Goods tonnage and passenger journeys in Nigeria (Source: Archives of the Nigerian Railway Cooperation).
\r\n\tNearly 25% - 30% of the world population is affected by neurological diseases exerting a hard financial strain on the healthcare system. The costs are estimated at around $800 billion annualy, expected to exponentially increase as the elders, at high risk of debilitating neurological diseases, will double by 2050. A varied spectrum of neuroprotective strategies has been suggested, including combined antioxidative-anti-inflammatory treatments, ozone autohemotherapy, hypothermia, cell therapy, the administration of neurotrophic factors, hemofiltration, and others. Distressingly, none of the currently available neuroprotective approaches has so far proven to prolong either life span or the cardinal symptoms of the patients suffering from brain injury. Last but not least, translational studies are still lacking.
\r\n\r\n\tThe book aims to revisit, discuss, and compile some promising current approaches in neuroprotection along with the current goals and prospects.
",isbn:"978-1-83880-440-4",printIsbn:"978-1-83880-439-8",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"10acd587ca2c942616bfc09c4b79df39",bookSignature:"Dr. Matilde Otero-Losada, Dr. Francisco Capani and Dr. Santiago Perez Lloret",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/8087.jpg",keywords:"IKKβ/NF-κB pathway, neuroendocrine studies, anti-inflammatory agents, Bipolar disorder, oxidative metabolism, metabolic syndrome, Parkinson's disease, Alzheimer's disease, neurotrophins, growth factors, ATP-mediated calcium signalling, glutathione peroxidase",numberOfDownloads:162,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 10th 2019",dateEndSecondStepPublish:"October 1st 2019",dateEndThirdStepPublish:"November 30th 2019",dateEndFourthStepPublish:"February 18th 2020",dateEndFifthStepPublish:"April 18th 2020",remainingDaysToSecondStep:"2 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,editors:[{id:"193560",title:"Dr.",name:"Matilde",middleName:null,surname:"Otero-Losada",slug:"matilde-otero-losada",fullName:"Matilde Otero-Losada",profilePictureURL:"https://mts.intechopen.com/storage/users/193560/images/system/193560.jpeg",biography:"Dr. Matilde Otero-Losada graduated at the School of Pharmacy and Biochemistry, University of Buenos Aires (UBA) Argentina; pursued her studies in Neuropharmacology getting her Sci.D. in Neuropharmacology (UBA, Argentina); and completing her Ph.D. in Psychiatry at the Wolverhampton University, WLV, UK. \r\nHer following studies in Psychometrics and Statistical Methods, Radioisotopes and Radiochemistry, Signal Processing and Microcomputers, took her to the University of California San Diego (UCSD) for training in human Psychophysics. \r\nBack in Argentina, she carried on studying smell, taste and trigeminal perception at the Hospital de Clínicas, UBA. \r\nShe focused on the study of metabolic syndrome, soft drinks and cardiovascular-renal morbidity for the last ten years, and in the last two years she is back to her roots: Neurosciences. \r\nWith over 90 papers published in prestigious journals indexed in PubMed, Embase and Scopus and book chapters authored, as Senior Researcher of the National Research Council (Argentina), she customarily reviews manuscripts and is acknowledged for her scientific writing, and editing capacities.",institutionString:"University of Buenos Aires",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:null}],coeditorOne:{id:"120703",title:"Dr.",name:"Francisco",middleName:null,surname:"Capani",slug:"francisco-capani",fullName:"Francisco Capani",profilePictureURL:"https://mts.intechopen.com/storage/users/120703/images/system/120703.jpeg",biography:"Dr. Francisco Capani graduated at the School of Medicine, University of Buenos Aires, (UBA) Argentina and completed his doctoral studies in Neurosciences at the Institute of Cell Biology and Neuroscience Prof E. De Robertis, School of Medicine (UBA), Argentina. Then he moved abroad to perform his postdoctoral studies at the University of California San Diego (UCSD-NCMIR) and the Karolinska Institute, Department of Neuroscience. Over an eight-year period, his research focused on synaptic organization, combining electron tomography, 3-D reconstruction, and correlative light and electron microscopy techniques. Upon his return to Argentina in 2006, he devoted to study the mechanisms involved in the pathophysiology of the perinatal asphyxia supported by his broad experience in electron microscopy. He has published 101 papers in recognized journals and has been invited assisting in a speaker capacity to several international conferences.",institutionString:"University of Buenos Aires",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Buenos Aires",institutionURL:null,country:{name:"Argentina"}}},coeditorTwo:{id:"168475",title:"Dr.",name:"Santiago Perez",middleName:null,surname:"Lloret",slug:"santiago-perez-lloret",fullName:"Santiago Perez Lloret",profilePictureURL:"https://mts.intechopen.com/storage/users/168475/images/system/168475.jpeg",biography:"Dr. Santiago Perez Lloret is a leading expert in neurophysiology and neuropharmacology with more 90 papers published in international medical journals (H-index= 29). He has been recently awarded Top 1% reviewer in neurosciences (Publons.com). After obtaining his MD and PhD, he pursued master courses in pharmacoepidemiology, clinical pharmacology and biostatistics at the Universities of Bordeaux and Paris. Dr. Perez Lloret is Assistant professor of Neurophysiology at the Medicine School of the Buenos Aires University and Associate Researcher at the Cardiology Research Institute, University of Buenos Aires, National Research Council. He is member of the International Parkinson’s Disease and Movement Disorder Society (MDS), where he is Co-editor of the Webpage and collaborates in several committees, including the Educational and the Evidence-based Medicine Committees.",institutionString:"University of Buenos Aires",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Buenos Aires",institutionURL:null,country:{name:"Argentina"}}},coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:[{id:"69122",title:"Lifestyle Factors, Mitochondrial Dynamics, and Neuroprotection",slug:"lifestyle-factors-mitochondrial-dynamics-and-neuroprotection",totalDownloads:83,totalCrossrefCites:0,authors:[null]},{id:"69463",title:"Polyphenols as Potential Therapeutic Drugs in Neurodegeneration",slug:"polyphenols-as-potential-therapeutic-drugs-in-neurodegeneration",totalDownloads:36,totalCrossrefCites:0,authors:[null]},{id:"69376",title:"Trends in Neuroprotective Strategies after Spinal Cord Injury: State of the Art",slug:"trends-in-neuroprotective-strategies-after-spinal-cord-injury-state-of-the-art",totalDownloads:35,totalCrossrefCites:0,authors:[null]},{id:"70228",title:"Aptamers and Possible Effects on Neurodegeneration",slug:"aptamers-and-possible-effects-on-neurodegeneration",totalDownloads:10,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"301331",firstName:"Mia",lastName:"Vulovic",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/301331/images/8498_n.jpg",email:"mia.v@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"René Mauricio",surname:"Barría",slug:"rene-mauricio-barria",fullName:"René Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3794",title:"Swarm Intelligence",subtitle:"Focus on Ant and Particle Swarm Optimization",isOpenForSubmission:!1,hash:"5332a71035a274ecbf1c308df633a8ed",slug:"swarm_intelligence_focus_on_ant_and_particle_swarm_optimization",bookSignature:"Felix T.S. Chan and Manoj Kumar Tiwari",coverURL:"https://cdn.intechopen.com/books/images_new/3794.jpg",editedByType:"Edited by",editors:[{id:"252210",title:"Dr.",name:"Felix",surname:"Chan",slug:"felix-chan",fullName:"Felix Chan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"59325",title:"Historical Drivers of Energy Infrastructure Change in Nigeria (1800–2015)",doi:"10.5772/intechopen.74002",slug:"historical-drivers-of-energy-infrastructure-change-in-nigeria-1800-2015-",body:'Energy transitions entail a shift, or movement, in decreasing the use of fossil fuel in our energy supply systems [1]. Across the world, fossil fuels, such as coal, crude oil and natural gas, accounts for a large percentage of our energy supplies. There has been growing interest in energy transitions because beyond the fact that most fossil fuel resources are reserve based, which means that are limited, the major driver of energy transitions is the threat posed by burning the available large quantities of fossil fuels and their corresponding impact on the environment [2]. To generate this transition, the role of policy cannot be overemphasized. The clean energy transition is somewhat unique because it has to be driven by policy. Markets cannot provide the platform to reduce greenhouse gas emissions, since markets naturally tend towards more consumption of fossil fuels. As such, it is important to understand the role of policy, policy levers and policy decisions, in effecting energy transitions [3].
In developing economies, energy supply shortages, poor or non-existent infrastructure and subsidized end-user prices are some key direct challenges which tend to slow-down the implementation of structural changes in energy systems. In industrialized countries, the main challenges are: rapid speed of change and imbalance in the development path of energy systems [4]. Understanding how policy decisions are taken, how current policies are interpreted and how energy infrastructure is shaped, is dependent on the understanding of the actors and stakeholders, their socio-psychological biases, the internal workings of the institutions within which they act, and their organization’s wider interests. On this basis, the broader drivers, influences and consequences of the policy decision process and energy governance need to be considered.
According to the International Energy Agency (IEA), to facilitate energy transition, there is need for concerted, early and consistent policy action [5]. The IEA argues that well designed policies that aid decarbonisation through cutting down on household energy expenses related to fossil fuel and improving air quality can aid the transition to a low carbon economy. The International Renewable Energy Agency (IRENA) further argues that transiting to a low carbon economy will require a drastic deployment of renewable energy solutions and energy efficiency measures [5, 6, 7].
This paper serves as an extension of a previously published work titled “Energy transitions in Nigeria: The evolution of energy infrastructure provisions (1800–2015)”. In that work, the Nigerian energy transition was presented with emphasis on the key practices, interventions and events that led to changes in energy infrastructure supply and use within each energy era [8]. The Nigerian energy transitions, covering a period of 1800–2015 were divided into five major energy eras which are:
Pre-industrial (agricultural) era—up to mid-1800s.
Early industrial (advanced metallurgy) era—late 1800s.
Industrial (steam engines) era—early to mid-1900s.
Late industrial (dynamo, internal combustion engines) era—mid to late 1900s.
Information (microprocessor) era—early 2000s onwards.
The previous work emphasized the connection between event, practices and changes in energy supply infrastructure without much attention to the drivers and how they influenced the transition in energy use. This paper looks at the key drivers within each energy era and how they influenced the Nigerian energy transitions.
In this chapter, some methodological considerations used in this research are presented in Section 2. In Section 3, the drivers and influences of Nigeria’s energy supply infrastructure changes are presented. Section 4 discusses these influences further and what they mean for the future of energy in Nigeria. The concluding thoughts are presented in Section 5.
Data from documentary archives and other published sources that links to the Nigerian historical energy infrastructure provisions were used for analysis in order to have a better understanding of the Nigerian energy (infrastructure) history. Diaries, letters, memos and policy documents from the archives of the Nigerian Railway Corporation were used and analyses.
The detailed account of the history of the Nigerian Railways by Francis Jackel (1997) covered in three volumes was also useful sources of data.
It is noteworthy that in many existing transition studies, one can easily notice the extensive use of quantitative (and qualitative) data from published literatures, and particularly archives of some agencies, used in collecting data and making meaningful analyses which serves as pointers, suggesting various constitutive elements of the energy history under study.
These set of documents were selected for analyses for the following reasons:
The Nigerian Railway Corporation is the oldest institution in Nigeria which has existed since colonial times (in late 1800s). They hold some of Nigeria’s oldest archives.
The archives of the Nigerian Railway Corporation (NRC) contain records of associated events that led to decisions on the provision of several rail infrastructure. Some of these documents contained the reasoning (and contexts) behind those decisions and the future benefits the government aimed at achieving. An example is the case of providing rail infrastructure linking Kano to Lagos to aid the easy movement of agricultural produce from the hinterland (in the north of Nigeria) to the ports (in the south of Nigeria) for export [9]. Some, trade and policy contexts on infrastructure decisions taken.
Documentary and archival records were analysed and used to prepare a historical narrative on the various factors that influenced the evolution of energy infrastructure provisions in Nigeria [8]. The following steps were followed in analysing archival documents/records [10, 11].
Meeting the documents: this process involves checking to ascertain if there are any special markings or figures on the documents which could tell us something in connection with the subject under study.
Observing the parts: this entails finding out who wrote the documents and for what purpose. When was the record produced? Are those dates useful in analysing times of energy transition and how society develops over time?
Trying to make sense of the documents: this stage entails trying to obtain the main ideas of the documents. Why was the document written? Are there useful aspects that support my research and can be used as evidence?
Use the documents as historical evidence: this stage helps in asking questions that can help provide answers to validate the use of those documents as evidence. For example, where can I find more information about a particular event referenced in the document? Where can I find more information about the person who wrote the document? Are there empirical evidences that are aftermaths of the things observed in the documents?
A panoramic view of the energy eras and the different features that characterized the Nigerian energy transitions within each energy era is presented in Figure 1. The study and analysis of these eras were centred on four important characteristic features that served as points of departure for understanding the influences that have impacted on changes in energy infrastructure supply and use in Nigeria. These central features are:
Energy (re)sources used in satisfying demand for energy.
Technological interventions that served as enablers in production and consumption of energy.
Commercial and end-use practices that shaped and influenced demand for energy
Institutions responsible for energy (and electricity) infrastructure governance and provision
A panoramic view of the energy eras and the key features of the Nigerian energy transitions (1800–2015).
This research revealed that changes in Nigeria’s energy supply infrastructure have been driven and influenced within the following contexts:
Policy and institutional interventions on energy
Technological interventions and energy technology pathways
Social (societal) practices and public values for energy
Available energy resource options
Economic considerations
Policy and institutional interventions have been one of the greatest contributors to changes and transformation in energy supply infrastructure systems. These policy interventions have come about as a result of the increasing need to address issues, such as energy access, energy security, decarbonizing future energy, and combating the effects of anthropogenic climate change and its consequences.
Technological interventions and different technological pathways have also contributed to changes in energy infrastructure systems in Nigeria over time. This started with the use of steam engines (up to early 1900s), coal fired power plants (up to mid-1900s) and thermal power plants (since the 1980s). The development of renewables (hydroelectric power) started in the mid-1900s. This development is deemed to continue due to national and international pressures to cause a shift to the use of renewables (including the use of solar photovoltaic cells, wind power and nuclear energies where applicable).
Public values for energy was driven more by the perceived (and actual) merit that provision of energy infrastructure conferred. Indeed, there were changes in societal and social practices brought about by the provision of electricity supply infrastructure. Some of these practices, such as commuting, trading and entertainment became more energy intensive. The provision of electricity infrastructure did not only help guaranty the continuation of these practices, but also aided its sophistication.
The availability of natural resources, particularly primary energy resources such as coal, crude oil and natural gas aided the increased use and consumption of those resources. Resource availability served as a primary driver of energy consumption. Rising demand for energy served as a secondary reason. Indeed, the effect of rising demand and resource availability led to transitions in energy use as shown in Figure 1. This same transition was also supported by, and influenced the creation of, several decision-making institutions within each era, as well as the policy direction of the government (see Figure 1).
Economic considerations impacted on historical energy infrastructure investments. Future energy infrastructure supply will require further leadership and sustained investments by public and private entities in providing energy infrastructure that addresses the changing (current and future) needs of people in society. Governments, through public institutions, will have to provide economic incentives to increase energy infrastructure provision through promulgation of policies to aid private investment going into the future.
The following sub-sections now delve into the details of the various influences/drivers of energy systems change within each energy era.
