and inexpensive driving schemes together with low power consumption. However, this hysteresis effect may become an issue when attempting to realize high-quality grayscale outcomes and should be carefully, therefore, controlled when preparing the dielectric layer.
\nNext, we turn our attention to a micro-pixel fabrication process for the Gr-VOLET using the inkjet-printing technique, as commonly used in solution-processable OLEDs [39, 71, 72]. Here, the inkjet technique used is based on the deposition of a small solvent drop onto an insulator layer, which can be easily redissolved and preferentially redeposited at the edge of the sessile drop (the contact line of the solvent drop), resulting in the formation of a via-hole with the shape of a crater, that is inkjet-etching [39].
\nTo investigate the in situ formation of micro Gr-VOLET pixels created by means of inkjet-etching, an insulating polymer of poly(4-vinylpyridine) (P4VP) was introduced as a via-forming material, as P4VP is a hydrophilic polymer that dissolves in dimethyl formamide (DMF), toluene, chloroform, in lower alcohols, and in aqueous mineralic acids [71]. To fabricate a via-hole forming layer, a solution of P4VP with isopropanol (IPA) was spin-coated on top of the light-emitting channel layer of SY pre-coated onto a Gr-VOLET substrate (VOLET substrate/SLG/SY/P4VP). For micro-patterning, an etching solvent of chloroform for P4VP was inkjet-printed on top of the SY/P4VP layers (Figure 11(a)). This inkjet-printed solvent drop of chloroform can dissolve the P4VP layer, and the capillary flow of the solvent pushes the dissolved P4VP from the center to the contact line of droplet due to the coffee ring effect [39, 72, 73, 74], resulting the formation of the via-hole through the P4VP layer. Thus, after the deposition of even a single solvent droplet (~150 pL per droplet) on a 30-nm-thick P4VP film, the P4VP polymers are removed from the printed position and completely etched, forming via-holes through the P4VP layer, of which the inner and outer diameters are ~90 μm and ~120 μm, respectively, and finally uncovering the surface of the underlying SY layer. These P4VP via-holes on the light-emitting SY layer act as micro-patterned pixel openings for the light-emitting active areas of the Gr-VOLETs. Then, to complete the device of an array of micro Gr-VOLETs, the CsF/Al/Ag cathode is deposited following the procedure described in Section 3.1.
\n(a) Left: A photographic image of a single drop of solvent ejected from an inkjet nozzle for drop formation. Right: Light emission from inkjet-printed Gr-VOLET pixels (white squares) for two different gate voltages
\nFigure 11(a) also presents the switching behavior of EL light emissions from the array of micro Gr-VOLET pixels for two different gate voltages,
Next, the output characteristics of the inkjet-printed Gr-VOLET pixels were investigated. As shown in Figure 11(b), the
In summary, herein, graphene-based VOLETs have been explored, consisting of a nonporous, homogeneous, and p-doped SLG source with FeCl3, an Al drain, and an emissive channel layer for efficient switching of the device performance using the gate voltage. Initially, we investigated transferred CVD SLG, which was used as the source electrode. It was found that the SLG used here was unintended p-doped SLG, exhibiting a Dirac point energy of ~4.9 eV and a work function of 5.2 eV with a shift of the Fermi level from the Dirac point and high hole mobility. It is shown that the high device performance capabilities of SLG-based VOLETs were mainly due to the p-doping effects, which were estimated quantitatively and analyzed based on the energy levels of the SLGs. It is also shown that low-drain-voltage operations and increased brightness with a high luminance on/off ratio (~104) can be achieved even at high brightness for the Gr-VOLET without any HIL. Moreover, the current efficiency and effective aperture ratio of the Gr-VOLET were at least 150% higher than those of a control OLED, with low parasitic power consumption of 5%. These significant improvements of the device performance can be attributed to the gate-bias-induced modulation of the hole tunneling injection from the FeCl3-doped SLG source into the emissive channel layer. Further, the feasibility of the simple fabrication process of micro Gr-VOLET pixels, that is, the inkjet-printing technique, was also proven.
\nThe foregoing results demonstrate the notable device performance of the Gr-VOLET with graphene source, indicating considerable promise with respect to the development of high-performance VOLETs. The advances afforded by the Gr-VOLET with reliable switching performance, even at high luminance levels, clearly show its effective light-emitting transistor functionality and make it a feasible candidate for development of new voltage-driving light-emitting devices and/or highly integrated organic optoelectronics. Finally, it will be possible to apply advanced material layers to these Gr-VOLETs, which could lead to more efficient devices that operate even at low voltage levels, enabling the development of inexpensive, large-area, fast, and high-performance AM displays. Further improvements and characterizations are in progress and will be published elsewhere.
\nThis work was supported by a grant from the National Research Foundation of Korea (NRF) funded by the Korean Government (MEST) (2017R1A2A1A17069729).
\nNowadays, dairy foods represent one of the most dietary dense food, being considerable sources of numerous nutrients, mainly calcium, riboflavin, phosphorus, protein, magnesium, vitamin B12, niacin equivalents, vitamin B6, and when fortified, vitamins A and D. Milk and dairy products are also one of the major sources of nutritional calcium which is essential both in bone development, and the maintenance of healthy teeth [73].
In the Mediterranean zones, dairy sheep and goats rural managements diverge from pastoral (showed irregular milk production, dual-purpose breeds, insignificant feed supplementation, transhumance, hand milking, absence of farm facilities, farm-made cheese) to intensive management (continuous milk production, enhanced local breeds, valorization of forage crops, feed supplementation, machine milking and farm facilities, profitable cheeses) according to the profitable impact of the production chain and the specific environment and breed [1].
