\r\n\tTopics that are welcome in the book address challenges that are not yet fully described in existing Baltic Sea compilations, but are present in scientific literature for some time.
",isbn:null,printIsbn:"979-953-307-X-X",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"61d96e65b2fc43a8c2c681cb2c353e02",bookSignature:"Dr. Magdalena Bełdowska and Dr. Jacek Bełdowski",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/8761.jpg",keywords:"Wrecks, Toxic Substances, Microplastics, Endocrine Disrupting Chemicals, Pharmaceuticals, Biomagnification, Bioacumulation, Fisheries, Icing Changes, Elongated Vegetative Season, Biodiversity, Shipping",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 29th 2018",dateEndSecondStepPublish:"December 20th 2018",dateEndThirdStepPublish:"February 18th 2019",dateEndFourthStepPublish:"May 9th 2019",dateEndFifthStepPublish:"July 8th 2019",remainingDaysToSecondStep:"2 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"176840",title:"Dr.",name:"Magdalena",middleName:null,surname:"Bełdowska",slug:"magdalena-beldowska",fullName:"Magdalena Bełdowska",profilePictureURL:"https://mts.intechopen.com/storage/users/176840/images/system/176840.jpeg",biography:"Associated professor dr hab Magdalena Bełdowska conducted her Ph.D and habilitation in Faculty of Oceanography and Geography University of Gdańsk, Poland. During her professional career, she has carried out research on toxic metals cycling in marine environment (especially in Baltic Sea). The research includes transboundary transport in the atmosphere, input of contaminations to the sea, bioaccumulation and biomagnification int marine trophic chain, deposition/ remobilization to/from the sediments. During that period she was leading several projects funded by National Science Centre (NCN, Poland). She has been involved in teaching students in the field of Chemical hazards in the aquatic environment; Metals cycling as a function of climate change; Environmental protection. She has published over 50 papers in indexed journals and international conferences",institutionString:"Institute of Oceanography of the University of Gdańsk",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Gdańsk",institutionURL:null,country:{name:"Poland"}}}],coeditorOne:{id:"276044",title:"Dr.",name:"Jacek",middleName:null,surname:"Bełdowski",slug:"jacek-beldowski",fullName:"Jacek Bełdowski",profilePictureURL:"https://mts.intechopen.com/storage/users/276044/images/system/276044.jpeg",biography:"Assistant Professor, Dr hab. Jacek Bełdowski completed his PhD at the University of Gdańsk and Habilitation at Institute of Oceanology, PAS. His studies concentrated at mercury cycle in marine systems, Carbon cycle influence on Climate change (during 2 year postdoc at Institute for Baltic Sea Research, Warnemuende, Germany) and dumped chemical munitions. He has participated in three national and six EU projects devoted to contaminant cycles in the Baltic Sea and led two EU (CHEMSEA, DAIMON) and one NATO SPS (MODUM) projects, dealing with risk assessment of chemical and conventional munitions dumped at sea. He also served as co-chairman of HELCOM special working groups MUNI and SUBMERGED. During his career he has published over 40 peer revieved papers and book chapters, and led 25 Scientific cruises.",institutionString:"Institute of Oceanology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"839",title:"Oceanography",slug:"oceanography"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"280415",firstName:"Josip",lastName:"Knapic",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/280415/images/8050_n.jpg",email:"josip@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copy-editing and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6195",title:"Sea Level Rise and Coastal Infrastructure",subtitle:null,isOpenForSubmission:!1,hash:"4eb2fa7c0bf9d4a493375ee47276aa38",slug:"sea-level-rise-and-coastal-infrastructure",bookSignature:"Yuanzhi Zhang, Yijun Hou and Xiaomei Yang",coverURL:"https://cdn.intechopen.com/books/images_new/6195.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7606",title:"Coastal and Marine Environments",subtitle:"Physical Processes and Numerical Modelling",isOpenForSubmission:!1,hash:"dd1227726856d58b88116129b0de8384",slug:"coastal-and-marine-environments-physical-processes-and-numerical-modelling",bookSignature:"José Simão Antunes Do Carmo",coverURL:"https://cdn.intechopen.com/books/images_new/7606.jpg",editedByType:"Edited by",editors:[{id:"67904",title:"Prof.",name:"José Simão",surname:"Antunes Do Carmo",slug:"jose-simao-antunes-do-carmo",fullName:"José Simão Antunes Do Carmo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2221",title:"Tsunami - Analysis of a Hazard",subtitle:"From Physical Interpretation to Human Impact",isOpenForSubmission:!1,hash:"a7ce45cda9743300d394136417028a84",slug:"tsunami-analysis-of-a-hazard-from-physical-interpretation-to-human-impact",bookSignature:"Gloria I. Lopez",coverURL:"https://cdn.intechopen.com/books/images_new/2221.jpg",editedByType:"Edited by",editors:[{id:"146976",title:"Dr.",name:"Gloria",surname:"López",slug:"gloria-lopez",fullName:"Gloria López"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8669",title:"Coastal Environment, Disaster, and Infrastructure",subtitle:"A Case Study of China's Coastline",isOpenForSubmission:!1,hash:"52abc534177a147ffd3154db2f4f4ba1",slug:"coastal-environment-disaster-and-infrastructure-a-case-study-of-china-s-coastline",bookSignature:"X. San Liang and Yuanzhi Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/8669.jpg",editedByType:"Edited by",editors:[{id:"210315",title:"Prof.",name:"X. San",surname:"Liang",slug:"x.-san-liang",fullName:"X. San Liang"}],productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"9280",title:"Underwater Work",subtitle:null,isOpenForSubmission:!1,hash:"647b4270d937deae4a82f5702d1959ec",slug:"underwater-work",bookSignature:"Sérgio António Neves Lousada",coverURL:"https://cdn.intechopen.com/books/images_new/9280.jpg",editedByType:"Edited by",editors:[{id:"248645",title:"Dr.",name:"Sérgio António",surname:"Neves Lousada",slug:"sergio-antonio-neves-lousada",fullName:"Sérgio António Neves Lousada"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8007",title:"Estuaries and Coastal Zones",subtitle:"Dynamics and Response to Environmental Changes",isOpenForSubmission:!1,hash:"ec140486c42d62e69ef428e6cf71b6d7",slug:"estuaries-and-coastal-zones-dynamics-and-response-to-environmental-changes",bookSignature:"Jiayi Pan and Adam Devlin",coverURL:"https://cdn.intechopen.com/books/images_new/8007.jpg",editedByType:"Edited by",editors:[{id:"179303",title:"Prof.",name:"Jiayi",surname:"Pan",slug:"jiayi-pan",fullName:"Jiayi Pan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6012",title:"Morphodynamic Model for Predicting Beach Changes Based on Bagnold's Concept and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"79ce8dc1cde58947a61fe4aea725d437",slug:"morphodynamic-model-for-predicting-beach-changes-based-on-bagnold-s-concept-and-its-applications",bookSignature:"Takaaki Uda, Masumi Serizawa and Shiho Miyahara",coverURL:"https://cdn.intechopen.com/books/images_new/6012.jpg",editedByType:"Authored by",editors:[{id:"13491",title:"Dr.",name:"Takaaki",surname:"Uda",slug:"takaaki-uda",fullName:"Takaaki Uda"}],productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"60364",title:"Head Injury Mechanisms",doi:"10.5772/intechopen.75454",slug:"head-injury-mechanisms",body:'\nTrauma defined as a physical harm from an external source is probably one of the earliest experiences of the man on the earth. The first evidence of head injury in human was found in Tanzania. It is due to a crocodile bite about 2,000,000–1,800,000 years BC [1]. On the base of Holy Quran and Genesis, the first death is that of Abel happened by a heavy object struck on head by his brother Cain [2]. Along the history these lesions have included all kinds of blunt and penetrating injuries to the head, more commonly in occupational activities such as those reported in Edwin-Smith papyrus in workers of the Egyptian pyramids [1, 3] or conflicts and quarrels as in Goliath and David confrontation or those gladiators managed by Galen [4]. By the development of the human society and increasing speeds particularly in transportation after industrial revolution, new injurious events appeared so that gradually traffic accidents became one of the most important causes of morbidity and mortality in all parts of the world [2].
\nManagement of head injury has significantly changed in the past few decades with better understanding of the mechanisms of load transfer to the tissues and biophysical, biochemical, and physiological consequences which result in many different clinical presentations from a simple scalp laceration to brief periods of loss of consciousness and extending to persistent vegetative state [5, 6, 7, 8, 9, 10, 11].
\nConsidering the mechanisms of load transfer to the head, different kinds of traumatic pathologies, including skull fracture; epidural, subdural, intracerebral, and intraventricular hematoma; as well as different kinds of contusion and finally diffuse brain injuries, could be identified and their behavior and injurious effects on the brain and clinical consequences defined [10].
\nIn this chapter, we are going to discuss about different kinds of head trauma, their classification, and some aspects of biomechanics of these events.
\nThe consequences of trauma as an energy transmitted to the head is dependent on physical characters of the invading substance, including the density of the invading substance, its size, speed, and duration of loading [12].
\nBy the entrance of a damaging energy load or mechanical input to the head, the first delineating factor for the evolving injury will be the duration of the energy loading [13]. This time interval has defined in a range of 50 to 200 ms. Those lasting more than 200 ms are labeled as static loads, and those less than this, and most frequently less than 50 ms, are considered as dynamic loads [14, 15].
\nThe static causes of injury are very rare and are usually seen when the head is entrapped between hard objects, e.g., the ground and the ruined elements of a building in an earthquake. These heavy loads may cause deformation of the skin or bone and their damage (usually a focal injury).
\nThe dynamic causes of injury include a wide variety of mechanisms. The first of these is produced by the transmission of energy to the brain tissue through the changes in speed (as either of acceleration or deceleration) which are known as impulsive loads. Impulsive loading occurs when the head is not directly struck, but set into motion as a result of a force applied to another part of the body [16]. In such instances, usually, there is no direct and gross evidence of injury to head, i.e., the injury is produced by the inertial changes of the head. In the next group, which is known as impact loads, the offending object when strikes the head may result in injury to tissues from the skin level downwardly depending to the surface area, density, size, and speed of object, directly. On the other hand, it may change the speed of the head and cause its acceleration or deceleration. So, there are inertial changes in the head, and the final result may include those produced by the impulsions.
\nThe inertial loads produced by either impulsions or impactions are exerted by different kinds of acceleration/deceleration. These include translational, rotational, and angular ones, which are defined on the base of the changes on the center of gravity of the skull, the pineal gland. In translation, the changes should be along one of the X, Y, or Z planes. In rotation, the process should be around the axes. These two kinds of acceleration/decelerations are not very common due to the articulation of the skull to the spine; however, the former when happened usually is not associated with severe events, while the latter is highly injurious. The most common kind of event is the angular change, which may be a combination of the abovementioned accelerations.