This era, which was characterized more by agricultural practices and interventions, saw the extensive use of traditional biomass (mostly by-products of agriculture, such as wood) as the major source of energy. The following were key drivers of energy infrastructure supply in this era:
Institutional interventions
Economic considerations
Energy resource options
Social practices and public values
There were two pre-dominant decision-making institutions during this era:
Families
Traditional institutions (rulers)
Decisions at the level of families were made based on their available resources and needs. By-products from agriculture such as oils were used for addressing lighting needs using oil lamps [12]. A source of food for most families was through peasant farming. Decisions on domestic energy needs impacted on increased energy demand in the forms of food calories and other agricultural by-products required for various domestic needs such as wood for cooking. Indeed, the aggregate value of the combined energy needs of several families resulted in thinking about new innovative ways of addressing and satisfying the rising energy demand.
Rulers of traditional communities played a pivotal role with respect to trade activities. For most communities, traditional rulers, together with the traditional council (also known as ‘council of chiefs’ in some cultures in Nigeria) encouraged people within their communities to embark on activities that can potentially increase trade activities with other communities and foreign envoys [12]. There are several evidence of this in Badagry area of Lagos and the great Benin kingdom. Trade, which encouraged the exchange of practices and ideas led people in several communities to adopt practices that were energy intensive [13]. Increased trade activities during this era led to the cultivation of more crops for domestic consumption and export [14].
Families and rulers of traditional communities (together with traditional councils—the equivalent of congress at community levels) were the main institutional drivers of energy infrastructure changes and use during this era.
During this era, increased agricultural output was considered synonymous to economic prosperity. Growth in agricultural productivity meant increased potential for more trade leading to increased income. Since agriculture was the mainstay of the economy during this era, increased productivity helped in sustaining families, maintaining communities and supporting traditional festivals, such as: the harvest festivals.
During this era, the available energy resource was from food calories. Decisions on energy resource use depended on families and local communities. The availability of food calories meant that most practices performed were based on manual labour and draft animal labour. This was very demanding as there was need other energy resource options that could help reduce the use of manual labour in achieving different practices.
During this era, energy from food calories was perceived as a common (societal) good. The availability of this energy source provided the basis for several practices to be implemented in different sort of ways, such as commuting and trade. Trade was a very important practice that led to more demand for energy. Trade activities improved and many Nigerian locals saw the need to increase their export produce that would be sold to their trade partners. It is the perceived value (a means of livelihood) and the trade practices that led to demand for new forms of energy to help increase production output of food produce, arts and crafts for export.
This era saw the extensive use of metallurgical interventions in energy use. The key drivers of energy infrastructure supply during this era were:
Institutional interventions
Technological interventions
Economic considerations
The institutional decision-making platforms that were vital in shaping this stage of the Nigerian energy transition were:
Colonial institutions
Traditional institutions (traditional rulers)
The British colonial government was the key decision maker during this era. Since Nigeria was divided into regions, there were regional governors for the northern, western and eastern regions. Decision making on new infrastructural development was effected through some institutions established during this era. The two pivotal institutions set up during this era were:
The Public Works Department (PWD)
The Nigerian Railway Corporation (NRC)
The PWD was established to plan and develop several infrastructural facilities in Nigeria (roads, electricity, ports and harbours, etc.). The PWD intervened in the establishment of the first electrical power plant in Lagos, which served lighting purposes. This intervention led to increased demand for electricity since this provision led to increased perceived public value for electricity.
The NRC intervened in the planning, surveys and provision of rail transport infrastructure. The NRC was established to plan, implement and maintain rail infrastructure in order to open up the hinterlands of the country and aid the easy transportation of agricultural produce to coastal cities and ports for export. This led to the provision of the first rail line in Nigeria in 1896, linking Lagos and Ibadan, two cities in South-West Nigeria.
Traditional rulers still remained relevant in the scheme of things at the community level [15]. However, colonial rule and institutions were having greater impact in changing the infrastructure and governance landscape [14]. In order to gain acceptance at local community levels, the colonial institutions worked closely with community leaders to ensure decisions made were accepted and implemented at community level.
Changes in energy systems during this era were also influenced by technological interventions. Two forms of technological interventions were evident during this era:
Metallurgical technology
Electrical technology
The extensive use of metallurgy during this era aided the planning and development of several infrastructure. Metallurgical interventions aided the production of farm tools to aid agricultural practices and increase crop production. The provision of the first railway line in Nigeria was also aided by the extensive deployment of metallurgical interventions during this era. These interventions aided the provision of mass transportation infrastructure (such as the railway line).
Electrical technology interventions aided the provision of the first electrical power plant in Nigeria which was used mainly for lighting applications. However, this initial provision paved the way for future electrical technology interventions to cater for future electrical energy needs due to increased demand for other applications, such as, electricity needs for the workshops of the Nigeria Railway Corporation.
During this era, economic considerations were centred on increased trade volume, growth in income and productivity. Policies of the colonial administration at the time were centred on providing infrastructure aimed at economic development that supports trade. These were part of the considerations for the planning and eventual provision of the first railway line and electricity infrastructure in Nigeria.
During the industrial era, there were five vital drivers of energy infrastructure supply. These were:
Technological interventions
Changes in social practices
Policy and institutional interventions
Economic considerations
Energy resource options
During this era, the use of metallurgical and electrical technology interventions in infrastructural provisions became further widespread. New railway infrastructure opened up the hinterlands and connected more towns which aided mass transportation of people and goods. The use of steam engines for transport and manufacturing applications were also evident in this era.
New electricity supply infrastructure was provided to cater for increased electricity demand. The existing steam plants were expanded in response to increased demand. This era also saw the introduction of new technology pathways for electrical energy generation. The discovery of coal in 1909 paved the way for the introduction of coal fired electrical power plants in (Lagos and Enugu) Nigeria. There were also plans during this era which paved the way for future hydroelectric power plants.
The introduction of various technological interventions during this era led to changes in social practices of Nigerians which became dependent on more dense energy sources. Indeed, some of these practices became more energy intensive. The provision of more road and rail infrastructure led to a change in commuting patterns from walking to the use of mass transportation models, such as railway lines. This period also saw a gradual change from mass transportation (in the beginning of the era) to individualized transportation (towards the end of the era). The change in commuting patterns led to increased demand for more transport infrastructure which also had some effects on increased demand for energy infrastructure supply.
This era saw the introduction of several policies, implemented within institutional frameworks, which aided the eventual provision of targeted infrastructure (including energy). This era was dominated by colonial institutions, established to achieve specific infrastructural and policy targets [16]. Two institutions were pivotal in the provision of electricity infrastructure during this era:
Nigerian Electricity Supply Company (NESCO)
Nigerian Government Electricity Undertaking (NGEU)
Established in 1922, the Nigerian Electricity Supply Company (NESCO) was tasked with the responsibility of developing electrical energy supply (generation) infrastructure. NESCO was involved in generation and bulk trading of electricity to different towns and cities such as Bukuru (1936) and Vom (1944), covering a total of 600 square-miles (including the mines). The peak load rose to 12 MW with an annual load factor of 60%. As of 1922, the Enugu building of NESCO was already in place, just off the railway workshops. Engines, dynamos, boilers and a riveted steel chimney were in position at an audited cost of over £103k, which is worth around £4.6m in current estimates. This power plant supplied electrical power to the mines from 1924.
The Nigerian Government Electricity Undertaking (NGEU) was established in 1946 to plan and implement the provision of electricity infrastructure by at least 200%. The aim was to ensure the provision of electricity to support industrialization. The implementation of this policy led to industrialization in the 1950s in Nigeria. Many manufacturing plants based their future growth projections on the electrical infrastructure expansion plans.
Trade activities continued to grow during this era. This was evident by the complex movements of goods over time as highlighted in Table 1. The growth in trade was supported by increased agricultural productivity and the presence of small cottage industries. Table 1 shows the goods tonnage and passenger journeys (1913–1976). Between 1925 and 1930, the movement of coal led to increased trade and commercial activities.
Year | Paying tonnage (‘000) | Non-paying tonnage (‘000) | Total tonnage (‘000) | Passenger journeys (‘000) |
---|---|---|---|---|
1913 | – | – | – | 1160 |
1917 | 152 | 60 | 212 | 1094 |
1920 | – | – | 527 | 2211 |
1924/25 | 541 | 113 | 645 | 1023 |
1928/29 | – | – | – | 3162 |
1932/33 | 646 | 180 | 826 | 2378 |
1935/36 | 709 | 238 | 947 | 7941 |
1936/37 | 892 | 270 | 1162 | 8426 |
1941/42 | 1042 | 266 | 1308 | 4810 |
1943/44 | 1239 | 397 | 1636 | 5245 |
1944/45 | 1339 | 371 | 1710 | 5342 |
1952/53 | 1543 | 543 | 2086 | 5516 |
1953/54 | 1714 | 584 | 2298 | 5454 |
1954/55 | 1983 | 619 | 2602 | 5451 |
1955/56 | 2000 | 653 | 2653 | 6310 |
1958/59 | 2353 | 743 | 3096 | 7015 |
1960/61 | 2054 | 668 | 2722 | 9822 |
1961/62 | 2381 | 622 | 3003 | 11,061 |
1962/63 | 2209 | 551 | 2760 | 12,006 |
1963/64 | 2534 | 436 | 2960 | 11,288 |
1970/71 | 1493 | 111 | 1604 | 8942 |
1975/76 | 1521 | 126 | 1647 | 6755 |
Goods tonnage and passenger journeys in Nigeria (Source: Archives of the Nigerian Railway Cooperation).
The introduction of the new energy policy for the provision of more energy supply infrastructure was based purely on economic considerations, to support industrialization. The Nigerian Government Electricity Undertaking (NGEU) had the responsibility of planning and implementing this policy. Indeed, economic considerations from individuals and government and impacted on more demand for energy which then influenced more electricity infrastructure supply.
During this era, there was a deliberate attempt by the Nigerian government (still under colonial rule) to conduct surveys aimed at exploring and searching for possible mineral reserves. This led to the discovery of coal in 1909.
The discovery of coal changed the electricity and transportation landscape. There was a shift to the use of coal fired power plants for electricity generation due to the availability of coal. The use of coal in cottage industries also increased. The transportation landscape was also affected by the discovery of coal as more locomotives depended on coal as the fuel source.
This era saw some drastic changes in energy infrastructure supply. These were influenced by the following:
Energy resource options
Technological interventions
Policy/institutional interventions
Societal practices and public values
Economic considerations
The discovery of crude oil in commercial quantities in Nigeria in 1958 changed the entire energy landscape during this era. After the Nigerian independence and the civil war, there was a shift in the use of fuel from the use of coal to a greater dependence on natural gas and crude oil (and its by-products) for electricity generation and other industrial uses. Indeed, there were more options to choose from between coal, natural gas and crude oil. This era also saw the development of dams for hydroelectric power generation.
During this era, dynamos and internal combustion engines played a key role as the major technology driver of changes in energy infrastructure supply. The extensive use of internal combustion engines for vehicles and road transportation impacted on fuel sources. This also led to extensive investment in road infrastructure and a gradual decline in the use of rail transport infrastructure.
During this era, new technological pathways were adopted for electrical energy generation. Extensive development of hydroelectric and thermal power plants was evidenced in this era. This era also saw a swift decline in the use of coal for electrical power generation and the retiring of several coal-fired power plants.
This era saw the extensive use of policy and institutional frameworks as intervention tools in addressing issues of energy infrastructure supply. The rising energy demand after the Second World War led to increased electrical infrastructure supply constraints. As such, the government intervened by carving out a new unit off the Public Works Department called the Nigerian Government Electricity Undertaking (NGEU). The NGEU was established in 1946 as an entity that will metamorphose into a future corporation with the aim of preparing and implementing a plan that can aid the provision of more electricity infrastructure to aid industrialization. Indeed, the NGEU prepared a 10-year plan covering the period 1946–1956 with the aim of increasing electricity infrastructure provision by at least 200% to support industrialization.
Another important institution is the Electricity Corporation of Nigeria (ECN). The ECN was established on 6th July 1950 and was charged with the task of developing Nigeria’s electricity potential in a manner as to provide cheap and affordable sources of energy in a consistent and sustainable way.
The beginning of this era saw the gradual handover of institutions under colonial control as the country prepared for independence (which took place on 1st October 1960) [17]. Series of military coups and counter coups experienced a few years after the independence led to instructional instability, highly militarized decision making structure, and less attention and adherence to laid down policy plans and processes [18, 19].
The Niger Dams Authority (NDA) was established in 1962 to develop Nigeria’s hydropower potential. This paved the way for the development of hydroelectric power infrastructure in Nigeria with the building of several dams for irrigation, water supply and electricity generation.
The National Electric Power Authority (NEPA) was established in 1st April 1972 which is a product of the merger of the Niger Dams Authority (NDA) and the Electricity Corporation of Nigeria (ECN). The merger actually took effect from 6th January 1973. The NEPA was a public company, owned and managed by the Nigerian government. All through this era, NEPA had responsibility for the provision, operation and maintenance of electricity infrastructure in Nigeria.
The Nigerian National Petroleum Corporation (NNPC) established on 1st April 1977 to participate and regulate Nigeria’s petroleum industry. The role of the NNPC in regulating activities of players in the oil and gas sector had direct impact on electricity infrastructure provision since fuels required to power the electrical power plants depended on the dynamics of the downstream oil and gas sector.
In 1979, an act of government (which was later amended in 1988 and 1989) established the Energy Commission of Nigeria (ECN). The ECN was charged with the responsibility of coordinating and strategically planning the national energy policies. The ECN have focused on developing actions plans that aids in addressing the Nigeria’s energy challenges through establishing and implementing policies. Indeed, since its establishment, the ECN still has a huge gap to fill.
In this era, there were swift changes with regards to social practices which impacted on energy demand and consumption. The public value for energy services was on the rise and energy was highly perceived as a public good. Education played a vital role in the changes in social practices and perceived public values for energy. There was an increase in the number of educational institutions at primary, secondary and tertiary levels. Educational institutions also needed energy for teaching and research.
With regards to commuting, there was a change in commuting patterns from mass transportation to individualized transportation. More people had their private vehicles for personal and business purposes. Aside the reasons of comfort and convenience, a major driver of change from mass transportation to individualized transportation were increased concern for security and safety. There were also changes in lifestyles and leisure that impacted on the energy consumption and use that leads to increased need demand for energy supply infrastructure.
Rapid population growth, migration and urbanization also impacted on changes in practices. Some towns and cities ended up becoming more cosmopolitan (such as Lagos). Multiplicity of diverse practices within cities, aided by migration and population growth, impacted on changes and provision of infrastructure for commuting (transport), leisure (recreation), learning (education), trading (commerce), etc. These practices impacted on energy use and increased demand for energy infrastructure supply.
This period saw changes in trade and investment dynamics. The discovery of more natural resources paved the way for further trade activities and other economic considerations investments. Crude oil export started in the 1970s. Export of agricultural produce continued but at a reduced rate due to a shift in attention from agriculture to crude oil as the major income earner for the country. The produce that was now exported (crude oil) required a lot of energy for its exploration and production.
There was an increase in manufacturing activities during this era. Increased electricity requirements for industries posed a greater challenge with regards to electricity supply infrastructure. Inadequate supply during the latter part of this era impacted on many manufacturing and cottage industries. Industrial growth was pegged as a result of inadequate electricity supply infrastructure. Most industries opted for self-generation of electricity for their industrial needs. Indeed, this infrastructure deficit resulted in the need for planning and future provision of more electricity supply infrastructure.
