\r\n\t2) The divergence between the levels of reliability required (twelve-9’s are not uncommon requirements) and the ability to identify or test failure modes that are increasingly unknown and unknowable
\r\n\t3) The divergence between the vulnerability of critical systems and the amount of damage that an individual ‘bad actor’ is able to inflict.
\r\n\t
\r\n\tThe book examines pioneering work to address these challenges and to ensure the timely arrival of antifragile critical systems into a world that currently sees humanity at the edge of a precipice.
Concern regarding halitosis is estimated to be the third most frequent reason for people to seek dental care, following tooth decay and periodontal disease [1]. Compared with tooth decay and periodontal disease, there are a diverse number of causes of halitosis. Table 1 shows a commonly used classification of halitosis [2 – 4]. Obvious bad breath is termed genuine halitosis, which is classified as physiological and pathological halitosis. Pathological halitosis is further sub-classified into halitosis as a result of oral and extra-oral causes. Physiological and oral pathological halitosis occur in the oral cavity, and comprise 85% or more of genuine halitosis [5, 6]. Physiological halitosis generally occurs at the time of waking or starving, and likely results from increased microbial metabolic activity that is aggravated by a physiological reduction in salivary flow, oral cleaning, and inadequate mouth cleaning before sleep or after eating [4]. Clinical causes of oral pathological halitosis include poor oral hygiene, tongue debris, periodontitis, inadequately fitted restorations, deep caries, endodontic lesions, ulceration, and low salivary flow [7 – 11]. The most common malodorous compounds that cause oral-derived malodor are volatile sulfur compounds (VSCs) such as hydrogen sulfide (H2S) and methyl mercaptan (CH3SH), which are associated with microbial amino acid metabolism [12, 13]. Halitosis derived from extra-oral causes is less common, but causes include respiratory disorders, gastrointestinal diseases, metabolic disorders, and drugs [2 – 4]. The smell of gases that have accumulated in organs during respiratory disorders and gastrointestinal diseases can be emitted directly from the oral cavity and nose. Malodorous components caused by some metabolic disorders and drugs circulate in the bloodstream and are exhaled in the breath after alveolar gas exchange. Components of extra-oral malodor include those due to disease, such as acetone in uncontrolled diabetes and trimethylamine in trimethylaminuria (“fish odor syndrome” [14]). Dimethyl sulfide (CH3SCH3), a VSC, is the main contributor to extra-oral or blood-borne halitosis via an as-yet-unknown metabolic disorder [15]. Some patients that complain of halitosis do not have bad breath. Although pseudo-halitosis is not diagnosed as a psychiatric disorder, some patients with this condition exhibit neurotic tendencies more frequently than do patients with genuine halitosis [6]. Halitophobia is characterized by a patient’s persistent belief that he or she has halitosis, despite reassurance, treatment, and counseling. Many patients with halitophobia have slight bad breath at their first visit to a dental clinic. However, the presence of a mental condition together with bad breath has been suggested in these individuals.
\n\t\t\t\tClassification (treatment needs)\n\t\t\t | \n\t\t\t\n\t\t\t\tDescription\n\t\t\t | \n\t\t|
Genuine halitosis | \n\t\t\tObvious malodor, and of an intensity beyond the socially acceptable level is perceived. | \n\t\t|
\n\t\t\t | Physiological halitosis (TN-1) | \n\t\t\tMalodor arises through putrefactive processes within the oral cavity. No specific diseases or pathological conditions that could cause halitosis are found. | \n\t\t
\n\t\t\t | Pathological halitosis | \n\t\t\t\n\t\t |
\n\t\t\t | Oral (TN-1 and TN-2) | \n\t\t\tHalitosis caused by a disease or a pathological condition that causes malfunction of the oral tissues. | \n\t\t
\n\t\t\t | Extra-oral (TN-1 and TN-3) | \n\t\t\tMalodor that originates from a respiratory system, gastrointestinal tract, metabolic disorders, or drugs. | \n\t\t
Pseudo-halitosis (TN-1 and TN-4) | \n\t\t\tNo objective evidence of malodor, although the patient thinks they have it. | \n\t\t|
Halitophobia (TN-1 and TN-5) | \n\t\t\tThe patient persists in believing they have halitosis despite reassurance, treatment, and counseling. | \n\t\t
All patients that complain of halitosis should receive an explanation of halitosis and instructions for oral hygiene (TN-1; Table 2) [16]. Further professional instruction, education, and reassurance are necessary for patients with pseudo-halitosis (TN-4). Professional cleaning and treatment of oral diseases are performed in patients with oral pathological halitosis (TN-2), and treatment and control of the systemic causative disease by a physician or medical specialist is provided for patients with extra-oral pathological halitosis (TN-3). Medical treatment by a psychological specialist is required for the treatment of halitophobia, regardless of the presence of bad breath (TN-5).
\n\t\t\t\tCategory\n\t\t\t | \n\t\t\t\n\t\t\t\tTreatment regimen\n\t\t\t | \n\t\t
TN-1 | \n\t\t\tExplanation of halitosis and instructions for oral hygiene. | \n\t\t
TN-2 | \n\t\t\tOral prophylaxis, professional cleaning, and treatment for oral diseases, particularly periodontal diseases. | \n\t\t
TN-3 | \n\t\t\tReferral to a physician or medial specialist. | \n\t\t
TN-4 | \n\t\t\tExplanation of the examination data, further professional instructions, education, and reassurance. | \n\t\t
TN-5 | \n\t\t\tReferral to a clinical psychologist, psychiatrist, or other psychological specialist. | \n\t\t
Most genuine halitosis occurs in the oral cavity, and is known as oral-derived malodor. As mentioned above, VSCs are produced during the metabolism of the sulfur-containing amino acids cysteine and methionine by bacteria [12, 13]. Gram-negative anaerobes in the oral cavity are important producers of VSCs. Periodontopathic bacteria isolated from subgingival plaques, such as Porphyromonas gingivalis, Prevotella intermedia, Tannerella forsythia, and Treponema denticola, generate significant amounts of H2S and CH3SH [17]. The genera Veillonella, Actinomyces and Prevotella are H2S-producing normal inhabitants of the tongue coating [18]. Solobacterium moorei is present in the tongue dorsa of subjects with halitosis, specifically [19]. A recent investigation of the bacterial composition of saliva reported that high proportions of the genera Neisseria, Fusobacterium, Porphyromonas, and SR1 were present in patients with high H2S and low CH3SH, whereas high proportions of the genera Prevotella, Veillonella, Atopobium, Megasphaera, and Selenomonas were detected in patients with high CH3SH and low H2S [20]. The human oral cavity contains more than 500 bacterial species that interact both with each other and host tissues, suggesting that various bacteria might play roles in malodor production. The treatment strategy for oral-derived malodor is the acquisition of a normal microbiota, as well as reducing the numbers of bacteria. The prevention and treatment of oral malodor involve primarily the removal of any causative clinical conditions, predominantly via oral hygiene instructions and the treatment of oral diseases. Persistent malodor usually originates from the posterior dorsum of the tongue and/or oral/dental diseases, including periodontal diseases. Tongue cleaning and the treatment of periodontal diseases are effective for improving oral malodor [21, 22]. In addition, many products such as mouthwash, dentifrice, gel, gum, oil, tablets, and lozenges can play supporting roles in controlling oral malodor. Such products improve oral malodor by reducing bacterial load and/or nutrient availability, exerting anti-inflammatory effects, and converting VSCs into non-volatile substances. The active ingredients used for controlling oral malodor can be separated into chemical agents and naturally derived compounds. Examples of chemical agents include chlorhexidine, cetylpyridinium chloride, zinc chloride, triclosan, stannous fluoride, hydrogen peroxide, chlorine dioxide, and sodium fluoride. Naturally derived compounds can be sub-classified into natural botanical extracts (e.g., actinidine, hinokitiol, eucalyptus-extract, green tea, magnolia bark extract, and pericarp extract of garcinia mangostana L), salivary components (lactoferrin and lactoperoxidase), and probiotic bacteria (Lactobacillus salivarius, Lactobacillus reuteri, Weissella cibaria, and Streptococcus salivarius). In this chapter, these various approaches to the prevention and treatment of oral malodor are summarized.