\nThe impaction of an object to the head can result in change in the configuration of the tissue, either the skin, bone, or deep structures. If this change is above the elasticity of the tissue, it will result in its permanent deformity, laceration of the skin, or fracture in the bone. With the greater loads, the offending agent may cause depression of the bone into the intracranial space, namely, depressed skull fracture and laceration of deeper tissues, i.e., dura, brain, and vessels, causing epidural hematoma (EDH), subdural hematoma (SDH), contusion, and intracerebral hematoma (ICH). In more severe cases, especially when the speed is high and the size of the agent is small, perforation and penetration may also happen, e.g., in gunshot wounds. Instead, the impaction may be associated with the passage of a load of energy through the skull and the brain. This energy load causes deformation of the brain and its friction to the surrounding structures including skull base and dural membranes or distortion of the cerebral fiber tracts around each other and finally contusion of the brain tissue (Figure 1) [17, 18].
\nA diagram of head injury mechanisms (from Ommaya and Gennarlli [
All of these elements, tissue deformation, shock wave, and acceleration/deceleration, will exert energy to the tissue and result in tissue strain as compression, tension, or shear. These may result in injury to the tissues, which in the skull are either neural components, vessels, or bone. It must be reiterated that tissue injury will appear when the load entered to the tissue is above the tolerance and elasticity of the tissue so that the changes appeared on that result in an irreversible event. The tolerance of tissues is dependent on their physical characteristics, the amount of energy, duration of energy loading, and the size of the load, and so it is different for different tissues and even different ages for the same tissue. Most of our experiences in usual daily activity are within the physiological tolerance of our tissues and so are harmless, while more aggressive activities such as some of the professional sports, although still within the range, are at the upper limit of physiologic tolerance and if happened repeatedly will result in gradual or even acute appearance of brain dysfunction. What is happening in different accidents, either vehicles or falling from heights, is above the physical tolerance of the tissues and results in different sequels depending on the involved component.
\nThese are the mechanisms involved in the condition known as primary injury [19, 20], i.e., the direct result of the entered energy to the head. They may in themselves result in other consequences with further injurious effects either as complications of the first phenomenon or exaggerating it. These are known as secondary injuries, the most common of which are hypoxia and hypotension. Secondary injury may also involve mitochondrial dysfunction, excitotoxicity, free radical production, activation of injurious intracellular enzymes, and other mechanisms within the injured nervous tissues which may result in further dysfunctions of the system [13, 20]. Some of the secondary events are similar to the primary phenomenon which will be dealt here, soon. There are also tertiary injuries, which are usually later effects of the energy loading of the head resulting in other system dysfunctions such as electrolyte imbalance due to kidney problems, different kinds of heart disturbances, liver insufficiency, and so on, which are not under the scope of this section.
\nConsidering the abovementioned components in production of an injury to the head, different kinds of the clinical cases can be identified. It can be started with the injury to the bone. In a static loading, the long duration of the time of the entered load results in change in the normal configuration of the skull. When this is above the elasticity of the bone for toleration of the entering energy which is usually a compression at the entrance point (outer table of the skull) and tension in either just below the load inner table or the periphery of the entered load, it will result in tissue failure as fracture of the skull. The severity of fracture is dependent on the amount of load and timing. If it is not so big and lasts for brief periods, there will be no further damage to the deeper structures, and usually the victim will be conscious with a single line or stellate pattern of fracture. On occasions with a great load, the whole skull is severely broken into fragments and the brain tissue disrupted, so that it may ooze from the lacerated scalp or nose and ear canals. In such instances, the victim is in deep coma with severe impairment of the brain and brain stem function, resulting in death.
\nSkull fracture may result from impaction of the head by an object and its contact resulting in change in configuration of the skull. The consequence of this contact if the surface area of the object is more than five square centimeters may be fracture in the skull. If the surface area is smaller, the object denser with a higher speed, it may penetrate the skull or even perforate it and pass through the brain tissue, as mentioned previously. If the event is in an eloquent region, there may be neurological deficit dependent on the brain function. These are the direct or primary sequel of the injury. There are other events which may appear as a complication of the mentioned events, secondary traumatic effects. Different kinds of intracranial hematomas, including EDH, SDH, ICH, and even intraventricular hematoma (IVH), as well as contusion of the brain tissue (admixture of vascular and brain tissue injury), may result from injury to the vessels in the related places. These lesions may result in mass effect in intracranial space, increase in intracranial pressure, and herniation of the brain. Brain laceration as a primary lesion may predispose the patient to convulsion and epilepsy. Another important complication of this kind of injury is infection of the bone and intracranial content, if the overlying skin is lacerated and prepares access for the microorganisms to the deeper structures. These latter events are other examples of secondary effects, although except EDH, which is always a complication of skull deformation (with or without fracture) and always a secondary phenomenon; all other events may happen as a primary event, as discussed in Section 3.
\nAn important point regarding static and impact contact loads to the head is that they usually cause focal lesions in the brain, and these kinds of lesions are not accompanied by change in level of consciousness, primarily. This can be used as a hallmark for those injuries which are not produced by the inertial loads to the brain. It should be reiterated that changing level of consciousness in the above discussed lesions may happen as a complication of either enlargement of the produced hematoma or contusion or the mass effect produced by other secondary effects of injury like edema around the lesions. However, the mechanism of disturbed consciousness in these lesions, usually, is not injury to the brain as the main source of consciousness, because it is a wholistic function and focal damages cannot produce it, but it is mainly produced by the displacement of the brain tissue from its connecting hiatuses and compression/ischemia of the brain stem sources of the condition. These are well known as cerebral herniations, as another example of secondary injury.
\nConcussion, diffuse axonal injury (DAI), SDH, ICH, and IVH as primary lesions should be discussed with the mechanism of change in speed of movement of tissues in the head or inertial loads [21]. These can be viewed as a wide spectrum of injuries with very mild cases as brief period of confusion and memory disturbance to short interval of loss of consciousness or concussion [16], to long-standing deep coma or persistent vegetative state (PVS) due to diffuse injury to neurons and axons of the brain or DAI. In normal circumstances, axons are compliant and readily return to their original length after loading. However, with rapid application of tissue strain, such as at the time of head impact, with the anisotropic and complex arrangement, axons behave differently, essentially becoming brittle and vulnerable to injury [22].
\nIn between there are injury to vascular components either in the surface of the brain (SDH), due to the difference in the elasticity and ability of the brain movement and the bridging veins connecting the brain to the venous sinuses placed in the dural layers, or in deeper parts from the cortex and subcortical layers (ICH) to the ventricle (IVH). As was stated previously, the common presentation of all of these events is loss of consciousness (LOC) of the patient from the time of event. The duration of LOC is dependent on the energy load, its effect on the specific parts of the brain, and severity of the injury in the brain.
\nA key clinical point is that when these lesions are produced by non-inertial loads, as discussed in previous paragraphs, and cause disturbance of level of consciousness due to their secondary effects, appropriate and in time decompression may result in recovery of the consciousness, while in those with inertial loads, decompression may not be followed by recovery of consciousness just after operation or even in longer durations. So, restrict consideration on the clinical course of the patient at the time of admission and focusing on the possible unconsciousness will help the surgeon to predict probable surgical findings and the early post-op outcome.
\nWe suggest that application of the discussed algorithm for assessment of the injured patients may help clinicians for predictions of the sequelae outcomes. If used appropriately it even can be used for clinical evaluation of the injured patients and decision-making for a rational paraclinical study. Although increasing availability of computed tomographic (CT) scanners in most hospitals has supplanted the need for skull X-ray study as one of the primary steps in patients with head injury, however whenever inertial loads are considered as the main mechanism of trauma, even in the absence of CT scanners, the use of skull X-ray will not be helpful for the diagnosis of the probable injuries.
\nFinally, it must be kept in mind that classifications and delineations are used for better understanding of the events on the base of current knowledge and so may occasionally not comply with all of the events in reality. While managing head injury patients, one of these pitfalls is the definition of dynamic and static loadings of the brain on the base of duration of the event which is a small fraction of a second for both. This means that it is always possible to have a spectrum of different mechanisms and lesions due to both of the mechanisms. The algorithm should be used for better prediction, understanding, and explanation of the events on the base of detailed clinical evaluation and not as a restrict rule.
\nConsciousness remains the hall mark defining human intelligence and interactive life and the true demarcation line between being and not being. In spite of being the most practical experience of self identity and intelligent life reactions in this life that we live, its nature remains an area of great debate and sometimes conflicting opinions between philosophers, biologist and intellectualists since the dawn of human scientific history. The twentieth century is known as the century of brain as there was exaggerated materialistic inflation of brain role in human functions but mainly consciousness. There is compelling scientific and rational evidence to convince scientific communities that the nature of consciousness involves dynamics inside the skull but essentially much beyond it in extreme dimensions between the skull and the sky. In addition to discussing the sophisticated neurobiological dynamics within the cerebral cortex, the main aim of this chapter is to open channels for holistic perception and understanding of human consciousness incorporating other scientific disciplines like the central role of human heart contribution to consciousness, quantum physics, as well as astrobiologigcal aspects of consciousness are going to be discussed.
Since the dawn of humanity the ability of human beings to be alert, responsive and behave intelligently with emotions and identity were the subject of huge concerns in the philosophical, medical, psychological and religious communities. The explosive nature of diagnostic modalities in neuroimaging, medical physics and neurocardiology since world war 2 but more specifically in the last 20 years created revolutionary perspective of our understanding of the nature and origin of consciousness. Those advances were paralleled with numerous publications and selective conferences concerned with the brain and mind. We established unique conceptual congress, the King of Organs for Advanced Cardiac Sciences where heart and brain communications were discussed in unconventional ways in five international conferences (2006,2008,2010, 2012 and 2019) founded and chaired by the author of this chapter. One of the most challenging controversial and still ongoing scientific issues is the debate on how to define consciousness. The words
Comprehensive understandings of scientific etymology demands the linguistic power in combination with the practical meanings as it is accepted and understood in the mainstream language. In this regard we suggest approaching consciousness with broad visionary perspective. For this reason we will define consciousness by referring to three major domains: First: the state of alertness and being vigilant, the opposite of which is coma as measured by Glasgow Coma Scale. This is predominantly of neurological nature. Second is the experience or the content of experience from time to time or ‘what something looks like’ and the inward connotation and feelings. This is predominantly of philosophical nature. Third is referred to the mental state with propositional content like fear, anger or appreciation. Most research in medical literature has natural tendency to neglect this third meaning of consciousness. This state of continuous historical uncertainty and debate about consciousness is in our opinion justified because of lack of knowledge of the origin, dimension and fate of our current life consciousness. The fact that the nature of consciousness cannot be explained as deduction from pathological alterations in the brain led to the fact that the mysterious mission of understanding human consciousness will be impossible without involving dimensions out of cerebral cortex. It can be looked as property of highly complex dependent biological systems which is adaptive, and highly interconnected.
The phenomena of access consciousness where information are accessed to the brain from different energetic cosmic levels is a major gate to explore in the comprehensive science of consciousness although by itself, it is unconscious. What increase complexity is the historical believe in different civilizations and religions that consciousness will never disappear but transform from one realm to another. Recently consciousness research refers to the
Agreement in definition and overlapping terms is important to navigate safely and target the phenomenology of human consciousness as precisely as possible. To recapitulate the wide spectrum of meanings and domains the author define Consciousness as
The following discussions in this chapter will expand the understanding in those directions.