During this era, four major drivers of energy systems change were noticeable:
Technological interventions
Policy and institutional interventions
Societal practices and public values
Economic considerations
During this era, the use of microprocessor technology was on the rise which impacted on automation of processes in different sectors. In manufacturing, microprocessor technology aided the automation of many industrial processes. The use of Programmable Logic Controllers (PLCs), industrial sensors and other related technologies in manufacturing depended on microprocessor technology. The automation of several industrial processes aided increased production of goods. Even though there was more attention on energy efficiency and energy conservation measures, the introduction of these new technologies in manufacturing also impacted on electricity demand as more industries opted for automation to improve productivity.
This era is characterized by democratic and civil institutions involved in the decision-making and policy process [17]. At the start of this era, two institutions emerged:
Power Holding Company of Nigeria (PHCN).
Nigerian Electricity Regulatory Commission (NERC)
Owing to inefficiencies in the Nigerian electricity sector, the Nigerian government started a process of unbundling the National Electric Power Authority (NEPA) in order to reduce government bureaucratic process in electricity supply infrastructure provision, operation and maintenance. The PHCN was established on 5th May 2005 as a holding company, owning the various divisions responsible for generation, transmission and distribution of electrical energy. This paved the way for the future privatization of the PHCN, with transfer and controls of some national electrical power assets by private companies. The privatization process also brought about some changes in models of electricity financing, operation and maintenance.
The NERC was established on 31st October 2007 as a regulatory body for the Nigerian power industry. The NERC has the responsibility for issuance of licenses and permits to market participants in the Nigerian electricity sector. They also ensure compliance to rules and regulatory guidelines in the Nigerian electricity sector.
This era saw lots of private investments in the provision of infrastructure to satisfy the increased demand for convenience and comfort. This was evidenced in the emergence of shopping malls, cinemas, nature reserves and parks. The emergence of these infrastructure posed more pressure on demand for energy. This era continued to experience increased migration and urbanization which posed some infrastructure challenges (including energy). Indeed, in this era, the public value for energy services had increased and people had more dependence on energy to fulfill and accomplish several social practices.
In this era, the need for increased productivity led to the embrace of automation in the industrial and manufacturing sector. Economic consideration during this era was characterized by the need to address both internal (local) and external (export) demand for certain products. Indeed, this led to more manufacturing activities. Most industrial players had to invest in electrical generation plants to satisfy their electricity needs. Self-generation of electricity also impacted on cost of finished goods as some companies could not measure up to the economies of scale for increased production output.
In Nigeria, a very important aspect of the governance of energy and electricity infrastructure provision is the individual interest of policy actors, the individualistic nature of which further emphasizes the need to incorporate economic and social psychological thinking. Some underlying questions they ask themselves before deciding on what type of energy infrastructure to provide include:
How much does this infrastructure cost? Can our current budget accommodate it?
How long will it take to deploy this infrastructure? Is it something that I can commission before leaving office?
What social and political benefits will the provision of this infrastructure confer (on me and the populace)? Will the provision of this infrastructure offer me the possibility of acceptance and possible re-election by the populace?
Indeed, these aforementioned questions are crucial for individual actors within policy frameworks in taking decisions [20]. These also impacts on the governance of energy. This is in contrast with one of the arguments of Kuzemko et al. [21] who asserts that in governing sustainable energy systems change, innovation is important in sustainable energy transitions. In Nigeria, political actor interests are a major driver of energy transitions. The practice of policy making, intertwined with the interests of the political actors, is the principal driver of energy transitions. This is supported by the argument that linking governance with practices and outcomes, and defining energy and climate actor groups are very important in governing changes in energy supply infrastructure in a sustainable way [21, 22].
In Nigeria, institutional (government) interventions, changes in policy direction and new technology pathways constituted major drivers of changes in Nigeria’s electricity systems. There are similar trajectories between the energy transitions dynamics of the Nigerian and the Dutch system. In considering the dynamics of the energy transitions in the Dutch electricity systems (1960–2004), Verbong argues that: changing perceptions and goals (1960–1973); direct government interventions (1973–1989); and major changes in rules, network and technology (1989–2004) characterized the Dutch electricity sector [23]. The Dutch system compares with that of Nigeria because electricity infrastructure provisions were influenced by: changing perceptions and goals prior to Nigeria’s independence in 1960 (1890–1960) with evidence in changing technology and fuel sources for electricity generation during that period; direct government interventions (1940–1970), an example was the intervention by the then Nigerian Government Electricity Undertaking (NGEU) in 1946 to provide new electricity infrastructure by 200% in a space of 10-years [24]; and major changes in rules (2005–2015), characterized by the new electrical power sector reforms roadmap [25].
The following sub-sections discuss further four important influences of politics, technology, energy sources and geographies of energy on energy systems change in Nigeria.
Politics play a major role in effecting changes in energy supply infrastructure. For instance, the politics around crude oil and natural gas production and trade is vital for guaranteeing continuity of supply of electrical energy since most electrical power plants depends on the oil and gas sector for fuel to fire the power plants. This means fuel supply (in the forms of liquid fuel and natural gas) for most electrical power plants are highly dependent on the production, market, economics and political dynamics around crude oil and natural gas supply [26].
Arguably, the gas market is a lot more rigid than the oil market. This is because it requires large and expensive investments to ensure the easy transportation of gas around the world. Investing resources in a lot of long term infrastructure for this sort of business requires that there is a good (long term) political relationship with the trade partners, wherever they may be. Indeed, it is easier to get entangled in the global prospect for natural gas, which can lead to a lot of energy security issues, both domestically and internationally.
Looking into the future, the major factor that could either make or break (clean) energy production is policy. This is the topmost variable because: policy plays a major role with respect to investment direction for most investors; it impacts on changes on the supply side of energy systems and infrastructure through definition of standards; and it imposes considerable changes in energy demand patterns and behaviours.
Within the Nigerian context, a major factor that led to the displacement of coal with liquid fuel and natural gas for electricity generation was simply the economics of natural gas over coal. Coal production and use for electricity generation in Nigeria is more expensive than the use of liquid fuels and natural gas. This transition started happening in the 1950s, but became more entrenched from the 1970s. All the coal fired power plants in Nigeria built from the 1920s to the 1950s have all been retired. Indeed, natural gas will gain a lot more grounds in Nigeria in the coming years due to its availability and the policy direction of the government encouraging the use of natural gas for electricity production.
In Nigeria, there have been lots of changes in energy technology and use over time. This will continue going into the future. Historically, Nigeria has transited from the use of steam engines, to coal-fired technology, thermal power plants and renewables. Going into the future, there will be more changes which will be shaped by the changing nature and politics of electricity infrastructure provision.
In recent times, there has been a rise in the deployment of decentralized off-grid solar solutions in Nigeria. The rapid rise of renewables will continue and solar power will become a regular feature on the energy landscape. New technologies will support global deployment of wind farms and solar solutions. The rise in renewable solutions needed for a clean energy future will be driven more by the increase in energy demand for electricity. Incorporating these renewable technologies will also have impact on the traditional electricity grid as new hybrid grids (transmitting electricity over long distance) and micro grids (playing strategic role in electricity distribution and providing flexibility) will be the mainstream technologies in the future.
As is now being experienced in major urban centres in Nigeria, buildings are now producing electricity through roof top solar solutions. In the future, more buildings will produce energy rather than consume energy. Buildings will also function as energy hubs in the future, offering the entire energy system more flexibility and also ensuring stability of the electricity grid. The use of smart meters, greater energy storage capacity and low cost solar cells will be important technology catalysts of a cleaner electricity future.
Energy sources play a vital role in energy systems change. In Nigeria, it all started with the use of steam engines for electricity generation. The discovery of coal as an energy source (in 1909) changed the energy infrastructure landscape, leading to a switch from the use of steam engines to the adoption of coal-fired power plants. The need to diversify the electricity infrastructure mix led to the development of hydropower plants in Nigeria (with the formation of the Niger Dams Authority). The discovery of crude-oil in commercial quantities (in 1956) had a considerable impact on the electricity infrastructure landscape in Nigeria. The overriding economics of crude oil and natural gas over coal led to a shift to the use of (oil and gas-fired) thermal power plants. Increased demand and consumption of energy in Nigeria have been partly influenced by the availability of energy resources. Figure 2 shows the Nigerian energy flow linking primary energy resources to end-use sectors.
The Nigerian energy flow ([27], p. 90).
Energy flow in society starts with the natural energy sources (such as coal and crude oil) which are then converted into different usable forms that society consumes. These usable forms of energy materializes through the services they render society (as evident in Figure 2). This is evident through the greater use of energy resources, driven by the need for comfort and more productivity. In Nigeria, the increased societal use of energy resources is impacted by three main sectors: building; manufacturing; and transportation sectors.
Aside technological interventions, politics and energy resources, a major driver of energy systems change in Nigeria are the ‘geographies of energy’ which encapsulates the social, cultural and political dimensions of energy production and consumption. The geographies of energy also considers how territorial, locational and spatial landscape impacts on (and co-constitutes) energy processes.
The geographies of energy played a very important role in Nigeria’s energy transitions and infrastructure provision. Prior to Nigeria’s independence in 1960, developmental infrastructure projects and provision were centred on regions. Starting with steam powered generation plants in the late 1800s, the discovery of coal in 1909 paved the way for many coal-fired electricity generation plants (mostly around the regions where coal reserves were available). Lagos was the only exception. This was largely because there was already rail infrastructure connecting some parts of eastern Nigeria (Enugu) to Lagos where coal could be easily transported via rail to the power plant in Lagos. Figure 3 shows a map of the geopolitical zones in Nigeria.
Map of the geo-political zones in Nigeria (Source: http://www.nigerianmuse.com).
Most crude oil and natural gas resources are concentrated around the South-South and South-East zones of Nigeria. These zones also have a higher concentration of: electricity power plants; natural gas refineries and export terminals; and crude oil refineries and export terminals. Indeed, these zones have the highest concentration of energy production and electricity generation infrastructure in Nigeria. However, for political reasons, government infrastructure decisions have also favoured setting up crude oil refineries outside the zones where the resources are. An example is the crude oil refinery located in Kaduna, North-Central Nigeria. The natural crude had to be transported to the refineries via pipelines. Indeed, political decisions of this sort has created historical tensions among socio-political groups in the geographies where the natural resources are domicile (and beyond), leading to cases of pipeline vandalism, political actions and other forms of externalities which impacts on the energy infrastructure landscape and energy security.
The Nigerian historical energy transition with respect to the evolution of energy infrastructure provisions was investigated. The dominant drivers of electricity infrastructure supply within each energy era in Nigeria were also investigated. These drivers, which comprises technological interventions and pathways, institutional interventions, social practices and public values, energy resources and other economic considerations, played an important role in the governance and provision of historical electricity supply infrastructure in Nigeria.
A complex connection between resources, trade, institutions and political structures existed. These complexities were further aggravated by the creation of several decision making institutions within each energy era, as well as the policy direction of the government. Decisions by these (public) institutions led to serial changes, and eventual transition, in the use of different primary energy resources (coal, crude oil, natural gas) to satisfy the growing demand for energy. It also reveals that the increased use of primary energy resources were primarily influenced by the availability of those resources, while the growing demand served as a secondary reason.
This chapter presents the need for a greater understanding of the motives and objectives of energy systems supply. What exactly motivates the changes in the energy sector in a given country as against the background of the overall energy demand and supply situation? Possible motives, such as competitiveness, public acceptance, energy security and environmental concerns—within institutional contexts and policy frameworks—needs to be investigated at country levels, for a better understanding of the key drivers of energy transitions within countries.
There is a need to understand the drivers and governance of changes in the respective energy sectors. How are changes promoted in the energy sector? Some possible drivers, such as: technological innovation, government policies, etc., needs to be investigated at country level to ascertain their impact on the institutional structures and frameworks of energy policy governance.
The study of Nigeria’s energy transitions presents some policy implications. Since energy infrastructure choices contribute to environmental problems, and changing these energy infrastructure choices requires adequate knowledge of their effects and consequences, there is need for a wide range of changes in energy policies and energy systems to help address these problems. Energy users, including policy makers, generally prefer energy policies that is perceived to have more benefits and less cost. However, since energy infrastructure provision is primarily a political choice, the acceptance of different energy policies (and changes in energy supply systems) is influenced by institutional actors within institutions through institutional values, workings and frameworks responsible for energy infrastructure decisions and choices.
Energy production, distribution and supply are very complex matters. This complexity is evident when viewed with respect to the role of technology, energy resources and geographies of energy in effecting changes in energy supply systems. This implies reliance on parties, such as: energy companies, scientists, non-governmental organizations and policy makers. How much people trust these parties will influence the acceptability of energy policies. Knowledge and understanding of Nigeria’s energy past can surely shape current and future decisions. Short term energy decisions have to be put in perspective with the longer term visions in order to limit the effects of unintended consequences.
The term “molecular pharming,” blend of pharmaceutical and farming, surfaced in the literature in the 1980s to refer to the production of high-value compounds in transgenic animals. Nowadays, the expression is mainly employed to the production of recombinant pharmaceutically relevant proteins or secondary products in plants [1–3].
The roots of molecular pharming can be traced back to the mid-1980s when plants started to be genetically engineered to act as bioreactors that produced pharmaceutically relevant proteins. Barta et al. [4] demonstrated that tobacco and sunflower callus tissues were capable of expressing transcripts of a human growth hormone fusion gene. Although no protein was detected, this was the first report of plants expressing human genes and established plants as a potential production system for recombinant therapeutic proteins. Later on, the expression of a full-sized IgG in tobacco [5] was a major breakthrough since it revealed the ability of plants to produce complex functional mammalian proteins of pharmaceutical relevance. In 1990, the “authenticity” of plant-derived recombinant proteins was proved even further with the production of the first human protein (serum albumin) with confirmed native structure in tobacco and potato [6].
After several studies that demonstrated the capacity of various plant species and systems to produce recombinant pharmaceutical proteins and peptides, during the 1990s, the field of molecular pharming gained support and interest from the plant biotechnology community. The scientific attention was followed by commercial interest, with many start-up companies being created to capitalize the advantages of plants in relation to the established platforms. These advantages include being a more cost-effective, scalable, and safer means of producing pharmaceutically relevant proteins and peptides. In opposition to the fermentation-based traditional platforms that require a massive investment in bioreactors, plant-based production systems can be established with minimal investment and offer a myriad of different hosts and platforms [7]. However, the expectation that plants could easily compete for the market share of some well-established biopharmaceutical platforms, such as Chinese hamster ovary (CHO) cells, and that they could motivate the mainstream pharmaceutical industry to switch platforms was overinflated. The CHO epithelial cell lines are the most commonly used mammalian hosts for industrial production of therapeutic recombinant proteins. The technical limitations of plants, especially their lower yields compared to mammalian cell lines, allied to the colossal existing investment in fermentation infrastructures, the unfavorable public opinion on OGMs, and regulatory uncertainty, lead the mainstream pharmaceutical industry to be cautious and to a consequent stagnation of the molecular pharming field in the 2000s [8, 9]. This situation induced a change of paradigm concerning molecular pharming: the initial vision of a highly scalable and low-cost production system, while still valid, was replaced by the idea of a production system for certain niche products that are not easily manufactured by conventional systems [8, 9].
