Measured transport parameters for protons and oxygen ion vacancies in NiBCZY27
\r\n\tIn order to understand the detailed content, these parameters are also divided into different classes such as inert, readily biodegradable, soluble COD, etc. However, still we do not possess detailed knowledge on organics in water sources or wastewater streams. Therefore, during the last decade, scientists tried to divide organics into different classes and understand their treatment potential and natural pathways. This book aims to fill out a very significant gap in this research field. Different treatment processes, monitoring and water determination chapters on dissolved organics, emerging organic pollutants, endocrine disruptors, emerging disinfection by-products, microplastic etc. in water or wastewater are welcome to this book project.
",isbn:null,printIsbn:"979-953-307-X-X",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"358ff11fd43b59f3a36498ef0494189d",bookSignature:"Associate Prof. Taner Yonar",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/8934.jpg",keywords:"COD, BOD, TOC, treatment, toxicity, fire retardents, bioacumulaion, treatment, pesticides, hormones, sources of microplastics, effects on health",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 11th 2019",dateEndSecondStepPublish:"July 2nd 2019",dateEndThirdStepPublish:"August 31st 2019",dateEndFourthStepPublish:"November 19th 2019",dateEndFifthStepPublish:"January 18th 2020",remainingDaysToSecondStep:"2 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"190012",title:"Associate Prof.",name:"Taner",middleName:null,surname:"Yonar",slug:"taner-yonar",fullName:"Taner Yonar",profilePictureURL:"https://mts.intechopen.com/storage/users/190012/images/system/190012.png",biography:"Prof. Dr. Taner Yonar is a Professor of Uludag University, Engineering Faculty, Environmental Engineering Department. He has received his B.Sc. (1996) degree from the Environmental Engineering Department, Uludag University. He received his M.Sc. (1999) and Ph.D. (2005) degrees in Environmental Technology from Uludag University, Institute of Sciences. He did his post-doctoral research in the UK, at Newcastle University, Chemical Engineering and Advanced Materials Department (2011). He teaches graduate and undergraduate level courses in Environmental Engineering on water and wastewater treatment and advanced treatment technologies. He works on advanced oxidation, membrane processes, and electrochemical processes. He is the editor of three books (published by IntechOpen) and the author of over 80 research papers.",institutionString:"Uludağ University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Uludağ University",institutionURL:null,country:{name:"Turkey"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"12",title:"Environmental Sciences",slug:"environmental-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"270941",firstName:"Sandra",lastName:"Maljavac",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/270941/images/7824_n.jpg",email:"sandra.m@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"10026",title:"Electrodialysis",subtitle:null,isOpenForSubmission:!1,hash:"ffef55f8ffe48f096acaa5f6329ed76f",slug:"electrodialysis",bookSignature:"Taner Yonar",coverURL:"https://cdn.intechopen.com/books/images_new/10026.jpg",editedByType:"Edited by",editors:[{id:"190012",title:"Associate Prof.",name:"Taner",surname:"Yonar",slug:"taner-yonar",fullName:"Taner Yonar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"17618",title:"Co-Ionic Conduction in Protonic Ceramics of the Solid Solution, BaCe(x)Zr(y-x)Y(1-y)O3- Part II: Co-Ionic Conduction",doi:"10.5772/30672",slug:"co-ionic-conduction-in-protonic-ceramics-of-the-solid-solution-bace-x-zr-y-x-y-1-y-o3-part-ii-co-ion",body:'\n\t\tBCZY protonic ceramics described in the previous chapter constitute a class of model co-ionic conductors, meaning their transport properties are determined almost exclusively by two ionic species, protons and oxygen ion vacancies. The co-ionic conduction regime is a range of moist atmospheres spanning about 15 orders of magnitude of oxygen pressure, from 10-20< pO2< 10-5 atm., where the total conductivity is independent of oxygen pressure. Evaluation of transport properties in these materials requires new techniques not typically required for traditional ion conductors, or even mixed ionic/electronic conductors. In this chapter, a model for co-ionic conduction, called the CIC model, is proposed that provides both a qualitative and a quantitative understanding of these commercially important ceramic materials. In the last section, the model will be used to deconstruct total conductivity measurements on BCZY27 to obtain partial conductivities as a function of temperature.
\n\t\t\tArrhenius analysis is a powerful scientific technique for studying transport properties in ceramic ion conductors. The self-diffusivity of a particular ionic species can be described by,
\n\t\t\twhere D* is a temperature-independent constant and Ea is the activation energy for migration of the ionic species in the lattice. When log Di is plotted against reciprorocal temperature, a straight line is obtained where D* may be found as the y-axis intercept at “infinite” temperature, and Ea may be determined from the slope of the line. Unfortunately, it is often quite difficult to obtain self-diffusivities directly from experiments. Indirect methods are used – most commonly, conductivity measurements, which are easy to make as a function of temperature and surrounding atmosphere. Self-diffusivity and conductivity are related by the well-known Nernst-Einstein relationship,
\n\t\t\tIt is observed immediately that the proportionality between conductivity and diffusivity involves the concentration of the ionic species. In most cases with ceramic ion conductors, the species concentrations are fixed by a known concentration of extrinsic dopants, which is practically constant over a wide range of operating temperatures, making Arrhenius analysis from conductivity data straightforward and convenient. However, when concentrations of ionic species change appreciably with temperature, traditional Arrhenius analysis is no longer valid. Only in special cases, where the dependence of species concentrations on temperature and pressure is known, can the relationship between conductivity and self-diffusivity be determined. In protonic ceramics, both oxygen ion vacancies and protons are simultaneously present in the lattice, and their respective concentrations depend on the degree of hydration of the host ceramic. Correspondingly, the degree of hydration has a strong dependence on temperature and the surrounding gas atmosphere and can vary spatially throughout the material. However, the respective concentrations of protons and oxygen ion vacancies are not independent. Instead, they are found to change relative to one another in a predictable way. This fixed relationship can be exploited for interpreting conductivity data obtained on protonic ceramic co-ionic conductors and correlating it to species self-diffusivities. Finally, even though many important applications for protonic ceramics are in high pO2 atmospheres, once the self-diffusivities of protons and oxygen ion vacancies have been determined in the co-ionic regime, the contribution from electronic defects can be inferred by subtraction from the total conductivity at low or high pO2.
\n\t\tThe BCZY perovskite ceramics described in Part I contain some compliment of oxygen ion vacancies and electron holes after sintering in air. Y3+ ions that substitute on the regular Ce+4 and Zr+4 B-sites carry an effective negative charge designated by \n\t\t\t\t\t
The process of hydration requires the annihilation of an oxygen ion vacancy at the surface (while dehydration requires the creation of an oxygen vacancy). In the process, quasi-free protons are introduced into (or removed from) the oxygen ion sublattice, designated by \n\t\t\t\t\t
All of the yttrium ions in this case are assumed to reside only on cerium or zirconium B-sites, and it is equally probable that either Ce+4 or Zr+4 will otherwise occupy the sites in the solid solution. Although the total concentration of oxygen vacancies and protons is fixed, their relative concentrations may vary, so that an ensemble of two independent mobile ionic species may be present in the ceramic. As straightforward as it may seem, this phenomenon of coexistence of two mobile ionic species in oxide ceramics leads to unusual behavior.The defect chemistry of protonic ceramics is further complicated by the presence of electronic defects. For example, n-type conductivity may be introduced in very dry atmosphere at low oxygen pressure and high temperatures – a condition not typically encountered where proton conductors are likely to be used. Electron holes, on the other hand, are generated at moderate oxygen pressure by the reaction,
\n\t\t\tThese holes may subsequently be annihilated by water vapor by the reaction,
\n\t\t\tThe summation of Eq. 5 and Eq. 6 gives Eq. 3, and it is possible (and perhaps, likely) that Wagner hydration actually occurs by this two-step process. Not all ceramic oxides with oxygen vacancies undergo Wagner hydration. In fact, the phenomenon seems to be restricted to a relatively small group of ceramics, possibly pointing to the important role played by holes in the overall hydration process. Recently, Yoo and colleagues (Yoo, et al. 2009) have proposed that holes play a fundamental role in the transient behaviour of hydration in protonic ceramics upon sudden changes in pH2O. However, since holes are created and subsequently annihilated, their concentration at equilibrium is low in moist atmosphere at intermediate oxygen pressure (pO2< 10-5 atm). For this reason, by assuming equilibrium under fixed water vapor pressure, the contribution of electronic defects to total conductivity may generally be neglected at equilibrium. On the other hand, holes are expected to contribute to ambipolar diffusion at higher pO2. A comprehensive theory for multi-species transport in ceramic proton conductors was originally proposed by Tan (Tan et al., 2000) and more recently expanded by Sanders (Sanders & O’Hayre, 2009).
\n\t\t\tThe CIC model only applies in the ionic regime of the Kröger-Vink diagram where defect concentrations are independent of oxygen pressure. Wagner hydration occurs by Eq. 3, where hydration and dehydration at equilibrium depend on temperature and water vapor partial pressure as well as the concentration of oxygen ion vacancies at the surface according to the mass action law,
\n\t\t\tThe usual thermodynamic meaning applies,
\n\t\t\tBrackets refer to mole fractions. Molar concentrations are obtained by dividing by the molar volume. In the crystalline lattice, oxygen ion sites are conserved so the molar volume Vm is equivalent to Na times the unit cell volume Vc of the cubic ABO3 perovskite. The fraction of extrinsic oxygen vacancies “stuffed” by water molecules is defined as the extent of hydration, Chi (χ), where 0 < χ < 1. Two protons are generated for each oxygen vacancy “stuffed”, and there are two dopant ions required for every oxygen ion vacancy.
\n\t\t\tAt equilibrium, the extent of hydration, χ, is a strong function of temperature and water vapor pressure. Its value may be calculated using the formula derived by Kreuer, obtained by inserting the O-site conservation and electroneutrality condition into Eq. 7 (Kreuer, 1999).
\n\t\t\t\n\t\t\t\t\n\t\t\t\t\t
Extent of hydration is related to defect concentrations in units of mol/cm3 by,
\n\t\t\tSubstituting the concentrations from Eq. 11 into the Nernst-Einstein relationship (remembering that z2 is 1 for protons and 4 for oxygen ion vacancies) leads to the partial conductivities,
\n\t\t\t\n\t\t\t\t\n\t\t\t\t\t
where F is Faraday’s constant, R is the universal gas constant, e is the elementary charge, kB is Boltzmann’s constant, Vm is the molar volume, and Vc is the cubic ABO3 unit cell volume in cm3. It is observed that the dimensionality of β is consistent so that when multiplied by D/T, in units of cm2/K.s, the proper units of conductivity, (Ω cm)-1, are obtained.
\n\t\t\tThe co-ionic conduction model treats the total conductivity as the sum of only the two ionic species.