The level of human consciousness is the collective activity of widespread areas of bilateral association of cortical and subcortical structures and possibly other interconnected biological and astrophysical systems. Due to the complex nature of consciousness origin and dimensions, it would be too artificial and nonrealistic to confined consciousness discussion in cortical, subcortical dimensions as is the product of interaction and connections of complex biological and non-biological networks.
Cortical components consisting medially of the medial frontal, anterior cingulate, posterior cingulate, and medial parietal (precuneus, retrosplenial) cortex. On the lateral surface, it includes the lateral frontal, anterior insula, orbital frontal, and lateral temporal–parietal association cortex. The major subcortical networks that regulate level of consciousness including the thalamus and subcortical arousal nuclei acting through multiple neurotransmitters (glutamate, acetylcholine, gamma amino butyric acid (GABA), norepinephrine, serotonin, dopamine, histamine, orexin) that arise from the upper brainstem, basal forebrain, and hypothalamus are going to be discussed.
The consciousness experience remains more complex than simple understanding of possible structure or network functions. The content of consciousness at certain time period is interdependent on the substrate of structure(s) and network(s) activated during that time to yield the specific conscious experience as will be discussed in this section.
In spite of the developments in the field of consciousness in the last two decades it is not clear how any physical process, such as neural activity, can give rise to a subjective phenomenon such as conscious awareness of an experience. For this reason, very important observation for researchers in the field of neurobiology of consciousness is to know that the causal relationship of the objective detection of neuronal activation and the subjective awareness of conscious experience is uncertain. Neuroscientist suggested the idea of the Neuronal Correlates of Consciousness (NCC) to be able to study the possible minimal model or the smallest possible building components of conscious percept or explicit memory.
Revising history of arousal in modern medicine document (ARAS) as one of the first described structures responsible of enhanced arousal [11]. After decades of researchers efforts we know that what was described as (ARAS) is not a structure of brain stem nuclei per se but is a group of specialized nodes in a complex network and pathways that controls arousal. This network includes the cholinergic nuclei in the upper brainstem and basal forebrain, The posterior hypothalamus histamine projection, and noradrenergic nuclei, especially the locus coeruleus. The dopamine and serotonin pathways that arise from brain stem are thought to be part of (ARAS). The thalamus which constitute crucial synaptic relay for most sensory and intracerebral pathways is located strategically at the apex of (ARAS) and have mediated major control on most of its activities [12, 13]. Thalamic burst discharges are generated through extensive inhibitory axon collaterals, produced by special thalamic, ARAS coordination. Those discharges are responsible for gating specific reticular information which is in turn transmitted back to the cortex, and this reverts the information back to the brainstem [14]. Positron emission tomography (PET) investigation during slow-wave sleep [15] and anesthesia [16] documented selective thalamic and ARAS hypometabolism through studying functional neuroimaging of normal human sleep and studying the neurophysiologic basis of anesthetic induced unconsciousness.
Amygdala, the brain’s center for emotions, occupies major position in the neurology and biology research concerned with working memory, long-term memory, and attention. It is strongly linked with social interactions region in the brain, namely, the orbital cortex. Tight tripartite network constitutes robust pathways from amygdala connected to neurons in the thalamus which in turn connect directly to the orbital cortex. The pathways from the amygdala to the orbital cortex and to the thalamus are dual and distinct by function, morphology, neurochemistry [17]. This highly sophisticated and specialized pathways provide strong evidence that emotions influence higher cortical areas concerned with affective reasoning. In addition, Investigating the neurobiological bases of executive functions suggest that amygdala facilitates cognitive performance during challenging tasks between the amygdala and cognitive systems. For this reason neurotransmitters like dopamine and noradrenaline may contribute important role between the amygdala and higher cognition [18, 19]. In our opinion, the well-established role of amygdala in emotions and the additional relation to cognition are both integral to each other and support the establishment of comprehensive intelligent emotional model as a cornerstone of human consciousness experience.
Functions related to movement, gait, posture and balance were the traditional functions related to cerebellum. In the last two decades cerebellum was found to have regulatory functions concerned with emotion processing, cognition, behavior, and collectively consciousness experience [20, 21]. The cognitive role of the cerebellum can be understood by looking at its afferent and efferent connections. The most important of the central afferent circuits is the corticopontocerebellar pathway which emanates from the motor and sensory cortical areas. The pontocerebellar tracts connect with the pontine nuclei then it connect with the contralateral cerebellar hemisphere in a somatotopic manner -which denotes feeling or consciousness experience- of point to point correspondence of an area of the body to a specific point on the cortex. Peripheral cerebellar pathways originate from the brainstem. Via the red nucleus and ventrolateral nucleus of the thalamus, the cerebellum exerts most of its output to the brain stem and the cerebral motor cortex. [22] Efferent cerebellar pathways are four and ultimately connects to the following critical structures: pons, medulla oblongata a, reticular formation, basal ganglia, corticospinal and reticulospinal pathways and limbic cortices (cingulate and parahippocampal gyri). Those sophisticated networks and connections of afferent (corticopontocerebellar) and efferent (cerebellothalamocortical) pathways, the cerebellum can exert highly complex regulatory role and integrate information to the cortical cerebral areas related to cognition and ultimately the consciousness experience. [23] The ongoing collective data from different discipline in genetics, neuropsychological research, structural and functional brain imaging studies will provide better perspective of the integral role of cerebellum in consciousness. [22]
Thalami are pair of large ovoid organs that form most of the lateral walls of the third ventricle of the brain in humans. Thalamic main nuclear divisions and nuclei are: midline thalamic nuclei, anterior nuclear group, medial nuclear group (mediodorsal nucleus), lateral nuclear group, thalamic reticular nucleus and intralaminar nuclei. Nearly all information directed to the cortex first reaches the thalamus. The thalamus transmits this information and reciprocally receives an even greater number of connections back from the cerebral cortex. For this reason, the thalamus is considered as a major player in all forebrain functions including consciousness. The thalamus relays the content of consciousness, and also controls its level via specialized circuits that act as regulator of arousal level and are critical for selective attention. The specific thalamic relay nuclei communicate with the cerebral cortex regarding each sensory and motor function. For this reason the thalamus with its extensive nuclei connections is thought to be responsible for all the individual contents of consciousness [24]. Corticothalamic rhythms are thought to be generated by The reciprocal connections between thalamic relay nuclei and the thalamic reticular nucleus during normal sleep and waking activity, as well as in pathological rhythms such as epilepsy [25]. the intralaminar thalamus plays an important role in transmitting arousal influences from strategic location, namely, the midbrain and upper pontine cholinergic and glutamatergic systems to the cortex.
The contribution of frontoparietal activity to conscious perception was suggested by neuroimaging studies. In addition to visual perception due to activity in the ventral visual cortex, the parietal and prefrontal areas contribution seems to be essential for awareness [26, 27]. The network nodes for correlates of consciousness are thought to be divided to primary and secondary. Early activity in the occipital lobe correlates with the perceptual processes, which is detrimental for later process, namely, the activity in the frontoparietal areas. Access consciousness, in comparison to the phenomenal subjective consciousness due to mainly activation of sensory regions, refers to the direct control of experience through reasoning, reporting, or action. This type of higher functioning needs the involvement of the frontoparietal areas [28].
The PFC constitutes a large portion of the frontal lobe that includes most of the cortical tissue anterior to the central sulcus which can be divided to five main areas. The role of the prefrontal cortex (PFC) as an NCC is the source of debate between prefrontal theories and posterior theories of consciousness. The strongest argument point of posterior theories of advocates is the preservation of consciousness in patients with PFC lesions. Apparently, they limit their definition of consciousness to the state of alertness and vigilance, which is too deficient definition. In our view, adopting our comprehensive definition of consciousness, mentioned earlier, will make both conflicting parties complementary rather than competitive. The five main areas of the PFC –namely The anterior prefrontal cortex the caudal prefrontal cortex; the dorsolateral prefrontal cortex; the ventrolateral prefrontal cortex; and the medial prefrontal cortex -are extensively connected with sensory areas, which conceivably denotes that PFC is essential part of the consciousness experience although the exact mechanism of how the sensory information could become conscious is still not well understood. NCCs involving PFC might be subtle neurological activity. The fact that common neuroimaging techniques are not sufficiently sensitive to detect subtle differences in neural activity should be considered in future research discussing the role of OFC in consciousness [29].
Precumues or the mesial extent of Brodmann’s area is a cortical region located in the posteromedial portion of the parietal lobe. It is well known with its widespread connections with both cortical and the subcortical structures. Recent Functional imaging findings in healthy subjects suggest a central role for the precuneus in a wide spectrum of higher functions, including visuo-spatial imagery, episodic memory retrieval and self-processing operations. Precuneus and surrounding posteromedial areas are among the most hot spots of the brain as it is displaying high resting metabolic rates. It is characterized by transient decreases in the tonic activity during engagement in non-self-referential goal-directed actions [28]. It is thought that precuneus is involved in the interwoven network of the neural correlates of self-consciousness, engaged in self-related mental representations during rest. The evidence is supportive of the involvement of precunues in the endogenous signaling function during conscious resting state. This hypothesis is consistent with the selective hypometabolism in the posteromedial cortex reported in a wide range of altered conscious states, such as sleep, drug-induced anesthesia and vegetative states [30].
The most prevalent excitatory neurotransmitter in the central nervous system is Glutamate. It functions seems to be critical in initiation and maintaining of sleep and wakefulness. Arousal system pathways arising from the midbrain and upper pontine reticular formation that project to the thalamus and basal forebrain as well as the widespread projections from the thalamic intralaminar nuclei to the cortex are thought to be mediated by glutamate [31]. Through interaction with other types of neurons, the glutamatergic neurons can regulate sleep stages. With this type of arrangement, complex sleep–wake regulation network in the brain is made [32].
Acetylcholine, although being, the major neurotransmitter of the peripheral nervous system, plays neuromodulatory function in the central nervous system (CNS). The brainstem pontomesencephalic reticular formation and the basal forebrain are the two main sources of cholinergic projections neurons in CNS. Brain stem arousal is thought to act in a synergistic manner with the noncholinergic putative glutamatergic pontomesencephalic neurons which project to intralaminar thalamus and basal forebrain [24, 31, 33]. The brainstem and basal forebrain cholinergic systems work together to abolish The cortical slow wave activity which is known to be enhanced with pathological brain function as in stroke, schizophrenia, depression, Morbus Alzheimer, and post-traumatic stress disorder are abolished by the brainstem and basal forebrain cholinergic systems and this ultimately will promote an alert state [31, 34] Muscarinic acetylcholine receptors are the major receptor type operating in cholinergic arousal in the CNS, although nicotinic receptors may also play an important role [24]. The result of pharmacological blockage of cholinergic neurons in the CNS can be deduced from its functional areas connections, resulting in acute state of delirium and memory loss. In the contrary, the miracle of human brain creation is shown in the preservation of consciousness with experimental selective damage to cholinergic neurotransmission [35]. This can be explained by the multiple parallel neurotransmitter systems are participating in maintaining the consciousness.