Molecular pharming embraces several platforms and technologies with different advantages and limitations, related by their use of plant tissues. Conversely to conventional biopharmaceutical production systems that are based on few selected platforms, particularly the bacterium Escherichia coli, yeasts such as Pichia pastoris, and mammalian cell lines such as Chinese hamster ovary (CHO) cells [3], pharming platforms range from plant cells or unicellular plants growing in bioreactors to whole plants growing in soil or hydroponic environments. Further, the technologies include stable integration of DNA into the nuclear genome or plastid genome and transient expression by infiltrating leaves with expression vectors based on Agrobacterium tumefaciens, plant viruses, or hybrids [3, 8]. This great diversity of molecular pharming confers adaptability and flexibility, allowing the selection of the most suitable platform for each product, but has also conduced to fragmentation. This fragmentation meant that in the early days of molecular pharming there was no driving force to establish molecular pharming as a single competitive platform. Consequently, no actions were made to match the industry requirements for high yields, standardized procedures, and good manufacturing practices (GMP) [7, 9]. More recently, efforts have been made to mimic the mainstream biopharmaceutical industry and place a focus only on a small number of platforms, namely, plant cell cultures, nuclear transgenic plants, and leafy plants transiently transformed [3, 10]. Since 2010 the attention of the biopharmaceutical industry to molecular pharming has been renewed as result of its consolidation on a small number of platforms and some target products that meet industry demands [8, 9].
In 2012, the FDA approval of the first recombinant plant-derived therapeutic for human use, Protalix Biotherapeutics’ taliglucerase alfa (Elelyso™), was an important breakthrough for molecular pharming. The enzyme taliglucerase alfa is a carrot cell-expressed human recombinant β-glucocerebrosidase and is prescribed for the treatment of Gaucher’s disease, a lysosomal storage disorder [11]. Imiglucerase, a recombinant form of glucocerebrosidase commercialized under the name Cerezyme®, was already produced in CHO cells. In this production platform, the enzyme required subsequent in vitro exposure to mannose residues in order to have biological activity, resulting in a time-consuming and expensive manufacturing process. Besides, this platform also has potential safety problems, namely, the risk of viral contamination, allergies, and other adverse reactions. In comparison, the plant-based platform is safer and less time-consuming and has reduced production costs, since the mannose units are posttranslationally added in vivo [11]. Glucocerebrosidase is a clear example of a target product in which safety, cost, and downstream processing issues were solved by switching from a traditional platform to molecular pharming. Another example that gathered mediatic exposure was ZMapp, a cocktail of three chimeric monoclonal antibodies targeting the Ebola virus surface glycoprotein produced in Nicotiana benthamiana using a hybrid transient expression system, the magnICON system. ZMapp was developed during the Ebola outbreak of 2014 by Mapp Biopharmaceutical Inc. (San Diego, USA), following initial studies on nonhuman primates [12]. ZMapp has since been used in humans under emergency compassionate protocols [13] and randomized controlled trials [14].
Following these examples of success, there has been a continuous increase in clinical trial applications and manufacturing capacity, which has also been correlated with the conception of more tangible regulations concerning plant-derived pharmaceuticals.
Although plants are still unlikely to substitute the established platforms [8], the recent promising developments in the field of molecular pharming demonstrate that glucocerebrosidase was not a lone case of success and that plant-based platforms could provide countless opportunities for the biopharmaceutical market. Plants combine the advantage of a full posttranslational modification potential with simple growth requirements and theoretically unlimited scalability in the case of field-grown whole plants. Plant-based platforms are versatile and allow the targeting of recombinant proteins and peptides produced to different organs or subcellular compartments, which provides an additional protection against proteolysis. Finally, plants are a safe host for therapeutic protein and peptide production since they do not harbor human or animal pathogens [15]. Therefore, instead of facing the red ocean of established pharmaceutical industries [16], molecular pharming is now evolving as a disruptive technology that creates its own marketplace by offering rapid drug development and production, unparalleled scalability, unique quality attributes such as tailored glycan structures, individualized therapies, and oral or topical applications of minimally processed plant tissues, thus reducing downstream costs [17].
The continuous development of genetic engineering technologies for plants has resulted in an expansion of well-established plant-based platforms [18]. Molecular pharming encompasses platforms based on stably transformed whole-plants transgene insertion in the nuclear or plastid genome, transient expression using agroinfiltration, viral and hybrid vectors; microalgae and aquatic plants (e.g., duck-weed) stably transformed; and in vitro culture systems (e.g., cell suspensions, hairy roots, and moss protonema) [19]. Each platform has particular advantages and limitations; therefore its selection is done on a case-by-case basis, depending on economic considerations as well as on the product characteristics and intended use [20].
Transgenic plants have been the most widely used platforms for recombinant protein production. To obtain stable transgenic lines, the gene encoding the desired protein is cloned into an expression construct, which generally includes a promoter and regulatory elements that ensure efficient RNA processing and protein synthesis [21]. This expression construct is then stably integrated into the plant nuclear genome, resulting in the stable inheritance of the transgene and expression of stable pharmaceutical proteins over generations [22]. Two major transformation strategies have been employed to insert expression constructs into the nuclear genome: Agrobacterium-mediated transformation in dicotyledonous species (dicots) and particle bombardment of DNA-coated gold or tungsten beads in monocotyledonous species (monocots) [3]. Transgenic plant lines offer several advantages as platforms for molecular pharming: they are suitable for long-term production of recombinant pharmaceutical proteins and are highly scalable, as each line can be used to produce seeds, which increase the number of plants in every generation. Ultimately, the production capacity of recombinant pharmaceutical proteins in transgenic plants is practically unlimited, as it only depends on the number of hectares available for the plant culture. The major drawbacks of transgenic plants are the long development and scale-up timescales, the unreliable production yields, and the potential spread of pharmaceutical crops in the environment and into the food chain by outcrossing and seed dispersal [3].
The development of simple transformation technologies has expanded the number of host plants available for molecular pharming. Currently, the major molecular pharming transgenic platforms are based on leafy crops, seeds, fruits, and vegetable crops. Leafy crops are benefic in terms of biomass yield and high soluble protein levels. Additionally, leaf harvesting does not need flowering and thus considerably reduces contamination through pollen or seed dispersal [23]. One disadvantage of leafy crops is that proteins are synthesized in an aqueous environment, which is more prone to protein degradation, resulting in lower production yields [24]. In fact, the mature leaves possess very large extra cytoplasmic vacuolar compartments containing various active proteolytic enzymes that are involved in the degradation of native and foreign proteins. This is particularly problematic in the case of therapeutic peptide production because short heterologous peptides have an inherent instability in plant cells [25]. In addition to the protein instability, the harvested material has limited shelf life and needs to be processed immediately after harvest.
Tobacco has been the most widely used leafy crop for molecular pharming. The major advantages of using tobacco to express pharmaceutical proteins are its high biomass yield, well-established technology for gene transfer and expression, year-round growth and harvesting, and the existence of large-scale infrastructure for processing [23]. However, the natural production of nicotine and other alkaloids in tobacco poses some safety issues in its use as a host system for heterologous protein production. Therefore, tobacco varieties with low nicotine and alkaloid levels have been produced to diminish the toxicity and overcome those safety issues. Recent studies have led to the approval of the first monoclonal antibody produced in transgenic tobacco plants, in phase I clinical trial [26]. Additionally, a 2018 publication reported the stable expression of adalimumab (a monoclonal antibody against tumor necrosis factor-alpha (TNF-α)) in tobacco plants [27]. Other leafy crops commonly used in molecular pharming include alfalfa and clover [19].
As an alternative to leafy crops, plant seeds have proven to be versatile hosts for recombinant proteins of all types, including peptides or short and long polypeptides as well as complex, noncontiguous proteins like antibodies and other immunoglobulins [28]. The expression of proteins in seeds can overcome the shortcomings of leafy crops in terms of protein stability and storage. Seeds possess specialized storage compartments, such as protein bodies and vacuoles, which provide the appropriate biochemical environment for protein accumulation, thus protecting the proteins expressed in seeds from proteolytic degradation [29]. Reports have demonstrated that antibodies expressed in seeds remain stable for at least 3 years at room temperature without detectable loss of activity [30]. Furthermore, the small size of most seeds permits to achieve a high recombinant protein concentration in a small volume, which facilitates extraction and downstream processing and reduces the costs of the overall manufacturing process [31]. One essential property of seeds is dormancy, which not only permits the stability of recombinant proteins but also allows a complete decoupling of the cycle of cultivation from the processing and purification of the protein [28]. Finally, proteins expressed in the seed do not normally interfere with vegetative plant growth, and this strategy also reduces exposure to herbivores and other nontarget organisms such as microbes in the biosphere [21]. Several crops have been studied for seed-based production, including cereals, such as maize, rice, barley, and wheat; legumes, such as pea and soybean; and oilseeds such as safflower and rapeseed. Maize has several advantages for seed-based expression of proteins; it has the highest biomass yield among food crops, and it is easy to transform, in vitro manipulate, and scale up [24]. These potentialities were explored by Prodigene Inc. for the production of the first commercially available plant-made protein, avidin (a protein with affinity for biotin used in biochemical assays). Other maize-derived protein products developed by this company include β-glucuronidase, aprotinin, laccase, and trypsin [32]. Prodigene was the first company to demonstrate the commercial benefits of plant-based platforms and was also a forerunner in the study of the economic impact of downstream processing in molecular pharming, having developed several successful approaches to recover intact and functional recombinant seeds from maize [3].
Maize has also been used to produce recombinant pharmaceutical proteins, including enzymes, vaccines, and antibodies [32, 33]. One of the most notable therapeutic proteins produced in maize is Meristem Therapeutics’ gastric lipase, an enzyme intended for the treatment of exocrine pancreatic insufficiency—a disease significantly affecting cystic fibrosis sufferers—that has completed phase II clinical trial. In addition to this enzyme, Meristem Therapeutics has developed two other maize-derived products, human lactoferrin (phase I clinical trial), whose intellectual property was later acquired by Ventria Bioscience (
Rice is another leading platform for recombinant protein and peptide production. Similar to maize, rice is easy to transform and scale up, but unlike maize, rice is self-pollinating, which reduces the risk of horizontal gene flow. Ventria Bioscience, in its ExpressTec platform, has used rice to produce recombinant pharmaceutical proteins, including human albumin, transferrin, lactoferrin, lysozyme, and vaccines against human rabies and Lyme disease. Its lead therapeutic candidate VEN100, whose active ingredient is lactoferrin, has been shown to reduce significantly antibiotic-associated diarrhea in high-risk patients and recently completed phase II clinical trial [34]. Rice has also been widely used as host for peptide expression, especially for the production of allergen peptides (e.g., pollen and mite allergies) [35, 36]. Recent studies report that rice has the potential to offer an oral delivery system for vaccine antigens and therapeutic proteins and peptides [25, 35, 37].
Barley seeds have also been developed as commercial platforms. In comparison to other cereal crops, barley is less widely grown. However, this fact added to the self-pollinating nature of barley can be viewed as an advantage since the risk of contamination and outcrossing with non-transgenic crops is minimized. Considering this benefit, an Iceland-based company, ORF Genetics (
The use of legume seeds, such as soybean and pea, for the production of recombinant pharmaceutical proteins, has been less explored than cereal-based platforms, with platforms based on legume seeds having yet to achieve commercial success. However, the fact that legume seeds have exceptionally high protein content (20–40%) can be exploited to achieve high yields of recombinant protein [39]. Soybean seeds have been used to express recombinant growth factors [40, 41], coagulation factors [42], and vaccine peptides [43]. Transgenic pea seeds have been previously used to produce a single-chain Fv fragment (scFV) antibody used in cancer diagnosis and therapy [44]. In another study, pea seeds were used to produce a vaccine that showed high immunogenicity and protection against rabbit hemorrhagic disease virus [45].
Safflower and rapeseed seeds are rich in oil and are, thus, referred as oilseeds. Oilseeds can provide useful recombinant pharmaceutical protein production systems. SemBioSys (
Finally, fruit and vegetable crops can also be employed for molecular pharming. A major advantage of protein expression in fruit and vegetable crops is that edible organs can be consumed uncooked, unprocessed, or partially processed, making them particularly suitable for the production of recombinant subunit vaccines, nutraceuticals, and antibodies designed for topical application [29]. The oral delivery of recombinant therapeutics is one of the differentiating factor of molecular pharming in comparison to mainstream biopharmaceutical production systems, with several pharmaceutical products being produced in tomato fruits, potato tubers, and lettuce leaves for this purpose [3]. Tomato fruits are particularly useful for protein expression because the fruits are palatable as raw tissue but can also be lyophilized and stored for a long time [25]. Recently, human coagulation factor IX (hFIX) was expressed specifically in tomato fruits, constituting the first report on the expression of hFIX in plant [48]. Another study described the expression in tomato fruits of a thymosin α1 concatemer [49], an immune booster that plays an important role in the maturation, differentiation, and function of T cells. The thymosin α1 concatemer derived from transgenic tomatoes exhibited biological activity and was proven to stimulate the proliferation of mice splenic lymphocytes in vitro. Moreover, thymosin α1 specific activity was higher when produced in tomato than in Escherichia coli, demonstrating the authenticity of the plant-made product. Other examples of tomato fruit expression include F1-V [50], a candidate subunit vaccine against pneumonic and bubonic plague, and β-secretase [51], to serve as a vaccine antigen against Alzheimer’s disease.
In conclusion, platforms based on transgenic plants are a promising alternative to the conventional biopharmaceutical production platforms since they provide a stable source of pharmaceutical proteins and are also the most scalable of all molecular pharming platforms. This scalability of transgenic plants ensures the production of recombinant pharmaceutical proteins at levels previously inaccessible, namely, the commodity bulk production of monoclonal antibodies. In the current scenario of growing pharmaceutical demand, especially in developing countries, the use of transgenic plants can be game changing since they provide a highly scalable and low-cost means of producing medicines.
Transplastomic plants are a valuable alternative to transgenic plants for the production of recombinant pharmaceutical proteins. Transplastomic plants are obtained by the insertion of expression constructs into the plastid genome by particle bombardment. Since the Agrobacterium T-DNA (transfer DNA) complex is targeted to the nucleus, it is unsuitable for gene transfer to chloroplasts [24, 52]. Following the transformation procedure, the bombarded leaf explants are regenerated, and transplastomic plants with homoplastomic transformation (in which every chloroplast carries the transgene) are finally selected, recurring to a selection medium containing spectinomycin or in combination with streptomycin [53].
Plastid transformation can result in high yields of heterologous proteins because multiple copies of the genome are present in each plastid, and photosynthetic cells may contain hundreds or thousands of plastids [54]. As an example, the expression of a proteinaceous antibiotic in tobacco chloroplasts has achieved up to 70% of the total soluble proteins, which is the highest recombinant protein accumulation accomplished so far in plants [55]. Furthermore, chloroplasts provide a natural biocontainment of transgene flow since genes in chloroplast genomes are maternally inherited and consequently not transmitted through pollen, thereby avoiding unwanted escape into the environment. Other advantages of chloroplast engineering include the ability to express several genes as operons, and the accumulation of recombinant proteins in the chloroplast, thus reducing toxicity to the host plant [24].
Finally, transplastomic production platforms offer the possibility of oral delivery [54, 56]. In fact, it has been demonstrated that chloroplast-derived therapeutic proteins, delivered orally via plant cells, are protected from degradation in the stomach, probably due to the bioencapsulation of the therapeutic protein by the plant cell wall. They are subsequently released into the gut lumen by microbes that digest the plant cell wall, where the large mucosal intestine area offers an ideal system for oral drug delivery [57].