The Mediterranean small ruminant dairy sector is original and very diverse. More than 46% of the dairy ewes in the world originates from the Mediterranean region. The major countries, in terms of the flock of dairy ewes and goats, are Greece, Italy, Spain, France and Turkey in Europe, and Algeria, Tunisia, Egypt and Libya in North Africa [2]. In North Africa, where there is no strong dairy tradition, ewe and above all goat milk is used mainly for family consumption likes as milk or white fresh cheese the ‘Jben Arbi’. It has been considered that milk has a symbolic value of life and fertility in the Maghreb regions, as it is often used, with dates, in ceremonies to welcome guests according to the Berber and the Arabic traditions [3]. In these regions, small ruminant and camel constitute the most valuable activities in arid areas based on their resistance to dry or hot conditions. This resistance to harsh conditions evaluated in terms on adaptive traits or rusticity, is based on different abilities: mobility, physiology, feeding pattern, etc. Furthermore, sheep and goats need low investment resources and fast rate of reproduction covers short term expenditures.
In such developing countries of Maghreb, dairy production is an essential tool to overcome social and economic issues like as poverty and human malnutrition [4]. However, despite its potential contribution to sustainable economic growth and poverty drop, dairy sheep and goats sector has received restricted attention from Maghreb Nations in recent decades. Furthermore, little is known about dairy sheep and goats reared in Maghreb Nations [28, 52] and a better knowledge of these genetic resources can help promote their conservation and efficiency benefits. Therefore it is critical to understand the modifications associated with lactation in the mammary gland in order to develop strategies to improve milk yield or reduce the constraints that decrease milk production and milk quality in dairy Maghreb sheep and goats. Considering the current significance of sheep and goat milk production, this review draws a study to analyse the lactate processes as well as to underline the mammary gland morphological patterns and physiology traits and to evaluate milk potentialities of the main breeds of sheep and goats raised in the Maghreb areas. Overall, such data will be important in supporting further studies aimed at improving lactation potentialities, among other factors, with benefits for this emerging dairy sector for both the industry and the consumer.
Located in the Northern fringes of Africa, the Maghreb areas (Lybia, Tunisia, Algeria and Morocco) have a long tradition with dairy products’ consumption. The Maghreb countries are distinguished by their typical Mediterranean climate; a long summer (May to September) with an intense drought and excessive heat and often an irregular rainfall from autumn to spring [5].
Another trait which distinguishes the Maghreb climate, the marine effect which reduces the amplitude of temperatures in zones near to the landfall: the Mediterranean in Morocco, Algeria and Tunisia and the Atlantic Ocean in Morocco. The normal annual precipitation is less than 300 mm in wide regions of the Maghreb countries, engendering arid to semi-arid climates [6].
Therefore water scarcity constitutes the main limiting factor to agriculture. Hence, the agricultural output in the Maghreb remains largely related to the level of annual rainfall in rain fed areas [9], with no opportunities of irrigation. The hydrological water stress index is respectively 29, 11 and 3 in Algeria, Morocco and Tunisia. Such index implies that at the regional level, Algeria and Tunisia face the highest level of water stress, while in Morocco water is less scarce [7]. This situation will certainly widen with the expected demographic growth and climate change, and consequently, have negative repercussions [8].
The photoperiod is another significant factor that affects sheep and goats productivity especially in breeds that originate from geographical areas at high latitudes. Thus, appropriate supervisory policies must be developed to allow milk production out of season in small ruminants [1].
Lactogenesis may be defined as the beginning of milk secretion [12]. This physiological mechanism can group two stages. The first stage occurs during pregnancy when the gland is adequately differentiated to produce little amounts of specific milk components like lactose and caseins [13]. The second stage can be defined as the start of copious milk liberation depended to parturition. Nutrition during pregnancy is the most factor that affects both colostrum yield and composition [14]. When small ruminants are kept under poor grazing conditions, there is a general mobilisation of their body reserves during the last 6 weeks of gestation owing to rapid fetal growth and colostrum yield [15, 16].
The structure and the function of the mammary gland are coordinated by the neuroendocrine control from the development of the gland via the milk ejection. The main role of the endocrine mechanism is to synchronise mammary function and development with the reproductive stage, while the main role of the nervous mechanism is to stimulate the process of milk removal. These two mechanisms are joined in the hypothalamic-pituitary axis, and manage the entire process of milk production through the release of several crops (lactose, prolactin, oxytocin, growth hormone, etc.) as well as the coordination of other hormone-releasing organs, i.e., mammary gland, placenta, ovaries [17]. The proliferation of mammary tissue may be activated by the prolactin secreted in response to the gland stimulus.
However, other factors of the normal mammogenic complex are either entirely absent during lactation (e.g., placental lactogen) or just present in small amounts or at specific moments (e.g., oestrogen) [18].
Suppression of prolactin secretion in goats and sheep [19, 20] had only partially in sheep lactation. This hormone is at least as important as growth factor in maintaining goat milk yield [21].
When it was administrated to pre-pubertal young ewe, the bromocriptine (prolactin inhibitor) had no effect on the mammary development [22]. However, a treatment with progesterone in post-pubertal ewes suppressed the epithelial proliferation [23].
The completion of tubuloalveolar development in ewes ultimately requires oestrogen and progesterone in the presence of endogenous prolactin [24]. One of the classical roles assigned to oxytocin is milk ejection from the mammary gland. Although it is mainly associated with milk ejection, treatment with exogenous oxytocin was associated with increased milk production in sheep [25]. The major amount of the milk is accumulated in voluminous cisterns of the goat gland thus it can be remote through by suction applied to the nipples. Hence, a milk discharge reflex is not necessary for the nourishing of the young, though it could help the process [25, 26]. In fact it is possible to identify goats with very high milk yield and either strong milk flow rate that have no appreciable increases in plasma oxytocin concentrations during milking [27]. Perhaps this finding is indicative of a lower dependency on oxytocin for milk removal in goats.