\n\t\t\tBy combining partial conductivities (Eq. 12 and 13), an important linear relationship between σtot and χ is found,
\n\t\t\tIn the limit of complete hydration, the total conductivity is equal to the proton conductivity, and in the limit of complete dehydration, the total conductivity is equal to the oxygen ion vacancy conductivity. At intermediate extent of hydration, the total conductivity reflects the ionic species ensemble. χ is constant at steady state once equilibrium with the surrounding atmosphere is reached. Under transient conditions, such as when temperature and water vapor pressure change or a water vapour pressure gradient is imposed, χ is a local variable that depends on position and time within the ceramic. Using Eq. 16, it is possible to determine the partial conductivities from total conductivity measurements if extent of hydration is known as a function of temperature. The determination of partial conductivities of protons and oxygen ion vacancies and proton transference number is important for electrochemical applications such as protonic ceramic fuel cells, steam electrolyzers, and hydrogen separation membranes; but it is also important for steam permeable membranes (Coors, 2007) since one important consequence of having two, independent, mobile ionic species is the possibility of ambipolar water diffusion.
\n\t\t\tIt is necessary to stress an important point about applying the Nernst-Einstein equation to an ensemble of mobile ionic species by the preceding derivation. Equations 12 and 13 imply that protons and oxygen ion vacancies may diffuse independently. In the conductivity experiment this condition is met by using electrodes that are reversible to both species, which requires electrochemical redox reactions at the surface for both hydrogen and oxygen independently. However, the Wagner reaction (Eq. 3) is not an electrochemical redox reaction. That is, no electrons flow into an external circuit, and electrodes are, therefore, not required for hydration and dehydration. The Wagner reaction only describes the chemical interaction of the ceramic with water vapor and the relative defect concentrations that ensue. In the absence of electrodes, Eq. 16 still applies, as diffusion is constrained by electroneutrality resulting in chemical diffusion of water, but the partial conductivities are no longer defined by electrode potentials.
\n\t\t\tThe protonic transference number is defined as,
\n\t\t\tProtonic transference number, it is observed, is not a constant, but a function of concentration - that is, the extent of hydration. Extent of hydration (Eq. 10) and proton transference number (Eq. 17) both have the same sigmoidal functional form. In fact, it may be seen for the special case where the self-diffusivity of oxygen ion vacancies is exactly half that of proton diffusivity, \n\t\t\t\t\t
Conduction due to electrons and holes is neglected. This assumption is valid under moist atmosphere as long as the temperature and oxygen pressure are not too high or too low.
Mobile \n\t\t\t\t\t\t\t
The total concentration of \n\t\t\t\t\t\t\t
Extent of hydration χ, is a temperature- and water vapor pressure-dependent variable that is determined by an equilibrium constant for hydration with a constant value of enthalpy and entropy. \n\t\t\t\t\t\t\t
With these four assumptions, it is possible to develop a useful analytical model that yields further insight into co-ionic conduction. Despite its apparent simplicity, the model is deceptively complex due to the exponential terms, which make routine algebraic evaluation impossible. Fortunately, the execution of the model can be carried out with ease in a spreadsheet like Microsoft Excel.
\n\t\tCo-ionic conduction is obviously only possible when protons and oxygen vacancies co-exist in the lattice. At equilibrium, the Wagner reaction is assumed to be thermodynamically reversible, so that at constant water vapor pressure, the ratio of protons to oxygen vacancies depends only on temperature. If no hydration were to occur, only oxygen vacancies would be present and the material would behave just like an ordinary oxygen ion conductor. If dehydration did not occur - that is, if hydrogen, rather than water vapor, could enter the lattice directly by a different mechanism - proton conduction would prevail at all temperatures. Defect reactions of this type are only possible in very dry hydrogen in ceramic proton conductors or, as pointed out by Tan (Tan, et al. 2000) mixed proton-hole conduction is possible when a pO2 concentration gradient is present.
\n\t\t\tThe details of how the ratio of protons to oxygen vacancies changes with temperature are captured in Kreuer’s formula for isobaric degree of hydration. From Eq. 10 it may be shown that hydration achieves a saturation value at low temperatures, where the protonic defect concentration is frozen in, i.e. χ → 1 as T → 0. Eq. 10 also requires that χ → 0 as T → ∞. Complete dehydration in these materials typically occurs below 1200 ºC, but there is no fundamental requirement for total dehydration to take place below the melting point. This equation generates a sigmoidal plot versus temperature with a characteristic inflection at the mid-point. The temperature at the inflection point, Tc, is a strong function of hydration enthalpy. Figure 1 shows plots of Eq. 10 at pH2O = 0.025 atm for three different hydration enthalpies (ΔH = -80, -100, and -120 kJ/mol) at constant entropy (ΔS = -120 J/mol.K). It may be seen that a change in ΔH of only 40 kJ/mol causes a 400 ºC translation of Tc. The slope of the curve in the transition region is determined by the hydration entropy. Figure 2 shows this effect for ΔS = -80, -120, and -160 J/mol.K, where the enthalpy has been adjusted so that each curve has the same inflection point. It is observed that the hydration/dehydration transition becomes more abrupt as the reaction entropy becomes more negative, but the effect is not nearly as pronounced as for different enthalpies.
\n\t\t\tTotal conductivity vs. temperature measurements of ceramic proton conductors are routinely made and reported in the literature, but often with little underlying recognition of the consequences of co-ionic conduction. This has resulted in confusion in interpretation of Arrhenius plots. Only recently has it become more widely recognized that there is a requirement for deconvolving partial conductivities from the total conductivity data. This can be a formidable challenge. Looking at Eqs. 12 and 13 it may be observed that these coupled equations contain one common unknown variable, χ, and two decoupled unknown parameters for each species - the pre-exponentials and migration activation energies. At low temperature, in moist atmosphere, it is generally valid to assume that the total conductivity is due to protonic conduction alone (Eq. 12). Thus, the bulk protonic activation energy, Ea,OH, may be immediately determined from the slope of the Arrhenius conductivity plot at low temperature. The pre-exponential DOH, however, cannot be determined from the extrapolation of the low temperature plot to the y-axis, as is usually done with single-ion conduction data, without knowing the terminal hydration limit, χ as T → 0. Variations in this value will shift the low temperature portion of the curve up and down, moving the intercept. At high temperatures in dry atmosphere, it is often safe to assume that conduction is due to oxygen vacancies alone (Eq. 13). In this case, the activation energy, Ea,Vo, may be determined by the slope. The pre-exponential, DVo, may be determined by the y-intercept of the extrapolation of the high temperature portion of the curve since, in this case, it may also be generally assumed that the ceramic is essentially dehydrated so that χ ≈ 0. However, caution must be exercised if either the hydration enthalpy is strongly negative or the entropy is not too negative, as evident from Figure 1. Once the self-diffusivities of protons and oxygen ion vacancies are determined at the high and low temperature extremes, the portion of the conductivity plot at intermediate temperatures, where χ is variable, must provide a smooth transition that obeys Eq. 16 at all temperatures. This reflects the fact that the species partial conductivities are not constant. The total conductivity is the sum of the two partial conductivities at a given temperature. The important features are apparent at intermediate temperatures, where proton conductivity reaches a maximum before dropping at higher temperatures due to dehydration, and oxygen vacancy conduction begins to dominate. The oxygen ion vacancy partial conductivity curve is characterized by a “dog leg” caused by an increase in oxygen vacancy concentration due to dehydration. The sum of the two curves produces the characteristic “crook” often observed in conductivity plots of these materials. Many examples of co-ionic conduction are seen in the literature exhibiting this hydration/dehydration “crook”. A good example is shown in Fig. 16 of Kreuer’s 2003 review on Proton-Conducting Oxides (Kreuer, 2003), where this behavior is clearly visible in the total conductivity portion of each of the plots. The co-ionic conductivity model provides a good qualitative understanding of this phenomenon.
\n\t\t\tExtent of hydration vs. temperature by Eq. 10 (isobaric pH2O = 0.025 atm).ΔH = -80 (red), -100 (blue), -120 (green) kJ/mol, with constant ΔS = -120 J/mol.K.
Extent of hydration vs. temperature by Eq. 10 (isobaric pH2O = 0.025 atm). ΔS [J/mol.K], ΔH [kJ/mol] = -80, -80 (red), -120, -120 (blue), -160, -160 (green).
Ambipolar diffusion occurs in the co-ionic ensemble with chemical diffusivity derived by Kreuer (Kreuer, 1999).
\n\t\t\t\n\t\t\t\t\n\t\t\t\t\t
Surprisingly, this derivative has no roots. So, unlike proton conductivity, there is no value of χ between 0 and 1 that produces a maximum in chemical diffusivity. This unusual behavior results from the exact cancellation of all terms containing χ in the numerator, and shows that ambipolar diffusion must increase monotonically with temperature.It is seen in Eq. 11 that χ and concentration are proportional, making it possible to cast Fick’s 2nd Law in the more convenient dimensionless variable, χ which has implicit dependency on time and space variables, χ = χ(r,t).
\n\t\t\t\n\t\t\t\tEq. 20 must be solved numerically because the spatial derivatives of Eq. 18 result in nonlinear coefficients. At steady state, the concentration gradient is stationary, and Eq. 20 may be integrated to give the spatial dependence of \n\t\t\t\t\t
In one dimension, Δx is the electrolyte membrane thickness and \n\t\t\t\t\t
As can be seen by this simplification, the steam flux only depends on the extent of hydration at the interfaces. The term containing the partial conductivities in Eq. 23 is characteristic of ambipolar diffusion. It is equivalent to \n\t\t\t\t\t
A co-ionic conduction model for protons and oxygen ion vacancies in protonic ceramic perovskites was presented in the previous section. Even in its most simplified form, six fitting parameters are still required: two self-diffusivity pre-exponentials, two migration activation energies, and hydration enthalpy and entropy. In this section a fitting procedure, based on isobaric, steady-state conductivity analysis over a wide temperature range is used for determining these parameters with experimental data for the proton conductor, BCZY27.
\n\t\t\tThe experiments for measuring conductivity and diffusivity are generally not the same. The distinction is subtle, and often leads to errors in interpreting experimental data. Conductivity measurements require electrodes and the measurement of the electrochemical potential gradient. On the other hand, hydration and dehydration occur by ambipolar diffusion, which does not require electrodes. The conductivity experiment generally presupposes a uniform, steady-state concentration of mobile defect species. Electrodes, reversible to hydrogen and electrons, provide an alternative way for protons to enter the lattice, perturbing the defect equilibrium in unanticipated ways. Generally specimens used for conductivity measurements have large area, planar electrodes separated by a relatively thin specimen. Under well-equilibrated test conditions, in a balanced cell arrangement, with uniform atmosphere at each electrode, proton or mixed proton/hole conductivity may be measured once the extent of hydration reaches a steady-state value. For unbalanced cells with different water vapor or hydrogen pressure at each electrode, the measurement is no longer valid since a constant flux of steam is induced. Specifically, the Nernst potential cannot be used to determine the protonic transference number in this case as proposed by Norby (Norby, 1988; Sutija, et al., 1995).