A shortcoming of expressing proteins via the chloroplast genome is that routine plastid engineering is still limited to tobacco, a crop that is not edible and thus unsuitable for oral delivery of therapeutic proteins. In addition, the synthesis of glycoproteins is not possible in the chloroplast system, as plastids do not carry out glycosylation [24]. Nevertheless, the expression of human somatotropin [58] in tobacco established that chloroplasts are capable of properly folding human proteins with disulfide bonds. In another study, the production of native cholera toxin B subunit [59] demonstrated the capacity of chloroplasts to fold and assemble oligomeric proteins correctly. Other therapeutic proteins expressed in tobacco chloroplasts include interferons alpha-2a and alpha-2b [60, 61] and anti-cancer therapeutic agents such as human soluble tumor necrosis factor (TNF) [62] and azurin [63]. Recently, chloroplast transformation of lettuce has also been developed [64, 65] to provide oral delivery transplastomic systems [66, 67]. Several therapeutic proteins were produced in lettuce chloroplast, namely, proinsulin [66, 67], tuberculosis vaccine antigens [68], and human thioredoxin 1 protein [69]. The chloroplast production platform has yet to achieve commercial success, though the referred developments in this field augur a promising future for therapeutic protein production in chloroplasts.
Transient expression is a phenomenon that occurs when genes are introduced into plant tissues and are expressed for a short period without stable DNA integration into the genome [3]. Traditionally, transient expression was used to verify expression construct activity and to test recombinant protein stability. This strategy allowed the identification and elimination of initial transformation problems, and thus the prospect of regenerating the desired transgenic lines was significantly improved. Recently, there has been an emergence of transient expression for the commercial production of recombinant pharmaceutical proteins. The advantages of transient expression platforms include the ease of manipulation, speed, low cost, and high yield of proteins. In comparison to transgenic plants, transient expression permits to achieve higher recombinant protein yields because there are no position effects (suppression of transgene expression by the surrounding genomic DNA following integration) [70].
Transient expression systems utilize the beneficial properties of plant pathogens to infect plants, spread systemically, and express transgenes at high levels, causing the rapid accumulation of recombinant proteins [8]. Currently, the major transient expression platforms are based on Agrobacterium tumefaciens, plant viruses, or hybrid vectors that utilize components of both (magnICON® technology).
The agroinfiltration method involves the vacuum infiltration of a suspension of recombinant A. tumefaciens into the plant leaf tissue, with the transgenes being then expressed from the uninterrupted T-DNA [8, 71]. Using this method, milligram amounts of recombinant protein are produced within a few weeks without the need to select transgenic plants, a process that takes months to years to be completed. This system has been commercially developed in tobacco [72] and alfalfa [73] but is also applicable to other crops such as lettuce [74], potato [75], and Arabidopsis [76]. An advantage of Agrobacterium-mediated transient expression is the fact that it allows to produce in plants complex proteins assembled from subunits [70].
Another transient expression technology is based on the use of plant viruses. In this technology, the gene of interest is inserted among viral replicating elements, episomically amplified and subsequently translated in the plant cell cytosol [77]. To date, the most efficient and high-yielding platforms have been developed using RNA viruses [78]. These plant viruses include Tobacco mosaic virus (TMV), potato virus X (PVX), and Cowpea mosaic virus (CPMV) (reviewed in [8]). The advantages of virus-based production include the rapid recombinant protein expression, the systemic spread of the virus, and the fact that multimeric proteins such as antibodies can also be produced by coinfecting plants with noncompeting vectors derived from different viruses [79, 80]. Transient expression vectors based on virus have been used to express peptides and long polypeptides (at least 140 amino acids long) as fusions to the coat protein, resulting in the assembly of chimeric virus particles (CVPs) displaying multiple copies of the peptide or polypeptide on its surface [77, 81]. Transient expression based in plant viruses has been commercially adopted by the now-closed Large Scale Biology Corporation (Vacaville, USA) that used a TMV-based vector for the production of patient-specific idiotype vaccines for the treatment of B-cell non-Hodgkin’s lymphoma, which had successfully passed the phase I clinical trials [82].
Finally, the third transient expression strategy is based on hybrid systems that incorporate components of the T-DNA transfer and virus replication systems [3]. These hybrid systems use deconstructed viruses obtained by removing the coat protein (responsible for systemic movement) of the noncompeting virus strains and use Agrobacterium as the vehicle for the systemic delivery of the resulting viral vectors to the entire plant. These systems effectively address most of the major shortcomings of earlier plant-based technologies by providing the overall best combination of the following features: high expression level, high relative yield, low up- and downstream costs, very fast and low-cost R&D, and low biosafety concerns [83]. Consequently, there has been a commercial development based on several hybrid systems. One of most notable examples is the magnICON® system developed by Icon Genetics (
Examples of therapeutic recombinant proteins produced in these platforms have been generally reviewed in [3]. Recombinant protein production using transient expression is now being mobilized to a large scale with several companies developing scalable, automated plant-based GMP biomanufacturing facilities to efficiently produce large amounts of pharmaceuticals within weeks. Such facilities include the ones of the Fraunhofer Center for Molecular Biotechnology (Newark, DE) (
In conclusion, the ability of transient plant expression systems to produce large quantities of recombinant protein, coupled to the use of current technology to increase yields, and the many promising technical solutions seems to be favorable compared with mammalian- or insect cell-based systems in quality, cost, and scale [19]. In case of emerging threats, transient platforms are advantageous since they produce large amounts of recombinant proteins rapidly (milligram quantities per plant within a few days) and can be scaled up quickly, currently providing the only reliable platform for rapid response situations [9]. During the H1N1 pandemic, the first batches of H1N1 virus-like particles (VLPs) could be produced by Medicago Inc. as soon as 3 weeks after the Centers for Disease Control and Prevention released the new influenza hemagglutinin sequence [73]. Similar lead times were reported for the H5N1 VLP vaccine [84]. Recently, the application of tobacco plant-based transient production systems, at Kentucky BioProcessing (KBP), to produce antibody lots against Ebola, was shown to significantly decrease the amount of time required for production over traditional methods, increase the quantity of antibody produced, and reduce the cost of manufacturing. Finally, at the other end of the market scale, transient expression platforms are economical for the production of pharmaceuticals for very small markets, such as orphan diseases and individualized therapies.
Plant cell suspension cultures grow as individual cells or small aggregates and are usually derived from callus tissue by the disaggregation of friable callus pieces in shake bottles and are later scaled up for bioreactor-based production. Recombinant pharmaceutical protein production is achieved using transgenic explants to derive the cultures or by transforming the cells after disaggregation, usually by co-cultivation with A. tumefaciens. The co-cultivation of plant cell suspensions and recombinant A. tumefaciens has also been used for the transient expression of proteins [85]. Since these plant cell suspension cultures are grown in sterile contained environments, they provide a cGMP-compatible production environment that is more acceptable to the established pharmaceutical industry and regulatory authorities [3, 86]. These systems have added benefits of complex protein processing compared to bacteria and yeasts and increased safety compared to mammalian cell systems, which can harbor human pathogens. Another advantage of plant suspension cultures is the very low maintenance cost in comparison to other fermenter-based eukaryotic systems such as mammalian or insect cells. Moreover, the possible secretion of the target protein into the culture medium simplifies downstream processing and purification procedures [87, 88]. Nevertheless, plant cell cultures also have some limitations such as poor growth rates, somaclonal variation (particularly due to chromosomal rearrangements, common in plant cell cultures generated by calli), and gene silencing, together with the inhibition of product formation at high cell densities, formation of aggregates, cell wall growth, as well as shear-sensitivity for some species [89]. However, high levels of functional recombinant protein in plant cell suspension cultures were already obtained [87]. Besides, the previously mentioned first licensed recombinant pharmaceutical protein, Elelyso™, was produced in plant cell suspension cultures (reviewed in [88]). Tobacco has been the most popular source of suspension cells for recombinant protein production. Tobacco plants proliferate rapidly and are easy to transform, but other plant species have also been used to generate suspension cells, including rice and Arabidopsis thaliana, alfalfa, soybean, tomato, Medicago truncatula, and carrot [85, 88, 90]. Carrot suspension cells have been used by the aforementioned Protalix Biotherapeutics to produce a recombinant glucocerebrosidase. This case of commercial success shows that suspension cell cultures have potential as a viable system for large-scale protein production. Recently, carrot callus cultures, expressing epitopes from the cholesteryl ester transfer protein, were accessed for the potential of becoming an atherosclerosis oral vaccine [91].
The lower expression levels in comparison to the established biopharmaceutical platforms were one of the major obstacles for the commercialization of molecular pharming [9]. Therefore, numerous techniques have been developed to enhance protein expression, including codon optimization of protein sequences, to match the preferences of the host plant, targeting subcellular compartments that allow proteins to accumulate in a stable form; the use of strong, tissue-specific promoters; and the testing of different plant species and systems [25].
Protein synthesis can be increased by optimizing the components of the expression construct to maximize transcription, mRNA stability, and translation or by diminishing the impact of epigenetic phenomena that inhibit gene expression [92]. In this field, the general strategy is to use strong and constitutive promoters, such as the cauliflower mosaic virus 35S RNA promoter (CaMV 35S) and maize ubiquitin-1 promoter (ubi-1), for dicots and monocots, respectively. However, organ- and tissue-specific promoters are also being used to drive expression of the transgenes to a specific tissue or organ such as the tuber, the seed, and the fruit. Additionally, inducible promoters, whose activities are regulated by either chemical or external stimulus, may equally be used to prevent the lethality problem. Furthermore, transcription factors can also be used as boosters for the promoters to further enhance the expression level of the transgenes [53].
Protein stability can be increased by targeting proteins to cell compartments that reduce degradation. Protein targeting also affects the glycan structures added to proteins and the type of extraction and purification steps required to isolate the protein from the plant matrix. Proteins can be targeted to the secretory pathway by an N-terminal signal peptide, which is cleaved off for the release of the protein into the endoplasmic reticulum (ER). Proteins that do not require posttranslational modification, e.g., glycosylation, for their activity, can be targeted to the chloroplast using N-terminal transit peptides [93]. In addition, the target gene can be used to transform chloroplast directly, with highly enhanced protein accumulation. Moreover, posttranslational modifications of the ER lumen can also be avoided by expressing the protein as translational fusion with oleosin protein, which target the expression of the foreign protein to oil bodies of the seeds [28]. Other subcellular compartments like the protein-storing vacuoles are now being explored for recombinant protein accumulation, as it has been observed in rice seed endosperm [94].
In the early years of molecular pharming, scientific studies were focused on demonstrating that plants could produce adequate quantities of recombinant pharmaceutical proteins and confer an oral delivery means. This led to downstream processing and the costs associated to it being basically overlooked. Downstream processing is now known to be an economically critical part of biomanufacturing processes (it can account for up to 80% of the total cost in a therapeutic protein production line) and also to be a key component of the regulatory process for evaluating the safety of pharmaceutical products [7]. The goal and the general steps for downstream processing are similar between plant and other expression systems: to recover the maximal amount of highly purified target protein with the minimal number of steps and at the lowest cost. The basic steps for downstream processes include tissue harvesting, protein extraction, purification, and formulation [22]. However, since in molecular pharming the costs of downstream processing are product-specific rather than platform-specific, the evaluation of downstream processing strategies and costs associated to it has to be done on a case-by-case basis. Nevertheless, even if unit operations have to be developed based on the properties of the product, others have to be developed based on the properties of the expression host. Plants produce process-related contaminants that require specific processing steps to ensure removal of fibers, oils, superabundant plant proteins such as RuBisCO, and potentially toxic metabolites such as the alkaloid nicotine in tobacco [8]. These secondary metabolites can be recovered from plant cells or tissues using methods such as adsorption, precipitation, and chromatography, often requiring phase partitioning and the use of mixtures of organic solvents. Several approaches have been used to facilitate downstream processing, including secretion of recombinant proteins, eliminating the plant cell disruption step; targeting of proteins into the protein bodies, oil bodies, or plastoglobules; and the use of affinity tags such as poly-histidine tags with the target protein, allowing protein purification by affinity chromatography [25]. In addition, oral delivery of whole plants or crude extracts containing the pharmaceutical relevant proteins can also be a way to simplify downstream processing and to easily distribute medicines to those in need. Furthermore, the optimization of plant’s expression level can also ease downstream processing, with higher protein concentrations conducting to higher protein volumes [7].
Finally, several purification strategies have been investigated to separate target transgenic proteins from host plant proteins, which are tailored for each individual protein based on its solubility, size, pI, charge, hydrophobicity, or affinity to specific ligands, and the parallel characteristics of plant host proteins. Chromatographic methods, such as affinity chromatography, have been the most extensively used. However, recently increasing attention is being paid to non-chromatographic methods to provide alternatives for large-scale production [22].
In the broad range of known bioactive peptides, angiotensin I-converting enzyme inhibitory (ACEI) peptides derived from food proteins have attracted particular attention and have been studied the most comprehensively for their ability to prevent hypertension [95]. In this chapter we will further focus on the possibility to genetically engineer crop plants to produce and deliver antihypertensive ACEI peptides, therefore creating alternative sources to fight hypertension and prevent cardiovascular disease.
Cardiovascular disease (CVD) has been recognized as the leading cause of death in developed countries. Hypertension or high blood pressure is one of the major independent risk factors for CVD [96]. States of CVD include conditions such as coronary heart disease, peripheral artery disease, and stroke. Hypertension is a condition defined by a blood pressure measurement of 140/90 mmHg or above and is thought to affect up to 30% of the worldwide adult population [95]. The kinin-nitric oxide (KNO) system and the renin-angiotensin system (RAS), Figure 1, play a crucial role in the control of hypertension by the action of angiotensin I-converting key enzyme (EC 3.4.15.1; ACE) [96–99].
The kinin-nitric oxide (KNO) system and the renin-angiotensin system (RAS). The left side (KNO system) shows the mechanism of the action of ACEI on ACE that cleaves bradykinin, a nonapeptide acting as vasodilatory hormone, and causes the formation of an inactive heptapeptide. In the right side (RAS system), the inhibition of ACE activity plays an important physiological role in regulation of blood pressure by inhibiting the conversion of the hormone angiotensin I to angiotensin II, a potent vasoconstrictor (figure adapted from Erdmann et al. [96]).
Several synthetic ACE inhibitors such as captopril, enalapril, and lisinopril have been prescribed for the treatment of hypertension, congestive heart failure, and diabetic neuropathy [100]. However, their consumption is associated with various side effects including cough, skin rashes, hypotension, loss of taste, angioedema, reduced renal function, and fetal abnormalities [95]. The side effects associated to synthetic ACE inhibitors and the high prevalence of hypertension have led scientists to search for natural and safer therapies. Interestingly, the study of ACEI peptides has revealed that they do not have significant effects on blood pressure in normotensive subjects, suggesting a convenient mechanism that avoids acute hypotensive effects. Based on this finding, it is hypothesized that ACEI peptides could be used in initial treatment of mildly hypertensive individuals or even as supplemental treatments [101].