In small ruminant mammary gland, the glandular parenchyma is responsible for milk production and is constituted by tubule-alveolar glands relative to its anatomical organization; it has two main components, (1) the parenchyma which includes the epithelial and myoepithelial cells, (2) the stroma involving the non-cellular components, as collagen and elastin, smooth muscle cells and vessels and the ductal system [29]. However, it is important to note that anatomy and histology of the mammary gland are changed during the lactation stage, mostly led by the neuroendocrine mechanism. There are three stages of mammary biology characterising the pregnancy/lactation periods: proliferation, secretion and involution. While the most proliferation happens throughout gestation and most of the involution occurs after lactation has finished, such processes coincide: proliferation of secretory tissue persists during early lactation and involution initiates during late lactation, simultaneously with milk secretion [30].
Concerning the lactation period, it differs between small ruminant species. In sheep lactation, it lasts for 5 months with a peak between the weeks 3 and 4 [23, 31]. In contrast, the lactation period in goats lasts for 10 months with a peak between weeks 5 and 10 [32]. These values are highly dependent on breed and nutritional status, among other factors [33].
By studying the mammary gland volume changes in goat breeds (Toggenburg, Nubian, Saanen and French Alpine) during various physiological stages [34, 35], no differences were detected in udder weights during pregnancy until day 120, when values started to increase significantly. The majority of udder growth occurred between the last 30 days of pregnancy and the first 10 days of lactation.
During gestation and lactation, an alteration of mammary gland tissue composition occurs, as well as for the first 15 days of gestation, where parenchyma fatty tissue proportion decreases and fluid-rich tissue increases [35]. Such alterations in parenchyma composition can be directly related to the increment of milk secretion and fluid accumulation in the gland [35]. Thereafter, mammary gland composition remains constant throughout late gestation and the entire lactation period. As the majority of udder growth occurs during early lactation, a reduction of mammary gland volume was detected during mid-lactation [37]. Reduction of the udder volume during the stage of lactation was reported as correlated both to parities and the mammary gland volume at the onset of lactation [37]. For example, goats with twins had more voluminous udder (+40%) than those with simples [38].
Sheep and goats are mainly elevated for meat production in many regions of the Maghreb areas because of the harsh environments prevailing. The most of breeds have not been selected for milk yield, at the exception of the Sicilo-Sarde, where its nucleus was in Tunisia [10]. Thus, the official statistics reveal that the integrated dairy chains rely mainly on cattle milk, given that milk from non-cattle species (small ruminants and camel) represents respectively 21.3, 5.1 and 3.7% of the overall output in Algeria, Morocco and Tunisia [11] and its industrial processing remains rather weak.
After an increase by 18.7% (1997–2007), the goat population reached more than 1.5 million heads in Tunisia [66]. Such growth has been followed by the increase of production. Almost 60% of the Tunisian goats are located in the centre and in the south, reared in semi-intensive oasis systems, in small herds [70, 71]. Noting that the native goat from Tunisia is named Arbi to distinguish it from imported breeds, and it is well adapted to the natural environment of country [67]. Meat remains the major production of Arbi goats from Tunisia but also milk is produced only for home consumption. Under semi-arid conditions in the South, milk potential of the Arbi goat ranged from 1.14 to 0.69 kg/goat/day in the first 6 weeks of lactation, for females suckling singles, while those suckling twins produced 0.86–1.64 kg/goat/day [36]. Similarly, milk production ranged from 1.2 to 0.75 kg/goat/day [74] in the north where goats are reared in extensive mixed farming systems [69], together with sheep and cows. Genetic improvement schemes and biodiversity conservation strategies are currently studied in Tunisia for the native goat [68]. In some cases, the genetic capacities represent a serious restriction to improve goat production, especially for milk [72]. Failures in livestock improvement programs (national and international projects) did happen and animal productivity has remained poor.
When considering breed sheep, the only African dairy one is the Sicilo-Sarde as its milk is mostly used for cheese manufacturing. The population of Sicilo-Sarde is estimated at approximately 20,000 animals concentrated in northern Tunisia [62]. This breed was originated in the early twentieth century by crossing the Sarda and the Comisana dairy breeds, from Sardinia and Sicily (Italy), respectively, to produce sheep cheese for the Italian community.
The lactation curves have wide possibilities of applications, especially in genetic evaluation [75], ratio formulation and economic evaluation of different breeding practices [76, 77]. The prediction of yield peak is indispensable for the arrangement of feed orientation permitting and to cover the requirement of animal, reduce the cost and maintain such peak yield for as long as possible [78, 79].
A recent study taken in the Sicilo-Sarde breed [80] showed an average of daily milk production of 0.46 L with a high variation between 0.10 and 2.40 L and a milk period of 132.8 days. This study shows also a similar milking-only length (139 ± 47 days) and suckling length (104 ± 22 days) to previous reports [81]. Sicilo-Sarde ewes have a low production performances comparatively to Lacaune breed (on average 290 L of milk during 165 days) [82] and Sarda breed (on average 203 L and 162 days for milk yield and milking period) [82]. Such difference can be explained by a random crossing with other breeds which could threaten the genetic integrity and partly explains the low milking performances of Sicilo-Sarde breed [36].
Rural management farm of the Tunisian Sicilo-Sarde sheep marked a long suckling interval (3–4 months) and long lambing period (August to October) [63]. Therefore, the weaning practice applied depends on the selling price of milk. If prices are high, early weaning is practiced; if not milk is reserved only for lamb suckling. Several attempts have been undertaken during recent years in order to rehabilitate the dairy sheep sector in Tunisia [62], as well as to increase the combined member’s herd size from 10,000 to 30,000 Female Units and to improve the milk yield/ewe/year from 90 to 150 L [64]. Several considerations were taken to encourage the association of breeders, control the performance and to enhance the pasture productivity throughout many programs managed by the OEP (Office of Livestock and Pastures) like as via the training and information days [65].