\n\t\t\t\tFor conductivity measurements of the co-ionic ensemble in ceramic proton conductors, electrodes must be placed so as not to perturb the defect concentrations. This has been accomplished in the present experiments by using a long, rod with circumferential electrodes placed at each end. This rod has a large surface area for optimal surface exchange with gaseous species, and a relatively small electrode area. Most importantly, diffusion occurs in the radial direction, and conductivity is measured in the axial direction – the direction of the electric field lines required for the conductivity measurement. This means that the conductance instrument measures the arithmetic mean conductance of the rod (Maier, 2004, p.229),
\n\t\t\t\twhere R is the measured specimen resistance. Eq. 24 is valid as long as the conductivity depends only on the radial, and not the axial (z-axis), position along the length of the rod between the electrodes. Previously it was shown,
\n\t\t\t\t\n\t\t\t\t\tInserting Eq. 16 into Eq. 24 provides the necessary bridge between the conductivity and diffusion experiments.
\n\t\t\t\tOf course, χ(r, t) is not generally known except at steady-state. It must be determined by solving the diffusion equation (Eq. 20) subject to boundary and initial conditions,
\n\t\t\t\tThe measurement of conductivity can only sense the mean conductivity of all the mobile species in the cross-section of the specimen between the electrodes. The concentration of defects may or may not be uniform depending on whether or not the specimen has reached thermodynamic equilibrium with the surrounding atmosphere. The important feature of the experiments described herein is that the partial conductivities of individual species may be extracted from the diffusion experiment because diffusion and migration are orthogonal – diffusion is perpendicular to free surfaces (radial) and migration is perpendicular to the electrodes (axial). Direct current measurements cannot be employed here because the defects would become polarized in the axial direction. Low frequency a.c. is necessary so that, even though the charged defects oscillate back and forth in the axial direction, their average concentration does not change as long as the mean free path is short compared to the length of the specimen.
\n\t\t\t\tIsobaric conductivity measurements are made under constant \n\t\t\t\t\t\t
The fabrication and microstructure of the protonic ceramic, BCZY, was presented in Part I. For the conductivity measurements, an extruded rod of 2NiBCZY27, 3.36 mm diameter was used. The rod was cut to a length of 4 cm. A platinum wire was wrapped around each end and twisted into a pigtail. A band of platinum paste (ESL 5524) was painted on each end and covering the wires. The platinum paste and leads were sintered at 975 ºC for 15 minutes in air. The distance between electrodes was 3.45 cm, giving a resistance cross-section (A/t) of 0.0257 cm.
\n\t\t\tAll conductivity measurements were carried out in a sealed, 5 cm diameter alumina ceramic process tube in a horizontal tube furnace (Thermolyne 21100). Four platinum wires extended to the specimen through gas-tight feedthroughs for connection to the measuring instruments outside the furnace. Two Pt lead wires were attached to each pigtail on the specimen for 4-point measurements, and a type-K thermocouple was mounted about 1 cm from the specimen. Process gas was introduced at a flow rate of 100 ml/min about 1 cm upstream of the specimen, and an in-situ zirconia oxygen sensor tube (CoorsTek Pt-ZDY4), referenced to ambient air with a second intergral type-K thermocouple, was positioned about 5 cm downstream of the specimen to give very rapid and sensitive response to changes in local \n\t\t\t\t\t\t
Moist and dry 4% H2-bal Ar gases were prepared by splitting the flow from the gas cylinder from a common manifold through two precision needle valves. One stream passed through a chromatography drying column (CRS Big Trap) and the second stream passed through a water bubbler at room temperature. The moist and dry streams were then connected to the two inlet ports of a 2-position, 4-way ball valve. Whenever the valve position was switched, the selected output flowed into the furnace and the non-selected output exhausted into room. This way, each gas steam continued flowing at steady-state regardless of valve position, without any build up of back pressure that would otherwise occur if one of the streams was stopped while the other was flowing. With the 4-way valve configuration no pressure transients were introduced when the process gas was switched between the moist and dry condition.
\n\t\t\tThe resistance of the specimen was measured using an Agilent 4338B Precision Miliohmmeter. This instrument provides 4-probe resistance measurements at a fixed frequency of 1000 Hz, which is a good frequency for this type of experiment because the frequency is high enough to eliminate noise and polarizations due to electrodes, contact potentials and thermoelectric effects while still capturing the true bulk resistance of the specimen. The 4338B generates a single pair (real and imaginary) of impedance data at each measurement. As long as the reactance value is much less than the real resistance, the measurements can be considered to be representative of the true bulk specimen resistance. Of course, the fixed frequency measurement does not afford the detailed analysis of impedance spectroscopy, such as grain vs. grain boundary conductance. A Hewlett Packard 4195A Network analyzer operating between 10 Hz and 5 MHz was also used periodically to confirm that the measurement at 1000 Hz was representative of the bulk conductance. Since the total electrode area was small, electrode impedance effects were negligible. At high temperatures, features of impedance spectra were difficult to resolve, and no significant difference between the “bulk” resistance and the resistance at 1000 Hz was observed. Above 400 ºC, where most of the measurements were made, no grain boundary arcs were visible in the spectra and only a single bulk arc was present above 1000 Hz. At intermediate temperatures, where impedance spectroscopy is often useful, the arcs resulting from mixed protons and oxygen ion vacancies overlap, making attempts to resolve impedance arcs separately virtually meaningless in the range of temperatures where the partial conductivities are about the same order of magnitude. Again, fixed frequency measurements proved to be a good compromise and considerably more convenient from the standpoint of the enormous amount of data generated during temperature scans lasting several days in some cases. Because of the large ratio of cross-sectional area to length in the rod specimens, resistance values ranged from about 5000 Ω at the highest temperatures to about 150 kΩ at the lowest temperatures. With such large resistance values, there was no concern about the instrument input impedance as often plagues the measurements of thin specimens that can typically be in the milliohm range.
\n\t\t\t\tResistance measurements, thermocouple readings, and O2 sensor voltages were continuously logged using a data acquisition computer running in the LabView environment. The complete test apparatus is shown in Figure 3.
\n\t\t\t\tConductivity test apparatus
The extent of hydration, as determined by Eq. 10, depends strongly on the water vapour pressure at the surface of the specimen. A common mistake that is made in experiments for evaluating ceramic proton conductors is to assume that the \n\t\t\t\t\t\t
where F is Faraday’s constant, R is the universal gas constant and T is absolute temperature. The reference oxygen pressure in this case is ambient air, 0.2095 atm, adjusted for Salt Lake City, Utah, (0.858atm/atm), or 0.180 atm. The ratio of water vapour pressure to hydrogen pressure is determined by the oxygen sensor,
\n\t\t\t\twhere K\n\t\t\t\t\tw is the temperature-dependent equilibrium constant for water formation evaluated by the empirical relationship (JANAF),
\n\t\t\t\t\n\t\t\t\t\tIn this experiment, the process gas used was 4.2% H2-bal Ar. The moist gas was prepared by bubbling in water at 21 ºC, providing a saturated water pressure of 0.025/0.858 = 0.029 atm. Since the mole fraction of argon is invariant, the known pressures of Ar, H2O, and H2 in the process gas permit the calculation of the sum of \n\t\t\t\t\t\t
\n\t\t\t\t\tEq. 28 and 30 may be solved simultaneously to give,
\n\t\t\t\twhich relates the local water vapour pressure to the measured oxygen pressure. For dry gas, the prefactor in the numerator is just 0.042 x 0.858 = 0.036. The calculated \n\t\t\t\t\t\t
Water vapor pressure for moist and dry 4.2% H2-bal Ar process gas with specimen, and calibration without specimen, as calculated from the Nernst voltage of the in-situ oxygen sensor.
Isobaric conductivity measurement requires that steady-state equilibrium of the specimen be maintained with the surrounding atmosphere so that the concentration profile of the mobile ionic species in the specimen is completely uniform. Even with the relatively thin cross-section of our rod specimens, this presented a challenge. Rapid equilibration above about 800 ºC is easily achieved, but below this temperature, where most of the hydration and dehydration actually takes place, equilibration times become progressively longer because the self-diffusivities of protons and oxygen ion vacancies decrease exponentially. If the rate of change of temperature is too great, the measured conductivity does not reflect the true equilibrium defect concentration profile. This is typically observed as hysteresis in the data between increasing and decreasing temperature measurements. For these experiments impedance data for analysis was obtained under isobaric conditions upon decreasing temperature from 1030 ºC to 250 ºC at 0.5 ºC per minute followed by rapid heating at 5 ºC to the starting temperature. The experiment was repeated ten times in moist hydrogen to ensure repeatability and the absence of hysteresis effects. This extreme cyclic testing confirms the mechanical and chemical integrity of 2NiBCZY27 prepared from barium sulphate instead of barium carbonate (see Part I for details) since practically no change in conductivity was observed. Figure 5 shows an Arrhenius conductivity plot of the specimen measured in both moist and dry 4.2%H2/bal Ar. The curve for moist hydrogen represents the average for the final seven separate runs, and the curve for dry hydrogen is for the average of two runs.
\n\t\t\t\tArrhenius plot of log(base 10) conductivity vs. reciprocal temperature. Upper curve is for moist and lower curve is for dry 4.2% H2.
The curves exhibit the characteristic hydration/dehydration “crook”. Below 500 ºC in moist hydrogen, the specimen was assumed to be hydrated at the hydration limit of χ = 1. Conductivity in this region has been attributed exclusively to protons, and the slope and intercept are indicated by a linear extension. At the highest temperature obtained in moist hydrogen, the specimen still retained substantial hydration, however, in dry hydrogen, the specimen was assumed fully dehydrated (χ = 0) with conduction attributed exclusively to oxygen ion vacancies. The linear extension in this region is also shown. At the two extremes it is possible to determine the species self diffusivities using conventional Arrhenius analysis where the slope times 1000 k\n\t\t\t\t\tB gives E\n\t\t\t\t\ta and the y-axis intercept give the log term on the right containing the diffusion pre-exponential.
\n\t\t\t\tFor BCZY27, the constant β evaluates to 2.403x106 [K.s/Ω.cm3]. Species self-diffusivities are presented in Table 1.