So far, several ACEI peptides have been identified in food proteins, mainly in milk, eggs, and plants, currently constituting the most well-known class of bioactive peptides [102–104]. These peptides are inactive within the sequence of parent proteins, but they can be released by enzymatic proteolysis in vivo or in vitro, for example, during gastrointestinal digestion or during food processing. A common feature shared by the majority of ACEI peptides is the generally short sequence, i.e., 2–12 amino acids in length. However, some larger inhibitory sequences have been identified in milk fermented with Enterococcus faecalis [105] and Lactobacillus casei Shirota [106], in koumiss [107], tuna [108], bonito [109], and rotifer [110]. Studies have also indicated that binding to ACE is strongly influenced by the substrate’s C-terminal tripeptide sequence. Hydrophobic amino acid residues with aromatic or branched side chains at each of the C-terminal tripeptide positions are common features among potent inhibitors. The presence of hydrophobic Pro residues at one or more positions in the C-terminal tripeptide region seems to positively influence a peptide’s ACE-inhibitory activity [95]. In general, the peptides showing higher activity against ACE have Tyr, Phe, Trp, or Pro at their C-terminus [95]. The peptides TQVY from rice [111], MRW from spinach [112], and YKYY from wakame [113] are some examples of this principle. Table 1 reviews some examples of ACEI activities of plant origin, whose peptides responsible for such activity may be potential sources for the heterologous production of ACEI peptides.
Source | ACEI activity (IC50; μM) | Antihypertensive activity (mmHg) | Dose (mg/kg) | Reference |
---|---|---|---|---|
Chlorella vulgaris | 29.6 | Not determined | — | [114] |
Chebulic myrobalan | 100 | Not determined | — | [115] |
Bitter melon | 8.64 | −31.5 to −36.3 | 2–10 | [116] |
Mung bean | 13.4 | Not determined | — | [117] |
Pea | 64 | Not determined | — | [118] |
Peanut | 72 | Not determined | — | [100] |
Potato | 18–86* | Not determined | — | [119] |
Rapeseed | 28 | −11.3 | 7.5 | [120] |
Rice | 18.2 | −40 | 30 | [111] |
Soybean | 14–39* | −17.5 | 2 | [121] |
Soybean | 21 | Not determined | — | [122] |
Soybean | 1.69 | Not determined | — | [123] |
Soybean | 17.2 | Not determined | — | [124] |
Spinach | 0.6–4.2* | −13.5 to −20* | 20–100 | [112] |
Wakame | 21–213* | −50 | 50 | [113] |
Walnut | 25.7 | Not determined | — | [125] |
Wheat | 20 | Not determined | — | [126] |
Examples of ACEI peptide activity from different plant origin.
Different values for the same plant product related to the ACEI peptide sequence.
The most common method to produce and identify ACEI peptides is through enzymatic hydrolysis of food proteins with gastrointestinal enzymes such as pepsin and trypsin or with commercial proteases such as Alcalase™ [127]. ACEI peptides have also been produced with Lactobacillus, Lactococcus lactis, and E. faecalis strains during milk fermentation [105, 106]. Nevertheless, there are problems associated to this type of industrial production of ACEI peptides, including the difficulty to isolate the peptide of interest from the complex mixture of compounds produced by enzymatic hydrolysis, the high cost, low recovery, and the low bioavailability. These disadvantages denote the need to develop new and alternative approaches for their production.
In recent years, the application of recombinant DNA technologies for the production of ACEI peptides at a large scale and low cost has gathered attention in the biotechnology community. Investigation has been focused on the development of expression methods for antihypertensive peptide production in different plant crops [128]; and here, we tried to provide some promising examples.
Thus far, the main strategies that have been adopted are as follows: the overexpression of ACEI peptide precursor proteins and the production of particular peptides as heterologous components [101], the modification of some storage proteins to produce chimeric proteins carrying ACEI peptides [101], and also the generation of multimer proteins containing tandem repeats of ACEI peptides, flanked by protease recognition sequences that allow the peptide release during gastrointestinal digestion.
Transgenic rice plants that accumulate novokinin (RPLKPW), a potent antihypertensive peptide designed according to the structure of ovokinin (2–7) (RADHPF), as a fusion with the rice storage protein glutelin, have been generated. The engineered peptide is expressed under the control of endosperm-specific glutelin promoters and specifically accumulates in seeds. Oral administration of either the RPLKPW-glutelin fraction or transgenic rice seeds to spontaneously hypertensive rats (SHRs)—the main model for assessing the in vivo activity of ACEI peptides (e.g., [108, 111, 122])—significantly reduced systolic blood pressures, suggesting the possible application of transgenic rice seed as a nutraceutical delivery system and particularly for administration of antihypertensive peptides [129].
Wakasa et al. [130] attempted the generation of transgenic rice seeds that would accumulate higher amounts of novokinin peptide by expressing 10 or 18 tandemly repeated novokinin sequences, with the KDEL endoplasmic reticulum retention signal at the C-terminus, and using the glutelin promoter along with its signal peptide. Although the chimeric protein was unexpectedly located in the nucleolus and the accumulation was low, a significant antihypertensive activity was detected after a single oral dose to SHRs. More importantly, this effect was observed over a relatively longer duration time, with intervals of 5 weeks between doses as low as 0.0625 g transgenic seeds per kg.
Soybean [Glycine max (L.) Merr.] is an attractive option for the production of ACEI peptides given that soybean seeds contain a large amount of total protein. Therefore, there has been an effort to generate soybean lines with improved ACEI properties foreseeing the creation of novel functional foods.
Matoba et al. [128], introduced novokinin (RPLKPW) into homologous sequences of a soybean β-conglycinin α’ subunit by site-directed mutagenesis. Founded on first achievements from an E. coli expressed protein, the muted β-conglycinin α’ subunit carrying novokinin repeats were also expressed in soybean. This chimeric protein accumulated at levels of up to 0.2% of extracted protein from transgenic soybean seeds [131]. Still, the levels of expression were too low, and it was not possible to assess the in vivo effects of these soybean seeds.
Novokinin has also been expressed in transgenic soybean seeds in a fusion form along with a β-conglycinin α’ subunit. Interestingly, a reduced systolic blood pressure was observed in SHRs after administering a dose of 0.15 g kg−1 of protein extracts. A similar effect was attained following administration of a 0.25 g kg−1 dose of defatted flour. Thus, it was concluded that this chimeric protein produced in soybean possessed an antihypertensive activity [132].
Additionally, a synthetic gene of His-His-Leu (HHL), an ACEI peptide derived from a Korean soybean paste, was tandemly multimerized to a 40-mer, ligated with ubiquitin as a fusion gene (UH40), and subsequently expressed in E. coli. Following digestion with leucine aminopeptidase, the 405-Da HHL monomer was recovered by reverse-phase high-performance liquid chromatography (HPLC). MALDITOF mass spectrometry, glutamine-TOF mass spectrometry, N-terminal sequencing, and measurement of ACE-inhibiting activity confirmed that the resulting peptide was the HHL [133]. The potential use of this antihypertensive chimeric protein in soybean has yet to be assessed.
A modified version of amarantin, the main seed storage protein of Amaranthus hypochondriacus, carrying four tandem repeats of the ACEI dipeptide Val-Tyr into the acidic subunit of amarantin, was expressed in cell suspension cultures of Nicotiana tabacum L. NT1. Protein hydrolysates obtained from transgenic calli showed high levels of inhibition of the angiotensin-converting enzyme, with an IC50 value of 3.5 μg ml−1, and 10-fold lower levels than that of protein extracts of wild-type cells (IC50 of 29.0 μg ml−1) [134]. This was the first time that a chimeric protein comprising an ACEI peptide was produced in plant cell suspension cultures.
This modified version of amarantin was also expressed in the fruit of transgenic tomato plants. Protein hydrolysates from transgenic tomato fruits showed in vitro ACE inhibition, with IC50 values ranging from 0.376 to 3.241 μg ml−1; this represented an increase of up to 13-fold in the inhibitory activity when compared with the protein hydrolysates of non-transformed fruits [135]. These two results suggest the possible application of tobacco plant cell suspension cultures and transgenic tomato fruits for massive production of this engineered version of amarantin, which could be especially used as an alternative hypertension therapy [134, 135].
Although amaranth has not been genetically modified to produce ACEI peptides, the feasibility of developing a modified amarantin acidic subunit has been widely assessed [129, 134–139]. Recently, the in vivo effect of an E. coli-modified amarantin protein, four units of Val-Tyr dipeptides (VY) in tandem, and one of Ile-Pro-Pro tripeptides (IPP) incorporated in the amarantin acidic subunit (AMC3) was evaluated in SHRs in a one-time oral administration experiment. This study showed that enzymatic hydrolysates of AMC3-containing ACEI peptide (4xVY and IPP) sequences had significant in vivo antihypertensive action [138]. The positive reports of amarantin expression in E. coli [136, 138, 139] along with the sustained expression of amarantin-modified proteins in tobacco [134] and tomato [135] prospect the successful production of ACEI peptide fusion proteins in amaranth.
Lettuce (Lactuca sativa) is a commercially important crop belonging to the Asteraceae family. It is a diploid (2n = 18), autogamous species with a genome size of 2.7 Gb [140]. This crop is particularly suitable for oral delivery of therapeutics as its raw leaves are consumed by humans, and the time to obtain an edible product is only weeks, compared to the months needed for crops such as tomato or potato. Therefore, recently lettuce has been investigated as a production host for edible recombinant therapeutics [66, 67, 141]. Furthermore, the fact that stable transformation procedures for both nuclear [142] and plastid genomes [64], and transient expression [74], are widely available, is also an advantage. Lettuce has been used as production host for several recombinant therapeutics, virus-like particles (VLPs) and monoclonal antibodies [143], antigens [142, 144], and human therapeutic proteins [66, 69].
Medicago truncatula is a model plant from the legume family. It is a diploid (2n = 16), autogamous species, with a relatively small genome and short life cycle of 3–5 months. These characteristics enable this species to be used in molecular genetic studies and expression of foreign genes [145]. The phylogenetic distance to economically important crops is crucial in the choice of this plant by many researchers and funding agencies, since it allows comparative studies within the legume family. The methodologies for the establishment of long-term cell suspension culture are well recognized [146], and the potential of M. truncatula as expression host has also been established for the production of feed additives [20, 87], human hormones [90], and human enzymes [147].
The use of these two species in molecular pharming is at the center of a recent collaboration between the Plant Cell Biotechnology (PCB) Laboratory (ITQB UNL), the Cell Differentiation and Regeneration Laboratory (iBiMED UA), and the Institute of Plant Genetics (IPG PAS). This cooperation foresees the usage of these two species as exceptional hosts for the heterologous production and/or delivery of ACEI peptides, and a resume of this ongoing project is here schematically presented (Figure 2). This figure also provides an overview of the technologies involved in different plant platforms discussed in this chapter.
Schematic representation of the technologies involved in different plant platforms for the production of therapeutically important proteins and peptides. Plastid transformation by particle bombardment can result in regeneration of transplastomic plants, revealing high-yield heterologous production, with the possibility of protein/peptide oral delivery or purification. Nuclear transformation can be accomplished by particle bombardment or by Agrobacterium-mediated transformation, resulting in the regeneration of stable transgenic plants. Finally, the technology based on transient expression, here with the example of agroinfiltration. We present Medicago truncatula and lettuce as examples: (a) M. truncatula co-culture of leaf explants with Agrobacterium, (b) and (c) plant regeneration via somatic embryogenesis according to Araújo et al. [145], (d) and (e) establishment of a cell suspension culture from callus for protein/peptide production [146, 147], (f) lettuce leaf explant co-culture with Agrobacterium, (g) and (h) plant regeneration via shoot organogenesis at PCB lab, (i) lettuce transgenic plants which can be used for oral delivery, (j) and (k) agroinfiltration of lettuce leaf explants according to Negrouk et al. [74], and (l) example of a control explant (left) and transient expression of a 35S::GUS(int) cassette in lettuce leaves (right).
Molecular pharming has been recently and extensively reviewed, and the future of this technology has gathered some optimistic expectations. A myriad of studies have already demonstrated the capacity of various plant species and systems to produce recombinant pharmaceutical proteins and peptides. This technology has already been put to the test in case of emerging threats, where transient platforms proved to be strategic for rapid production of large amounts of recombinant proteins in response to pandemic situations. However, their usefulness for the production of functional foods still falls short of expectations, as well as the attainment of its full potential in bioactive peptide production. With the improvement of known plant platforms and development of new genetic engineering techniques and their exploration, it is forthcoming an evolution in the production of heterologous bioactive peptides, to which we hope to contribute with our ACEI pharming project. The advent of genome editing techniques (with the advantage of site- specific gene insertion), like the CRISPR/Cas9 methodology, will undoubtedly increase and democratize plant transformation events and will certainly contribute to the increase of genetically modified species for molecular pharming purposes.
We acknowledge financial support from Fundação para a Ciência e Tecnologia (FCT), Portugal, through the research Grant SFRH/BPD/74784/2010 (Duque AS) and funding, through the research unit GREEN-it “Bioresources for Sustainability” (UID/Multi/04551/2013) and FCT/COMPETE/QREN/EU-FEDER (for Institute of Biomedicine iBiMED: UID/BIM/ 04501/2013). We also acknowledge the Program for Scientific Cooperation FCT/Poland 2017/2018 and Angelini Pharmaceuticals and PREMIVALOR (for Angelini University Award 2012/2013).
All Works published by IntechOpen prior to October 2011 are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license (CC BY-BC-SA 3.0). Works published after October 2011 are licensed under a Creative Commons Attribution 3.0 Unported license (CC BY 3.0), the latter allowing for the broadest possible reuse of published material.
",metaTitle:"Translation Policy",metaDescription:"Translation of Works - Book Chapters",metaKeywords:null,canonicalURL:"/page/translation-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"All Works licensed under CC BY-BC-SA 3.0 can be freely translated and used for non-commercial purposes. Works licensed under CC BY 3.0 license can be freely translated and used for both commercial and non-commercial purposes.
\\n\\nAll translated Chapters have to be properly attributed in accordance with the requirements included in IntechOpen's Attribution Policy. Besides proper attribution translated sections of Works must include the following sentence: "This is an unofficial translation of a work published by IntechOpen. The publisher has not endorsed this translation".
\\n\\nAll rights to Books and other compilations are reserved by IntechOpen. The copyright to Books and other compilations is subject to a Copyright separate from any that exists in the included Works.
\\n\\nA Book in its entirety, or a significant part of a Book, cannot be translated freely without specific written consent by the publisher. Requests for permission can be made at permissions@intechopen.com.
\\n\\nPolicy last updated: 2016-06-09
\\n"}]'},components:[{type:"htmlEditorComponent",content:'All Works licensed under CC BY-BC-SA 3.0 can be freely translated and used for non-commercial purposes. Works licensed under CC BY 3.0 license can be freely translated and used for both commercial and non-commercial purposes.
\n\nAll translated Chapters have to be properly attributed in accordance with the requirements included in IntechOpen's Attribution Policy. Besides proper attribution translated sections of Works must include the following sentence: "This is an unofficial translation of a work published by IntechOpen. The publisher has not endorsed this translation".
\n\nAll rights to Books and other compilations are reserved by IntechOpen. The copyright to Books and other compilations is subject to a Copyright separate from any that exists in the included Works.
\n\nA Book in its entirety, or a significant part of a Book, cannot be translated freely without specific written consent by the publisher. Requests for permission can be made at permissions@intechopen.com.