Udder volume evaluated for Sicilo-Sarde [52] is similar to that of Manchega dairy ewes, but smaller than that of Lacaune and Istrian dairy crossbreed ewes [50, 56]. Positive correlations were observed between estimated daily milk yield and both udder depth and udder volume in Sicilo-Sarde [45, 52]. Cisternal area also positively correlated with total milk yield, indicating that ultrasonography could be used for predicting milk yield in Sicilo-Sarde ewes. Milking lag time and total milking time reported in Sicilo-Sarde [52] were shorter than those reported in Manchega dairy ewes [61], probably due to differences between breeds in milk yield. Similarly, positive correlations were also observed between daily milk yield and both udder depth and udder volume [45, 52]. Sicilo-Sarde ewes showed adequate udder morphology for machine milking. The percentage of cisternal milk in this breed (54%) is similar to values reported in Manchega ewes [53, 54] and East Friesian crossbred dairy ewes [60], but lower than in Lacaune (74–77%) [53, 54] and Sarda ewes (82%) [58]. A medium correlation (r = 0.69) was reported between cisternal area and cisternal milk at 8 h after milking in Sicilo-Sarde, as a consequence of a multilocular structure, being lower than correlations reported in Manchega ewes [53, 54], dairy goats [57], and dairy cows [59]. According to previous observations on Mediterranean dairy sheep [46], Sicilo-Sarde dairy ewes are characterized by medium size udders and favourable teat position. This breed showed adequate udder morphology for machine milking [52]. Sicilo-Sarde dairy ewes are also characterized by favourable teat position [46, 52], and can be grouped as medium-cisterned ewes [52].
The seasonality of milk production characterizes the major dairy sheep industry. Nevertheless, an intensive breeding system of dairy ewes has practiced in some countries of the Mediterranean basin, for examples, those in Israel and Spain, where two breeds are mainly elevated: the Assaf and Awassi [39, 40]. In such managements based on the keeping indoors of ewes during the year and an accelerated lambing rhythm is applied with several mating/insemination season. Milking practice starts from the first day of the lactation’s ewe and lambs are immediately adapted to an artificial rearing unit after their birth. Such practice of milking regime is exclusive for dairy ewe. For the Assaf ewes, few conceptions occur in early spring (February and March), which is considered an “out of season” period as it commonly results in a low conception rate and few lambs being born in summer (July and August) [41, 42].
In Italy, production of ewe milk is strongly seasonal and this seasonal production system involves most of the dairy breeds. However, under certain environmental conditions, certain breeds are able to mate during different periods. A weaning drop of milk potential is generally detected in dairy breeds [43, 44] and can be explained by the partial disappearance of the stimulus produced by the lamb when suckling. The decrease of milk production after weaning varied from 30 to 40% in the Lacaune, Préalpes du Sud, and Awassi breeds [45]. Likewise, it was observed [47] that the decrease of milk production at weaning (23–35%) may be explicated by a drop of emptying frequency (20–25%) and probably by a separation of mother-kid (3–7%). Sicilo-Sarde ewes are characterized by reduced teats in comparison with Manchega, Lacaune, Istrian dairy crossbreed and Bergamasca ewes [48, 49, 50, 55]. No significant correlations exist between teat length and milk production [48, 50]. The teat diameter of Sicilo-Sarde, measured at the medium point of the teat, was smaller than values reported in French Rouge de l’Ouest ewes [51]. Teat angle exists in of Sicilo-Sarde similarly to those in Manchega and Istrian dairy crossbreed ewes [50, 56], but with great values than those observed in French Rouge de l’Ouest ewes (26.5°) [51]. Udder volume calculated for Sicilo-Sarde is similar to that of Manchega dairy ewes, but smaller than that of Lacaune and Istrian dairy crossbreed ewes [50, 56].
The productive potential of Maghreb goats and sheep has to be considered taking into account the environmental factors and other genetic and epigenetic factors which may affect milk and lipid content.
Programs reserved to smallholder units must be urgently developed, considering their intervention as the main actors in dairy farming, and this to promote the overall farm performances, to adopt an efficiency strategy of irrigation, fodder biomass yield and its conversion to animal protein (milk and meat) and orient such farms towards dairy specialized producers.
In addition, further efforts are desirable for the promotion and diversification of income sources in dairy production chains. This will have a direct result with the development of good governance to anticipate and overcome future collective challenges: transparent appreciation and remuneration of milk quality, regular negotiations between stakeholders (smallholders, collection cooperatives and milk processors). Considering the increasing price of animal feed products on the world markets, the promotion of self-sustaining milk production chains will be indispensable.
Otherwise, preserving some small ruminant breeds of Maghreb again degradation or extinction requires an urgent establishment of breeding program simultaneously with an awareness of farmers through the action of associations that should be supported over some subsidies especially livestock feed, programming technical training for farmers, milk collectors and the creation of other industrial processing units.
Understanding the lactate processes as well as to underline the mammary gland morphological patterns and physiology traits as well as milk potentialities of the sheep and goats may improve dairy production efficiency and would be basis to better define selection indices for dairy sheep and goats breeds under a dual purpose production system in the Maghreb areas; milk and meat.
We declare that we did not have any “conflict of interest” declaration.
All Works published by IntechOpen prior to October 2011 are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license (CC BY-BC-SA 3.0). Works published after October 2011 are licensed under a Creative Commons Attribution 3.0 Unported license (CC BY 3.0), the latter allowing for the broadest possible reuse of published material.
",metaTitle:"Translation Policy",metaDescription:"Translation of Works - Book Chapters",metaKeywords:null,canonicalURL:"/page/translation-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"All Works licensed under CC BY-BC-SA 3.0 can be freely translated and used for non-commercial purposes. Works licensed under CC BY 3.0 license can be freely translated and used for both commercial and non-commercial purposes.
\\n\\nAll translated Chapters have to be properly attributed in accordance with the requirements included in IntechOpen's Attribution Policy. Besides proper attribution translated sections of Works must include the following sentence: "This is an unofficial translation of a work published by IntechOpen. The publisher has not endorsed this translation".
\\n\\nAll rights to Books and other compilations are reserved by IntechOpen. The copyright to Books and other compilations is subject to a Copyright separate from any that exists in the included Works.