Chlorhexidine (CHX), cetylpyridinium chloride (CPC), triclosan, zinc ions (Zn2+), and chlorine dioxide (ClO2) are all known to inhibit oral malodor [23, 24]. In many cases, these active ingredients have been used in mouthwashes and dentifrices, both individually and in combinations. CHX digluconate has been used most frequently to treat oral cavities as an active ingredient in mouthwash that is designed to reduce dental plaque and oral bacteria. CHX is used in mouthwashes at 0.12% or 0.2%, and a previous study revealed that these two concentrations of CHX had an identical effect on gingival inflammation [25]. Young et al. [26] evaluated the inhibitory effects of CHX, CPC, and Zn2+on VSC production. Data revealed that 0.2% CHX and 1% Zn2+exhibited excellent inhibitory effects, and had similar effects on VSC production; however, the two agents had different anti-VSC kinetics. Briefly, 0.2% CHX had a sustained inhibitory effect, whereas Zn2+had an immediate effect. In contrast, 0.2% CPC had only a mild inhibitory effect on VSC production. These ingredients are found in commercial mouthwashes, often in combination. Roldán et al. [27] compared five commercial mouthwashes in a randomized, double-blind, crossover trial: 0.12% CHX alone, 0.12% CHX plus 5% alcohol, 0.12% CHX plus 0.05% CPC, 0.12% CHX plus sodium fluoride, and a combination of 0.05% CHX, 0.05% CPC, and 0.14% Zn2+. In this study, the combination of 0.12% CHX plus 0.05% CPC resulted in the greatest reduction in oral bacterial numbers. In contrast, the combination of 0.05% CHX, 0.05% CPC and 0.14% Zn2+provided the most immediate reduction in VSC levels. Zn2+can be effective in reducing the activity of VSCs directly, in addition to its antimicrobial effect [28]. It has been reported that a combination of Zn2+and CHX or CPC inhibited VSC formation synergistically [29]. ClO2 and chlorite anion (ClO2-) also oxidize VSCs directly into non-malodorous products, which consumes the amino acids that act as precursors to VSCs [30, 31]. A randomized double-blind crossover placebo-controlled clinical trial found that mouth rinsing with ClO2 effectively reduced morning malodor for 4 h in healthy volunteers [32]. Triclosan is a broad-spectrum antibacterial agent that blocks lipid synthesis in susceptible bacteria [33]. A double-blind, crossover, randomized study comparing the VSC-reducing effects of mouthwashes on morning bad breath in healthy subjects reported that VSC formation was inhibited by, in descending order, mouthwashes containing 0.12% CHX gluconate, 0.03% triclosan, essential oils, and 0.05% CPC [34].
However, there are concerns regarding the potential side effects of these chemical agents. The use of 0.2% CHX results in an unpleasant bitter taste, perturbs taste, causes desquamative lesions and soreness of the oral mucosa, and yellow/brown staining of the teeth and dorsum of the tongue [35]. Hypersensitivity to CHX is rare, but several immediate-type allergies such as contact urticarial, occupational asthma, and anaphylactic shock have been reported [36, 37]. In Japan, based on these reports, the concentration of CHX used near a wound is limited to 0.05%, which is lower than its effective concentration. Recently, the possibility that triclosan is hazardous to human health has been suggested. Several studies reported that triclosan might contribute to bacterial resistance to antibiotics, or interfere with endocrine functions in rats [38, 39]. The US Food and Drug Administration (FDA) named triclosan in the National Toxicology Program (NTP) for toxicological evaluation.
Due to the increase in health consciousness, many flavors and natural botanical extracts have been added to foods and medicine to reduce oral malodor. In addition, the effects of natural botanical extracts on oral malodor have been evaluated in randomized controlled trials.
Clinical trials to evaluate the effects of naturally derived compounds on reducing oral malodor.
OLT, organoleptic test; VSCs, volatile sulfur compounds; GC, gas chromatography; H2S, hydrogen sulfide; CH3SH, methyl mercaptan.
Eucalyptus extract is one of the four active ingredients of Listerine® mouthwash (Pfizer Inc., Morris Plains, NJ, USA), which was created in 1879 and was formulated originally as a surgical antiseptic. It has antibacterial activity against several periodontopathic bacteria including P. gingivalis and P. intermedia, which produce VSCs [40]. The effect on oral malodor of chewing gum containing eucalyptus extract was evaluated in a double-blind randomized trial over a 12-week period [41]. Relative to baseline, organoleptic test (OLT) scores decreased significantly at 4, 8, 12, and 14 weeks in the 0.4%-and 0.6%-eucalyptus extract groups, but not in the placebo group. In addition, the group-time interactions revealed significant reductions in OLT scores, VSC levels, and tongue-coating scores in both eucalyptus concentration groups compared with the placebo group.
The catechins present in green tea have in vitro bactericidal activity against the odor-producing periodontal bacteria P. gingivalis and Prevotella spp. [42], inhibit the adherence of P. gingivalis to oral epithelial cells [43], and reduce periodontal breakdown by inhibiting the collagenase and cysteine proteinase activity of P. gingivalis [44, 45]. It was reported that green tea powder reduced VSC concentrations in mouth air immediately after administration [46]. A double-blind placebo-controlled clinical trial found that rinsing the mouth with green tea containing mouthwash twice per day significantly reduced VSC levels at 30 min, 3 h, and day 28, compared with baseline [47]. There was a significant difference between the green tea group and the placebo group at day 28 [47].
Pericarp extracts of Garcinia mangostana, which is commonly known as the mangosteen tree, exert antimicrobial activity against the oral bacteria Streptococcus mutans and P. gingivalis, and exhibit anti-inflammatory effects [48]. The use of mouthwash containing pericarp extracts of G. mangostana twice daily for 2 weeks reduced VSC levels significantly compared with baseline and the placebo group [49]. Furthermore, rinsing with mouthwash containing G. mangostana L for 2 weeks after scaling and polishing reduced VSC level significantly compared with placebo, whereas there was no significant difference between baseline and day 15 [49].
Hinokitiol (β-thujaplicin), a component of essential oils isolated from Cupressaceae, shows antibacterial activity against various bacteria, including periodontopathic bacteria and fungi [50, 51], and has been used as a therapeutic agent against periodontal disease and oral Candida infections. An open-label, randomized, controlled trial was performed in patients with genuine halitosis to evaluate the effects of mouth cleaning using hinokitiol-containing gels on oral malodor [52]. Mouth cleaning, including the teeth, gingiva, and tongue, was performed three times per day for 4 weeks. Organoleptic test (OLT) scores, levels of H2S and CH3SH, the frequency of bleeding on probing, mean probing pocket depths, and plaque indices were improved significantly in the group treated using the hinokitiol-containing gel. In contrast, only OLT scores improved significantly in the control group treated using 0.01% CPC-containing control gel.
Actidinine is a cysteine protease derived from the kiwi fruit. Tongue coating is understood to be an important factor in oral malodor and is composed of proteins [22, 53]. The effect of a tablet containing actidinine on oral malodor was evaluated in a double-blind, randomized crossover trial [54]. The subjects sucked the tablets three times per day for 1 week. VSC levels and tongue-coating ratios decreased significantly on the first day in both the test and placebo groups immediately after taking a tablet. VSC levels were significantly lower after 7 days only in the test group. There was no significant reduction in tongue-coating ratios in either group after 7 days of use.
Saliva contains a variety of antimicrobial proteins including lactoferrin, peroxidase, lysozyme, and secretory immunoglobulin A. Lactoferrin is an iron-binding glycoprotein that chelates two ferric ions per molecule, and decreases bacterial growth, biofilm development, iron overload, reaction oxygen formation, and inflammatory processes [55]. Salivary peroxidase, in the presence of H2O2 and SCN-, can reversibly inhibit bacterial enzyme and transport systems by oxidizing the sulfhydryl groups of proteins [56]. A reduction in salivary flow might inhibit antimicrobial defense systems in saliva. A relationship between low salivary flow and the generation of H2S and CH3SH in mouth air has been reported previously [8].