\n\nPolicy last updated: 2016-06-09
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:null},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5313},{group:"region",caption:"Middle and South America",value:2,count:4819},{group:"region",caption:"Africa",value:3,count:1468},{group:"region",caption:"Asia",value:4,count:9362},{group:"region",caption:"Australia and Oceania",value:5,count:837},{group:"region",caption:"Europe",value:6,count:14778}],offset:12,limit:12,total:108153},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"11"},books:[{type:"book",id:"6837",title:"Lithium-ion Batteries - Thin Film for Energy Materials and Devices",subtitle:null,isOpenForSubmission:!0,hash:"ea7789260b319b9a4b472257f57bfeb5",slug:null,bookSignature:"Prof. Mitsunobu Sato, Dr. Li Lu and Dr. Hiroki Nagai",coverURL:"https://cdn.intechopen.com/books/images_new/6837.jpg",editedByType:null,editors:[{id:"179615",title:"Prof.",name:"Mitsunobu",surname:"Sato",slug:"mitsunobu-sato",fullName:"Mitsunobu Sato"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6842",title:"Aerosols",subtitle:null,isOpenForSubmission:!0,hash:"efe043290c576559ee15f293bc924f65",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/6842.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7030",title:"Satellite Systems - Design, Modeling, Simulation and Analysis",subtitle:null,isOpenForSubmission:!0,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:null,bookSignature:"Dr. Tien Manh Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editedByType:null,editors:[{id:"210657",title:"Dr.",name:"Tien",surname:"Nguyen",slug:"tien-nguyen",fullName:"Tien Nguyen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7395",title:"Atmospheric Pressure Plasma",subtitle:null,isOpenForSubmission:!0,hash:"6deb4387910df1691c5b8d0d3260cbd5",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/7395.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7416",title:"Compound Engine",subtitle:null,isOpenForSubmission:!0,hash:"e7901967cd17843e83c855abd4014838",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/7416.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7638",title:"Massive Multiple-input Multiple-output Systems",subtitle:null,isOpenForSubmission:!0,hash:"f6e96802bc79d6b8b0bab9ad24980cbc",slug:null,bookSignature:"Dr. Sudhakar Radhakrishnan",coverURL:"https://cdn.intechopen.com/books/images_new/7638.jpg",editedByType:null,editors:[{id:"26327",title:"Dr.",name:"Sudhakar",surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7741",title:"Organic Field-Effect Transistors",subtitle:null,isOpenForSubmission:!0,hash:"787c5b02acbbf3f4efda634be5e6f3c0",slug:null,bookSignature:"Dr. Jonathan Sayago",coverURL:"https://cdn.intechopen.com/books/images_new/7741.jpg",editedByType:null,editors:[{id:"198513",title:"Dr.",name:"Jonathan",surname:"Sayago",slug:"jonathan-sayago",fullName:"Jonathan Sayago"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7771",title:"Dependability Engineering",subtitle:null,isOpenForSubmission:!0,hash:"37247080c87485c80a9fc393b2bdc50e",slug:null,bookSignature:"Dr. Leo Dimitrios Kounis",coverURL:"https://cdn.intechopen.com/books/images_new/7771.jpg",editedByType:null,editors:[{id:"111582",title:"Dr.",name:"Leo",surname:"Kounis",slug:"leo-kounis",fullName:"Leo Kounis"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7772",title:"Systems of Systems - Engineering, Modeling, Simulation and Analysis",subtitle:null,isOpenForSubmission:!0,hash:"677fbbd5fc2550e8be540f40c0969a62",slug:null,bookSignature:"Dr. Tien Manh Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7772.jpg",editedByType:null,editors:[{id:"210657",title:"Dr.",name:"Tien",surname:"Nguyen",slug:"tien-nguyen",fullName:"Tien Nguyen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7783",title:"Polyimide for Electronic and Electrical Engineering Applications",subtitle:null,isOpenForSubmission:!0,hash:"736e80c9bf791829c9a74ac05abb04b7",slug:null,bookSignature:"Dr. Sombel Diaham",coverURL:"https://cdn.intechopen.com/books/images_new/7783.jpg",editedByType:null,editors:[{id:"57115",title:"Dr.",name:"Sombel",surname:"Diaham",slug:"sombel-diaham",fullName:"Sombel Diaham"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8031",title:"Pavement Engineering",subtitle:null,isOpenForSubmission:!0,hash:"1d8ae1b3b3a208c2b16c1ff852e14207",slug:null,bookSignature:"Dr. Sameh Zaghloul",coverURL:"https://cdn.intechopen.com/books/images_new/8031.jpg",editedByType:null,editors:[{id:"269407",title:"Dr.",name:"Sameh",surname:"Zaghloul",slug:"sameh-zaghloul",fullName:"Sameh Zaghloul"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8084",title:"Mechanical Properties of Bamboo",subtitle:null,isOpenForSubmission:!0,hash:"93a82c83d0f81eace906cc1f99809495",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/8084.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:35},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:32},{group:"topic",caption:"Business, Management and Economics",value:7,count:9},{group:"topic",caption:"Chemistry",value:8,count:29},{group:"topic",caption:"Computer and Information Science",value:9,count:26},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:14},{group:"topic",caption:"Engineering",value:11,count:75},{group:"topic",caption:"Environmental Sciences",value:12,count:13},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:37},{group:"topic",caption:"Mathematics",value:15,count:14},{group:"topic",caption:"Medicine",value:16,count:137},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:5},{group:"topic",caption:"Neuroscience",value:18,count:6},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:8},{group:"topic",caption:"Physics",value:20,count:19},{group:"topic",caption:"Psychology",value:21,count:2},{group:"topic",caption:"Robotics",value:22,count:6},{group:"topic",caption:"Social Sciences",value:23,count:13},{group:"topic",caption:"Technology",value:24,count:10},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3},{group:"topic",caption:"Intelligent System",value:535,count:1}],offset:12,limit:12,total:109},popularBooks:{featuredBooks:[{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7614",title:"Fourier Transforms",subtitle:"Century of Digitalization and Increasing Expectations",isOpenForSubmission:!1,hash:"ff3501657ae983a3b42fef1f7058ac91",slug:"fourier-transforms-century-of-digitalization-and-increasing-expectations",bookSignature:"Goran S. Nikoli? and Dragana Z. Markovi?-Nikoli?",coverURL:"https://cdn.intechopen.com/books/images_new/7614.jpg",editors:[{id:"23261",title:"Prof.",name:"Goran",middleName:"S.",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7087",title:"Tendons",subtitle:null,isOpenForSubmission:!1,hash:"786abac0445c102d1399a1e727a2db7f",slug:"tendons",bookSignature:"Hasan Sözen",coverURL:"https://cdn.intechopen.com/books/images_new/7087.jpg",editors:[{id:"161402",title:"Dr.",name:"Hasan",middleName:null,surname:"Sözen",slug:"hasan-sozen",fullName:"Hasan Sözen"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,isOpenForSubmission:!1,hash:"61c627da05b2ace83056d11357bdf361",slug:"current-topics-in-neglected-tropical-diseases",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",editors:[{id:"131400",title:"Dr.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7610",title:"Renewable and Sustainable Composites",subtitle:null,isOpenForSubmission:!1,hash:"c2de26c3d329c54f093dc3f05417500a",slug:"renewable-and-sustainable-composites",bookSignature:"António B. Pereira and Fábio A. O. Fernandes",coverURL:"https://cdn.intechopen.com/books/images_new/7610.jpg",editors:[{id:"211131",title:"Prof.",name:"António",middleName:"Bastos",surname:"Pereira",slug:"antonio-pereira",fullName:"António Pereira"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8416",title:"Non-Equilibrium Particle Dynamics",subtitle:null,isOpenForSubmission:!1,hash:"2c3add7639dcd1cb442cb4313ea64e3a",slug:"non-equilibrium-particle-dynamics",bookSignature:"Albert S. Kim",coverURL:"https://cdn.intechopen.com/books/images_new/8416.jpg",editors:[{id:"21045",title:"Prof.",name:"Albert S.",middleName:null,surname:"Kim",slug:"albert-s.-kim",fullName:"Albert S. Kim"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8008",title:"Antioxidants",subtitle:null,isOpenForSubmission:!1,hash:"76361b4061e830906267933c1c670027",slug:"antioxidants",bookSignature:"Emad Shalaby",coverURL:"https://cdn.intechopen.com/books/images_new/8008.jpg",editors:[{id:"63600",title:"Prof.",name:"Emad",middleName:null,surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4392},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7614",title:"Fourier Transforms",subtitle:"Century of Digitalization and Increasing Expectations",isOpenForSubmission:!1,hash:"ff3501657ae983a3b42fef1f7058ac91",slug:"fourier-transforms-century-of-digitalization-and-increasing-expectations",bookSignature:"Goran S. Nikoli? and Dragana Z. Markovi?-Nikoli?",coverURL:"https://cdn.intechopen.com/books/images_new/7614.jpg",editors:[{id:"23261",title:"Prof.",name:"Goran",middleName:"S.",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7087",title:"Tendons",subtitle:null,isOpenForSubmission:!1,hash:"786abac0445c102d1399a1e727a2db7f",slug:"tendons",bookSignature:"Hasan Sözen",coverURL:"https://cdn.intechopen.com/books/images_new/7087.jpg",editors:[{id:"161402",title:"Dr.",name:"Hasan",middleName:null,surname:"Sözen",slug:"hasan-sozen",fullName:"Hasan Sözen"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,isOpenForSubmission:!1,hash:"61c627da05b2ace83056d11357bdf361",slug:"current-topics-in-neglected-tropical-diseases",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",editors:[{id:"131400",title:"Dr.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7610",title:"Renewable and Sustainable Composites",subtitle:null,isOpenForSubmission:!1,hash:"c2de26c3d329c54f093dc3f05417500a",slug:"renewable-and-sustainable-composites",bookSignature:"António B. Pereira and Fábio A. O. Fernandes",coverURL:"https://cdn.intechopen.com/books/images_new/7610.jpg",editors:[{id:"211131",title:"Prof.",name:"António",middleName:"Bastos",surname:"Pereira",slug:"antonio-pereira",fullName:"António Pereira"}],productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8463",title:"Pediatric Surgery, Flowcharts and Clinical Algorithms",subtitle:null,isOpenForSubmission:!1,hash:"23f39beea4d557b0ae424e2eaf82bf5e",slug:"pediatric-surgery-flowcharts-and-clinical-algorithms",bookSignature:"Sameh Shehata",coverURL:"https://cdn.intechopen.com/books/images_new/8463.jpg",editedByType:"Edited by",editors:[{id:"37518",title:"Prof.",name:"Sameh",middleName:null,surname:"Shehata",slug:"sameh-shehata",fullName:"Sameh Shehata"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7187",title:"Osteosarcoma",subtitle:"Diagnosis, Mechanisms, and Translational Developments",isOpenForSubmission:!1,hash:"89096359b754beb806eca4c6d8aacaba",slug:"osteosarcoma-diagnosis-mechanisms-and-translational-developments",bookSignature:"Matthew Gregory Cable and Robert Lawrence Randall",coverURL:"https://cdn.intechopen.com/books/images_new/7187.jpg",editedByType:"Edited by",editors:[{id:"265693",title:"Dr.",name:"Matthew Gregory",middleName:null,surname:"Cable",slug:"matthew-gregory-cable",fullName:"Matthew Gregory Cable"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editedByType:"Edited by",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editedByType:"Edited by",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"e7ea7e74ce7a7a8e5359629e07c68d31",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",editedByType:"Edited by",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8256",title:"Distillation",subtitle:"Modelling, Simulation and Optimization",isOpenForSubmission:!1,hash:"c76af109f83e14d915e5cb3949ae8b80",slug:"distillation-modelling-simulation-and-optimization",bookSignature:"Vilmar Steffen",coverURL:"https://cdn.intechopen.com/books/images_new/8256.jpg",editedByType:"Edited by",editors:[{id:"189035",title:"Dr.",name:"Vilmar",middleName:null,surname:"Steffen",slug:"vilmar-steffen",fullName:"Vilmar Steffen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7240",title:"Growing and Handling of Bacterial Cultures",subtitle:null,isOpenForSubmission:!1,hash:"a76c3ef7718c0b72d0128817cdcbe6e3",slug:"growing-and-handling-of-bacterial-cultures",bookSignature:"Madhusmita Mishra",coverURL:"https://cdn.intechopen.com/books/images_new/7240.jpg",editedByType:"Edited by",editors:[{id:"204267",title:"Dr.",name:"Madhusmita",middleName:null,surname:"Mishra",slug:"madhusmita-mishra",fullName:"Madhusmita Mishra"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editedByType:"Edited by",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editedByType:"Edited by",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editedByType:"Edited by",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"674",title:"Soil Biology",slug:"soil-biology",parent:{title:"Soil Science",slug:"earth-and-planetary-sciences-soil-science"},numberOfBooks:2,numberOfAuthorsAndEditors:76,numberOfWosCitations:28,numberOfCrossrefCitations:25,numberOfDimensionsCitations:53,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"soil-biology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6559",title:"Earthworms",subtitle:"The Ecological Engineers of Soil",isOpenForSubmission:!1,hash:"0780208898e98441ccea18ea373c0708",slug:"earthworms-the-ecological-engineers-of-soil",bookSignature:"Sajal Ray",coverURL:"https://cdn.intechopen.com/books/images_new/6559.jpg",editedByType:"Edited by",editors:[{id:"173697",title:"Prof.",name:"Sajal",middleName:null,surname:"Ray",slug:"sajal-ray",fullName:"Sajal Ray"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1398",title:"Principles, Application and Assessment in Soil Science",subtitle:null,isOpenForSubmission:!1,hash:"70c304305ba2727cc51774a1bc517e18",slug:"principles-application-and-assessment-in-soil-science",bookSignature:"E. Burcu Özkaraova Güngör",coverURL:"https://cdn.intechopen.com/books/images_new/1398.jpg",editedByType:"Edited by",editors:[{id:"74046",title:"Dr.",name:"Burcu E.",middleName:null,surname:"Ozkaraova Gungor",slug:"burcu-e.