\\n\\nA Book in its entirety, or a significant part of a Book, cannot be translated freely without specific written consent by the publisher. Requests for permission can be made at permissions@intechopen.com.
\\n\\nPolicy last updated: 2016-06-09
\\n"}]'},components:[{type:"htmlEditorComponent",content:'All Works licensed under CC BY-BC-SA 3.0 can be freely translated and used for non-commercial purposes. Works licensed under CC BY 3.0 license can be freely translated and used for both commercial and non-commercial purposes.
\n\nAll translated Chapters have to be properly attributed in accordance with the requirements included in IntechOpen's Attribution Policy. Besides proper attribution translated sections of Works must include the following sentence: "This is an unofficial translation of a work published by IntechOpen. The publisher has not endorsed this translation".
\n\nAll rights to Books and other compilations are reserved by IntechOpen. The copyright to Books and other compilations is subject to a Copyright separate from any that exists in the included Works.
\n\nA Book in its entirety, or a significant part of a Book, cannot be translated freely without specific written consent by the publisher. Requests for permission can be made at permissions@intechopen.com.
\n\nPolicy last updated: 2016-06-09
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5817},{group:"region",caption:"Middle and South America",value:2,count:5282},{group:"region",caption:"Africa",value:3,count:1755},{group:"region",caption:"Asia",value:4,count:10511},{group:"region",caption:"Australia and Oceania",value:5,count:906},{group:"region",caption:"Europe",value:6,count:15915}],offset:12,limit:12,total:119159},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"20"},books:[{type:"book",id:"10672",title:"Nonlinear Optics",subtitle:null,isOpenForSubmission:!0,hash:"cfe87b713a8bee22c19361b86b03d506",slug:null,bookSignature:"Dr. Boris I. Lembrikov",coverURL:"https://cdn.intechopen.com/books/images_new/10672.jpg",editedByType:null,editors:[{id:"2359",title:"Dr.",name:"Boris",surname:"Lembrikov",slug:"boris-lembrikov",fullName:"Boris Lembrikov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10674",title:"Topics on Quantum Information Science",subtitle:null,isOpenForSubmission:!0,hash:"d7481712cff0157cd8f849cba865727d",slug:null,bookSignature:"Prof. Sergio Curilef and Dr. Angel Ricardo Plastino",coverURL:"https://cdn.intechopen.com/books/images_new/10674.jpg",editedByType:null,editors:[{id:"125424",title:"Prof.",name:"Sergio",surname:"Curilef",slug:"sergio-curilef",fullName:"Sergio Curilef"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10852",title:"Electromagnetic Compatibility",subtitle:null,isOpenForSubmission:!0,hash:"f5d2cce3a2adbd5d108d3301ee97025b",slug:null,bookSignature:"Dr. Ahmed Kishk",coverURL:"https://cdn.intechopen.com/books/images_new/10852.jpg",editedByType:null,editors:[{id:"150146",title:"Dr.",name:"Ahmed",surname:"Kishk",slug:"ahmed-kishk",fullName:"Ahmed Kishk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10921",title:"Plasma Science and Technology",subtitle:null,isOpenForSubmission:!0,hash:"c45670ef4b081fd9eebaf911b2b4627b",slug:null,bookSignature:"Dr. Aamir Shahzad",coverURL:"https://cdn.intechopen.com/books/images_new/10921.jpg",editedByType:null,editors:[{id:"288354",title:"Dr.",name:"Aamir",surname:"Shahzad",slug:"aamir-shahzad",fullName:"Aamir Shahzad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10956",title:"Pulsed Lasers",subtitle:null,isOpenForSubmission:!0,hash:"88bd906b149fc3d1c5d6fdbd9916826c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10956.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:27},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:8},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:11},{group:"topic",caption:"Computer and Information Science",value:9,count:9},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:9},{group:"topic",caption:"Engineering",value:11,count:24},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:2},{group:"topic",caption:"Medicine",value:16,count:46},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:5},popularBooks:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5319},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9536",title:"Education at the Intersection of Globalization and Technology",subtitle:null,isOpenForSubmission:!1,hash:"0cf6891060eb438d975d250e8b127ed6",slug:"education-at-the-intersection-of-globalization-and-technology",bookSignature:"Sharon Waller, Lee Waller, Vongai Mpofu and Mercy Kurebwa",coverURL:"https://cdn.intechopen.com/books/images_new/9536.jpg",editedByType:"Edited by",editors:[{id:"263302",title:"Dr.",name:"Sharon",middleName:null,surname:"Waller",slug:"sharon-waller",fullName:"Sharon Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editedByType:"Edited by",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editedByType:"Edited by",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9524",title:"Organ Donation and Transplantation",subtitle:null,isOpenForSubmission:!1,hash:"6ef47e03cd4e6476946fc28ca51de825",slug:"organ-donation-and-transplantation",bookSignature:"Vassil Mihaylov",coverURL:"https://cdn.intechopen.com/books/images_new/9524.jpg",editedByType:"Edited by",editors:[{id:"313113",title:"Associate