The effect of a tablet containing lactoferrin and lactoperoxidase purified from bovine milk on oral malodor was evaluated in a randomized, double-blind, crossover, placebo-controlled clinical trial [57]. According to that study, CH3SH levels were significantly lower in the test group compared with the placebo group 10 min after taking a tablet. The median CH3SH concentration in the test group was below the olfactory threshold between 10 min and 2 h, whereas the level in the placebo group was above the threshold throughout the experimental period.
The use of probiotics as preventative and therapeutic products for oral healthcare is a novel antimicrobial approach that has been proposed as an alternative to chemotherapeutics. Probiotics are defined as “live microorganisms that confer a health benefit on the host when administered in adequate amounts” by the World Health Organization and the Food and Agriculture Organization of the United States (http://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf). Probiotics have been used traditionally to treat diseases related to the gastrointestinal tract. Recently, the use of such probiotics to improve oral health has attracted increasing attention, although this field is still in its infancy. Nevertheless, there are several reports related to the use of probiotics to ameliorate oral malodor.
Kang et al. isolated three peroxide-generating lactobacilli, identified as W. cibaria, from the saliva of kindergarten children aged 4–7 years who had little supragingival plaque and no oral disease, including dental caries [58]. These isolates co-aggregated with F. nucleatum, inhibited VSC production by F. nucleatum, and prevented proliferation by F. nucleatum in vitro. Subsequently, the effect of W. cibaria CMU on morning odor was evaluated in a clinical trial of healthy volunteers. Rinsing the mouth using solutions containing W. cibaria CMU twice per day reduced production of H2S and CH3SH the next morning significantly. Conversely, use of solutions containing distilled water, Lactobacillus casei, and Weissella confusa had no effect.
Streptococcus salivarius K12 has been used to prevent the pharyngitis and tonsillitis induced by Streptococcus pyogenes. S. salivarius was selected as an oral probiotic because it is an early colonizer of oral surfaces and is the predominant member of tongue microbiota numerically in ‘healthy’ individuals [19, 59]. S. salivarius K12 produces two bacteriocins: salivaricin A and salivaricin B [60, 61]. It exerts inhibitory activities against oral malodor-related oral bacteria, such as Atopobium parvulum, Eubacterium sulci, and S. moorei, to varying extents [62]. According to an additional in vitro study, inhibitory effects were observed against Streptococcus anginosus, Eubacterium saburreum, and Peptostreptococcus micros, but not P. gingivalis and P. intermedia [63]. This report described the results of a preliminary clinical trial that administered lozenges containing either S. salivarius K12 or placebo. The subjects undertook a 3-day regimen of CHX mouth rinsing followed by the use of lozenges at specific intervals. The VSC levels 1 week after the initiation of treatment were reduced significantly in the S. salivarius K12 group compared with the placebo group. The salivary bacterial composition was examined using PCR-denaturing gradient gel electrophoresis, and data revealed that it changed in most subjects following K12 treatment, albeit to differing extents.
Lactobacillus reuteri is a member of the indigenous oral microbiota in humans, and it exerts antibacterial properties by converting glycerol into reuterin, a broad-spectrum antimicrobial substance [64]. Products that contain L. reuteri have been marketed for the prevention and treatment of gingivitis and periodontal disease [65-67]. However, data are conflicting regarding the potential of L. reuteri for caries management, as some studies reported useful effects whereas other did not [68, 69]. The effect of chewing gum containing two strains of probiotic lactobacilli (L. reuteri DSM 17938 and L. reuteri ATCC PTA 5289) on oral malodor was evaluated in a randomized double-blinded placebo-controlled crossover trial [70]. The study populations were healthy volunteers, and the study design included two intervention periods of 2 weeks with a 3-week washout period. The organoleptic scores were significantly lower in the probiotic group compared with the placebo group. However, there were no differences in VSC levels between the two groups, either before or after rinsing with L-cysteine. The researchers hypothesized that the probiotic gum might have affected bacteria that produce malodorous compounds other than VSCs.
Lactobacillus salivarius WB21 is an acid-tolerant lactobacillus derived from L. salivarius WB1004 [71], and is a potentially effective probiotic against Helicobacter pylori. Oral consumption of tablets containing L. salivarius WB21 was reported to improve periodontal conditions in healthy volunteer smokers and reduce the numbers of the periodontopathic bacterium T. forsythia in subgingival plaque [72, 73]. A double-blind, randomized, placebo-controlled clinical trial using oils containing L. salivarius WB21 in patients with periodontal disease reported reduced bleeding on probing compared with the placebo group after 2 weeks [74]. We performed an open-label pilot study previously to evaluate whether oral administration of a tablet containing L. salivarius WB21 altered oral malodor or clinical conditions in patients complaining of oral malodor [75]. The organoleptic scores and concentrations of H2S and CH3SH were reduced in patients without periodontitis after 2 weeks of treatment, and the organoleptic scores and bleeding on probing were decreased in patients with periodontitis after 4 weeks. Subsequently, we performed a 14-day, double-blind, randomized, placebo-controlled crossover trial using tablets containing L. salivarius WB21 or placebo taken orally by patients with oral malodor [76]. The organoleptic scores were decreased significantly in both the probiotic and placebo periods compared with the baseline scores, and there was no difference between periods. Compared with the values at baseline, the concentrations of total VSCs decreased significantly in the probiotic period but not in the placebo period, and significant differences were observed between the two periods. In addition, the mean probing pocket depth decreased significantly in the probiotic period compared with the placebo period. Quantitative analysis of the bacteria in saliva found significantly lower levels of ubiquitous bacteria and F. nucleatum during the probiotic period.
Chemical agents have been used widely to prevent and treat oral malodor. However, long-term use of some antiseptic agents such as CHX might result in complications such as staining of teeth and the development of microbial resistance. In addition, recent studies have raised concern regarding the potentially harmful effects of triclosan on the human body. These phenomena and consumers’ increasing health consciousness have led to the development of alternative antimicrobial approaches, including herbs, natural botanical extracts, salivary components, and probiotics. Diverse natural products have been marketed as effective for preventing and treating oral malodor, and an increasingly diverse range of strategies for oral malodor is available. However, few studies have demonstrated effectiveness of new products against oral malodor clinically. Furthermore, most studies evaluated the short-term effects of products on oral malodor, either immediately or only a few weeks after taking the products. However, the products used for preventing and treating oral malodor, including mouthwash, toothpaste, tablets, and lozenges, are generally used for the long term. Therefore, the long-term effects of agents on oral malodor, as well as their safety and side effects, should be evaluated in randomized controlled trials.
The chapter analyzes the sources of computer visualization metaphors and human-machine interaction. The metaphor essence consists of interpretation and experience of the phenomena of one sort in terms of the phenomena of other sort.
A metaphor is the main idea of forming the types of visualization views, interfaces, and scenarios of visualization output and interaction with it.
Metaphor sources are objects of the surrounding world, scientific ideas, ideas derived from literature, folklore, sci-fi cinema, computer games, etc.
Metaphorization is based on interaction structures of source and target domains. In the process of metaphorization, some objects of target domain are structured on an example of objects of target domain, and there is a metaphorical mapping (projection) of one domain onto another. That is how the metaphor can be understood as a map from source domain onto target domain, and this map is strictly structured [1]. Metaphor ideas are often based on real life as well as on abstract scientific ideas. Worth mentioning are such examples of pre-computer era visualization as cartography, engineering graphics, and Cartesian coordinates, which played a crucial role in the development of modern civilization. Cartesian coordinates were the basis for the idea of computer graphics during the first period of its development. The use of new ideas is connected with developing the means for human-computer interaction. It is in this field that such metaphors as a light button and light button menu appeared. The most well-known and still popular desktop metaphor is also connected with interfaces intended to provide interaction in office work computerization. The desktop metaphor is almost entirely based on office work realities. However, there is a double-click, which can be called a magic feature and is unparalleled in real life. Further, such magic features were added in a whole range of metaphors used in computer visualization systems. The emergence of virtual reality as an environment for computer visualization made the use of metaphors relevant. Conditions inherent to virtual reality are somewhat similar to magic and science fiction. That is why fairy tales and sci-fi in literature and cinema may become an interesting source of new metaphors.