The most prevalent inhibitory neurotransmitter in the CNS is GABA. It is known for its major role in regulating arousal. Several long-range GABAergic projection systems also contribute to controlling arousal. Arousal is promoted by some GABAergic neurons in the basal forebrain as these inhibitory neurons in turn project to cortical inhibitory interneurons. [24, 36] On the other hand the overall effects of basal forebrain GABAergic neurons on arousal process is variable with variable firing patterns on cortex and sleep awake cycle. Long GABAergic projections have their overall function as inhibitors for arousal process. These include neurons like ventral lateral preoptic nucleus which is known for its widespread inhibitory projections to almost all subcortical arousal systems [37]; forebrain and hypothalamus inhibitory neurons namely lateral septal GABAergic neurons [38]; and the GABAergic containing neurons nucleus namely the thalamic reticular nucleus that is projecting to the remainder of the thalamus and projecting to the brainstem reticular formation [39]. Regions of the thalamus including the intralaminar nuclei are inhibited by GABAergic neurons in the globus pallidus internal segment. It is thought that the inhibition of the globus pallidus to remove the tonic inhibition of the intralaminar thalamus with medications like zolpidem in minimally conscious state, or benzodiazepines in catatonia is the possible mechanism for the paradoxical arousal effects of those GABA agonist [24, 40]. The loss of consciousness in partial seizures is thought to be due to activation of these multiple GABAergic inhibitory projections converging on the subcortical arousal.
In proximity to the fourth ventricle, in the rostral pons the locus ceruleus contains the norepinephrine (noradrenaline) neurons. Inhibition of locus ceruleus neurons with drugs like selective α-2 agonists such as clonidine or the anesthetic agent dexmedetomidine is the possible mechanism of action yielding profound depression of arousal. In contrary selective blockage or removal of noradrenergic neurons will impair arousal but will not end up in deep coma. This can be explained, like the situation mentioned in cholinergic arousal systems, by multiple parallel neurotransmitter systems are participating in maintaining the consciousness. Norepinephrine neurons type are also found in the lateral tegmental area extending into the more caudal pons and medulla. [24, 41] Sleep–wake cycles, attention, and mood are regulated via ascending noradrenergic projections that reach the cortex, thalamus and hypothalamus. Modulation of autonomic nervous system function and pain gating is operated through descending projections to the brainstem, cerebellum, and spinal cord.
The midline raphe nuclei of the midbrain, pons, and medulla contains most of the serotonergic neurons. Projections to the entire forebrain are received from the more frontal serotonergic neurons in the midbrain and upper pontine raphe nuclei, participating in regulation of sleep–wake cycle. Serotonergic systems occupies major position in psychiatric practice as dysfunction of which is thought to play a role in a number of psychiatric disorders including, anxiety, depression, obsessive–compulsive disorder, aggressive behavior, and eating disorders. Modulation of breathing, pain, cardiovascular system, temperature control,, and motor function is attributed to the caudal serotonergic neurons in the pons and medulla. The dorsal raphe and median raphe are thought to be the most important rostral raphe nuclei participating in arousal process. [42] The contribution of serotonergic neurons to the arousal process with either promotion or inhibition, is complex due to the wide diversity of serotonin receptors in different regions of the brain. [43, 44] The lifesaving arousal response to hypoventilation and high carbon dioxide tension is thought to be promoted by brainstem serotonergic neurons located rostrally [45].
The substantia nigra pars compacta and the adjacent ventral tegmental area of the mid brain are the regions where dopaminergic neurons are mostly found. Three ascending dopaminergic projection systems will emanate from those nuclei projecting to vital cortical and subcortical regions with substantial contribution to consciousness process: (1) the mesostriatal (nigrostriatal) pathway (2) the mesolimbic pathway (3) the mesocortical pathway. Those three projections arise from substantia nigra (pathway 1) and ventral tegmental area (pathway 2 and 3) reaching to the caudate and putamen (pathway 1), limbic structures including the medial temporal lobe, amygdala, cingulate gyrus, septal nuclei, and nucleus accumbens (pathway 2), the prefrontal cortex and the thalamus (pathway 3). Dopamine can have dual effect on the thalamus and cortex either activation or inhibitory [46]. Schizophrenia related apathy and the reduction of motivation and initiative, seen in frontal lob pathologies, abulia, and akinetic mutism are thought to be due to impaired dopaminergic transmission to the prefrontal cortex [47].
In the posterior hypothalamusan an important nucleus is called tuberomamillary nucleus where most of the Histamine-containing neurons are found. In addition a few scattered histaminergic neurons can be seen in the midbrain reticular formation. The entire forebrain including cortex and thalamus receives extensive ascending projections emanating from the tuberomamillary nucleus, while the brainstem and spinal cord receives descending projections [48]. Anti-histamine medications are intended to act on peripheral histamine release from mast cells, but are well-known to induce drowsiness presumably through central actions (White and Rumbold, 1988). Anti histamine medications are thought to act centrally inhibiting the arousal function of histamine on cortex [49] and thalamus [50] resulting in drowsness. In addition other hypothalamic nuclei, the basal forebrain, brainstem cholinergic and noradrenergic nuclei may contribute to the arousal actions of histamine. Histamine effect is thought to be receptor specific as activation of H1 receptors will facilitate alertness where H3 receptors activation will result in drowsiness.
Orexin from
Hydrolysis of Adenosine Mono phosphate (AMP) and S adenosyl- homocysteine (SAH) will result in adenosine production which is known as a somnogenic substance that has control on normal sleep–wake patterns. The neuroanatomical sources of adenosine are not well known, but functionally it is well known neuromodulator contributing to the conscious arousal The adenosine system can affect the gating of Slow Wave System-Slow Wave Activity expression. Adenosine affect is through modulating of the arousal level, thereby altering the duration of time during which sleep homeostasis and function can occur. [52] Adenosine receptor stimulation is expected theoretically to act as a potential treatment for insomnia. In spite of the fact that A2AR agonists strongly induce sleep, classical A2AR agonists have adverse cardiovascular effects that restrict its use clinically. In addition the passage of adenosine across the blood–brain barrier (BBB) is known to be poor with evidence of rapid degradation inside endothelial BBB cells. Infusing of selective A2AR agonist CGS21680 increases the release of GABA in the tuberomammillary nucleus (TMN), but not in the frontal cortex and decreases histamine release in the frontal cortex and medial preoptic area. Adenosine arousal effect can be blocked by coffee and theophylline.
The last 7 decades conceptual model of the consciousness scientific dilemma in general human knowledge as well as in scientific specialties in psychiatry, neurology, clinical neuroscience and all related disciplines was based on reductionist concepts that aimed at naturalizing all phenomena of mind including memory and other higher functions, to solely, cellular and molecular mechanisms of the human nervous system [53]. This dogma occupied the scientific understanding of the twentieth century. As a matter of fact those reductionist ideas as well as their opponents extended few thousands of years deep in the human history. Example of the opponents are the phrenologicals as documented by work of the Austrian anatomist Franz Joseph Gall (1758–1828), [54]. In fact in ancient Egyptian wisdom the role of human brain as the source of wisdom and consciousness was not of value. In fact, when creating a mummy, the Egyptians scooped out the brain through the nostrils and threw it away [55]. The ancient Egyptians believed that the heart, rather than the brain, was the source of human wisdom, as well as emotions, memory, the soul and the personality itself. The father of the reductionist theory of brain functioning in todays medicine is Wilder Penfield’s (1891–1976) who adopt the concept that electrical stimulations in certain brain areas produce experiential phenomena [56]. The originality and innovative level of Penfield’s contributions to the field of neurophysiological localization of the higher psychological functions in the human cortex as well as the purity of his operational research approaches was questioned and criticized. Now a days, Penfield approach with his neurological and psychiatric patients is of considerable academic debate in the scientific communities [57]. In historical appraisal R. Nitsch and F. W. Stahnisch in the journal Cerebral Cortex challenged Penfield original concept of experiential phenomena elicited by electrical Stimulation of the human cortex. They revisited Penfield clinical work and found that the actual results obtained from electrical stimulation studies of the brain are far less conclusive, than his firm assertions made during Penfield Gordon Wilson Lecture in 1950. They stated clearly “In-depth comparison with the original stimulation map shows clearly that the original stimulation protocol did not support this repetitive account by stimulation at the same point”. There was no consistent response of defined experiential phenomena observed upon stimulation of an individual stimulation point of the original work. In addition there was no full memory repertoire could be elicited. Patient’s stimulation records did not yield stream of an individual’s consciousness [58]. The heaviness of the scientific evidence emphasizing that consciousness is a complex reconstructive process, not merely limited to electrophysiological stimulation and recordings is beyond the stage of simply overlooking the situation.
The thalamocortical complex does not seem to be critically essential for consciousness experience. Brainstem mechanisms by its own can create adequate consciousness state. This means that Consciousness without a cerebral cortex is possible. [59] Penfield and Jasper note that a cortical removal even as radical as hemispherectomy deprived their patients certainly from of information and discriminative capacities but not consciousness. [60] An explicit reference to the midbrain reticular formation was always included in Penfield and Jasper definition of their proposed centrencephalic system. Sprague in 1966 contribute significantly to consciousness research after performing complete removal of the posterior visual areas of one hemisphere in the cat. Agrees well with the Penfield and Jasper perspective that without cognizance of potential subcortical contributions to cortical damage deficit, the cortical functions will be counterfactually inflated [61]. Striking scientific agreement arguing strongly against the necessity of cerebral cortex for consciousness experience is seen in children born without cortex, namely Hydranenecephalic children. It is a congenital anomaly of the brain where for genetic or acquired reasons the cerebral cortex is drastically under developed and replaced by cerebrospinal fluid (Figure 1).
Sagittal MRI section for a child demonstrating drastic underdevelopment of cerebral cortex with only remnants of occipital and temporal lobes. Cerebellum and brainstem are intact.
Neurological evaluation reveals they are responsiveness to their surroundings and conscious. Personal observations reported by hundreds of families of affected children stressed on the fact that their responsiveness is most readily to sounds, but also to salient visual stimuli. To the surprise a paradox phenomena in this regard is rarity for any auditory cortex to be spared in those children in spite of their impressive sound responsiveness. Bjorn Merker wrote a unique chapter entitled “Consciousness without a cerebral cortex: A challenge for neuroscience and medicine” which appeared in Behavioral and Brain Sciences and was able to spent seven days of observation with 5 families in a visits to Disney World. He stated that “They express pleasure by smiling and laughter, and aversion by “fussing,” arching of the back and crying (in many gradations), their faces being animated by these emotional states. The children respond differentially to the voice and initiatives of familiars, and show preferences for certain situations and stimuli over others, such as a specific familiar toy, tune, or video program, and apparently can even come to expect their regular presence in the course of recurrent daily routines. “[62] It is woeful that many medical institutes label hydranenecephalic children to be in a vegetative state. On the other hand
44 years old french man with 90% absence of his cerebral cortex. His consciousness, mentality as well as social life were otherwise normal. LV=lateral ventricle. III=third ventricle. IV=fourth ventricle. Arrow=Magendie’s foramen.