Prof.",name:"Vassil",middleName:null,surname:"Mihaylov",slug:"vassil-mihaylov",fullName:"Vassil Mihaylov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9280",title:"Underwater Work",subtitle:null,isOpenForSubmission:!1,hash:"647b4270d937deae4a82f5702d1959ec",slug:"underwater-work",bookSignature:"Sérgio António Neves Lousada",coverURL:"https://cdn.intechopen.com/books/images_new/9280.jpg",editedByType:"Edited by",editors:[{id:"248645",title:"Dr.",name:"Sérgio António",middleName:null,surname:"Neves Lousada",slug:"sergio-antonio-neves-lousada",fullName:"Sérgio António Neves Lousada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editedByType:"Edited by",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8158",title:"Veganism",subtitle:"a Fashion Trend or Food as a Medicine",isOpenForSubmission:!1,hash:"d8e51fc25a379e5b92a270addbb4351d",slug:"veganism-a-fashion-trend-or-food-as-a-medicine",bookSignature:"Miljana Z. Jovandaric",coverURL:"https://cdn.intechopen.com/books/images_new/8158.jpg",editedByType:"Edited by",editors:[{id:"268043",title:"Dr.",name:"Miljana Z.",middleName:"Z",surname:"Jovandaric",slug:"miljana-z.-jovandaric",fullName:"Miljana Z. Jovandaric"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"813",title:"Engineering Mechanics",slug:"mechanical-engineering-engineering-mechanics",parent:{title:"Mechanical Engineering",slug:"mechanical-engineering"},numberOfBooks:19,numberOfAuthorsAndEditors:466,numberOfWosCitations:634,numberOfCrossrefCitations:315,numberOfDimensionsCitations:723,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"mechanical-engineering-engineering-mechanics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9865",title:"Tribology in Materials and Manufacturing",subtitle:"Wear, Friction and Lubrication",isOpenForSubmission:!1,hash:"45fdde7e24f08a4734017cfa4948ba94",slug:"tribology-in-materials-and-manufacturing-wear-friction-and-lubrication",bookSignature:"Amar Patnaik, Tej Singh and Vikas Kukshal",coverURL:"https://cdn.intechopen.com/books/images_new/9865.jpg",editedByType:"Edited by",editors:[{id:"43660",title:"Associate Prof.",name:"Amar",middleName:null,surname:"Patnaik",slug:"amar-patnaik",fullName:"Amar Patnaik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7615",title:"Fracture Mechanics Applications",subtitle:null,isOpenForSubmission:!1,hash:"eadc6edddc10fbeac471e10ff7921b75",slug:"fracture-mechanics-applications",bookSignature:"Hayri Baytan Ozmen and H. Ersen Balcioglu",coverURL:"https://cdn.intechopen.com/books/images_new/7615.jpg",editedByType:"Edited by",editors:[{id:"198122",title:"Dr.",name:"Hayri Baytan",middleName:null,surname:"Ozmen",slug:"hayri-baytan-ozmen",fullName:"Hayri Baytan Ozmen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6595",title:"Ballistics",subtitle:null,isOpenForSubmission:!1,hash:"3e7fa96253ce890c092b37a8678e4d03",slug:"ballistics",bookSignature:"Charles Osheku",coverURL:"https://cdn.intechopen.com/books/images_new/6595.jpg",editedByType:"Edited by",editors:[{id:"148660",title:"Dr.",name:"Charles",middleName:"Attah",surname:"Osheku",slug:"charles-osheku",fullName:"Charles Osheku"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7231",title:"Advanced Engineering Testing",subtitle:null,isOpenForSubmission:!1,hash:"9283b3b88964a6fe002fa37431414ac7",slug:"advanced-engineering-testing",bookSignature:"Aidy Ali",coverURL:"https://cdn.intechopen.com/books/images_new/7231.jpg",editedByType:"Edited by",editors:[{id:"13626",title:"Prof.",name:"Aidy",middleName:null,surname:"Ali",slug:"aidy-ali",fullName:"Aidy Ali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6368",title:"Tribology, Lubricants and Additives",subtitle:null,isOpenForSubmission:!1,hash:"5c3d14346e656a204a188be6e9bbbea1",slug:"lubrication-tribology-lubricants-and-additives",bookSignature:"David W. Johnson",coverURL:"https://cdn.intechopen.com/books/images_new/6368.jpg",editedByType:"Edited by",editors:[{id:"178441",title:"Dr.",name:"David",middleName:null,surname:"Johnson",slug:"david-johnson",fullName:"David Johnson"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6228",title:"Vibration Analysis and Control in Mechanical Structures and Wind Energy Conversion Systems",subtitle:null,isOpenForSubmission:!1,hash:"7c08aadadb9857994b1df9abf871c112",slug:"vibration-analysis-and-control-in-mechanical-structures-and-wind-energy-conversion-systems",bookSignature:"Francisco Beltran-Carbajal",coverURL:"https://cdn.intechopen.com/books/images_new/6228.jpg",editedByType:"Edited by",editors:[{id:"10444",title:"Dr.",name:"Francisco",middleName:null,surname:"Beltran-Carbajal",slug:"francisco-beltran-carbajal",fullName:"Francisco Beltran-Carbajal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5495",title:"Lagrangian Mechanics",subtitle:null,isOpenForSubmission:!1,hash:"cd340676a371f5e196f6e8089f5e8b28",slug:"lagrangian-mechanics",bookSignature:"Hüseyin Canbolat",coverURL:"https://cdn.intechopen.com/books/images_new/5495.jpg",editedByType:"Edited by",editors:[{id:"5887",title:"Dr.",name:"Hüseyin",middleName:null,surname:"Canbolat",slug:"huseyin-canbolat",fullName:"Hüseyin Canbolat"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5226",title:"Fracture Mechanics",subtitle:"Properties, Patterns and Behaviours",isOpenForSubmission:!1,hash:"3d418575458d688abbe40125240ece3e",slug:"fracture-mechanics-properties-patterns-and-behaviours",bookSignature:"Lucas