\n\t\t\t\t\n\t\t\t\t\t\t\t\tspecies\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\tD* (cm/s)\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\tEa (eV)\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t
Protons | \n\t\t\t\t\t\t\t3.45 x 10-4\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t0.449 | \n\t\t\t\t\t\t
Oxygen ion vacancies | \n\t\t\t\t\t\t\t5.65 x 10-3\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t0.937 | \n\t\t\t\t\t\t
Measured transport parameters for protons and oxygen ion vacancies in NiBCZY27
\n\t\t\t\t\tFigure 5 highlights a common misinterpretation of Arrhenius plots in the literature. The foundation of Arrhenius analysis is based on exponentially activated diffusivity. Since, from the Nernst-Einstein equation, conductivity is proportional to the product of diffusivity and concentration, diffusivity can only be correlated with conductivity data when the species concentration is constant. The slope of an Arrhenius conductivity curve cannot be interpreted as the activation energy when the species concentrations are changing. This may be clearly seen from Eq. 16, where ln(σT) only has a meaningful slope when χ is either 0 or 1. The assumption of fixed defect concentrations in single-species ionic conductors is (usually) valid, but this is not the case with co-ionic conductors during hydration and dehydration, where concentrations of defects depend on temperature. Arrhenius analysis is only strictly valid in co-ionic conductors in the limits of total hydration and dehydration.
\n\t\t\tWith the species self-diffusivities determined in the previous section, it was possible to fit the total conductivity data over the intervening temperature range as a function of χ. This was done using the conductivity and in-situ water vapour measurements in moist hydrogen. A least-squares fit for Eq. 16 was obtained for hydration enthalpy and entropy as the two fitting parameters, which were -120.6 kJ/mol and -110.6 J/mol.K, respectively. This enthalpy value is slightly less negative than the value of -125 ± 2 kJ/mol obtained by TG-DSC recently reported by Ricote (Ricote, et al. 2011), and in line with the empirical curve proposed by Norby based on electronegativity of A and B-sites (Norby, 2009). The fitted entropy is close to the value of -120 J/mol K predicted by Norby based on the entropy of vaporization of water. This is by no means an assertion that the present fitted values are correct. It mostly draws attention to the difficulty in making this measurement with confidence. The scatter in reported values for enthalpy and entropy of hydration that has appeared in the literature over the years is a matter for concern. Fitting of conductivity data to give reasonable values, as reported by us, is encouraging, but may be just a happy accident. Norby’s group at the University of Oslo has been making progress with this measurement lately, but the matter is far from resolved.
\n\t\t\t\tThe hydration enthalpy and entropy values obtained by fitting the moist hydrogen conductivity data were used in an attempt to fit the dry hydrogen conductivity data, as shown in Figure 6. It is observed that, although the curve has the right qualitative features, the CIC model does not fit the dry hydrogen data very well. The upper green curve is for the CIC model prediction using the measured water vapour pressure, as presented in Figure 4. The CIC model considerably over-estimates the conductivity throughout the hydration-dehydration region. The lower blue curve is the CIC prediction using fixed \n\t\t\t\t\t\t
Moist hydrogen data fit (red curve) with ΔH = -120.6 kJ/mol and ΔS = -110.6 J/mol.K. Failure of CIC model in dry hydrogen (orange). Green curve represents predicted values at the measured pH2O, and the blue curve, the predicted values for dry hydrogen (pH2O = 0.0015 atm)
The complete conductivity plot, based on all the fitted parameters, is shown in Fig. 7. The decomposition of total conductivity into partial conductivities of protons and oxygen ion vacancies is accomplished using the Co-Ionic Conductivity model. The proton transference number refers to the right-hand axis. The figure captures the important transport features of the co-ionic ensemble. Proton conductivity reaches a maximum at 775 ºC. This maximum in proton conductivity is characteristic of dehydration at higher temperatures. The peak proton conductivity for BCZY27 is 3.3 mS/cm. This relatively low conductivity value is consistent with values reported in the literature in the absence of hole conduction. Oxygen ion vacancy conductivity is greater than proton conductivity above 1000 ºC, but at the peak in proton conductivity, is already about one order of magnitude lower. Oxygen ion vacancy conductivity bows downward as the concentration of vacancies decreases with decreasing temperature, and below about 500 ºC the “dog leg” appears (not shown on the chart) where the residual vacancy concentration become frozen in at some small value. From the partial conductivities, the protonic transference number, t\n\t\t\t\t\tp, was determined. At the peak in proton conductivity, t\n\t\t\t\t\tp is only about 0.9, meaning that considerable ambipolar steam permeation is expected to occur at 740 ºC. At 600 ºC protonic conductivity is only slightly reduced, but t\n\t\t\t\t\tp is 0.98. Any process that requires high selectivity for proton transport must, therefore, operate below 600 ºC
\n\t\t\t\tIsobaric BCZY27 conductivity in moist 4.2%H2/bal Ar based on CIC model. Partial conductivities are for protons (red) and oxygen vacancies (blue). Protonic transference (black) refers to right-hand axis.
Wagner hydration and Kreuer’s transport models unambiguously predict that ambipolar, co-ionic conduction takes place in protonic ceramics. This has been well demonstrated by isobaric dehydration weight loss and isotope transport experiments. The co-ionic conduction model presented above is a logical extension of this transport theory that provides insight into the qualitative features of the total conductivity in Arrhenius plots that have appeared in the literature over the years – specifically, the hydration “crook” that is characteristic of these materials at intermediate temperatures. This is where proton conductivity decreases with increasing temperature due to dehydration while oxygen ion vacancy conductivity increases, both in a way that is not very intuitive without the aid of the idea of partial conductivities of the two ionic species that includes a term for the degree of hydration. An attempt has been made to justify the model quantitatively by applying it to empirical conductivity data. The CIC model with all of its underlying assumptions explains the conductivity behaviour quite well in moist hydrogen, but breaks down in dry hydrogen for reasons yet to be determined. Knowing the partial conductivities of protons and oxygen ion vacancies is a prerequisite for predicting species fluxes, which has important implications for the practical uses of these materials in steam permeable membranes, fuel cells, electrolyzers, membrane reactors, and the like. A major challenge going forward is to understand what controls hydration enthalpy and entropy and to learn how to tailor these values in practical materials for specific applications, and to gain a better understanding of the role of electronic defects.
\n\t\tSpecial thanks to Dr. Ryan O’Hayre at the Colorado School of Mines for help in preparing the material in Part II. Also, special thanks to Dr. Sandrine Ricote at DTU/Riso in Denmark for valuable input.
\n\t\tEffective earthquake early warning messages can empower target populations to take appropriate actions for self-protection and, ultimately, save lives. The communication challenges facing those who wish to design warning messages involve both content and access. Content focuses on gaining attention and providing appropriate instructions for self-protection. Access depends on sending the messages through a channel or channels and a medium or media that can be retrieved quickly and easily. A team of researchers completed a project designed to develop such content and access. The project was based on previous warning message testing research. Specifically, researchers attempted to apply the IDEA model to create brief, easily accessible earthquake early warning messages via a mobile phone app.
\nThe IDEA model for effective instructional risk and crisis communication is an acronym that stands for internalization, distribution, explanation, and action [1]. According to the IDEA model, such messages ought to include appeals to internalization (e.g., proximity, personal relevance, impact, timeliness), be distributed over multiple channels deemed appropriate based on crisis type and target audience(s), and offer cogent explanations about what is happening. These explanations should be offered by credible sources and the scientific information provided in them be both accurate and translated intelligibly for the target population(s). These messages also must include specific action steps receivers are to take (or not take) for self-protection [2, 3, 4, 5, 6, 7]. The following paragraphs describe the message design and testing project processes, results, and conclusions based on the timeline under which it unfolded.
\nThe design and testing process occurred in two phases. Thus, this section first describes the study design process followed by the results of the two-phase experiment. It closes with a discussion of the results as they may inform the design of effective EEW messages delivered via phone apps.
\nTo launch the project, a multidisciplinary group comprised of seismologists, instructional risk and crisis communication scientists, graphic artists, and emergency managers from the US west coast states met in Pasadena, California to participate in a 3-day design storm focused on earthquake early warning messaging. This design storm was essentially a synergistic brainstorming session to formulate an ecologically valid plan based on a broad cross-section of expertise represented in crisis communication and earthquake science that would inform earthquake early warning message design.
\nUltimately, the group agreed that message content distributed via a phone app would likely be a predominant interface for US west coast residents. Thus, message content (both visual and aural) would be designed for a phone app. The group also agreed that the content would need to be developed based on social science crisis communication best practices research.
\nMessage content would address internalization components as follows. To test proximity, some conditions will include a map and others will not. To test timeliness, the conditions will include a countdown to when the strong shaking is expected to occur. Timeliness would also be tested by providing no more than 10 seconds for the entire message. Personal relevance would be addressed by focusing on “very strong shaking” (i.e., “7” or higher Intensity level shaking).
\nMessage content would address explanation components as follows. To address source credibility, Dr. Lucy Jones’ voice was recorded and applied as she is a known and credible earthquake expert among many throughout the US west coast states. The accurate science provided by seismologists was translated into simple, easily comprehended language. Also, intensity level was selected rather than magnitude because intensity is directly related to very strong shaking that can harm individuals that do not enact the appropriate actions for self-protection. Finally, some conditions used a verbal message–very strong sharking—and others a numerical message—“7”—to signal the kind of shaking to occur. This allowed researchers to test for potential lack of understanding regarding what “7” might mean. Existing research suggest that less numerate people—those that lack the ability to process mathematical concepts—tend to trust verbal risk information that they can comprehend more than numeric information that may be unintelligible to them and, consequently, make poorer decisions based on numerical data than highly numerate people [8]. Thus, it seemed critical to test intensity comprehension based on numeric versus verbal reporting.
\nMessage content would address action components by a visual graphic accompanied by a verbal message—Drop! Cover! Hold on!—reinforced orally by a speaker saying “Drop, take cover, hold on.” All experts in the design storm agreed that all conditions testing high intensity earthquake early warning message should include this specific action statement in some way. Thus, all treatment conditions included this message.
\nThe graphic artists created eight visual representations of a smart phone app screen, which the instructional risk and crisis team would test during the fall semester. The team would create an online survey to collect responses to the various versions and measure their effectiveness based on affective, cognitive, and behavioral learning outcomes. A snowball sample of participants would be invited via Lucy Jones’ Facebook page and the Shakeout website. The survey collected quantitative and qualitative data and employed a mixed methods analysis.
\nThe results for phase one of the project were collected using a survey distributed via an invitation on Lucy Jones’ Facebook page and the Shakeout website. Both outlets targeted users across the US west coast. Of the 469 surveys entered, 198 were completed in entirety and, thus, usable for the analysis. The usable data resulted in 22–28 responses per condition for the eight varieties tested. The sample was comprised of 106 (56%) females and 92 (44%) males. A majority of the participants (80%) were Caucasians from Southern California (n = 153). Notably, 37% (n = 66) of the participants reported earning incomes over $100,000 annually.
\nEight message conditions were manipulated in ways that indicated the location with or without a map, intensity in numerical or non-numerical form, and countdown in graphic or numerical form. All eight conditions used the same aural warning alert sound and voice command. All eight conditions offered actionable vocal instructions to “drop, take cover, and hold on.”