Thinking of intelligence from the point of computer and artificial intelligence language will denote the fact that the higher the capacity and intellectual power of a computer requires larger hard ware and more sophisticated computers. The comparisons is not valid in case of human brain as the anatomical study of the most intelligent human in the 20 century Albert Einstein’s brain was not showing any convincing anatomical difference than any body brain. Witelson and colleagues’ claim that Einstein’s brain lacks a parietal operculum on the left and right sides. A M Galaburda from Harvard Medical School -and others- argues strongly against this and documented that Einstein’s brain is no exception to the most common of patterns, showing a parietal operculum on the left and the typical posteriorly rising Sylvian fissure on the right (Figure 3) [64, 65].
Einstein’s brain is no exception to the most common of patterns, showing (A): Typical posteriorly rising Sylvian fissure on the right (arrow) and (B): A parietal operculum on the left (asterisk).
It is conspicuous for the ingenious observer in the consciousness scientific arena that the inability to explain and match facts and observations and the failure to reproduce the exact consciousness experience incorporating current knowledge in the field implies presence of deficient rings in the long chain that demand more comprehensive perspective. In this regard we established the King of Organs International Congress for Advanced Cardiac Sciences and held five international congresses (2006,2007,2008,20,101,2012 and 2019). The King of Organs congresses are an international collaborative efforts between international renewed scientists in cardiac sciences, psychologists, astrophysicist, mathematicians, geologists, space engineers, signal analysis specialists and other related disciplines. It is chaired by us in Prince Sultan Cardiac Center (Alhasa, Saudi Arabia). Our academic partners are the HeartMath Institute and the Global Coherence Initiative (Boulder Creek, CA, USA), American Institute of Stress (NY, USA), The Global Consciousness Project (Institute of Noetic Sciences, USA), and other western and eastern reputable universities and collaborators.
The field of neurocardiology is relatively new discipline which was discussed first time in a scientific conference in King of Organs 2006,Saudi Arabia. The meticulous and sophisticated neurological afferent pathways (Figure 4) as well as energetic dominance of the heart over the brain was astonishing for the modern scientific communities. The amplitude of the cardiac electrical signal is about 60 times greater in amplitude compared to the brain while the electromagnetic field of the heart is approximately 5000 times stronger than the brain and can be detected six feet away from the body with sensitive magnetometers. Other ways the heart communicate the brain are hormonal and biophysical.
The currently known afferent pathways by which information from the heart and cardiovascular system modulates brain activity. The nucleus of tractus solitarius (NTS) direct connection to the amygdala, hypothalamus and thalamus is shown. In addition there is emerging evidence of the presence of a pathway from the dorsal vagal complex that travels directly to the frontal cortex.
John and Beatrice Lacey during 1960s and 1970s created a massive drift in the modern psychophysiological research with their publications on human heart –brain communication [66, 67]. An important land mark in the field was there observations that afferent input from the heart and cardiovascular system could significantly affect perception, cognitive functions and behavior. This was neurophysiological evidence signifying that sensory and motor integration could be modified by cardiovascular activity. The heart behaves as if it had a mind of its own. In contradiction to Cannon theory of homeostasis, Laceys showed that patterns of physiological responses were affected as much by the context of a specific task and its requirements as by emotional stimuli. A phenomenon called by Laceys the
One of the strategic scientific, philosophical, as well as conceptual turning points that emanates from the basic science and neuroscientific arena is the accumulating evidence of the precedence of the heart detection of sensory stimulus before the brain. Hyeong-Dong Park in nature neuroscience, documented neural events locked to heartbeats before stimulus onset predict the detection of a faint visual grating in two regions that have multiple functional correlates and that belong to the same resting-state network:the posterior right inferior parietal lobule and the ventral anterior cingulate cortex Figure 5 [73].
Neural events locked to heartbeats before stimulus onset predict the conscious detection of a faint visual grating in the posterior right inferior parietal lobule and the ventral anterior cingulate cortex [
There is compelling evidence to suggest the physical heart is coupled to a field of information not bound by the classical limits of time and space [74]. Rigorous experimental study demonstrated the heart receives and processes information about a future event before the event actually happens. The study’s results provide surprising data showing that both the heart and brain receive and respond to pre-stimulus information about a future event before it occurs but the heart proceeded the brain by 1.3 seconds which is truly too long time in the scale of neural impulse transmission which is counted with milliseconds (Figure 6).
Temporal dynamics of heart and brain pre-stimulus responses. Sharp downward shift about 4.8 seconds prior to the stimulus (arrow 1) is seen. The emotional trials ERP showed a sharp positive shift about 3.5 seconds prior to the stimulus (arrow 2). This positive shift in the ERP denotes the time the brain “knew” the nature of the future stimulus. The time difference between these two events suggests that the heart received the intuitive information about 1.3 seconds before the brain. Heartbeat-evoked potential analysis confirmed that a different afferent signal was sent by the heart to the brain during this period. (ERP) is event-related potential at EEG site FP2.HRV is heart rate variability [
Astonishing fact of the vagus nerve (means the nerve with unknown role) called sometimes, the tenth cranial nerve is the fact that it has very significant afferent neurons beside what we taught about its efferent neurons in our medical schools. 85–90% of the fibers in the vagus nerve are afferent [75]. The majority of higher brain centers, as well as emotional experience and cognitive processes are operated by Cardiovascular related afferent neural traffic [76]. Numerous brain centers including the thalamus, hypothalamus, and amygdala are connected to cardiovascular afferents. Range of frequencies of complex afferent information related to mechanical and chemical factors is continuously sent to the brain and is over time scales ranging from milliseconds to minutes [77]. Vagal afferent nerve stimulation causing increases traffic over the normal intrinsic levels in the thalamic pain pathways in the spinal cord will inhibit those pathways. In addition, vagal afferent nerve stimulation was shown to reduces migraine and cluster headaches and to improve cognitive processing and memory [78]. Activating afferent input with vagal nerve stimulation (VNS) is apparently heralding a new era in medical therapeutics as it proves effective in many psychophysiological disorders including epilepsy, obesity, depression, anxiety, autism, alcohol addiction, mood disorders, as well as multiple sclerosis, and traumatic brain injury [79, 80]. The cardiac coherence training is known to intensify afferent vagal neuronal inputs to cortical and subcortical systems and to Neuronal Correlates of Consciousness (NCC) with long term capabilities to reset the reference set up points resulting in increased afferent nerve activity noninvasively and ultimately improves psychophysiological parameters and the consciousness experience. There is thus a need to explore novel ways of repairing lost consciousness. Vagus nerve stimulation (VNS) may also contribute to breaking advances in awakening the unconscious vegetative state patient as approved by improvement in behavioral responsiveness and enhanced brain connectivity patterns. The vagus nerve carries afferent connections to the deep nuclei of the brain via the nucleus solitaries (see Figure 4). These afferent connections have multiple consciousness related targets, which include the thalamus, amygdala, reticular formation, hippocampus, raphe nucleus, and the locus coeruleus. VNS will create improved global neurostimulation state leading to promoted spread of cortical signals and caused an increase of metabolic activity leading to behavioral improvement as measured with the Coma Recovery Scale-Revised (CRS-R) scale. [81] Theta waves dominance were shown in the right inferior parietal and the parieto-temporal-occipital border, a region known to be instrumental in conscious awareness.
McCraty and colleagues introduced the term physiological coherence to describe the degree of order, harmony, and stability in the various rhythmic activities within living systems over any given time period [82]. This harmonious order signifies a coherent system that has an efficient or optimal physiological functioning which will be reflected in more resilient personality and higher consciousness. Physiological coherence (also referred to as cardiac coherence) can be measured by HRV analysis where more ordered sine like HRV pattern will be seen around frequency of 0.1 Hz (10 seconds) which will be seen as very narrow, high-amplitude peak in the low frequency (LF) region of the HRV power spectrum with no major peaks in the VLF or HF regions [83].
Ground breaking discovery emphasizing the ability of afferent cardiac signals to reprogram the cortical and subcortical neural networks is what we describe as the
Heart activity affects brain function. The ascending heart signals impact autonomic regulatory centers in the brain and cascade up to higher brain centers involved in emotional and cognitive processing, including the thalamus, amygdala, and cortex [
Heartbeat evoked potentials (HEPs) are segments of electroencephalogram (EEG) that are synchronized to the heartbeat. The ECG R-wave is used as a timing source for signal averaging, resulting in waveforms known as HEPs. Based on animal studies, Those cardiac afferents are transmitted to cortical areas including the insula, amygdala, somatosensory cortex and cingulate cortex, through subcortical relays such as the nucleus of the solitary tract, parabrachial nucleus, and thalamus Changes in these evoked potentials associated with the heart’s afferent neurological input to the brain are detectable between 50 and 550 ms after each heartbeat [70].
Initiation of negative or positive emotion conditions by recalling past events reduced HRV and N250 amplitude. In contrast, resonance frequency breathing with HRV frequency around the 0.1 Hz peak increased HRV and HRV coherence above baseline and increased N250 amplitude [90]. We and others thought of HEPs as a neural marker of cardiac-related cortical processing in in consciousness and other diverse cognitive functions. Different afferent input mechanisms from the heart to the brain during different emotions and HRV can be identified using HEPs. Hyeong-Dong Park et al., found that neural responses to heartbeats can be recorded mainly in the insula (i.e., anterior, posterior) and operculum (i.e., frontal, central, posterior)., although it can be found in other regions distributed across the brain including the amygdala and fronto-temporal cortex [91]. It is known that insula is the primary cortical projection site of interoceptive signals. It is interesting to know that the HBEP is significantly higher during interoceptive compared to exteroceptive attention, in a time window of 524–620 ms after the R-peak [92].