Maximo Alves",coverURL:"https://cdn.intechopen.com/books/images_new/5226.jpg",editedByType:"Edited by",editors:[{id:"147011",title:"Dr.",name:"Lucas",middleName:"Maximo",surname:"Alves",slug:"lucas-alves",fullName:"Lucas Alves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4614",title:"Surface Energy",subtitle:null,isOpenForSubmission:!1,hash:"0e17cd77d2616f544522495c30285475",slug:"surface-energy",bookSignature:"Mahmood Aliofkhazraei",coverURL:"https://cdn.intechopen.com/books/images_new/4614.jpg",editedByType:"Edited by",editors:[{id:"155413",title:"Dr.",name:"Mahmood",middleName:null,surname:"Aliofkhazraei",slug:"mahmood-aliofkhazraei",fullName:"Mahmood Aliofkhazraei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3128",title:"Tribology",subtitle:"Fundamentals and Advancements",isOpenForSubmission:!1,hash:"77f3ee5568b737c8d26a5eee991c9d34",slug:"tribology-fundamentals-and-advancements",bookSignature:"Jürgen Gegner",coverURL:"https://cdn.intechopen.com/books/images_new/3128.jpg",editedByType:"Edited by",editors:[{id:"40520",title:"Dr.",name:"Jürgen",middleName:null,surname:"Gegner",slug:"jurgen-gegner",fullName:"Jürgen Gegner"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2982",title:"Tribology in Engineering",subtitle:null,isOpenForSubmission:!1,hash:"1b4719e20d06efe207620debfaf9f6e0",slug:"tribology-in-engineering",bookSignature:"Haşim Pihtili",coverURL:"https://cdn.intechopen.com/books/images_new/2982.jpg",editedByType:"Edited by",editors:[{id:"10340",title:"Dr.",name:"Hasim",middleName:null,surname:"Pihtili",slug:"hasim-pihtili",fullName:"Hasim Pihtili"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2794",title:"Applied Fracture Mechanics",subtitle:null,isOpenForSubmission:!1,hash:"ef0b0a40b0306e7172636781a24cfb27",slug:"applied-fracture-mechanics",bookSignature:"Alexander Belov",coverURL:"https://cdn.intechopen.com/books/images_new/2794.jpg",editedByType:"Edited by",editors:[{id:"141319",title:"Dr.",name:"Alexander",middleName:null,surname:"Belov",slug:"alexander-belov",fullName:"Alexander Belov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:19,mostCitedChapters:[{id:"21928",doi:"10.5772/20790",title:"Tribological Aspects of Rolling Bearing Failures",slug:"tribological-aspects-of-rolling-bearing-failures",totalDownloads:17666,totalCrossrefCites:34,totalDimensionsCites:62,book:{slug:"tribology-lubricants-and-lubrication",title:"Tribology",fullTitle:"Tribology - Lubricants and Lubrication"},signatures:"Jürgen Gegner",authors:[{id:"40520",title:"Dr.",name:"Jürgen",middleName:null,surname:"Gegner",slug:"jurgen-gegner",fullName:"Jürgen Gegner"}]},{id:"44858",doi:"10.5772/55860",title:"Titanium and Titanium Alloys as Biomaterials",slug:"titanium-and-titanium-alloys-as-biomaterials",totalDownloads:6029,totalCrossrefCites:22,totalDimensionsCites:50,book:{slug:"tribology-fundamentals-and-advancements",title:"Tribology",fullTitle:"Tribology - Fundamentals and Advancements"},signatures:"Virginia Sáenz de Viteri and Elena Fuentes",authors:[{id:"154811",title:"Ph.D.",name:"Virginia",middleName:null,surname:"Sáenz De Viteri",slug:"virginia-saenz-de-viteri",fullName:"Virginia Sáenz De Viteri"},{id:"155536",title:"Ms.",name:"Elena",middleName:null,surname:"Fuentes",slug:"elena-fuentes",fullName:"Elena Fuentes"}]},{id:"44864",doi:"10.5772/55470",title:"Introduction of the Ratio of the Hardness to the Reduced Elastic Modulus for Abrasion",slug:"introduction-of-the-ratio-of-the-hardness-to-the-reduced-elastic-modulus-for-abrasion",totalDownloads:5362,totalCrossrefCites:8,totalDimensionsCites:30,book:{slug:"tribology-fundamentals-and-advancements",title:"Tribology",fullTitle:"Tribology - Fundamentals and Advancements"},signatures:"Giuseppe Pintaude",authors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}]}],mostDownloadedChaptersLast30Days:[{id:"18981",title:"Second Order Shear Deformation Theory (SSDT) for Free Vibration Analysis on a Functionally Graded Quadrangle Plate",slug:"second-order-shear-deformation-theory-ssdt-for-free-vibration-analysis-on-a-functionally-graded-quad",totalDownloads:3475,totalCrossrefCites:1,totalDimensionsCites:7,book:{slug:"recent-advances-in-vibrations-analysis",title:"Recent Advances in Vibrations Analysis",fullTitle:"Recent Advances in Vibrations Analysis"},signatures:"A. Shahrjerdi and F. Mustapha",authors:[{id:"46921",title:"Dr.",name:"Faizal",middleName:null,surname:"Mustapha",slug:"faizal-mustapha",fullName:"Faizal Mustapha"},{id:"55507",title:"Dr.",name:"Ali",middleName:null,surname:"Shahrjerdi",slug:"ali-shahrjerdi",fullName:"Ali Shahrjerdi"}]},{id:"44858",title:"Titanium and Titanium Alloys as Biomaterials",slug:"titanium-and-titanium-alloys-as-biomaterials",totalDownloads:6029,totalCrossrefCites:22,totalDimensionsCites:50,book:{slug:"tribology-fundamentals-and-advancements",title:"Tribology",fullTitle:"Tribology - Fundamentals and Advancements"},signatures:"Virginia Sáenz de Viteri and Elena Fuentes",authors:[{id:"154811",title:"Ph.D.",name:"Virginia",middleName:null,surname:"Sáenz De Viteri",slug:"virginia-saenz-de-viteri",fullName:"Virginia Sáenz De Viteri"},{id:"155536",title:"Ms.",name:"Elena",middleName:null,surname:"Fuentes",slug:"elena-fuentes",fullName:"Elena Fuentes"}]},{id:"44826",title:"Lubrication and