-ozkaraova-gungor",fullName:"Burcu E. Ozkaraova Gungor"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,mostCitedChapters:[{id:"24781",doi:"10.5772/29627",title:"Updated Brazilian’s Georeferenced Soil Database – An Improvement for International Scientific Information Exchanging",slug:"updated-brazilian-s-georeferenced-soil-database-an-improvement-for-international-scientific-informat",totalDownloads:3157,totalCrossrefCites:2,totalDimensionsCites:8,book:{slug:"principles-application-and-assessment-in-soil-science",title:"Principles, Application and Assessment in Soil Science",fullTitle:"Principles, Application and Assessment in Soil Science"},signatures:"Marcelo Muniz Benedetti, Nilton Curi, Gerd Sparovek, Amaury de Carvalho Filho and Sérgio Henrique Godinho Silva",authors:[{id:"32937",title:"Prof.",name:"Gerd",middleName:null,surname:"Sparovek",slug:"gerd-sparovek",fullName:"Gerd Sparovek"},{id:"78632",title:"Dr.",name:"Marcelo",middleName:null,surname:"Muniz Benedetti",slug:"marcelo-muniz-benedetti",fullName:"Marcelo Muniz Benedetti"},{id:"130228",title:"Dr.",name:"Nilton",middleName:null,surname:"Curi",slug:"nilton-curi",fullName:"Nilton Curi"},{id:"130483",title:"Dr.",name:"Amaury",middleName:null,surname:"De Carvalho Filho",slug:"amaury-de-carvalho-filho",fullName:"Amaury De Carvalho Filho"}]},{id:"24772",doi:"10.5772/31064",title:"Long-Term Effects of Residue Management on Soil Fertility in Mediterranean Olive Grove: Simulating Carbon Sequestration with RothC Model",slug:"long-term-effects-of-residue-management-on-soil-fertility-in-mediterranean-olive-grove-simulating-ca",totalDownloads:2035,totalCrossrefCites:2,totalDimensionsCites:8,book:{slug:"principles-application-and-assessment-in-soil-science",title:"Principles, Application and Assessment in Soil Science",fullTitle:"Principles, Application and Assessment in Soil Science"},signatures:"O.M. Nieto, J. Castro and E. Fernández",authors:[{id:"85434",title:"PhD.",name:"Olga M",middleName:null,surname:"Nieto",slug:"olga-m-nieto",fullName:"Olga M Nieto"},{id:"85444",title:"Dr.",name:"Juan",middleName:null,surname:"Castro",slug:"juan-castro",fullName:"Juan Castro"},{id:"85447",title:"Dr.",name:"Emilia",middleName:null,surname:"Fernandez",slug:"emilia-fernandez",fullName:"Emilia Fernandez"}]},{id:"24769",doi:"10.5772/29490",title:"Classification and Management of Highly Weathered Soils in Malaysia for Production of Plantation Crops",slug:"classification-and-management-of-highly-weathered-soils-in-malaysia-for-production-of-plantation-cro",totalDownloads:3643,totalCrossrefCites:6,totalDimensionsCites:7,book:{slug:"principles-application-and-assessment-in-soil-science",title:"Principles, Application and Assessment in Soil Science",fullTitle:"Principles, Application and Assessment in Soil Science"},signatures:"J. Shamshuddin and Noordin Wan Daud",authors:[{id:"78120",title:"Prof.",name:"Jusop",middleName:null,surname:"Shamshuddin",slug:"jusop-shamshuddin",fullName:"Jusop Shamshuddin"},{id:"123882",title:"Dr.",name:"Noordin",middleName:null,surname:"Wan Daud",slug:"noordin-wan-daud",fullName:"Noordin Wan Daud"}]}],mostDownloadedChaptersLast30Days:[{id:"60445",title:"Earthworms and Vermicomposting",slug:"earthworms-and-vermicomposting",totalDownloads:691,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"earthworms-the-ecological-engineers-of-soil",title:"Earthworms",fullTitle:"Earthworms - The Ecological Engineers of Soil"},signatures:"Jorge Domínguez",authors:[{id:"97521",title:"Dr.",name:"Jorge",middleName:null,surname:"Domínguez",slug:"jorge-dominguez",fullName:"Jorge Domínguez"}]},{id:"59413",title:"Earthworms and Nematodes: The Ecological and Functional Interactions",slug:"earthworms-and-nematodes-the-ecological-and-functional-interactions",totalDownloads:402,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"earthworms-the-ecological-engineers-of-soil",title:"Earthworms",fullTitle:"Earthworms - The Ecological Engineers of Soil"},signatures:"Jair Alves Dionísio, Wilian Carlo Demetrio and Arlei Maceda",authors:[{id:"225679",title:"Dr.",name:"Jair",middleName:"Alves",surname:"Dionisio",slug:"jair-dionisio",fullName:"Jair Dionisio"},{id:"225686",title:"MSc.",name:"Arlei",middleName:null,surname:"Maceda",slug:"arlei-maceda",fullName:"Arlei Maceda"},{id:"225688",title:"Dr.",name:"Wilian",middleName:null,surname:"Demetrio",slug:"wilian-demetrio",fullName:"Wilian Demetrio"}]},{id:"60450",title:"Environmental Influence of Soil toward Effective Vermicomposting",slug:"environmental-influence-of-soil-toward-effective-vermicomposting",totalDownloads:463,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"earthworms-the-ecological-engineers-of-soil",title:"Earthworms",fullTitle:"Earthworms - The Ecological Engineers of Soil"},signatures:"Jaswinder Singh, Sharanpreet Singh, Adarsh Pal Vig and Arvinder\nKaur",authors:[{id:"229104",title:"Dr.",name:"Jaswinder",middleName:null,surname:"Singh",slug:"jaswinder-singh",fullName:"Jaswinder Singh"},{id:"240576",title:"Dr.",name:"Adarsh",middleName:"Pal",surname:"Vig",slug:"adarsh-vig",fullName:"Adarsh Vig"},{id:"240577",title:"Dr.",name:"Arvinder",middleName:null,surname:"Kaur",slug:"arvinder-kaur",fullName:"Arvinder Kaur"},{id:"240578",title:"Mr.",name:"Sharanpreet",middleName:null,surname:"Singh",slug:"sharanpreet-singh",fullName:"Sharanpreet Singh"}]},{id:"69073",title:"Phylogenomic Review of Root Nitrogen-Fixing Symbiont Population Nodulating Northwestern African Wild Legumes",slug:"phylogenomic-review-of-root-nitrogen-fixing-symbiont-population-nodulating-northwestern-african-wild",totalDownloads:116,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:null,title:"Nitrogen Fixation",fullTitle:"Nitrogen Fixation"},signatures:"Mokhtar Rejili, Mohamed Ali BenAbderrahim and Mohamed Mars",authors:null},{id:"67454",title:"Nitrogen Fertilization I: Impact on Crop, Soil, and Environment",slug:"nitrogen-fertilization-i-impact-on-crop-soil-and-environment",totalDownloads:61,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:null,title:"Nitrogen Fixation",fullTitle:"Nitrogen Fixation"},signatures:"Upendra M. Sainju, Rajan Ghimire and Gautam P. Pradhan",authors:null},{id:"66598",title:"Distribution and Characterization of the Indigenous Soybean-Nodulating Bradyrhizobia in the Philippines",slug:"distribution-and-characterization-of-the-indigenous-soybean-nodulating-bradyrhizobia-in-the-philippi",totalDownloads:152,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:null,title:"Nitrogen Fixation",fullTitle:"Nitrogen Fixation"},signatures:"Maria Luisa Tabing Mason and Yuichi Saeki",authors:null},{id:"70071",title:"Organic Nitrogen in Agricultural Systems",slug:"organic-nitrogen-in-agricultural-systems",totalDownloads:29,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:null,title:"Nitrogen Fixation",fullTitle:"Nitrogen Fixation"},signatures:"Eulene Francisco da Silva, Marlenildo Ferreira Melo, Kássio Ewerton Santos Sombra, Tatiane Severo Silva, Diana Ferreira de Freitas, Maria Eugênia da Costa, Eula Paula da Silva Santos, Larissa Fernandes da Silva, Ademar Pereira Serra and Paula Romyne de Morais Cavalcante Neitzke",authors:[{id:"182258",title:"Dr.",name:"Ademar",middleName:"Pereira",surname:"Serra",slug:"ademar-serra",fullName:"Ademar Serra"}]},{id:"24766",title:"Phosphorus: Chemism and Interactions",slug:"phosphorus-chemism-and-interactions",totalDownloads:2306,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"principles-application-and-assessment-in-soil-science",title:"Principles, Application and Assessment in Soil Science",fullTitle:"Principles, Application and Assessment in Soil Science"},signatures:"E. Saljnikov and D. Cakmak",authors:[{id:"78355",title:"Dr.",name:"Elmira",middleName:"Rahim",surname:"Saljnikov",slug:"elmira-saljnikov",fullName:"Elmira Saljnikov"},{id:"85471",title:"Dr.",name:"Dragan",middleName:null,surname:"Cakmak",slug:"dragan-cakmak",fullName:"Dragan Cakmak"}]},{id:"24769",title:"Classification and Management of Highly Weathered Soils in Malaysia for Production of Plantation Crops",slug:"classification-and-management-of-highly-weathered-soils-in-malaysia-for-production-of-plantation-cro",totalDownloads:3643,totalCrossrefCites:6,totalDimensionsCites:7,book:{slug:"principles-application-and-assessment-in-soil-science",title:"Principles, Application and Assessment in Soil Science",fullTitle:"Principles, Application and Assessment in Soil Science"},signatures:"J. Shamshuddin and Noordin Wan Daud",authors:[{id:"78120",title:"Prof.",name:"Jusop",middleName:null,surname:"Shamshuddin",slug:"jusop-shamshuddin",fullName:"Jusop Shamshuddin"},{id:"123882",title:"Dr.",name:"Noordin",middleName:null,surname:"Wan Daud",slug:"noordin-wan-daud",fullName:"Noordin Wan Daud"}]},{id:"24777",title:"Soil Indicators of Hillslope Hydrology",slug:"soil-indicators-of-hillslope-hydrology",totalDownloads:2998,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"principles-application-and-assessment-in-soil-science",title:"Principles, Application and Assessment in Soil Science",fullTitle:"Principles, Application and Assessment in Soil Science"},signatures:"Johan van Tol, Pieter Le Roux and Malcolm Hensley",authors:[{id:"75125",title:"Mr.",name:"Johan",middleName:null,surname:"Van Tol",slug:"johan-van-tol",fullName:"Johan Van Tol"},{id:"75127",title:"Dr.",name:"Pieter",middleName:null,surname:"Le Roux",slug:"pieter-le-roux",fullName:"Pieter Le Roux"},{id:"75128",title:"Prof.",name:"Malcolm",middleName:null,surname:"Hensley",slug:"malcolm-hensley",fullName:"Malcolm Hensley"}]}],onlineFirstChaptersFilter:{topicSlug:"soil-biology",limit:3,offset:0},onlineFirstChaptersCollection:[{id:"70071",title:"Organic Nitrogen in Agricultural Systems",slug:"organic-nitrogen-in-agricultural-systems",totalDownloads:31,totalDimensionsCites:0,doi:"10.5772/intechopen.90242",book:{title:"Nitrogen Fixation"},signatures:"Eulene Francisco da Silva, Marlenildo Ferreira Melo, Kássio Ewerton Santos Sombra, Tatiane Severo Silva, Diana Ferreira de Freitas, Maria Eugênia da Costa, Eula Paula da Silva Santos, Larissa Fernandes da Silva, Ademar Pereira Serra and Paula Romyne de Morais Cavalcante Neitzke"},{id:"69650",title:"Nitrogen Fertilization in Blackberry",slug:"nitrogen-fertilization-in-blackberry",totalDownloads:45,totalDimensionsCites:0,doi:"10.5772/intechopen.82409",book:{title:"Nitrogen Fixation"},signatures:"Ivan dos Santos Pereira, Adilson Luis Bamberg, Carlos Augusto Posser Silveira, Luis Eduardo Corrêa Antunes and Rogério Oliveira de Sousa"},{id:"69073",title:"Phylogenomic Review of Root Nitrogen-Fixing Symbiont Population Nodulating Northwestern African Wild Legumes",slug:"phylogenomic-review-of-root-nitrogen-fixing-symbiont-population-nodulating-northwestern-african-wild",totalDownloads:117,totalDimensionsCites:0,doi:"10.5772/intechopen.87082",book:{title:"Nitrogen Fixation"},signatures:"Mokhtar Rejili, Mohamed Ali BenAbderrahim and Mohamed Mars"}],onlineFirstChaptersTotal:7},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"6837",title:"Lithium-ion Batteries - Thin Film for Energy Materials and Devices",subtitle:null,isOpenForSubmission:!0,hash:"ea7789260b319b9a4b472257f57bfeb5",slug:null,bookSignature:"Prof. Mitsunobu Sato, Dr. Li Lu and Dr. Hiroki Nagai",coverURL:"https://cdn.intechopen.com/books/images_new/6837.jpg",editedByType:null,editors:[{id:"179615",title:"Prof.",name:"Mitsunobu",middleName:null,surname:"Sato",slug:"mitsunobu-sato",fullName:"Mitsunobu Sato"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9423",title:"Applications of Artificial Intelligence in Process Industry Automation, Heat and Power Generation and Smart Manufacturing",subtitle:null,isOpenForSubmission:!0,hash:"10ac8fb0bdbf61044395963028653d21",slug:null,bookSignature:"Prof. Konstantinos G. Kyprianidis and Prof. Erik Dahlquist",coverURL:"https://cdn.intechopen.com/books/images_new/9423.jpg",editedByType:null,editors:[{id:"35868",title:"Prof.",name:"Konstantinos",middleName:"G.",surname:"Kyprianidis",slug:"konstantinos-kyprianidis",fullName:"Konstantinos Kyprianidis"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9428",title:"New Trends in the Use of Artificial Intelligence for the Industry 4.0",subtitle:null,isOpenForSubmission:!0,hash:"9e089eec484ce8e9eb32198c2d8b34ea",slug:null,bookSignature:"Dr. Luis Romeral Martinez, Dr. Roque A. Osornio-Rios and Dr. Miguel Delgado Prieto",coverURL:"https://cdn.intechopen.com/books/images_new/9428.jpg",editedByType:null,editors:[{id:"86501",title:"Dr.",name:"Luis",middleName:null,surname:"Romeral Martinez",slug:"luis-romeral-martinez",fullName:"Luis Romeral Martinez"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10107",title:"Artificial Intelligence in Oncology Drug Discovery & Development",subtitle:null,isOpenForSubmission:!0,hash:"043c178c3668865ab7d35dcb2ceea794",slug:null,bookSignature:"Dr. John Cassidy and Dr. Belle Taylor",coverURL:"https://cdn.intechopen.com/books/images_new/10107.jpg",editedByType:null,editors:[{id:"244455",title:"Dr.",name:"John",middleName:null,surname:"Cassidy",slug:"john-cassidy",fullName:"John Cassidy"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8903",title:"Carbon Based Material for Environmental Protection and Remediation",subtitle:null,isOpenForSubmission:!0,hash:"19da699b370f320eca63ef2ba02f745d",slug:null,bookSignature:"Dr. Mattia Bartoli and Dr. Marco Frediani",coverURL:"https://cdn.intechopen.com/books/images_new/8903.jpg",editedByType:null,editors:[{id:"188999",title:"Dr.",name:"Mattia",middleName:null,surname:"Bartoli",slug:"mattia-bartoli",fullName:"Mattia Bartoli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10132",title:"Applied Computational Near-surface Geophysics - From Integral and Derivative Formulas to MATLAB Codes",subtitle:null,isOpenForSubmission:!0,hash:"38cdbbb671df620b36ee96af1d9a3a90",slug:null,bookSignature:"Dr. Afshin Aghayan",coverURL:"https://cdn.intechopen.com/books/images_new/10132.jpg",editedByType:null,editors:[{id:"311030",title:"Dr.",name:"Afshin",middleName:null,surname:"Aghayan",slug:"afshin-aghayan",fullName:"Afshin Aghayan"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10110",title:"Advances and Technologies in Building Construction and Structural Analysis",subtitle:null,isOpenForSubmission:!0,hash:"df2ad14bc5588577e8bf0b7ebcdafd9d",slug:null,bookSignature:"Dr. Ali Kaboli and Dr. Sara Shirowzhan",coverURL:"https://cdn.intechopen.com/books/images_new/10110.jpg",editedByType:null,editors:[{id:"309192",title:"Dr.",name:"Ali",middleName:null,surname:"Kaboli",slug:"ali-kaboli",fullName:"Ali Kaboli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10175",title:"Ethics in Emerging Technologies",subtitle:null,isOpenForSubmission:!0,hash:"9c92da249676e35e2f7476182aa94e84",slug:null,bookSignature:"Prof. Ali Hessami",coverURL:"https://cdn.intechopen.com/books/images_new/10175.jpg",editedByType:null,editors:[{id:"108303",title:"Prof.",name:"Ali",middleName:null,surname:"Hessami",slug:"ali-hessami",fullName:"Ali Hessami"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:16},humansInSpaceProgram:{},teamHumansInSpaceProgram:{},route:{name:"profile.detail",path:"/profiles/77813/adam-krezel",hash:"",query:{},params:{id:"77813",slug:"adam-krezel"},fullPath:"/profiles/77813/adam-krezel",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()