Below we shall discuss the main ideas of pre-computer visualization, the potentials of metaphors based on real-life phenomena and on scientific ideas. Then we shall analyze the potentials of fairy tales as sources of metaphors. We shall also provide several examples of metaphors based on science fiction and discuss the evolution of visualization from a comic book to immersive cinema.
The concept of metaphors is popular in publications on computer visualization and human-computer interaction. One may reveal the following two cases of using this concept:
A metaphor as the basic idea of data presentation, the idea of convergence of entities of a computer system, and a source domain.
A metaphor as the idea of interaction with the [virtual] environment created by computer systems.
The following hierarchy of computer metaphors is considered:
Global metaphors of design
Basic visualization and interface metaphors
Local metaphors
Global metaphors map the main design idea. For example, considering the world as a “super office.” (The whole world is an office, and all the men and women are merely clerks in it).
Let us consider global visualization metaphors. These ideas depend on global events and changes in society, art, and science. We are interested in global metaphors that have a visual (“pre-computer” and computer) representation. These ideas formed the basics of cartography, engineering drawings, and function graphs on the Cartesian plane.
We review the interference of metaphorical ideas and the challenges facing economy, science, and education in the past and now.
Modern cartography is the result of geography development and a prerequisite for the Age of Exploration. The use of the Mercator projection and the grid of parallels and meridians in the modern age is a great achievement in the visualization of geographical and navigation data.
Variations of geographical metaphors are used now in data visualization and software visualization systems.
Engineering drawing is the product of the Industrial Revolution, its prerequisite and an important tool. Multiple views and projections, a set of rules depicting product features, compile a certain explicit code.
Engineering drawing in the form of CAD systems is an integral part of computer tools of modern engineers.
One of the most powerful visualization ideas of the modern age is the idea to draw function graphs in Cartesian coordinates. The idea of function reflects rather abstract concepts, but due to graph drawings, even very young students may become familiar with them.
2D and 3D graph drawings are the bases of modern scientific visualization and an important part of data and software visualization [2].
For a start, let us revise the way things were in the field of human-computer interface before the emergence of visual metaphors. In those times software engineers (who comprised the basic quota of users all over the world) still remembered working with bulky computer consoles. Command-line interface prevailed in interactive systems. For instance, text editing commands included operation indication, the number of source line (sometimes the number of a symbol in the line as well), and (if necessary) the new text for correction or pasting. Such an interface, although it required from the user to keep in mind a continuously changing text, and despite occasional mishaps with saving the changes, was tolerable enough for professionals. Graphic displays gave a new impetus to human-computer interaction. Along with the tools of data visualization, program interface tools came into use. Based on that, light buttons (an output primitive used to emulate a functional key) and light button menu came into exploitation. With their help one could easily interact both with the program’s system and with the user’s program.
The mass arrival of personal computers simply could not have happened without the emergence of visual interaction tools, new devices, and brand-new concepts of interface organization with the user, for example, the concept of direct manipulation.
The concept of direct manipulation was suggested in the early 1980s by Professor B. Shneiderman, a famous expert in the field of computational sciences, who combined and analyzed new trends in organizing the interface. Currently, this concept prevails in interface design.
B. Shneiderman determined the following features of an interface created on the basis of the direct manipulation concept:
Continuous depiction of the object of interest
Physical actions (manipulations with the mouse, joystick, touch screen, etc.) or using a functional keyboard instead of commands with complex syntax
Quick operations, divisible into steps and allowing resets, with an instantly visible effect on the object of interest
The essence of this approach to interface creation is in making the user perceive their activity as direct manipulation with the objects displayed on the screen, rather than as a dialog with the computer regarding these objects. Instead of using command language to describe operations with objects, the user manipulates visible perceptions of these objects on the screen.
The interface metaphor is considered as the basic idea of convergence and similarity between model objects of an applied field and interactive objects. The role of an interface metaphor is to facilitate better understanding of interaction semantics, as well as to provide a visual idea of dialog objects and define the set of user manipulations with them.
The interface metaphor in this respect is seen as the basis of the semiotic system, which in turn underlies the interactive language. With the help of this language, the user forms their task and achieves the solution by means of a computer. The interface metaphor does not only help describe abstractions but also structures the understanding of a new applied field and defines objects of the interactive [visual] language [3].
The most recent global metaphor is the basis of modern computerization. For a variety of economic and social reasons, people at the end of the twentieth century understood the world around them not as a workshop where employees work but as an office where clerks and managers spend their time. The cornerstone of a desktop metaphor success is tightly linked with this change in the awareness of the world. Results of modern computerization (and the desktop metaphor) reflect global ideas of modern “postindustrial” world. However, “office” interfaces generate office activity techniques in such “non-office” domains as medicine or education. This often involves non grata effects.
Originally, this metaphor was offered for office automation systems, but then its use was expanded for operating systems interfaces. These ideas were linked with end-user programming, as the means for office clerks and managers to simplify their work using computers.
The desktop metaphor became the most frequent practice in the 1990s. This metaphor is in many respects the basis of modern visual interfaces. The success of a desktop metaphor, undoubtedly, is connected not only (and not so much) with the natural figurativeness of icons that are [not always] clear to users but with logicality and systematic nature of all activities within visual environments based on this metaphor.
The formula of a desktop metaphor is described in [1]. Apart from borrowing office work realities, this metaphor has a “magic” idea: all actions within the system are made by means of double-clicking on icons.
Significantly, desktop metaphor extensions toward an office desk metaphor, office space metaphor, and a filing cabinet metaphor were not very successful, despite interesting solutions and the use of several magic features.
By providing calculation results, visualization ensures interpretation and analysis of the acquired data. The following subfields of computer visualization can be distinguished: scientific visualization, software visualization, and information visualization. Scientific visualization presupposes using the means of computer graphics and human-computer interaction to provide data on objects, processes, and phenomena, modeled in scientific calculations. Software visualization means a combination of methods of using graphics and human-computer interaction tools used for better understanding of phenomena and for efficient exploitation of the software, as well as for specification and presentation of software objects in the process of program creation. The term information visualization relates to visual description and presentation of abstract information acquired as a result of gathering and processing data of different types and functions.
Typically, scientific visualization uses traditional (pre-computer) methods of displaying mathematical, physical, chemical, biological, and other models (e.g., two-dimensional and three-dimensional function graphs). Sometimes the imagery natural and/or typical for a given application is also used, for example, molecule presentations in modeling chemical processes. Traditional imagery, sometimes borrowed from the pre-computer static graphics, is also used in information visualization. One may conclude that the use of metaphors in scientific and information visualization is limited.
Computer metaphors became most widely used in software visualization systems. These metaphors are based on objects and phenomena of the real world or on models derived from specific branches of science. Among these metaphors the most popular are spatial metaphors: the city metaphor or the landscape metaphor and their variations in particular. Spatial (three-dimensional) metaphors are actively applied in developing presentation views in visualization systems used for monitoring, testing, and debugging parallel and distributed programs, as well as programs for processing events and providing reactions to them. These metaphors are widely used in the systems based on virtual reality [4, 5, 6, 7].
Using a city metaphor presupposes structuring the input data by means of internal city structure containing separate blocks, streets, and buildings. The naturalness of metaphors causes both simplicity of orientation in space and navigation ease. In software visualization systems within a city or a landscape, metaphor transport arteries are often used to represent control flows and data flows, as well as various connections between objects and program components. When using these metaphors in the systems based on virtual reality, a flight over the city is possible. There are examples of software visualization systems based on an extended city/building/room metaphor with the use of teleportation for immediate relocation between city districts or buildings representing different elements of a big software complex.
A cosmic metaphor in its modern sense, with a heliocentric worldview, is chosen as an idea for a visual programming medium. At the same time, parts of the entities of the program are represented as planets, their satellites, rings (like the rings of Saturn), and other elements of outer space. It seems that in the case of virtual reality application, the most archaic 3D version of a geocentric model may be more convenient, with the Earth represented as being flat and celestial bodies located on hemispheres covering the flat Earth [8].
Based on scientific views, a molecule metaphor in particular can be used to visualize performance traces and graphs for parallel programs. This metaphor provides representation view of a large volume of structured data. Interpreting a physical molecule (particle) metaphor and its modifications is generally simple and natural, although it requires certain (basic) knowledge of physics from the user. Moving and navigation can be executed by means of flying around the molecule (or a set of particles). This means, a molecule metaphor, in the same way as a city/landscape metaphor, includes some magic or fantastic features.