Lubricants",slug:"lubrication-and-lubricants",totalDownloads:7046,totalCrossrefCites:1,totalDimensionsCites:4,book:{slug:"tribology-fundamentals-and-advancements",title:"Tribology",fullTitle:"Tribology - Fundamentals and Advancements"},signatures:"Nehal S. Ahmed and Amal M. Nassar",authors:[{id:"49812",title:"Prof.",name:"Nehal",middleName:null,surname:"Ahmed",slug:"nehal-ahmed",fullName:"Nehal Ahmed"},{id:"57028",title:"Prof.",name:"Amal",middleName:null,surname:"Nassar",slug:"amal-nassar",fullName:"Amal Nassar"}]},{id:"44454",title:"Experimental Investigation of the Effect of Machining Parameters on the Surface Roughness and the Formation of Built Up Edge (BUE) in the Drilling of Al 5005",slug:"experimental-investigation-of-the-effect-of-machining-parameters-on-the-surface-roughness-and-the-fo",totalDownloads:5287,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"tribology-in-engineering",title:"Tribology in Engineering",fullTitle:"Tribology in Engineering"},signatures:"Erkan Bahçe and Cihan Ozel",authors:[{id:"168319",title:"Ph.D.",name:"Erkan",middleName:null,surname:"Bahce",slug:"erkan-bahce",fullName:"Erkan Bahce"},{id:"168320",title:"Dr.",name:"Cihan",middleName:null,surname:"Özel",slug:"cihan-ozel",fullName:"Cihan Özel"}]},{id:"49063",title:"Re-derivation of Young’s Equation, Wenzel Equation, and Cassie-Baxter Equation Based on Energy Minimization",slug:"re-derivation-of-young-s-equation-wenzel-equation-and-cassie-baxter-equation-based-on-energy-minimiz",totalDownloads:4289,totalCrossrefCites:11,totalDimensionsCites:17,book:{slug:"surface-energy",title:"Surface Energy",fullTitle:"Surface Energy"},signatures:"Kwangseok Seo, Minyoung Kim and Do Hyun Kim",authors:[{id:"97132",title:"Prof.",name:"Do Hyun",middleName:null,surname:"Kim",slug:"do-hyun-kim",fullName:"Do Hyun Kim"}]},{id:"58293",title:"Antioxidants Classification and Applications in Lubricants",slug:"antioxidants-classification-and-applications-in-lubricants",totalDownloads:1284,totalCrossrefCites:4,totalDimensionsCites:6,book:{slug:"lubrication-tribology-lubricants-and-additives",title:"Tribology, Lubricants and Additives",fullTitle:"Lubrication - Tribology, Lubricants and Additives"},signatures:"Majid Soleimani, Leila Dehabadi, Lee D. Wilson and Lope G. Tabil",authors:[{id:"31671",title:"Prof.",name:"Lope",middleName:"G.",surname:"Tabil",slug:"lope-tabil",fullName:"Lope Tabil"},{id:"109706",title:"Dr.",name:"Majid",middleName:null,surname:"Soleimani",slug:"majid-soleimani",fullName:"Majid Soleimani"},{id:"214500",title:"Mrs.",name:"Leila",middleName:null,surname:"Dehabadi",slug:"leila-dehabadi",fullName:"Leila Dehabadi"},{id:"214501",title:"Dr.",name:"Lee",middleName:null,surname:"Wilson",slug:"lee-wilson",fullName:"Lee Wilson"}]},{id:"14670",title:"Non-Linear Periodic and Quasi-Periodic Vibrations in Mechanical Systems - On the use of the Harmonic Balance Methods",slug:"non-linear-periodic-and-quasi-periodic-vibrations-in-mechanical-systems-on-the-use-of-the-harmonic-b",totalDownloads:2702,totalCrossrefCites:17,totalDimensionsCites:29,book:{slug:"advances-in-vibration-analysis-research",title:"Advances in Vibration Analysis Research",fullTitle:"Advances in Vibration Analysis Research"},signatures:"Emmanuelle Sarrouy and Jean-Jacques Sinou",authors:[{id:"21474",title:"Prof.",name:"Jean-Jacques",middleName:null,surname:"Sinou",slug:"jean-jacques-sinou",fullName:"Jean-Jacques Sinou"},{id:"45297",title:"Dr.",name:"Emmanuelle",middleName:null,surname:"Sarrouy",slug:"emmanuelle-sarrouy",fullName:"Emmanuelle Sarrouy"}]},{id:"44639",title:"Fundamentals of Lubricants and Lubrication",slug:"fundamentals-of-lubricants-and-lubrication",totalDownloads:5102,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"tribology-fundamentals-and-advancements",title:"Tribology",fullTitle:"Tribology - Fundamentals and Advancements"},signatures:"Walter Holweger",authors:[{id:"157019",title:"Dr.",name:"Walter",middleName:null,surname:"Holweger",slug:"walter-holweger",fullName:"Walter Holweger"}]},{id:"73333",title:"Lubricant and Lubricant Additives",slug:"lubricant-and-lubricant-additives",totalDownloads:167,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"tribology-in-materials-and-manufacturing-wear-friction-and-lubrication",title:"Tribology in Materials and Manufacturing",fullTitle:"Tribology in Materials and Manufacturing - Wear, Friction and Lubrication"},signatures:"Debashis Puhan",authors:[{id:"323503",title:"Dr.",name:"Debashis",middleName:null,surname:"Puhan",slug:"debashis-puhan",fullName:"Debashis Puhan"}]},{id:"53939",title:"Closure Models for Lagrangian Gas Dynamics and Elastoplasticity Equations in Multimaterial Cells",slug:"closure-models-for-lagrangian-gas-dynamics-and-elastoplasticity-equations-in-multimaterial-cells",totalDownloads:1135,totalCrossrefCites:1,totalDimensionsCites:0,book:{slug:"lagrangian-mechanics",title:"Lagrangian Mechanics",fullTitle:"Lagrangian Mechanics"},signatures:"Yury Yanilkin",authors:[{id:"181004",title:"Prof.",name:"Yury",middleName:"Vasilyevich",surname:"Yanilkin",slug:"yury-yanilkin",fullName:"Yury Yanilkin"}]}],onlineFirstChaptersFilter:{topicSlug:"mechanical-engineering-engineering-mechanics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/85177/guillermo-ortega",hash:"",query:{},params:{id:"85177",slug:"guillermo-ortega"},fullPath:"/profiles/85177/guillermo-ortega",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()