\nSurvey responses were examined using both quantitative and qualitative methods. Statistically significant quantitative results and dominant qualitative themes emerging in open-ended responses are reported here. The quantitative analysis produced five sets of meaningful results. The subsequent qualitative examination of open-ended responses provided additional insight to inform message refinement. In total, 87 participants (44%) offered open-ended responses to the prompt, “Please provide any additional feedback you believe would be helpful concerning the quality of the app.” These comments ranged from 3 to 328 words (M = 50) Exemplars from these responses are reported with the corresponding quantitative results. These sets of results focus on intensity, location, countdown, perceived helpfulness of visual images, and perceived helpfulness of aural components.
\nA chi-square test revealed that participants were more likely to recall earthquake intensity level correctly when the message included a numerical representation of intensity (χ2 = 78.049, df = 7, p < 0.0001). In other words, participants more accurately recalled the numeral “7” than the phrase “strong shaking.” Qualitative responses indicated confusion, however, regarding what the number “7” actually means. Some noted that “the number was important,” but many also claimed that “many people don’t known what INTENSITY means.” One respondent wrote, for example, “I assume the 7 means 7 out of 10?” Thus, although respondents could recall seeing the number “7,” many did not know what it meant. Therefore, if a numerical representation is present in the warning message, the message must also somehow indicate its meaning and/or prior instruction may be necessary for it to be truly meaningful/effective.
\nFour of the eight conditions tested included a map indicating the epicenter of the earthquake in relation to well-known California cities and highways and four did not. Participants viewing a message without a map were more likely to recall the earthquake’s location incorrectly or not at all than those viewing a message that included a map (χ2 = 43.831, df = 7, p < 0.0001). Qualitative analysis of open-ended responses confirmed the value of the map. Participants viewing the map reported, for example, that “the map showing the general area of the quake was important” and “the map helped me realize where the earthquake was occurring.” Moreover, some commented about the size of the map saying, “the map was far too small to be useful.” Those viewing a message without a map made queries such as: “Did I miss the location?” Based on these results, then, the prototype messages should include a map and the map should be large enough to see easily via a smart phone app.
\nFour conditions provided countdowns represented numerically and four offered countdowns represented in graphic form. The quantitative analysis revealed no statistically significant differences in terms of message recall or effectiveness. The qualitative analysis of the open-ended responses provided insight as to why. When participants viewed the numerical countdown, some reported that the static image was confusing because it did not actually count down from 6 to 5, 4, 3, 2, and 1. Moreover, participants that viewed conditions that conveyed both the countdown and the intensity in numerical form were confused about the meaning of each one. When participants viewed the graphic countdown, they also indicated confusion due to the fact that it was static and did not actually move as the number of seconds to impact declined. Many commented as this participant did: “I’m not sure what the pie graph was supposed to represent.” Regardless of the version participants viewed, many suggested using a countdown clock (stopwatch image or digital clock face: 06, 05, 04 that actually ticked down with each second). As one participant noted, “a countdown clock would underscore the importance of acting quickly.” Clearly, additional message refinement using an active countdown was warranted.
\nPerceived helpfulness was measured using a Likert-type scale ranging from 1 to 5, where 1 was least helpful and 5 was most helpful. In addition, open-ended responses were collected and analyzed for recurring themes. Perceived helpfulness results were analyzed and reported for visual images and aural components.
\nAn Analysis of Variance test revealed significant differences among conditions. Regarding visuals, messages that did not include maps and numerical intensity indicators were perceived as least helpful (F(7,188) = 7.789, p < 0.0001). These results support previous findings regarding location and intensity indicators.
\nAn Analysis of Variance revealed no significant differences in the perceived helpfulness of the app based on the alert sound or the speaker’s voice. Since this phase one experiment did not examine different alert message sounds or speaker voices, this result is not surprising. The qualitative analysis did reveal several dominant themes, however, regarding aural components that may inform future message design and testing. Regarding the alert sound, for example, participants responded it “was too light and high pitched” and “should also vibrate the phone.” Some also argued “it should be the same as other national emergency radio announcements.” Others contended that it should be the same as the sound used in Japanese earthquake warning messages. Regarding the speaker’s voice, some claimed that recognizing the voice of Lucy Jones provided a sense of credibility. In other words, the voice “has meaning because I recognize it is Dr. Lucy Jones I find her voice compelling and reassuring.” Thus, this qualitative analysis suggests that the familiar voice of a noted expert may be most important for fostering trustworthiness. These preliminary findings support the meta-analysis of hundreds of communication studies drawing similar conclusions that there are, in fact, negligible differences in perceived credibility and effectiveness based on sex and perceived gender [9].
\nThe results of phase one of this research project revealed several findings:
Participants were significantly more likely to recall the location of the earthquake when the app included a map. They also perceived the apps that included a map to be most helpful.
Participants were significantly more likely to recall the intensity level of the earthquake when a numerical indicator was included. However, a qualitative analysis of open-ended responses revealed a great deal of confusion about what this number means.
No significant differences were found among apps that used numerical versus graphical countdown imaging. The qualitative analysis of open-ended responses revealed confusion because neither countdown approach actually counted down by seconds from 6, to 5, 4, 3, 2, and 1. Participants indicated a desire to see the seconds dropping via an image that represents a digital clock-face or stopwatch-type image.
This phase one pilot project did not test different alert sounds or voice commands statistically as the project was already comprised of eight conditions. However, a qualitative analysis of open-ended responses revealed that participants believed the alert sound should be familiar (e.g., similar to the one used in the US for other warning messages or similar to the one being used already in Japan for earthquake warning messages).
Based on these results and input from risk and crisis communication specialists, seismologists, and emergency manager practitioners, the research team moved into phase two of the project. More specifically, the researchers used this information to refine the prototype IDEA model messages down from eight to four conditions and created a control message based on the existing ShakeAlert warning message computer program used by emergency managers throughout the US west coast states at the time.
\nBased on the results of phase one message testing and focused feedback from crisis and risk communication subject matter experts, seismologists, and practitioners, the original eight conditions were reduced to four. These four treatment conditions were manipulated as follows:
Japanese alert sound with numerical intensity display
US alert sound with numerical intensity display
Japanese alert sound with verbal intensity display
US alert sound with verbal intensity display
The map either rotated with the numerical intensity display or with the verbal intensity display. All other elements were the same across the four conditions (map, countdown, action steps).
\nThe demographics for the sample (N = 294) for phase two was 62.5% female and 37.5% male, 88% Caucasian, and age (M = 47.5; SD = 14.04). Regarding socio-economic status, 52% of the sample reported an annual income of $70,000 or more and 32% currently live in southern California. Of the 294 respondents, 133 provided comments in response to the prompt: “Please provide any additional feedback you believe would be helpful concerning the quality of the app.” Key findings from this round of message testing focus on perceived quality of the app overall, as well as intensity (verbal/numerical), location (map), and behavioral intentions (drop/take cover/hold on).
\nA series of stepwise regression analyses were conducted to examine the research question about perceived quality of the app. The single item asking about the quality of the app used a five-point Likert type response scale (1 = very effective to 5 = not effective). Overall, 75% of the participants across conditions rated the app as “effective” or “very effective” and only 2% rated the app as “not effective.” On the first block, demographic variables were entered in order to account for any variance attributable to respondent characteristics. These included sex, age, race/ethnicity, and income. The second predictor block included these variables, as well as experimental condition. The examination focused on significant models and predictors, as well as potential improvements based on the addition of experimental condition.
\nThe results for the first predictor block indicate a significant model, F(4, 223) = 6.775, p < 0.001. R2 = 0.108. Of the demographic variables only sex β = −249 p < 0.000, and age β = −175 p < 0.01 were predictive of ratings of app quality. When experimental condition was added to the predictor block a significant model was also produced, F(5, 222) = 4.32, p < 0.001, R2 = 0.112. However, the change in variance accounted for was not significant ΛR2 = 0.004. Of the variables in the predictor block, only sex β = −245 p < 0.000, and age β = −176 p < 0.01 were predictive of ratings of app quality.
\nA t-test was conducted for the variables of sex and overall quality across conditions. Women (M = 1.73 SD = 0.81) were more likely than men (M = 2.14, SD = 1.04) to rate the app as being of high quality t(2) = 3.592, p < .001. Sex differences in perceptions of app quality were then broken down by each condition. Differences were found for condition 2, where women (M = 1.61, SD = 1.12) reported higher perceptions of app quality than men (M = 2.30. SD = .74) t(2) = 2.696, p < 0.01, and condition 5 where women (M = 1.70, SD = 0.65) reported higher perceptions of quality than men (M = 2.19, SD = 1.01) t(2) = 2.190, p < 0.05.
\nPerhaps most important here is that participants in all treatment conditions rated the quality of the app as high. Since all treatment conditions used similar content based on the IDEA model (i.e., alert sound, oral and visual countdown, intensity level, map, actionable instructions), it seems the appropriate content is being included. Moreover, a thematic analysis of the open-ended responses revealed that those viewing the control (ShakeAlert) condition were “overwhelmed by the visuals” and wanted to see and hear directions to “duck, cover, and hold on.” These themes suggest that (a) too much information, although accurate, can defeat the purpose of the warning and (b) specific action steps need to be included. In addition to perceived quality of the app, the researchers sought to learn more regarding numerical versus verbal intensity displays, the effect of the map in location cognition (proximity), and behavioral intentions to take appropriate self-protective actions.
\nKey findings from this round of message testing regarding intensity are as follows. First, there were no significant differences among conditions regarding intensity. However, an exploration of descriptive statistics shed additional light on this issue. When asked “how important is it to know the kind of shaking,” 76–87% reported it as very important across all conditions. Moreover, 77–85% of the respondents across conditions answered correctly (i.e., 10 seconds or less) when asked when the shaking would begin.
\nImportant findings emerged when asked what kind of shaking would occur. It is encouraging to note that 77–93% of the respondents reported correctly that very strong shaking was going to occur. The researchers placed a screen shot before entering the survey that summarized the meaning of the numerical intensity numbers. When respondents that viewed the verbal intensity display were asked about the numerical intensity level (8), only 15 and 22.4% recalled the correct number. Of the respondents that viewed the numerical intensity display, 69 and 80% recalled the correct number. Of the respondents that viewed the control (ShakeAlert) message, only 35.5% recalled the correct number. This low percentage may be impacted by the amount of detailed information being displayed in the control message. So much information may be difficult to process in 10 seconds or less and, thus, may result in misunderstanding.
\nSubsequently, when asked how well they understand the meaning of intensity level numbers, 48.4 and 38.8% of those viewing the verbal display marked “very well.” Respondents that viewed the numerical intensity display reported knowledge comprehension of “very well” at 56.7 and 56.5%. Those viewing the control (ShakeAlert) message reported knowing the meaning very well at 45.9%. These results suggest the verbal intensity display is more meaningful than the numerical display. These results also suggest that displaying both (as in the control ShakeAlert message) appears to be too much information to process accurately in a short amount of time.