The paper [9] describes the original brain metaphor, which is used for animated representation of a parallel program performance. The idea of visualizing brain activity when presenting it with some stimuli is transferred onto a program or an application’s performance visualization (activating procedures and functions, input/output, etc.). Let us note that this metaphor does not have any magic features; possibly, this is what hampers perception of a large volume of information based on it.
Currently the idea of gamification has been gaining popularity. It implies the use of computer game ideas in non-gaming fields of application. When developing software visualization systems, this approach presupposes creating tools that provide software engineers with an interface similar to that of computer games. The paper [5] discusses a software visualization system based on virtual reality with the use of virtual reality. A city metaphor is the basic metaphor for this system. However, both the imagery and the method of interaction in the system strongly resemble popular computer games.
Gamification in software visualization system development based on virtual reality is also mentioned in the paper [10]. An environment based on virtual reality is described, which should provide work with the structures of a program code using city metaphors and cosmic metaphors for visualization, navigation, and program code data transfer in an interactive mode. Games have been released that have demonstrated the potential of gamification for the purposes of enhancing the understanding of structural dependencies and code modularization.
Thus, everyday reality, scientific ideas, and modern computer games serve as sources for metaphors. Further, we shall look at fairy tales and science fiction, where objects with magic features are used and characters have magic abilities, as sources. Magic ideas described in fantasy novels or in literary processed folklore fairy tales are the most functional and consequently the most useful ones for our purposes.
An important issue when forming scientific and, in particular, computer metaphors is the question of where to find the source [11, 12]. The description of the constructive procedure of searching and/or generating interface metaphors is presented in [13]. This multistage procedure provides (among other things) the consideration of application domains, user tasks, and user characteristics.
Interest to “magic” in connection with HCI and interface metaphors has been shown in the early 1990s. Significant attention has been given to the concept of “magic features.” This concept in the context of HCI was introduced for the first time by [14].
The issue of magic and magic features as a source for metaphors when developing interactive visual software complexes is also discussed in the paper [15] (see also [16]).
The word “magic” is very popular as part of metaphoric names for interface techniques, for example, a “magic lens,” a “magic mirror,” a “magic lancet,” etc. In [17] a number of specific examples from stage magic are presented, and application of its principles and techniques in human interface design is discussed. The article [18] is devoted to sources of metaphor for tangible user interfaces. Authors suppose magic and paranormal phenomena could be a fruitful place to look for new metaphors for tangible user interfaces. Also, voodoo magic is considered an interesting idea for interfaces with virtual objects. In [19] Voodoo doll technique is used as a two-handed interaction technique for manipulating objects at a distance in immersive virtual environments.
Ideas for interface metaphor design, linked with magic fairy tales, fantasy, and science fiction novels, are described in a number of articles. In [20], for example, the magic metaphor of a flying carpet is mentioned, but in [21] the metaphor of a magic carpet is realized, for instance, moving in the virtual reality environment. In [22, 23, 24, 25, 26], the ways of using a “magic wand” are described. A magic wand is considered a manipulation metaphor to form an interface in systems with elements of virtual reality. Interesting ideas of wonder objects (e.g., a magic mirror) were proposed (and realized in prototype versions) for storytelling in modern museums [27]. In [28] an information system using a city metaphor is described. In this system, magic/fantastic opportunities are used on a regular basis. Among these opportunities there is “tunneling through space” presenting the typical adoption from science fiction. Rooms with “magic windows” may also be considered as a magic (science fiction) feature. A “magic window” is an interesting expansion of a well-known information wall metaphor.
Here we consider fantastic magic features, selecting the samples that are fruitful for interface and visualization metaphors.
Magic transport: In fairy tales and science fiction novels, one can find:
Teleportation—an instant movement by means of verbal influence (spell) or by means of manipulations with any objects or uses of such devices as teleports
A rather slow movement by means of magic transport. A magic transfer may take place both for subjects and for (animated and inanimate) objects of magic
Magic navigation means: An example is a milestone with a magic legend or a magic clew, following which one may reach Fairyland.
Magic communication means: An example is a magic mirror tuned on an interesting character for his/her protection or observation.
Magic (additional to normal) opportunities for manipulations with objects, processes, and even natural phenomena. In some options a superpower, invincibility, etc. Generally speaking, one can use the term “magic power” (or “superpower”). These manipulations and powers may be executed through spells and objective magic, as well as through the universal manipulator, a magic wand.
One can set out the general class of magic objects as objects possessing “magic properties.” Thus, magic expansion of usual functionality is possible (for example, seven-league boots), as well as attributing additional, unusual in real life functions to objects (for example, Aladdin’s magic lamp used to summon, activate and neutralize magic beings). For the purpose of magic objects used as manipulators, transport and communication means one can also use the term “magic tools.”
Magic transformations of objects: As an example, one may consider the construction of palaces by the Genie in the Arabic fairy tale or the transformation a pumpkin into the carriage for Cinderella.
Similarly to magic objects, magic subjects may be set out, i.e., evil, good, or neutral (with respect to the characters) magicians possessing superpowers. (As an option—magic anthropomorphic beings, e.g., fairies, gnomes, trolls, genies, etc.)
Magic transformations of persons: In fairy tales such transformations may be spontaneous, unexpected for the characters, or they may result from magic actions (some magic spells or manipulations). These transformations can be carried out in view of sympathetic magic (i.e., magic based on a certain similarity).
Our attention was focused on two “magic-fantastic” metaphors from the novels (and also the films) about Harry Potter. These are speaking and moving portraits and the Marauder’s Map, which even showed people’s movements on it. In this case, portraits of dead people are the active objects. They may address the living characters of the novel without requests and even move from one portrait frame to another to pay visits to each other. The map continuously traces and shows the location of the person under observation.
There are many active, anthropomorphic, and speaking characters in fairy tales and in science fiction novels such as Golem, robots of K. Capek and I. Asimov, and so on. Similarly, there are numerous variations of magic/fantastic means of navigation and search both in fairy tales and in fantasy.
In these magic metaphors, visual characteristics are not as important as spontaneous activity inherent to generated objects and subjects. Spontaneous activity can be considered the means of imitating reasonable behavior. Of importance is also the character’s existence independently of users, imitating reasonable behavior. In sci-fi and popular scientific literature and films such active computer, “subjects” appeared several decades ago. In modern computer practice, agents who are active under their own initiative frequently cause irritation. We started our research of active intellectual agents to understand what, why, and where active intellectual agents have to do.
The idea of an “active” map showing a real landscape and movements of objects was considered. The “activity” of a map can be connected to events, in the same way as in navigating systems: moving around, turning, crossing, and so on; but “activity” can also be spontaneous, connected with time events. Another idea that may be possible is the development of an “active” scheme of a protected apartment or territory. In this case tracking systems and “highlighting” persons may be necessary. Movements of all characters without exception may be shown on the scheme, and labels will allow identification. In the context of the given ideas, it may be noted that works in this direction, on the basis of such systems as GPS, are underway and there are examples of interactive maps serving as guide advisers. Moreover, now it is easy to develop speaking anthropomorphic avatar agents, and there are many examples of such implementations.
We have decided to link the idea of active agents based on a metaphor of a speaking portrait with the expert system. The point is that an active agent with its (possibly) importunate activity is authorized only in the case of teaching systems. The logic of project development led us to the following idea of an “active textbook.” This textbook has to be able to analyze the student’s behavior in the process of studying, for example, the time of reading, manipulations with the text, and so on. Based on these analyses, the “active textbook” may detail teaching material, search new data sources, or turn to other things. The analysis of a user behavior may be accomplished at a syntactic level (at a level of operations with a mouse and a keyboard, eye tracking, etc.) and on a semantic one (monitoring opened files or sites, running applications, recording events, etc.). Such analysis and elements of programming by demonstrations will allow our system to learn how to teach in the process of its use and to operate in the given direction “independently.” It is also possible to supply the system with adviser functions. The system will be like an intelligent human adviser and will not impose its opinion but provide recommendations and solutions. This human-like behavior may be provided by psychologically driven slowdowns in the system’s activity.