Similarities of basic frequencies, harmonics, magnetic field intensities, voltages, band widths, and energetic solutions between the Schumann resonances in the space between earth and ionosphere and the activity within the human cerebral cortices suggest the capacity for direct interaction [93]. Every cell in our body is bathed in an internal and external environment of fluctuating invisible magnetic forces that can affect virtually every cell and circuit in biological systems [94]. Therefore, it should not be surprising that numerous physiological rhythms in humans heart and brain and global collective behaviors are not only synchronized with solar and geomagnetic activity, but disruptions in these fields can create adverse effects on human health and behavior. The most sensitive body systems to those fluctuating electromagnetic environments are the heart and brain. [95] The heart is the largest dynamic organ in the human body. No surprise that the heart magnetic field is the strongest rhythmic field produced by the human body. The second strongest magnetic generator is the brain. The primary source of the electromagnetic activity of the brain measured from the scalp and emerges from the cerebral cortices because of the parallel arrangement of the dendrite-soma-axo orientations perpendicular to the surface for most of the approximately 20 billion neurons. Superimposed upon the steady potential are fluctuating voltages that define the electroencephalogram (EEG). It is not surprising that the heart’s electrical field is about 60 times greater in amplitude than the electrical activity generated by the brain. There is a direct mathematical relationship between the HRV
Resonance refers to vibration of large amplitude in electrical or mechanical system caused by a relatively small periodic stimulus of the same or nearly the same period as the natural vibration period of the system. The concept of resonance and its implementations in physiological as well as astrophysical rhythms is of critical significance for life on earth and to human consciousness experience. All biological systems on the planet are exposed to an external and internal environment of fluctuating invisible wide range of magnetic fields frequencies. These fields can affect virtually every cell and circuit to a greater or lesser degree. Numerous physiological rhythms have been shown to be synchronized with solar and geomagnetic activity. Geomagnetic and solar influences affect a wide range of human rhythmic systems with the nervous and cardiovascular systems, with their significant contribution to consciousness, being the most clearly impacted [70]. Sharp variations of sudden and sharp nature of geomagnetic, solar activity and its resultant geomagnetic storms can act as stressors, which has the capacity to alter body regulatory processes and rhythmic systems such as melatonin/serotonin balance, blood pressure, breathing, reproductive, immune, neurological, and cardiac system processes [98, 99, 100, 101]. In the clinical arena significant increases in hospital admissions for depression, mental disorders psychiatric admission, homicides, suicide attempts, and traffic accidents are associated with planetary geomagnetic disturbances [102, 103, 104, 105, 106, 107, 108]. Increase incidence of myocardial infarctions, vascular variability disorders, local and global communication between humans during geomagnetic disturbances are all denotes that brain and cardiovascular systems are clear targets for the planetary geomagnetic disturbances [109, 110, 111, 112, 113, 114]. Exacerbation of present disease like development of cardiac arrhythmias and epilepsy is well known during disturbed geomagnetic activity. Low frequency magnetic oscillations, around 3 Hz, was observed to cause Altered EEG rhythms with sedative effect [115]. Applying the lowest Schumann Resonance (SR) frequency of 7.8 Hz with 90 nano Tesla for 1.5 hours was found to be cardioprotective from stress conditions with reduction of the amount of CK released to the buffer, during normal conditions, hypoxic conditions and oxidative stress induced by 80 μM H2O2 [116]. The longest record in human history of human heart rate variability (HRV) synchronized with Solar Wind indices, Shumann Resonances (SR) and Galactic Cosmic Rays (GCR) monitoring was achieved by our group [117]. Schumann resonance frequency is 7.83 hertz (Hz), with a (day/night) variation of around ±0.5 Hz. The higher frequencies are ~14, 20, 26, 33, 39 and 45 Hz, all of which closely overlay with alpha (8–12 Hz), beta (12–30 Hz) and gamma (30–100 Hz) brain waves. The delicate orchestration of this universal symphony and vibrations with the human autonomic nervous system (ANS) that interacts with cerebral cortex and control heart rhythm, respiration, digestive functions and other involuntary activities was investigated. We were able to confirm that changes in solar and geomagnetic activity during periods of normal undisturbed activity affect daily ANS activity. In an other publication, we were able to document significant correlations between the group’s HRV and solar wind speed, Kp, Ap, solar radio flux, cosmic ray counts, Schumann resonance power, and the total variations in the magnetic field [110] This affect is initiated at different times after the changes in the various environmental factors and persist over varying time periods. Peaks of increased solar activity occurs every 10.5 to 11 years. During those peaks, the sun emits increased ultraviolet (UV) energy and solar radio flux, which is measured by the 2.8 GHz signal (F10.7) [110] We considered Solar wind intensity as biological stressor as increase in its intensity is well correlated to increase heart rate. Galactic Cosmic Rays (GCR) are highly energetic particles that originate outside the solar system and are likely formed by nuclear explosive events in supernova and other mega giant galaxies. These highly energetic particles consist of fully ionized nuclei ranging from hydrogen, accounting for approximately 89% of the GCR spectrum, to trace amounts of uranium. The planetary magnetic field and the solar winds are protective for life on earth from this extremely ionized rays. We documented that human HRV with its modulatory effect on the consciousness pillars through ascending neuronal input to cortical and sub cortical structures increases with rise of the three major universal vibrations that we examined: Solar Winds, Shumann Resonances (SR), and the Galactic Cosmic Rays (GCR). This complex interaction between HRV and those environmental energetic fields may contribute to the human knowledge about the pathomechanistic effects on human psychphysiological homeostasis and the consciousness experience.
It is conspicuous from the previous sections that the neuronal firing of brain structures is not enough to explain subjective consciousness experience. Quantum physicists Larissa Brizhik and Emilio DelGiudice suggested that the most likely physical agent that can continuously provide an exchange of information between living systems within the larger ecosystem is the magnetic fields. According to the quantum field theory, potentials of the magnetic field, governs the dynamics of biological systems and the whole ecosystem. As a matter of fact, the planetary magnetic field is ubiquitous and involved in the deep behavior of biology. Animals can detect the Earth’s magnetic field through magnetoreception-related photoreceptor cryptochromes [118] through which the planetary magnetic field guides the different species in their thousands of miles migration in land and oceans. The field causes the emergence of the coherent structures, which, in view of their coherence, openness and nonlinearity, are able to self-organize and form a chain of hierarchical levels of ecosystems [119] Coherence in the quantum language implies correlations, connectedness, consistency, efficient energy utilization, and the concept of global order, where the whole is greater than the sum of its individual parts. In medicine we refer to coherence to implies a harmonious relationship, correlations and connections between the various parts of a system. The Wight of evidence towards new evolutionary paradigm of the origin and effect of human consciousness with mutual effect to the environment is prevailing.
Evidence is accumulating supporting the hypothesis that our consciousness can even influences our physical world. Random number generators (RNGs) are one tool used to evaluate micro-psychokinesis or our ability to affect the physical world with our consciousness. Research conducted by the Global Consciousness Project (GCP) (which maintains a worldwide network of random number generators running constantly at about 60 locations around the world, sending streams of 200-bit trials generated each second to be archived as parallel random sequences), has found that human emotionality affects the randomness of these electronic devices in globally correlated manner. Roger Nelson who is the founder of GCP reported in a recent publication multiple examples of striking similarity between event-related brain potentials and event-related correlations in random data [119] (Figure 8). If all living systems are indeed interconnected and communicate with each other via biological and electromagnetic fields, it stands to reason that humans can work together in a co-creative relationship to consciously increase global coherence and raise the global consciousness. It is conspicuous that classical mechanics cannot explain consciousness. Quantum consciousness is the science that incorporate conceptual discussion of phenomenon of quantum mechanics like entanglement and superposition to explore the deep science of human consciousness.
Striking similarity between evoked potential (EP) from an auditory stimulus (the black) and composite of GCP data from nine 6 hour events (the red) [
The idea that quantum mechanics has something to do with the workings of the mind was developed by Eugene Wigner, Hungarian-American theoretical physicist and Nobel Prize Laurete in Physics in 1963,who proposed that the wave function collapses due to its interaction with consciousness. Freeman Dyson argued that “mind, as manifested by the capacity to make choices, is to some extent inherent in every electron. David Bohm is theoretical physicists who contributed significantly to quantum theory, neuropsychology and the philosophy of mind. He stimulated new era of conceptual approach to consciousness with more fundamental level in the universe. He claimed both quantum theory and relativity pointed to this deeper theory, which he formulated as a quantum field theory. Bohm’s proposed implicate order which applies both to matter and consciousness. He suggested that it could explain the relationship between them. Bohm’s views mind and matter as projections into our explicate order from the underlying implicate order This more fundamental level was proposed to represent an undivided wholeness and an implicate order, from which arises the explicate order of the universe as we experience it. Holonomic brain theory is a branch of neuroscience investigating the idea that human consciousness is formed by quantum effects in or between brain cells. This specific theory of quantum consciousness was developed by neuroscientist Karl Pribram initially in collaboration with David Bohm. In addition to the neuroanatomical components of the human brain including the large fiber tracts in the brain, neurotransmissions also occurs in dendrites and other webs of fine fiber branche, that form webs. Due to the billions of action potentials and neural impulse formations, dynamic electrical fields will result around these dendritic trees. Those dendritic trees can affect other surrounding neurons without physical contact between them by entanglement. In this way, processing in the brain can occur in a non-localized manner. An energy-based concept of information was described by Dennis Gabor, who invented the hologram in 1947,which he described as quanta of information. Later on, he won Nobel prize in physics for this invention in 1971.Kal H.Pribram’s holonomic model of brain processing was described in his 1991
In this chapter we investigate the elusive issue of human consciousness. We introduce revolutionary paradigm in the time line of consciousness science, where we discuss a comprehensive perspective of the process of consciousness of neurobiological and astrophysical bases. Our new perspective is built on our work confirming the symphony interplay of human ANS represented by HRV on one hand and Shumann Resonances, Solar Wind Indices and Cosmic Rays on the other hand. In addition to up to date discussion on the neuroanatomical aspects of consciousness, the delicate and powerful contribution of cardiac afferent input to brain consciousness related cortical and subcortical structures and pathways and heartbeat evoked potentials (HEP) is discussed. The role of the quantum principles and magnetic potentials in the universal information processing is emphasized. Our new perspective is complementary but never competitive to the quantum consciousness theories discussed especially the theories of Karl Primbram-David Bohem, Penrose and Stuart Hameroff, and Pierce Stapp. This new comprehensive understanding of human consciousness should bring many scientific disciplines closer to illustrate the necessity of the intelligent blend of science branches to solve historical human issues in medicine, science, philosophy, and religion.
All Works published by IntechOpen prior to October 2011 are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license (CC BY-BC-SA 3.0). Works published after October 2011 are licensed under a Creative Commons Attribution 3.0 Unported license (CC BY 3.0), the latter allowing for the broadest possible reuse of published material.
",metaTitle:"Translation Policy",metaDescription:"Translation of Works - Book Chapters",metaKeywords:null,canonicalURL:"/page/translation-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"All Works licensed under CC BY-BC-SA 3.0 can be freely translated and used for non-commercial purposes. Works licensed under CC BY 3.0 license can be freely translated and used for both commercial and non-commercial purposes.
\\n\\nAll translated Chapters have to be properly attributed in accordance with the requirements included in IntechOpen's Attribution Policy. Besides proper attribution translated sections of Works must include the following sentence: "This is an unofficial translation of a work published by IntechOpen. The publisher has not endorsed this translation".
\\n\\nAll rights to Books and other compilations are reserved by IntechOpen. The copyright to Books and other compilations is subject to a Copyright separate from any that exists in the included Works.
\\n\\nA Book in its entirety, or a significant part of a Book, cannot be translated freely without specific written consent by the publisher. Requests for permission can be made at permissions@intechopen.com.
\\n\\nPolicy last updated: 2016-06-09
\\n"}]'},components:[{type:"htmlEditorComponent",content:'All Works licensed under CC BY-BC-SA 3.0 can be freely translated and used for non-commercial purposes. Works licensed under CC BY 3.0 license can be freely translated and used for both commercial and non-commercial purposes.
\n\nAll translated Chapters have to be properly attributed in accordance with the requirements included in IntechOpen's Attribution Policy. Besides proper attribution translated sections of Works must include the following sentence: "This is an unofficial translation of a work published by IntechOpen. The publisher has not endorsed this translation".
\n\nAll rights to Books and other compilations are reserved by IntechOpen. The copyright to Books and other compilations is subject to a Copyright separate from any that exists in the included Works.
\n\nA Book in its entirety, or a significant part of a Book, cannot be translated freely without specific written consent by the publisher. Requests for permission can be made at permissions@intechopen.com.