\nAll conditions included a map identifying where the shaking was going to occur. There were no significant differences among the conditions regarding the importance of the map or for accurate location identification. Across conditions, 74–92% reported a map as “important” or “very important.” A somewhat troubling finding, however, was that when asked where the shaking was going to occur, only 33–55% answered correctly (Los Angeles area) across conditions. When the researchers drilled down to include only participants currently living in southern California, the results improved slightly among the four treatment conditions (64–74% correct). However, only 29% of the respondents that viewed the control (ShakeAlert) message answered correctly. Moreover, when asked how helpful the visual images were in conveying information about location, only 27.9–50% said “very helpful” across conditions. However, in all four treatment conditions, respondents reported more preference for the visual images (M = 1.90, SD = 1.82) than those in the control condition (M = 2.26, SD = 1.30) t(2) = −2.106 = p < 0.05. Moreover, a thematic analysis of the open-ended comments revealed a desire for a simple map that merely showing a familiar city with a bullseye target or location flag would be more helpful than one showing both the epicenter and location where shaking will occur. Taken together, these results suggest that a simple map highlighting the location may be more effective than a detailed one showing lots of information.
\nA series of stepwise regression analyses were conducted to examine the research question regarding behavioral intentions. The composite measures were used to assess perceptions of behavioral intentions. The measure for behavioral intentions used nine items with a response scale of 1 = “Very Unlikely” to 5 = “Very Likely.” On the first block, demographic variables were entered in order to account for any variance attributable to respondent characteristics. These included sex, age, race/ethnicity, and income. The second block added experimental condition to these possible predictor variables. The analyses focused on significant models and predictors, as well as possible improvement to the model based on the addition of experimental condition.
\nThe results for the first predictor block did not indicate a significant model, F(4, 227) = 0.989, p = n.s. R2 = 0.017. None of the demographic variables were predictive of behavioral intentions. When experimental condition was added to the predictor block the model did not improve, F(5, 229) = 0.788, p = n.s., R2 = 0.017. None of the variables in the predictor block were predictive of behavioral intentions.
\nThe fact that no significant model stood out as a better predictor for behavioral intentions combined with the descriptive statistics suggest that the including the IDEA model components as we did in each condition may be effective for earthquake early warning messages delivered via a smart phone app. Although the means reported are encouraging, the fact that the pretest self-efficacy (M = 4.44) also may point to a respondent pool comprised of members of a disaster sub-culture that is already pre-disposed to taking appropriate actions for self-protection.
\nSeveral promising conclusions may be drawn from these two rounds of message design and testing. First, a phone APP can be designed in ways that employ the IDEA elements of effective instructional risk and crisis messages for earthquake early warnings in 10 seconds or less. Second, the elements of the IDEA model do appear to positively influence affective (perceived value/importance), cognitive (comprehension), and behavioral (efficacy and intention) learning outcomes.
\nAlso based on these message testing results, however, more honing of some particulars are still warranted. For example, with regard to internalization, the design of the map (proximity) needs to be simplified to ensure accurate comprehension of location. Regarding explanation, it appears that verbal intensity displays are more effective than numerical displays unless a comprehensive educational campaign could be conducted to teach users what the different numbers mean.
\nThe sample for both rounds of message testing was not representative of the entire population in southern California. Additional message testing targeting more representative demographic diversity and marginalized populations is warranted in order to be certain about ultimately launching the most effective warning app.
\n"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality. Throughout the world, we are seeing progress in attracting, retaining, and promoting women in STEMM. IntechOpen are certainly supporting this work globally by empowering all scientists and ensuring that women are encouraged and enabled to publish and take leading roles within the scientific community." Dr. Catrin Rutland, University of Nottingham, UK
",metaTitle:"Advantages of Publishing with IntechOpen",metaDescription:"We have more than a decade of experience in Open Access publishing. \n\n ",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"We have more than a decade of experience in Open Access publishing. The advantages of publishing with IntechOpen include:
\\n\\nOur platform – IntechOpen is the world’s leading publisher of OA books, built by scientists, for scientists.
\\n\\nOur reputation – Everything we publish goes through a two-stage peer review process. We’re proud to count Nobel laureates among our esteemed authors. We meet European Commission standards for funding, and the research we’ve published has been funded by the Bill and Melinda Gates Foundation and the Wellcome Trust, among others. IntechOpen is a member of all relevant trade associations (including the STM Association and the Association of Learned and Professional Society Publishers) and has a selection of books indexed in Web of Science's Book Citation Index.
\\n\\nOur expertise – We’ve published more than 4,500 books by more than 118,000 authors and editors.
\\n\\nOur reach – Our books have more than 130 million downloads and more than 146,150 Web of Science citations. We increase citations via indexing in all the major databases, including the Book Citation Index at Web of Science and Google Scholar.
\\n\\nOur services – The support we offer our authors and editors is second to none. Each book in our program receives the following:
\\n\\nOur end-to-end publishing service frees our authors and editors to focus on what matters: research. We empower them to shape their fields and connect with the global scientific community.
\\n\\n"In developing countries until now, advancement in science has been very limited, because insufficient economic resources are dedicated to science and education. These limitations are more marked when the scientists are women. In order to develop science in the poorest countries and decrease the gender gap that exists in scientific fields, Open Access networks like IntechOpen are essential. Free access to scientific research could contribute to ameliorating difficult life conditions and breaking down barriers." Marquidia Pacheco, National Institute for Nuclear Research (ININ), Mexico
\\n\\nInterested? Contact Ana Pantar (book.idea@intechopen.com) for more information.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'We have more than a decade of experience in Open Access publishing. The advantages of publishing with IntechOpen include:
\n\nOur platform – IntechOpen is the world’s leading publisher of OA books, built by scientists, for scientists.
\n\nOur reputation – Everything we publish goes through a two-stage peer review process. We’re proud to count Nobel laureates among our esteemed authors. We meet European Commission standards for funding, and the research we’ve published has been funded by the Bill and Melinda Gates Foundation and the Wellcome Trust, among others. IntechOpen is a member of all relevant trade associations (including the STM Association and the Association of Learned and Professional Society Publishers) and has a selection of books indexed in Web of Science's Book Citation Index.
\n\nOur expertise – We’ve published more than 4,500 books by more than 118,000 authors and editors.
\n\nOur reach – Our books have more than 130 million downloads and more than 146,150 Web of Science citations. We increase citations via indexing in all the major databases, including the Book Citation Index at Web of Science and Google Scholar.
\n\nOur services – The support we offer our authors and editors is second to none. Each book in our program receives the following:
\n\nOur end-to-end publishing service frees our authors and editors to focus on what matters: research. We empower them to shape their fields and connect with the global scientific community.
\n\n"In developing countries until now, advancement in science has been very limited, because insufficient economic resources are dedicated to science and education. These limitations are more marked when the scientists are women. In order to develop science in the poorest countries and decrease the gender gap that exists in scientific fields, Open Access networks like IntechOpen are essential. Free access to scientific research could contribute to ameliorating difficult life conditions and breaking down barriers." Marquidia Pacheco, National Institute for Nuclear Research (ININ), Mexico
\n\nInterested? Contact Ana Pantar (book.idea@intechopen.com) for more information.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"58592",title:"Dr.",name:"Arun",middleName:null,surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/58592/images/1664_n.jpg",biography:"Arun K. Shanker is serving as a Principal Scientist (Plant Physiology) with the Indian Council of Agricultural Research (ICAR) at the Central Research Institute for Dryland Agriculture in Hyderabad, India. He is working with the ICAR as a full time researcher since 1993 and has since earned his Advanced degree in Crop Physiology while in service. He has been awarded the prestigious Member of the Royal Society of Chemistry (MRSC), by the Royal Society of Chemistry, London in 2015. Presently he is working on systems biology approach to study the mechanism of abiotic stress tolerance in crops. His main focus now is to unravel the mechanism of drought and heat stress response in plants to tackle climate change related threats in agriculture.",institutionString:null,institution:{name:"Indian Council of Agricultural Research",country:{name:"India"}}},{id:"4782",title:"Prof.",name:"Bishnu",middleName:"P",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4782/images/system/4782.jpg",biography:"Bishnu P. Pal is Professor of Physics at Mahindra École\nCentrale Hyderabad India since July 1st 2014 after retirement\nas Professor of Physics from IIT Delhi; Ph.D.’1975 from IIT\nDelhi; Fellow of OSA and SPIE; Senior Member IEEE;\nHonorary Foreign Member Royal Norwegian Society for\nScience and Arts; Member OSA Board of Directors (2009-\n11); Distinguished Lecturer IEEE Photonics Society (2005-\n07).",institutionString:null,institution:{name:"Indian Institute of Technology Delhi",country:{name:"India"}}},{id:"69653",title:"Dr.",name:"Chusak",middleName:null,surname:"Limsakul",slug:"chusak-limsakul",fullName:"Chusak Limsakul",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Prince of Songkla University",country:{name:"Thailand"}}},{id:"75563",title:"Dr.",name:"Farzana