Expansion of a city metaphor used in software visualization systems is suggested by means of adding active agents by inputting parameters into certain functions and methods. The agents can move around the city, determining the locations where they are used and changed and the way the process of algorithm work plays out. This way, an extended metaphor creates such additional properties as the opportunity to observe software objects inside buildings or rooms, reflecting particular entities while active agents move around the city.
In visualization systems based on virtual reality environments, there are such tasks where complex manipulations with objects are necessary, for example, pulling something out, cutting, or zooming in. As a metaphor of the tool for such tasks, first of all, the idea of a magic wand comes into designer’s mind. However, a magic wand does not have differentiated actions and hence requires the means to change operating modes. In specialized systems, it is more natural to use specialized “magic tools.” For example, in medical information system as manipulator’s metaphor, the idea of a “magic lancet” is offered. The lancet allows to “dissect” this or that organism area for profound exploration. When “dissecting” any human organism object, all physical changes are visualized, as if we did it in a reality. In case of a combination of a “magic lancet” metaphor with a three-dimensional model of a human body, one may obtain the virtual model of operations, and a prototype system of information visualization for medical purposes is in progress now. Systems based on this metaphor may be used, for example, to teach surgery [29].
Science fiction may be an implicit source of metaphors used to control visual objects in virtual reality environments. Thus, for instance, the paper [30] describes an environment for an experiment studying psychological states in virtual environments. A user has to manipulate cubes to compose a given pattern. These cubes in the virtual environments are “caught” with a special trap, in which an antigravity movement mode to a necessary point or a cube rotation mode may be activated. When using a special command, the cube rises over the virtual table and flies in the location set by the user.
Our preliminary research shows the applicability of “magic” metaphors for tasks in interactive systems and systems based on virtual reality environments. For example, the search of metaphors for movements in virtual environments may require magic transportation techniques, such as teleports and flights of various types (the flying carpet, the flying ship, Roc, a winged horse). Metaphors of intellectual agents-informants may also be based on magic means of navigation.
In fairy tales and science fiction novels, one can find a lot of magic phenomena, such as magic knowledge, war magic, fulfillments of desires, telepathy and thought-reading, etc. But we do not know for sure yet, whether these features are useful for metaphor search. However, for a choice of metaphors for manipulations with objects and processes in virtual environments, “the war magic” may be of interest. War magic is connected with transferring the events taking place in the magical world into reality. For example, any variations of “magic chess,” where games with chess pieces are transferred into land battles, or the “naval” military magic where models of fight in a vat of water are transferred into sea battles. One may find these ideas (partially close to voodoo magic) in a number of folk and literary fairy tales.
Note that folk fairy tales are governed by rigorous logic of plot development and a choice of characters. By the way, in literary fairy tales and fantasy novels, this logic is also typically observed.
Analysis shows that exotic “magic” metaphors may be used to form any interface features. However, implementation of interactive systems on their basis may be both complex and contradictory. Magic metaphors are frequently transformed into abstract interface opportunities, losing the appreciable connection with initial ideas. For example, in case of a speaking portrait metaphor, the anthropopathy of an agent turned out to be unnecessary. But it is necessary to endow it with the function of a magic assistant/conductor into the world of knowledge. Of course, the transmuted abstractness of metaphors is an advantage rather than a defect of their use. In the systems created, for example, for office automation or for end-user programming, the presence of magic interface manuals may appear as a distracting or even irritating factor. However, using such “magic features” as automatic return of electronic analogs of paper documents on their place at the end of processing may be carried out without any special warnings even for non-expert users. Such features are well-conformed to common sense of clerks and do not demand unnecessary efforts during operations. Infringement of magic logic due to any absurd ideas or too farfetched subjective likeness may lead to serious mistakes. Sharp criticism of interface metaphors as such is connected with the infringement of magic logic in the early version of Apple’s interface (using the trash can metaphor to eject disks) [14].
Virtual reality environments were initially used for aviation and space simulation training systems. They gained widespread use in entertainment systems and computer games. They are also used in medicine and psychology for therapeutic purposes. We are interested in virtual reality as a basis for computer visualization systems development. The imagery used in virtual reality systems can be adopted from the imagery inherent to a certain computer model. However, for software visualization, systems based on virtual reality metaphors are typically used. Such systems can benefit from (or even require) fairy tale features described above. In this respect, we are interested in interface metaphors which are applied in virtual reality.
The role of interface metaphor is to promote the best understanding of interaction semantics and to determine the visual representation of dialog objects and a set of user manipulations with them. A metaphor, considered as a basis of the sign system, in turn underlies a dialog language. A user articulates the problem with the help of this language and achieves solution from the computer. The metaphor helps to describe abstraction and provide structural understanding of a new applied area but also assigns dialog [visual] language objects. Interface metaphors may be considered a special case of scientific metaphor used for generating new or additional senses to understand new facts and phenomena.
Virtual reality is characterized by a set of specific states, above all, presence, involving a human perceiving themselves inside a virtual environment with various features. Due to experiencing presence, a person finds themselves in situations similar to those of fairy tales and science fiction, even if no magic metaphors were applied (e.g., finding oneself inside a brain or a molecule). In such conditions, the use of magic features described above is reasonable, both for navigation and movement in a virtual environment and for interaction with the objects of this environment.
A project of a virtual environment designed for modeling visual search in large space may use either emerging magic signs or talking objects to facilitate user navigation. In virtual reality systems, a magic wand may be useful as an interface metaphor to point at objects and interact with them. The idea of teleportation is interesting in virtual reality systems for movement organization, as it provides the possibility of instant movement to a new virtual scene.
Interesting metaphors may be adopted from science fiction works. Thus, a time machine metaphor and a butterfly effect metaphor were used in a project of an environment for adjusting parallel programs dealing with software visualization systems [31].
One may consider time as an axis that is analogous to traditional spatial axes. And the event stream may be depicted along this axis. Any change in this stream may break the whole chain of cause-and-effect relations. In this case, the idea of traveling in time in both directions seems to be natural. One may consider a set of parallel processes as consistent streams of events flowing and changing along this time axis. In this case, effects of an event in the process cause a reaction, affecting both the process in which it has occurred and other processes. It is possible to correct errors by going back in time along the axis and interfering with the sequence of events at the moment. This approach can be described as the “time machine” metaphor. Note that the use of the time machine metaphor does not require any knowledge of the source (science fiction novels). We have developed a prototype of a visualization component for a parallel process control and representation system. This system can be used for debugging parallel programs. We use 3D imagery to visualize processes. Processes are represented by color cylinders connected with each other by thin “threads” (similarly to visual representations in the VisuaLinda system [32]). Globules representing data move along these threads. The states of processes are depicted by colors. A user may navigate along the time axis and change the processes’ states. The time machine metaphor may be considered similar to a traditional record player metaphor. However, in the case of a time machine, there is a possibility of event changes described by the well-known butterfly effect metaphor, which is connected with the situation when a small change of initial conditions causes significant and often unpredictable effects.
A time machine metaphor seemed promising for software visualization of parallel computing. However, after analyzing its implementation, this impression may change. In this case further development of fully fledged debugging and visualization facilities for parallel programs is needed, for example, trapping events, online visualization, and other tools similar to those implemented in the debuggers of the 1990s, such as [33, 34]. These metaphors may also be applied in the systems of software visualization based on virtual reality [31].
Present-day comics and manga may be described in terms of visual texts. You can describe rich and complex languages of pictorial art based on natural imagery, but in this case, the task of a detailed language description is rather complex and often uncertain. One can also describe complex and weakly formalizable dynamic languages of cinema and animation. Similarly, one can define graphical texts associated with computer visualization. The examples of those visualization texts are:
Isolated displays
Dynamic, logically related shot changes with the inclusion of interaction
Animations also with the inclusion of interaction
The goal of visualization is to leverage the existing scientific methods by providing new scientific insight into visual methods. Virtual reality environments are actively used to practice leaping into a new quality of cognitive visualization. Virtual environments are characterized by such features as egocentric points of view and user-centered, often multisensory, interactions. Virtual reality environments are dynamic, rather than static. The user’s experience of the virtual world may combine a visual channel with auditory or haptic feedback. Immersion and sense of presence (the feeling of “being there”) are factors which define virtual reality. The sense of presence distinguishes virtual reality from “traditional” 3D computer graphics. Users “immersed” in virtual reality control the graphics output. Users may also participate in adaptive control of the application system. The essence of virtual reality is in the interaction between the user and the virtual environment. The interpretation principle for graphical texts was formulated as follows: interpretation of such texts is possible only if the “readers” of the text have external information. This principle is similar to the principle of intuitive use. The interpretation principle is very important in the case of visualization based on virtual reality.