\n\nPolicy last updated: 2016-06-09
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5817},{group:"region",caption:"Middle and South America",value:2,count:5282},{group:"region",caption:"Africa",value:3,count:1755},{group:"region",caption:"Asia",value:4,count:10511},{group:"region",caption:"Australia and Oceania",value:5,count:906},{group:"region",caption:"Europe",value:6,count:15915}],offset:12,limit:12,total:119159},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"20"},books:[{type:"book",id:"10672",title:"Nonlinear Optics",subtitle:null,isOpenForSubmission:!0,hash:"cfe87b713a8bee22c19361b86b03d506",slug:null,bookSignature:"Dr. Boris I. Lembrikov",coverURL:"https://cdn.intechopen.com/books/images_new/10672.jpg",editedByType:null,editors:[{id:"2359",title:"Dr.",name:"Boris",surname:"Lembrikov",slug:"boris-lembrikov",fullName:"Boris Lembrikov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10674",title:"Topics on Quantum Information Science",subtitle:null,isOpenForSubmission:!0,hash:"d7481712cff0157cd8f849cba865727d",slug:null,bookSignature:"Prof. Sergio Curilef and Dr. Angel Ricardo Plastino",coverURL:"https://cdn.intechopen.com/books/images_new/10674.jpg",editedByType:null,editors:[{id:"125424",title:"Prof.",name:"Sergio",surname:"Curilef",slug:"sergio-curilef",fullName:"Sergio Curilef"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10852",title:"Electromagnetic Compatibility",subtitle:null,isOpenForSubmission:!0,hash:"f5d2cce3a2adbd5d108d3301ee97025b",slug:null,bookSignature:"Dr. Ahmed Kishk",coverURL:"https://cdn.intechopen.com/books/images_new/10852.jpg",editedByType:null,editors:[{id:"150146",title:"Dr.",name:"Ahmed",surname:"Kishk",slug:"ahmed-kishk",fullName:"Ahmed Kishk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10921",title:"Plasma Science and Technology",subtitle:null,isOpenForSubmission:!0,hash:"c45670ef4b081fd9eebaf911b2b4627b",slug:null,bookSignature:"Dr. Aamir Shahzad",coverURL:"https://cdn.intechopen.com/books/images_new/10921.jpg",editedByType:null,editors:[{id:"288354",title:"Dr.",name:"Aamir",surname:"Shahzad",slug:"aamir-shahzad",fullName:"Aamir Shahzad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10956",title:"Pulsed Lasers",subtitle:null,isOpenForSubmission:!0,hash:"88bd906b149fc3d1c5d6fdbd9916826c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10956.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:27},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:8},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:11},{group:"topic",caption:"Computer and Information Science",value:9,count:9},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:9},{group:"topic",caption:"Engineering",value:11,count:24},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:2},{group:"topic",caption:"Medicine",value:16,count:46},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:5},popularBooks:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5319},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9536",title:"Education at the Intersection of Globalization and Technology",subtitle:null,isOpenForSubmission:!1,hash:"0cf6891060eb438d975d250e8b127ed6",slug:"education-at-the-intersection-of-globalization-and-technology",bookSignature:"Sharon Waller, Lee Waller, Vongai Mpofu and Mercy Kurebwa",coverURL:"https://cdn.intechopen.com/books/images_new/9536.jpg",editedByType:"Edited by",editors:[{id:"263302",title:"Dr.",name:"Sharon",middleName:null,surname:"Waller",slug:"sharon-waller",fullName:"Sharon Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editedByType:"Edited by",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editedByType:"Edited by",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9524",title:"Organ Donation and Transplantation",subtitle:null,isOpenForSubmission:!1,hash:"6ef47e03cd4e6476946fc28ca51de825",slug:"organ-donation-and-transplantation",bookSignature:"Vassil Mihaylov",coverURL:"https://cdn.intechopen.com/books/images_new/9524.jpg",editedByType:"Edited by",editors:[{id:"313113",title:"Associate Prof.",name:"Vassil",middleName:null,surname:"Mihaylov",slug:"vassil-mihaylov",fullName:"Vassil Mihaylov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9280",title:"Underwater Work",subtitle:null,isOpenForSubmission:!1,hash:"647b4270d937deae4a82f5702d1959ec",slug:"underwater-work",bookSignature:"Sérgio António Neves Lousada",coverURL:"https://cdn.intechopen.com/books/images_new/9280.jpg",editedByType:"Edited by",editors:[{id:"248645",title:"Dr.",name:"Sérgio António",middleName:null,surname:"Neves Lousada",slug:"sergio-antonio-neves-lousada",fullName:"Sérgio António Neves Lousada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editedByType:"Edited by",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8158",title:"Veganism",subtitle:"a Fashion Trend or Food as a Medicine",isOpenForSubmission:!1,hash:"d8e51fc25a379e5b92a270addbb4351d",slug:"veganism-a-fashion-trend-or-food-as-a-medicine",bookSignature:"Miljana Z. Jovandaric",coverURL:"https://cdn.intechopen.com/books/images_new/8158.jpg",editedByType:"Edited by",editors:[{id:"268043",title:"Dr.",name:"Miljana Z.",middleName:"Z",surname:"Jovandaric",slug:"miljana-z.-jovandaric",fullName:"Miljana Z. Jovandaric"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"813",title:"Engineering Mechanics",slug:"mechanical-engineering-engineering-mechanics",parent:{title:"Mechanical Engineering",slug:"mechanical-engineering"},numberOfBooks:19,numberOfAuthorsAndEditors:466,numberOfWosCitations:634,numberOfCrossrefCitations:315,numberOfDimensionsCitations:723,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"mechanical-engineering-engineering-mechanics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9865",title:"Tribology in Materials and Manufacturing",subtitle:"Wear, Friction and Lubrication",isOpenForSubmission:!1,hash:"45fdde7e24f08a4734017cfa4948ba94",slug:"tribology-in-materials-and-manufacturing-wear-friction-and-lubrication",bookSignature:"Amar Patnaik, Tej Singh and Vikas Kukshal",coverURL:"https://cdn.intechopen.com/books/images_new/9865.jpg",editedByType:"Edited by",editors:[{id:"43660",title:"Associate Prof.",name:"Amar",middleName:null,surname:"Patnaik",slug:"amar-patnaik",fullName:"Amar Patnaik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7615",title:"Fracture Mechanics Applications",subtitle:null,isOpenForSubmission:!1,hash:"eadc6edddc10fbeac471e10ff7921b75",slug:"fracture-mechanics-applications",bookSignature:"Hayri Baytan Ozmen and H. Ersen Balcioglu",coverURL:"https://cdn.intechopen.com/books/images_new/7615.jpg",editedByType:"Edited by",editors:[{id:"198122",title:"Dr.",name:"Hayri Baytan",middleName:null,surname:"Ozmen",slug:"hayri-baytan-ozmen",fullName:"Hayri Baytan Ozmen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6595",title:"Ballistics",subtitle:null,isOpenForSubmission:!1,hash:"3e7fa96253ce890c092b37a8678e4d03",slug:"ballistics",bookSignature:"Charles Osheku",coverURL:"https://cdn.intechopen.com/books/images_new/6595.jpg",editedByType:"Edited by",editors:[{id:"148660",title:"Dr.",name:"Charles",middleName:"Attah",surname:"Osheku",slug:"charles-osheku",fullName:"Charles Osheku"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7231",title:"Advanced Engineering Testing",subtitle:null,isOpenForSubmission:!1,hash:"9283b3b88964a6fe002fa37431414ac7",slug:"advanced-engineering-testing",bookSignature:"Aidy Ali",coverURL:"https://cdn.intechopen.com/books/images_new/7231.jpg",editedByType:"Edited by",editors:[{id:"13626",title:"Prof.",name:"Aidy",middleName:null,surname:"Ali",slug:"aidy-ali",fullName:"Aidy Ali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6368",title:"Tribology, Lubricants and Additives",subtitle:null,isOpenForSubmission:!1,hash:"5c3d14346e656a204a188be6e9bbbea1",slug:"lubrication-tribology-lubricants-and-additives",bookSignature:"David W. Johnson",coverURL:"https://cdn.intechopen.com/books/images_new/6368.jpg",editedByType:"Edited by",editors:[{id:"178441",title:"Dr.",name:"David",middleName:null,surname:"Johnson",slug:"david-johnson",fullName:"David Johnson"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6228",title:"Vibration Analysis and Control in Mechanical Structures and Wind Energy Conversion Systems",subtitle:null,isOpenForSubmission:!1,hash:"7c08aadadb9857994b1df9abf871c112",slug:"vibration-analysis-and-control-in-mechanical-structures-and-wind-energy-conversion-systems",bookSignature:"Francisco Beltran-Carbajal",coverURL:"https://cdn.intechopen.com/books/images_new/6228.jpg",editedByType:"Edited by",editors:[{id:"10444",title:"Dr.",name:"Francisco",middleName:null,surname:"Beltran-Carbajal",slug:"francisco-beltran-carbajal",fullName:"Francisco Beltran-Carbajal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5495",title:"Lagrangian Mechanics",subtitle:null,isOpenForSubmission:!1,hash:"cd340676a371f5e196f6e8089f5e8b28",slug:"lagrangian-mechanics",bookSignature:"Hüseyin Canbolat",coverURL:"https://cdn.intechopen.com/books/images_new/5495.jpg",editedByType:"Edited by",editors:[{id:"5887",title:"Dr.",name:"Hüseyin",middleName:null,surname:"Canbolat",slug:"huseyin-canbolat",fullName:"Hüseyin Canbolat"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5226",title:"Fracture Mechanics",subtitle:"Properties, Patterns and Behaviours",isOpenForSubmission:!1,hash:"3d418575458d688abbe40125240ece3e",slug:"fracture-mechanics-properties-patterns-and-behaviours",bookSignature:"Lucas Maximo Alves",coverURL:"https://cdn.intechopen.com/books/images_new/5226.jpg",editedByType:"Edited by",editors:[{id:"147011",title:"Dr.",name:"Lucas",middleName:"Maximo",surname:"Alves",slug:"lucas-alves",fullName:"Lucas Alves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4614",title:"Surface Energy",subtitle:null,isOpenForSubmission:!1,hash:"0e17cd77d2616f544522495c30285475",slug:"surface-energy",bookSignature:"Mahmood Aliofkhazraei",coverURL:"https://cdn.intechopen.com/books/images_new/4614.jpg",editedByType:"Edited by",editors:[{id:"155413",title:"Dr.",name:"Mahmood",middleName:null,surname:"Aliofkhazraei",slug:"mahmood-aliofkhazraei",fullName:"Mahmood