Khan",middleName:null,surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75563/images/system/75563.png",biography:"Dr Farzana Khan Perveen (FLS; Gold-Medallist) obtained her BSc (Hons) and MSc (Zoology: Entomology) from the University of Karachi, MAS (Monbush-Scholar; Agriculture: Agronomy) and from the Nagoya University, Japan, and PhD (Research and Course-works from the Nagoya University; Toxicology) degree from the University of Karachi. She is Founder/Chairperson of the Department of Zoology (DOZ) and Ex-Controller of Examinations at Shaheed Benazir Bhutto University (SBBU) and Ex-Founder/ Ex-Chairperson of DOZ, Hazara University and Kohat University of Science & Technology. \nShe is the author of 150 high impact research papers, 135 abstracts, 4 authored books and 8 chapters. She is the editor of 5 books and she supervised BS(4), MSc(50), MPhil(40), and Ph.D. (1) students. She has organized and participated in numerous international and national conferences and received multiple awards and fellowships. She is a member of research societies, editorial boards of Journals, and World-Commission on Protected Areas, International Union for Conservation of Nature. Her fields of interest are Entomology, Toxicology, Forensic Entomology, and Zoology.",institutionString:"Shaheed Benazir Bhutto University",institution:{name:"Shaheed Benazir Bhutto University",country:{name:"Pakistan"}}},{id:"23804",title:"Dr.",name:"Hamzah",middleName:null,surname:"Arof",slug:"hamzah-arof",fullName:"Hamzah Arof",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/23804/images/5492_n.jpg",biography:"Hamzah Arof received his BSc from Michigan State University, and PhD from the University of Wales. Both degrees were in electrical engineering. His current research interests include signal processing and photonics. Currently he is affiliated with the Department of Electrical Engineering, University of Malaya, Malaysia.",institutionString:null,institution:{name:"University of Malaya",country:{name:"Malaysia"}}},{id:"41989",title:"Prof.",name:"He",middleName:null,surname:"Tian",slug:"he-tian",fullName:"He Tian",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"East China University of Science and Technology",country:{name:"China"}}},{id:"33351",title:null,name:"Hendra",middleName:null,surname:"Hermawan",slug:"hendra-hermawan",fullName:"Hendra Hermawan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/33351/images/168_n.jpg",biography:null,institutionString:null,institution:{name:"Institut Teknologi Bandung",country:{name:"Indonesia"}}},{id:"11981",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Ishiguro",slug:"hiroshi-ishiguro",fullName:"Hiroshi Ishiguro",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Osaka University",country:{name:"Japan"}}},{id:"45747",title:"Dr.",name:"Hsin-I",middleName:null,surname:"Chang",slug:"hsin-i-chang",fullName:"Hsin-I Chang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/no_image.jpg",biography:null,institutionString:null,institution:{name:"National Chiayi University",country:{name:"Taiwan"}}},{id:"61581",title:"Dr.",name:"Joy Rizki Pangestu",middleName:null,surname:"Djuansjah",slug:"joy-rizki-pangestu-djuansjah",fullName:"Joy Rizki Pangestu Djuansjah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/61581/images/237_n.jpg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"94249",title:"Prof.",name:"Junji",middleName:null,surname:"Kido",slug:"junji-kido",fullName:"Junji Kido",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Yamagata University",country:{name:"Japan"}}},{id:"12009",title:"Dr.",name:"Ki Young",middleName:null,surname:"Kim",slug:"ki-young-kim",fullName:"Ki Young Kim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12009/images/system/12009.jpg",biography:"Http://m80.knu.ac.kr/~doors",institutionString:null,institution:{name:"National Cheng Kung University",country:{name:"Taiwan"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5763},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10365},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15784}],offset:12,limit:12,total:10365},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"6"},books:[{type:"book",id:"8977",title:"Protein Kinase - New Opportunities, Challenges and Future Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"6d200cc031706a565b554fdb1c478901",slug:null,bookSignature:"Dr. Rajesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",editedByType:null,editors:[{id:"329385",title:"Dr.",name:"Rajesh",surname:"Singh",slug:"rajesh-singh",fullName:"Rajesh Singh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9659",title:"Fibroblasts - Advances in Cancer, Autoimmunity and Inflammation",subtitle:null,isOpenForSubmission:!0,hash:"926fa6446f6befbd363fc74971a56de2",slug:null,bookSignature:"Ph.D. Mojca Frank Bertoncelj and Ms. Katja Lakota",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",editedByType:null,editors:[{id:"328755",title:"Ph.D.",name:"Mojca",surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10797",title:"Cell Culture",subtitle:null,isOpenForSubmission:!0,hash:"2c628f4757f9639a4450728d839a7842",slug:null,bookSignature:"Prof. Xianquan Zhan",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",editedByType:null,editors:[{id:"223233",title:"Prof.",name:"Xianquan",surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10800",title:"Ligase",subtitle:null,isOpenForSubmission:!0,hash:"1f10ff112edb1fec24379dac85ef3b5b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10800.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10801",title:"Uric Acid",subtitle:null,isOpenForSubmission:!0,hash:"d947ab87019e69ab11aa597edbacc018",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10837",title:"Peroxisomes",subtitle:null,isOpenForSubmission:!0,hash:"0014b09d4b35bb4d7f52ca0b3641cda1",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10838",title:"Ion Channels",subtitle:null,isOpenForSubmission:!0,hash:"048017b227b3bdfd0d33a49bac63c915",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10840",title:"Benzimidazole",subtitle:null,isOpenForSubmission:!0,hash:"9fe810233f92a9c454c624aec634316f",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,isOpenForSubmission:!0,hash:"64617cf21bf1e47170bb2bcf31b1fc37",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:13},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:6},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:14},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:27},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:9},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.png",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9864",title:"Hydrology",subtitle:null,isOpenForSubmission:!1,hash:"02925c63436d12e839008c793a253310",slug:"hydrology",bookSignature:"Theodore V. Hromadka II and Prasada Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9864.jpg",editors:[{id:"181008",title:"Dr.",name:"Theodore V.",middleName:"V.",surname:"Hromadka II",slug:"theodore-v.-hromadka-ii",fullName:"Theodore V. Hromadka II"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9083",title:"Rodents",subtitle:null,isOpenForSubmission:!1,hash:"480148de5ecf236b3e0860fc3954b2d4",slug:"rodents",bookSignature:"Loth S. Mulungu",coverURL:"https://cdn.intechopen.com/books/images_new/9083.jpg",editors:[{id:"108433",title:"Dr.",name:"Loth S.",middleName:null,surname:"Mulungu",slug:"loth-s.-mulungu",fullName:"Loth S. Mulungu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5220},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9122",title:"Cosmetic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"207026ca4a4125e17038e770d00ee152",slug:"cosmetic-surgery",bookSignature:"Yueh-Bih Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9122.jpg",editors:[{id:"202122",title:"Prof.",name:"Yueh-Bih",middleName:null,surname:"Tang",slug:"yueh-bih-tang",fullName:"Yueh-Bih Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"112",title:"Biomedical Engineering",slug:"engineering-biomedical-engineering",parent:{title:"Engineering",slug:"engineering"},numberOfBooks:63,numberOfAuthorsAndEditors:1947,numberOfWosCitations:3297,numberOfCrossrefCitations:1685,numberOfDimensionsCitations:4225,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"engineering-biomedical-engineering",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10107",title:"Artificial Intelligence in Oncology Drug Discovery and Development",subtitle:null,isOpenForSubmission:!1,hash:"043c178c3668865ab7d35dcb2ceea794",slug:"artificial-intelligence-in-oncology-drug-discovery-and-development",bookSignature:"John W. Cassidy and Belle Taylor",coverURL:"https://cdn.intechopen.com/books/images_new/10107.jpg",editedByType:"Edited by",editors:[{id:"244455",title:"Dr.",name:"John",middleName:null,surname:"Cassidy",slug:"john-cassidy",fullName:"John Cassidy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9575",title:"Recent Advances in Biomechanics",subtitle:null,isOpenForSubmission:!1,hash:"97edc53b612c683e4c79a995a9f379c0",slug:"recent-advances-in-biomechanics",bookSignature:"Redha Taiar",coverURL:"https://cdn.intechopen.com/books/images_new/9575.jpg",editedByType:"Edited by",editors:[{id:"81693",title:"Prof.",name:"Redha",middleName:null,surname:"Taiar",slug:"redha-taiar",fullName:"Redha Taiar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9236",title:"Cheminformatics and its Applications",subtitle:null,isOpenForSubmission:!1,hash:"3fed97d1719b8a321190c86985494a34",slug:"cheminformatics-and-its-applications",bookSignature:"Amalia Stefaniu, Azhar Rasul and Ghulam Hussain",coverURL:"https://cdn.intechopen.com/books/images_new/9236.jpg",editedByType:"Edited by",editors:[{id:"213696",title:"Dr.",name:"Amalia",middleName:null,surname:"Stefaniu",slug:"amalia-stefaniu",fullName:"Amalia Stefaniu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8569",title:"Intraocular Lens",subtitle:null,isOpenForSubmission:!1,hash:"2c184a80e647c0e74df5bc34318a2d8b",slug:"intraocular-lens",bookSignature:"Xiaogang Wang and Felicia M. Ferreri",coverURL:"https://cdn.intechopen.com/books/images_new/8569.jpg",editedByType:"Edited by",editors:[{id:"243698",title:"M.D.",name:"Xiaogang",middleName:null,surname:"Wang",slug:"xiaogang-wang",fullName:"Xiaogang Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7945",title:"Cryopreservation",subtitle:"Current Advances and Evaluations",isOpenForSubmission:!1,hash:"0fe037813f921f4136cd393b7ff8dfe1",slug:"cryopreservation-current-advances-and-evaluations",bookSignature:"Marian Quain",coverURL:"https://cdn.intechopen.com/books/images_new/7945.jpg",editedByType:"Edited by",editors:[{id:"72151",title:"Dr.",name:"Marian",middleName:"Dorcas",surname:"Quain",slug:"marian-quain",fullName:"Marian Quain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7439",title:"Photoacoustic Imaging",subtitle:"Principles, Advances and Applications",isOpenForSubmission:!1,hash:"05982e7eb4c7f3f165306f9b136a8ae4",slug:"photoacoustic-imaging-principles-advances-and-applications",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/7439.jpg",editedByType:"Edited by",editors:[{id:"225387",title:"Prof.",name:"Reda",middleName:null,surname:"Gharieb",slug:"reda-gharieb",fullName:"Reda Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6835",title:"Computer Methods and Programs in Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"19f08ef15d97900c94dc8fb04f9afb5f",slug:"computer-methods-and-programs-in-biomedical-signal-and-image-processing",bookSignature:"Lulu Wang",coverURL:"https://cdn.intechopen.com/books/images_new/6835.jpg",editedByType:"Edited by",editors:[{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",slug:"lulu-wang",fullName:"Lulu Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7869",title:"Advanced Endoscopy",subtitle:null,isOpenForSubmission:!1,hash:"92f6ce51b737e9086a6059ab7470eee9",slug:"advanced-endoscopy",bookSignature:"Qiang Yan and Xu Sun",coverURL:"https://cdn.intechopen.com/books/images_new/7869.jpg",editedByType:"Edited by",editors:[{id:"247970",title:"Prof.",name:"Qiang",middleName:null,surname:"Yan",slug:"qiang-yan",fullName:"Qiang Yan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8691",title:"Ultrasound Elastography",subtitle:null,isOpenForSubmission:!1,hash:"fdbf5197352ca0294bfc963ef83d1e00",slug:"ultrasound-elastography",bookSignature:"Monica Lupsor-Platon",coverURL:"https://cdn.intechopen.com/books/images_new/8691.jpg",editedByType:"Edited by",editors:[{id:"208594",title:"Associate Prof.",name:"Monica",middleName:null,surname:"Lupsor-Platon",slug:"monica-lupsor-platon",fullName:"Monica Lupsor-Platon"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7728",title:"Synthetic Biology",subtitle:"New Interdisciplinary Science",isOpenForSubmission:!1,hash:"cc50b31cb749d94a5aa38999a712ae2f",slug:"synthetic-biology-new-interdisciplinary-science",bookSignature:"Madan L. Nagpal, Oana-Maria Boldura, Cornel Baltă and Shymaa Enany",coverURL:"https://cdn.intechopen.com/books/images_new/7728.jpg",editedByType:"Edited by",editors:[{id:"182681",title:"Dr.",name:"Madan L.",middleName:null,surname:"Nagpal",slug:"madan-l.