One may consider the evolution from comic-like visualization methods to controlled animation-like movies and from these movies to full insight and controlled immersion processes. In its own right, visualization languages of virtual reality may be considered; however, a visualization language in the case of “immersion movies” becomes much more complicated and needs further description. It appears that a new quality of visualization can be achieved primarily through the following media:
Immersion in virtual reality
Creation of an interactive “movie”
Presence of a controlled and modifiable “screen story” (“movie” script)
The language of this script is the language of visualization description (and possibly of visualization depiction—in the case of visual languages). The languages have to support history tracing, including visualization and interaction traces and fixing insight experiences. Examples of “immersion movies” will be used in computer visualization systems.
The issue of finding the sources arouses a whole range of questions. First, an assessment of metaphor applicability is necessary both for the given applications and for a specific task. When assessing the applicability of a metaphor, one should evaluate the way this metaphor can depict the features of a certain application, for which the visualization system is built. However, imaging precision does not necessarily guarantee success for the system. For example, a brain metaphor, precisely depicting the work of a parallel program, is not very convenient in terms of perception, which strongly hampers visualization perception. Magic features are useful in addition to the complex of computer metaphors but are not sufficient. There are examples when a metaphor, for various reasons, was not successful even after introducing these features. Gamification is an interesting idea. However, the question remains whether game components risk distracting the user from their intellectual activity by putting them into a silly, playful mood. Distraction from the main task may also be caused by the magic features of metaphors, especially in environments based on virtual reality. When using virtual reality, one should also analyze the potential user states in terms of increasing or decreasing performance. All these thoughts show that research of substantial user groups is necessary. It is worth noting that in case of software visualization, this research is relevant, as there is a considerable number of tasks and a significant number of experts.
Supporting women in scientific research and encouraging more women to pursue careers in STEM fields has been an issue on the global agenda for many years. But there is still much to be done. And IntechOpen wants to help.
",metaTitle:"IntechOpen Women in Science Program",metaDescription:"Supporting women in scientific research and encouraging more women to pursue careers in STEM fields has been an issue on the global agenda for many years. But there is still much to be done. And IntechOpen wants to help.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"At IntechOpen, we’re laying the foundations for the future by publishing the best research by women in STEM – Open Access and available to all. Our Women in Science program already includes six books in progress by award-winning women scientists on topics ranging from physics to robotics, medicine to environmental science. Our editors come from all over the globe and include L’Oreal–UNESCO For Women in Science award-winners and National Science Foundation and European Commission grant recipients.
\\n\\nWe aim to publish 100 books in our Women in Science program over the next three years. We are looking for books written, edited, or co-edited by women. Contributing chapters by men are welcome. As always, the quality of the research we publish is paramount.
\\n\\nAll project proposals go through a two-stage peer review process and are selected based on the following criteria:
\\n\\nPlus, we want this project to have an impact beyond scientific circles. We will publicize the research in the Women in Science program for a wider general audience through:
\\n\\nInterested? If you have an idea for an edited volume or a monograph, we’d love to hear from you! Contact Ana Pantar at book.idea@intechopen.com.
\\n\\n“My scientific path has given me the opportunity to work with colleagues all over Europe, including Germany, France, and Norway. Editing the book Graph Theory: Advanced Algorithms and Applications with IntechOpen emphasized for me the importance of providing valuable, Open Access literature to our scientific colleagues around the world. So I am highly enthusiastic about the Women in Science book collection, which will highlight the outstanding accomplishments of women scientists and encourage others to walk the challenging path to becoming a recognized scientist." Beril Sirmacek, TU Delft, The Netherlands
\\n\\nAdvantages of Publishing with IntechOpen
\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:'At IntechOpen, we’re laying the foundations for the future by publishing the best research by women in STEM – Open Access and available to all. Our Women in Science program already includes six books in progress by award-winning women scientists on topics ranging from physics to robotics, medicine to environmental science. Our editors come from all over the globe and include L’Oreal–UNESCO For Women in Science award-winners and National Science Foundation and European Commission grant recipients.
\n\nWe aim to publish 100 books in our Women in Science program over the next three years. We are looking for books written, edited, or co-edited by women. Contributing chapters by men are welcome. As always, the quality of the research we publish is paramount.
\n\nAll project proposals go through a two-stage peer review process and are selected based on the following criteria:
\n\nPlus, we want this project to have an impact beyond scientific circles. We will publicize the research in the Women in Science program for a wider general audience through:
\n\nInterested? If you have an idea for an edited volume or a monograph, we’d love to hear from you! Contact Ana Pantar at book.idea@intechopen.com.
\n\n“My scientific path has given me the opportunity to work with colleagues all over Europe, including Germany, France, and Norway. Editing the book Graph Theory: Advanced Algorithms and Applications with IntechOpen emphasized for me the importance of providing valuable, Open Access literature to our scientific colleagues around the world. So I am highly enthusiastic about the Women in Science book collection, which will highlight the outstanding accomplishments of women scientists and encourage others to walk the challenging path to becoming a recognized scientist." Beril Sirmacek, TU Delft, The Netherlands
\n\n\n\n\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10367},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15789}],offset:12,limit:12,total:118188},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"10231",title:"Proton Therapy",subtitle:null,isOpenForSubmission:!0,hash:"f4a9009287953c8d1d89f0fa9b7597b0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10231.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10652",title:"Visual Object Tracking",subtitle:null,isOpenForSubmission:!0,hash:"96f3ee634a7ba49fa195e50475412af4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10653",title:"Optimization Algorithms",subtitle:null,isOpenForSubmission:!0,hash:"753812dbb9a6f6b57645431063114f6c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10653.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10655",title:"Motion Planning",subtitle:null,isOpenForSubmission:!0,hash:"809b5e290cf2dade9e7e0a5ae0ef3df0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10655.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10657",title:"Service Robots",subtitle:null,isOpenForSubmission:!0,hash:"5f81b9eea6eb3f9af984031b7af35588",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10657.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10662",title:"Pedagogy",subtitle:null,isOpenForSubmission:!0,hash:"c858e1c6fb878d3b895acbacec624576",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10662.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10673",title:"The Psychology of Trust",subtitle:null,isOpenForSubmission:!0,hash:"1f6cac41fd145f718ac0866264499cc8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10673.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10675",title:"Hydrostatics",subtitle:null,isOpenForSubmission:!0,hash:"c86c2fa9f835d4ad5e7efd8b01921866",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10675.