Aliofkhazraei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3128",title:"Tribology",subtitle:"Fundamentals and Advancements",isOpenForSubmission:!1,hash:"77f3ee5568b737c8d26a5eee991c9d34",slug:"tribology-fundamentals-and-advancements",bookSignature:"Jürgen Gegner",coverURL:"https://cdn.intechopen.com/books/images_new/3128.jpg",editedByType:"Edited by",editors:[{id:"40520",title:"Dr.",name:"Jürgen",middleName:null,surname:"Gegner",slug:"jurgen-gegner",fullName:"Jürgen Gegner"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2982",title:"Tribology in Engineering",subtitle:null,isOpenForSubmission:!1,hash:"1b4719e20d06efe207620debfaf9f6e0",slug:"tribology-in-engineering",bookSignature:"Haşim Pihtili",coverURL:"https://cdn.intechopen.com/books/images_new/2982.jpg",editedByType:"Edited by",editors:[{id:"10340",title:"Dr.",name:"Hasim",middleName:null,surname:"Pihtili",slug:"hasim-pihtili",fullName:"Hasim Pihtili"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2794",title:"Applied Fracture Mechanics",subtitle:null,isOpenForSubmission:!1,hash:"ef0b0a40b0306e7172636781a24cfb27",slug:"applied-fracture-mechanics",bookSignature:"Alexander Belov",coverURL:"https://cdn.intechopen.com/books/images_new/2794.jpg",editedByType:"Edited by",editors:[{id:"141319",title:"Dr.",name:"Alexander",middleName:null,surname:"Belov",slug:"alexander-belov",fullName:"Alexander Belov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:19,mostCitedChapters:[{id:"21928",doi:"10.5772/20790",title:"Tribological Aspects of Rolling Bearing Failures",slug:"tribological-aspects-of-rolling-bearing-failures",totalDownloads:17666,totalCrossrefCites:34,totalDimensionsCites:62,book:{slug:"tribology-lubricants-and-lubrication",title:"Tribology",fullTitle:"Tribology - Lubricants and Lubrication"},signatures:"Jürgen Gegner",authors:[{id:"40520",title:"Dr.",name:"Jürgen",middleName:null,surname:"Gegner",slug:"jurgen-gegner",fullName:"Jürgen Gegner"}]},{id:"44858",doi:"10.5772/55860",title:"Titanium and Titanium Alloys as Biomaterials",slug:"titanium-and-titanium-alloys-as-biomaterials",totalDownloads:6029,totalCrossrefCites:22,totalDimensionsCites:50,book:{slug:"tribology-fundamentals-and-advancements",title:"Tribology",fullTitle:"Tribology - Fundamentals and Advancements"},signatures:"Virginia Sáenz de Viteri and Elena Fuentes",authors:[{id:"154811",title:"Ph.D.",name:"Virginia",middleName:null,surname:"Sáenz De Viteri",slug:"virginia-saenz-de-viteri",fullName:"Virginia Sáenz De Viteri"},{id:"155536",title:"Ms.",name:"Elena",middleName:null,surname:"Fuentes",slug:"elena-fuentes",fullName:"Elena Fuentes"}]},{id:"44864",doi:"10.5772/55470",title:"Introduction of the Ratio of the Hardness to the Reduced Elastic Modulus for Abrasion",slug:"introduction-of-the-ratio-of-the-hardness-to-the-reduced-elastic-modulus-for-abrasion",totalDownloads:5362,totalCrossrefCites:8,totalDimensionsCites:30,book:{slug:"tribology-fundamentals-and-advancements",title:"Tribology",fullTitle:"Tribology - Fundamentals and Advancements"},signatures:"Giuseppe Pintaude",authors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}]}],mostDownloadedChaptersLast30Days:[{id:"18981",title:"Second Order Shear Deformation Theory (SSDT) for Free Vibration Analysis on a Functionally Graded Quadrangle Plate",slug:"second-order-shear-deformation-theory-ssdt-for-free-vibration-analysis-on-a-functionally-graded-quad",totalDownloads:3475,totalCrossrefCites:1,totalDimensionsCites:7,book:{slug:"recent-advances-in-vibrations-analysis",title:"Recent Advances in Vibrations Analysis",fullTitle:"Recent Advances in Vibrations Analysis"},signatures:"A. Shahrjerdi and F. Mustapha",authors:[{id:"46921",title:"Dr.",name:"Faizal",middleName:null,surname:"Mustapha",slug:"faizal-mustapha",fullName:"Faizal Mustapha"},{id:"55507",title:"Dr.",name:"Ali",middleName:null,surname:"Shahrjerdi",slug:"ali-shahrjerdi",fullName:"Ali Shahrjerdi"}]},{id:"44858",title:"Titanium and Titanium Alloys as Biomaterials",slug:"titanium-and-titanium-alloys-as-biomaterials",totalDownloads:6029,totalCrossrefCites:22,totalDimensionsCites:50,book:{slug:"tribology-fundamentals-and-advancements",title:"Tribology",fullTitle:"Tribology - Fundamentals and Advancements"},signatures:"Virginia Sáenz de Viteri and Elena Fuentes",authors:[{id:"154811",title:"Ph.D.",name:"Virginia",middleName:null,surname:"Sáenz De Viteri",slug:"virginia-saenz-de-viteri",fullName:"Virginia Sáenz De Viteri"},{id:"155536",title:"Ms.",name:"Elena",middleName:null,surname:"Fuentes",slug:"elena-fuentes",fullName:"Elena Fuentes"}]},{id:"44826",title:"Lubrication and Lubricants",slug:"lubrication-and-lubricants",totalDownloads:7046,totalCrossrefCites:1,totalDimensionsCites:4,book:{slug:"tribology-fundamentals-and-advancements",title:"Tribology",fullTitle:"Tribology - Fundamentals and Advancements"},signatures:"Nehal S. Ahmed and Amal M. Nassar",authors:[{id:"49812",title:"Prof.",name:"Nehal",middleName:null,surname:"Ahmed",slug:"nehal-ahmed",fullName:"Nehal Ahmed"},{id:"57028",title:"Prof.",name:"Amal",middleName:null,surname:"Nassar",slug:"amal-nassar",fullName:"Amal Nassar"}]},{id:"44454",title:"Experimental Investigation of the Effect of Machining Parameters on the Surface Roughness and the Formation of Built Up Edge (BUE) in the Drilling of Al 5005",slug:"experimental-investigation-of-the-effect-of-machining-parameters-on-the-surface-roughness-and-the-fo",totalDownloads:5287,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"tribology-in-engineering",title:"Tribology in Engineering",fullTitle:"Tribology in Engineering"},signatures:"Erkan Bahçe and Cihan Ozel",authors:[{id:"168319",title:"Ph.D.",name:"Erkan",middleName:null,surname:"Bahce",slug:"erkan-bahce",fullName:"Erkan Bahce"},{id:"168320",title:"Dr.",name:"Cihan",middleName:null,surname:"Özel",slug:"cihan-ozel",fullName:"Cihan Özel"}]},{id:"49063",title:"Re-derivation of Young’s Equation, Wenzel Equation, and Cassie-Baxter Equation Based on Energy Minimization",slug:"re-derivation-of-young-s-equation-wenzel-equation-and-cassie-baxter-equation-based-on-energy-minimiz",totalDownloads:4289,totalCrossrefCites:11,totalDimensionsCites:17,book:{slug:"surface-energy",title:"Surface Energy",fullTitle:"Surface Energy"},signatures:"Kwangseok Seo, Minyoung Kim and Do Hyun Kim",authors:[{id:"97132",title:"Prof.",name:"Do Hyun",middleName:null,surname:"Kim",slug:"do-hyun-kim",fullName:"Do Hyun Kim"}]},{id:"58293",title:"Antioxidants Classification and Applications in Lubricants",slug:"antioxidants-classification-and-applications-in-lubricants",totalDownloads:1284,totalCrossrefCites:4,totalDimensionsCites:6,book:{slug:"lubrication-tribology-lubricants-and-additives",title:"Tribology, Lubricants and Additives",fullTitle:"Lubrication - Tribology, Lubricants and Additives"},signatures:"Majid Soleimani, Leila Dehabadi, Lee D. Wilson and Lope G. Tabil",authors:[{id:"31671",title:"Prof.",name:"Lope",middleName:"G.",surname:"Tabil",slug:"lope-tabil",fullName:"Lope Tabil"},{id:"109706",title:"Dr.",name:"Majid",middleName:null,surname:"Soleimani",slug:"majid-soleimani",fullName:"Majid Soleimani"},{id:"214500",title:"Mrs.",name:"Leila",middleName:null,surname:"Dehabadi",slug:"leila-dehabadi",fullName:"Leila Dehabadi"},{id:"214501",title:"Dr.",name:"Lee",middleName:null,surname:"Wilson",slug:"lee-wilson",fullName:"Lee Wilson"}]},{id:"14670",title:"Non-Linear Periodic and Quasi-Periodic Vibrations in Mechanical Systems - On the use of the Harmonic Balance Methods",slug:"non-linear-periodic-and-quasi-periodic-vibrations-in-mechanical-systems-on-the-use-of-the-harmonic-b",totalDownloads:2702,totalCrossrefCites:17,totalDimensionsCites:29,book:{slug:"advances-in-vibration-analysis-research",title:"Advances in Vibration Analysis Research",fullTitle:"Advances in Vibration Analysis Research"},signatures:"Emmanuelle Sarrouy and Jean-Jacques Sinou",authors:[{id:"21474",title:"Prof.",name:"Jean-Jacques",middleName:null,surname:"Sinou",slug:"jean-jacques-sinou",fullName:"Jean-Jacques Sinou"},{id:"45297",title:"Dr.",name:"Emmanuelle",middleName:null,surname:"Sarrouy",slug:"emmanuelle-sarrouy",fullName:"Emmanuelle Sarrouy"}]},{id:"44639",title:"Fundamentals of Lubricants and Lubrication",slug:"fundamentals-of-lubricants-and-lubrication",totalDownloads:5102,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"tribology-fundamentals-and-advancements",title:"Tribology",fullTitle:"Tribology - Fundamentals and Advancements"},signatures:"Walter Holweger",authors:[{id:"157019",title:"Dr.",name:"Walter",middleName:null,surname:"Holweger",slug:"walter-holweger",fullName:"Walter Holweger"}]},{id:"73333",title:"Lubricant and Lubricant Additives",slug:"lubricant-and-lubricant-additives",totalDownloads:167,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"tribology-in-materials-and-manufacturing-wear-friction-and-lubrication",title:"Tribology in Materials and Manufacturing",fullTitle:"Tribology in Materials and Manufacturing - Wear, Friction and Lubrication"},signatures:"Debashis Puhan",authors:[{id:"323503",title:"Dr.",name:"Debashis",middleName:null,surname:"Puhan",slug:"debashis-puhan",fullName:"Debashis Puhan"}]},{id:"53939",title:"Closure Models for Lagrangian Gas Dynamics and Elastoplasticity Equations in Multimaterial Cells",slug:"closure-models-for-lagrangian-gas-dynamics-and-elastoplasticity-equations-in-multimaterial-cells",totalDownloads:1135,totalCrossrefCites:1,totalDimensionsCites:0,book:{slug:"lagrangian-mechanics",title:"Lagrangian Mechanics",fullTitle:"Lagrangian Mechanics"},signatures:"Yury Yanilkin",authors:[{id:"181004",title:"Prof.",name:"Yury",middleName:"Vasilyevich",surname:"Yanilkin",slug:"yury-yanilkin",fullName:"Yury Yanilkin"}]}],onlineFirstChaptersFilter:{topicSlug:"mechanical-engineering-engineering-mechanics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/82455/wenrui-huang",hash:"",query:{},params:{id:"82455",slug:"wenrui-huang"},fullPath:"/profiles/82455/wenrui-huang",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()