-nagpal",fullName:"Madan L. Nagpal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8125",title:"Medical Imaging",subtitle:"Principles and Applications",isOpenForSubmission:!1,hash:"e0fa3875d6f66d5ccd8cd3f1444c3fb9",slug:"medical-imaging-principles-and-applications",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/8125.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6875",title:"Bio-Inspired Technology",subtitle:null,isOpenForSubmission:!1,hash:"074fba986c7ba872f1af99c4fb65337e",slug:"bio-inspired-technology",bookSignature:"Ruby Srivastava",coverURL:"https://cdn.intechopen.com/books/images_new/6875.jpg",editedByType:"Edited by",editors:[{id:"185788",title:"Dr.",name:"Ruby",middleName:null,surname:"Srivastava",slug:"ruby-srivastava",fullName:"Ruby Srivastava"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:63,mostCitedChapters:[{id:"17237",doi:"10.5772/24553",title:"Hydrogels: Methods of Preparation, Characterisation and Applications",slug:"hydrogels-methods-of-preparation-characterisation-and-applications",totalDownloads:64259,totalCrossrefCites:61,totalDimensionsCites:210,book:{slug:"progress-in-molecular-and-environmental-bioengineering-from-analysis-and-modeling-to-technology-applications",title:"Progress in Molecular and Environmental Bioengineering",fullTitle:"Progress in Molecular and Environmental Bioengineering - From Analysis and Modeling to Technology Applications"},signatures:"Syed K. H. Gulrez, Saphwan Al-Assaf and Glyn O Phillips",authors:[{id:"58120",title:"Prof.",name:"Saphwan",middleName:null,surname:"Al-Assaf",slug:"saphwan-al-assaf",fullName:"Saphwan Al-Assaf"}]},{id:"26368",doi:"10.5772/23927",title:"Poly(Lactic Acid)-Based Biomaterials: Synthesis, Modification and Applications",slug:"poly-lactic-acid-based-biomaterials-synthesis-modification-and-applications",totalDownloads:35069,totalCrossrefCites:54,totalDimensionsCites:128,book:{slug:"biomedical-science-engineering-and-technology",title:"Biomedical Science, Engineering and Technology",fullTitle:"Biomedical Science, Engineering and Technology"},signatures:"Lin Xiao, Bo Wang, Guang Yang and Mario Gauthier",authors:[{id:"52500",title:"Prof.",name:"Guang",middleName:null,surname:"Yang",slug:"guang-yang",fullName:"Guang Yang"}]},{id:"18658",doi:"10.5772/19033",title:"Metals for Biomedical Applications",slug:"metals-for-biomedical-applications",totalDownloads:47348,totalCrossrefCites:63,totalDimensionsCites:119,book:{slug:"biomedical-engineering-from-theory-to-applications",title:"Biomedical Engineering",fullTitle:"Biomedical Engineering - From Theory to Applications"},signatures:"Hendra Hermawan, Dadan Ramdan and Joy R. P. Djuansjah",authors:[{id:"33351",title:null,name:"Hendra",middleName:null,surname:"Hermawan",slug:"hendra-hermawan",fullName:"Hendra Hermawan"},{id:"61581",title:"Dr.",name:"Joy Rizki Pangestu",middleName:null,surname:"Djuansjah",slug:"joy-rizki-pangestu-djuansjah",fullName:"Joy Rizki Pangestu Djuansjah"},{id:"61582",title:"Dr.",name:"Dadan",middleName:null,surname:"Ramdan",slug:"dadan-ramdan",fullName:"Dadan Ramdan"}]}],mostDownloadedChaptersLast30Days:[{id:"67558",title:"Polymerase Chain Reaction (PCR): Principle and Applications",slug:"polymerase-chain-reaction-pcr-principle-and-applications",totalDownloads:5746,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"synthetic-biology-new-interdisciplinary-science",title:"Synthetic Biology",fullTitle:"Synthetic Biology - New Interdisciplinary Science"},signatures:"Karim Kadri",authors:[{id:"290766",title:"Dr.",name:"Kadri",middleName:null,surname:"Karim",slug:"kadri-karim",fullName:"Kadri Karim"}]},{id:"10042",title:"Superhydrophobicity, Learn from the Lotus Leaf",slug:"superhydrophobicity-learn-from-the-lotus-leaf",totalDownloads:16768,totalCrossrefCites:3,totalDimensionsCites:10,book:{slug:"biomimetics-learning-from-nature",title:"Biomimetics",fullTitle:"Biomimetics Learning from Nature"},signatures:"Mengnan Qu, Jinmei He and Junyan Zhang",authors:null},{id:"67331",title:"Research in Medical Imaging Using Image Processing Techniques",slug:"research-in-medical-imaging-using-image-processing-techniques",totalDownloads:2424,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"medical-imaging-principles-and-applications",title:"Medical Imaging",fullTitle:"Medical Imaging - Principles and Applications"},signatures:"Yousif Mohamed Y. Abdallah and Tariq Alqahtani",authors:[{id:"274452",title:"Dr.",name:"Yousif Mohamed Y.",middleName:"Mohamed Yousif",surname:"Abdallah",slug:"yousif-mohamed-y.-abdallah",fullName:"Yousif Mohamed Y. Abdallah"},{id:"294009",title:"Dr.",name:"Tariq",middleName:null,surname:"Alqahtani",slug:"tariq-alqahtani",fullName:"Tariq Alqahtani"}]},{id:"48226",title:"Biomedical Sensor, Device and Measurement Systems",slug:"biomedical-sensor-device-and-measurement-systems",totalDownloads:5399,totalCrossrefCites:3,totalDimensionsCites:6,book:{slug:"advances-in-bioengineering",title:"Advances in Bioengineering",fullTitle:"Advances in Bioengineering"},signatures:"Gaofeng Zhou, Yannian Wang and Lujun Cui",authors:[{id:"37425",title:"Dr.",name:"Gaofeng",middleName:null,surname:"Zhou",slug:"gaofeng-zhou",fullName:"Gaofeng Zhou"}]},{id:"17237",title:"Hydrogels: Methods of Preparation, Characterisation and Applications",slug:"hydrogels-methods-of-preparation-characterisation-and-applications",totalDownloads:64249,totalCrossrefCites:61,totalDimensionsCites:210,book:{slug:"progress-in-molecular-and-environmental-bioengineering-from-analysis-and-modeling-to-technology-applications",title:"Progress in Molecular and Environmental Bioengineering",fullTitle:"Progress in Molecular and Environmental Bioengineering - From Analysis and Modeling to Technology Applications"},signatures:"Syed K. H. Gulrez, Saphwan Al-Assaf and Glyn O Phillips",authors:[{id:"58120",title:"Prof.",name:"Saphwan",middleName:null,surname:"Al-Assaf",slug:"saphwan-al-assaf",fullName:"Saphwan Al-Assaf"}]},{id:"59741",title:"Active Contour Based Segmentation Techniques for Medical Image Analysis",slug:"active-contour-based-segmentation-techniques-for-medical-image-analysis",totalDownloads:2480,totalCrossrefCites:10,totalDimensionsCites:18,book:{slug:"medical-and-biological-image-analysis",title:"Medical and Biological Image Analysis",fullTitle:"Medical and Biological Image Analysis"},signatures:"R.J. Hemalatha, T.R. Thamizhvani, A. Josephin Arockia Dhivya,\nJosline Elsa Joseph, Bincy Babu and R. Chandrasekaran",authors:[{id:"238868",title:"Prof.",name:"Hemalatha",middleName:null,surname:"R.J",slug:"hemalatha-r.j",fullName:"Hemalatha R.J"},{id:"242385",title:"Dr.",name:"Chandrasekaran",middleName:null,surname:"R",slug:"chandrasekaran-r",fullName:"Chandrasekaran R"},{id:"242386",title:"Ms.",name:"Thamizhvani",middleName:null,surname:"T.R",slug:"thamizhvani-t.r",fullName:"Thamizhvani T.R"},{id:"242388",title:"Dr.",name:"Josephin Arockia Dhivya",middleName:null,surname:"A",slug:"josephin-arockia-dhivya-a",fullName:"Josephin Arockia Dhivya A"},{id:"242389",title:"Ms.",name:"Josline Elsa",middleName:null,surname:"Joseph",slug:"josline-elsa-joseph",fullName:"Josline Elsa Joseph"},{id:"242390",title:"Ms.",name:"Bincy",middleName:null,surname:"Babu",slug:"bincy-babu",fullName:"Bincy Babu"}]},{id:"18658",title:"Metals for Biomedical Applications",slug:"metals-for-biomedical-applications",totalDownloads:47343,totalCrossrefCites:63,totalDimensionsCites:119,book:{slug:"biomedical-engineering-from-theory-to-applications",title:"Biomedical Engineering",fullTitle:"Biomedical Engineering - From Theory to Applications"},signatures:"Hendra Hermawan, Dadan Ramdan and Joy R. P. Djuansjah",authors:[{id:"33351",title:null,name:"Hendra",middleName:null,surname:"Hermawan",slug:"hendra-hermawan",fullName:"Hendra Hermawan"},{id:"61581",title:"Dr.",name:"Joy Rizki Pangestu",middleName:null,surname:"Djuansjah",slug:"joy-rizki-pangestu-djuansjah",fullName:"Joy Rizki Pangestu Djuansjah"},{id:"61582",title:"Dr.",name:"Dadan",middleName:null,surname:"Ramdan",slug:"dadan-ramdan",fullName:"Dadan Ramdan"}]},{id:"63949",title:"A Survey on 3D Ultrasound Reconstruction Techniques",slug:"a-survey-on-3d-ultrasound-reconstruction-techniques",totalDownloads:1165,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"artificial-intelligence-applications-in-medicine-and-biology",title:"Artificial Intelligence",fullTitle:"Artificial Intelligence - Applications in Medicine and Biology"},signatures:"Farhan Mohamed and Chan Vei Siang",authors:null},{id:"9927",title:"Digitizing Literacy: Reflections on the Haptics of Writing",slug:"digitizing-literacy-reflections-on-the-haptics-of-writing",totalDownloads:10143,totalCrossrefCites:39,totalDimensionsCites:91,book:{slug:"advances-in-haptics",title:"Advances in Haptics",fullTitle:"Advances in Haptics"},signatures:"Anne Mangen and Jean-Luc Velay",authors:null},{id:"43462",title:"Current Applications of Optical Coherence Tomography in Ophthalmology",slug:"current-applications-of-optical-coherence-tomography-in-ophthalmology",totalDownloads:3266,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"optical-coherence-tomography",title:"Optical Coherence Tomography",fullTitle:"Optical Coherence Tomography"},signatures:"Nadia Al Kharousi, Upender K. Wali and Sitara Azeem",authors:[{id:"130480",title:"Dr.",name:"Nadiya",middleName:null,surname:"Al Kharousi",slug:"nadiya-al-kharousi",fullName:"Nadiya Al Kharousi"}]}],onlineFirstChaptersFilter:{topicSlug:"engineering-biomedical-engineering",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/85174/katarina-merganicova",hash:"",query:{},params:{id:"85174",slug:"katarina-merganicova"},fullPath:"/profiles/85174/katarina-merganicova",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var t;(t=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(t)}()