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Topology",subtitle:null,isOpenForSubmission:!0,hash:"85eac84b173d785f989522397616124e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10678",title:"Biostatistics",subtitle:null,isOpenForSubmission:!0,hash:"f63db439474a574454a66894db8b394c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10678.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10679",title:"Mass Production",subtitle:null,isOpenForSubmission:!0,hash:"2dae91102099b1a07be1a36a68852829",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10679.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10684",title:"Biorefineries",subtitle:null,isOpenForSubmission:!0,hash:"23962c6b77348bcbf247c673d34562f6",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10684.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:14},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:187},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1175",title:"Neuroplasticity",slug:"neuroplasticity",parent:{title:"Neurobiology",slug:"life-sciences-neuroscience-neurobiology"},numberOfBooks:3,numberOfAuthorsAndEditors:70,numberOfWosCitations:20,numberOfCrossrefCitations:14,numberOfDimensionsCitations:43,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"neuroplasticity",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6250",title:"The Hippocampus",subtitle:"Plasticity and Functions",isOpenForSubmission:!1,hash:"78f1e57726307f003f39510c175c3102",slug:"the-hippocampus-plasticity-and-functions",bookSignature:"Ales Stuchlik",coverURL:"https://cdn.intechopen.com/books/images_new/6250.jpg",editedByType:"Edited by",editors:[{id:"207908",title:"Dr.",name:"Ales",middleName:null,surname:"Stuchlik",slug:"ales-stuchlik",fullName:"Ales Stuchlik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6092",title:"Neuroplasticity",subtitle:"Insights of Neural Reorganization",isOpenForSubmission:!1,hash:"1003fc63680b1c04e9135f3dea18a8c3",slug:"neuroplasticity-insights-of-neural-reorganization",bookSignature:"Victor V. Chaban",coverURL:"https://cdn.intechopen.com/books/images_new/6092.jpg",editedByType:"Edited by",editors:[{id:"83427",title:"Prof.",name:"Victor",middleName:null,surname:"Chaban",slug:"victor-chaban",fullName:"Victor Chaban"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5521",title:"Synaptic Plasticity",subtitle:null,isOpenForSubmission:!1,hash:"9eea3c7f926cd466ddd14ab777b663d8",slug:"synaptic-plasticity",bookSignature:"Thomas Heinbockel",coverURL:"https://cdn.intechopen.com/books/images_new/5521.jpg",editedByType:"Edited by",editors:[{id:"70569",title:"Dr.",name:"Thomas",middleName:null,surname:"Heinbockel",slug:"thomas-heinbockel",fullName:"Thomas Heinbockel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:3,mostCitedChapters:[{id:"59437",doi:"10.5772/intechopen.74318",title:"Music and Brain Plasticity: How Sounds Trigger Neurogenerative Adaptations",slug:"music-and-brain-plasticity-how-sounds-trigger-neurogenerative-adaptations",totalDownloads:1392,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"neuroplasticity-insights-of-neural-reorganization",title:"Neuroplasticity",fullTitle:"Neuroplasticity - Insights of Neural Reorganization"},signatures:"Mark Reybrouck, Peter Vuust and Elvira Brattico",authors:[{id:"196698",title:"Prof.",name:"Mark",middleName:null,surname:"Reybrouck",slug:"mark-reybrouck",fullName:"Mark Reybrouck"},{id:"209976",title:"Prof.",name:"Elvira",middleName:null,surname:"Brattico",slug:"elvira-brattico",fullName:"Elvira Brattico"},{id:"209977",title:"Prof.",name:"Peter",middleName:null,surname:"Vuust",slug:"peter-vuust",fullName:"Peter Vuust"}]},{id:"57827",doi:"10.5772/intechopen.71165",title:"A Role for the Longitudinal Axis of the Hippocampus in Multiscale Representations of Large and Complex Spatial Environments and Mnemonic Hierarchies",slug:"a-role-for-the-longitudinal-axis-of-the-hippocampus-in-multiscale-representations-of-large-and-compl",totalDownloads:734,totalCrossrefCites:3,totalDimensionsCites:6,book:{slug:"the-hippocampus-plasticity-and-functions",title:"The Hippocampus",fullTitle:"The Hippocampus - Plasticity and Functions"},signatures:"Bruce Harland, Marcos Contreras and Jean-Marc Fellous",authors:[{id:"210681",title:"Dr.",name:"Bruce",middleName:null,surname:"Harland",slug:"bruce-harland",fullName:"Bruce Harland"},{id:"210682",title:"Dr.",name:"Marco",middleName:null,surname:"Contreras",slug:"marco-contreras",fullName:"Marco Contreras"},{id:"210683",title:"Prof.",name:"Jean-Marc",middleName:null,surname:"Fellous",slug:"jean-marc-fellous",fullName:"Jean-Marc Fellous"}]},{id:"54143",doi:"10.5772/67127",title:"Plasticity of Dendritic Spines. Not Only for Cognitive Processes",slug:"plasticity-of-dendritic-spines-not-only-for-cognitive-processes",totalDownloads:974,totalCrossrefCites:0,totalDimensionsCites:6,book:{slug:"synaptic-plasticity",title:"Synaptic Plasticity",fullTitle:"Synaptic Plasticity"},signatures:"Ignacio González-Burgos, Dulce A. Velázquez-Zamora, David\nGonzález-Tapia, Nallely Vázquez-Hernández and Néstor I. Martínez-\nTorres",authors:[{id:"190521",title:"Dr.",name:"Ignacio",middleName:null,surname:"Gonzalez-Burgos",slug:"ignacio-gonzalez-burgos",fullName:"Ignacio Gonzalez-Burgos"},{id:"196267",title:"Dr.",name:"Dulce A",middleName:null,surname:"Velázquez-Zamora",slug:"dulce-a-velazquez-zamora",fullName:"Dulce A Velázquez-Zamora"},{id:"196269",title:"MSc.",name:"David",middleName:null,surname:"González-Tapia",slug:"david-gonzalez-tapia",fullName:"David González-Tapia"},{id:"196270",title:"MSc.",name:"Nallely",middleName:null,surname:"Vázquez-Hernández",slug:"nallely-vazquez-hernandez",fullName:"Nallely Vázquez-Hernández"},{id:"196271",title:"MSc.",name:"Nestor I",middleName:null,surname:"Martínez-Torres",slug:"nestor-i-martinez-torres",fullName:"Nestor I Martínez-Torres"}]}],mostDownloadedChaptersLast30Days:[{id:"59437",title:"Music and Brain Plasticity: How Sounds Trigger Neurogenerative Adaptations",slug:"music-and-brain-plasticity-how-sounds-trigger-neurogenerative-adaptations",totalDownloads:1390,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"neuroplasticity-insights-of-neural-reorganization",title:"Neuroplasticity",fullTitle:"Neuroplasticity - Insights of Neural Reorganization"},signatures:"Mark Reybrouck, Peter Vuust and Elvira Brattico",authors:[{id:"196698",title:"Prof.",name:"Mark",middleName:null,surname:"Reybrouck",slug:"mark-reybrouck",fullName:"Mark Reybrouck"},{id:"209976",title:"Prof.",name:"Elvira",middleName:null,surname:"Brattico",slug:"elvira-brattico",fullName:"Elvira Brattico"},{id:"209977",title:"Prof.",name:"Peter",middleName:null,surname:"Vuust",slug:"peter-vuust",fullName:"Peter Vuust"}]},{id:"57312",title:"The Hippocampus as a Neural Link between Negative Affect and Vulnerability for Psychostimulant Relapse",slug:"the-hippocampus-as-a-neural-link-between-negative-affect-and-vulnerability-for-psychostimulant-relap",totalDownloads:944,totalCrossrefCites:1,totalDimensionsCites:4,book:{slug:"the-hippocampus-plasticity-and-functions",title:"The Hippocampus",fullTitle:"The Hippocampus - Plasticity and Functions"},signatures:"Jeffrey L. Barr, Brenna Bray and Gina L. Forster",authors:[{id:"145620",title:"Dr.",name:"Gina",middleName:null,surname:"Forster",slug:"gina-forster",fullName:"Gina Forster"},{id:"219827",title:"Dr.",name:"Jeffrey",middleName:null,surname:"Barr",slug:"jeffrey-barr",fullName:"Jeffrey Barr"},{id:"219828",title:"BSc.",name:"Brenna",middleName:null,surname:"Bray",slug:"brenna-bray",fullName:"Brenna Bray"}]},{id:"52720",title:"The Ghrelin Receptor Regulates Dendritic Spines and the NMDA Receptor–Mediated Synaptic Transmission in the Hippocampus",slug:"the-ghrelin-receptor-regulates-dendritic-spines-and-the-nmda-receptor-mediated-synaptic-transmission",totalDownloads:932,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"synaptic-plasticity",title:"Synaptic Plasticity",fullTitle:"Synaptic Plasticity"},signatures:"Masako Isokawa",authors:[{id:"191467",title:"Prof.",name:"Masako",middleName:null,surname:"Isokawa",slug:"masako-isokawa",fullName:"Masako Isokawa"}]},{id:"54566",title:"Introductory Chapter: Mechanisms and Function of Synaptic Plasticity",slug:"introductory-chapter-mechanisms-and-function-of-synaptic-plasticity",totalDownloads:1652,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"synaptic-plasticity",title:"Synaptic Plasticity",fullTitle:"Synaptic Plasticity"},signatures:"Thomas Heinbockel",authors:[{id:"70569",title:"Dr.",name:"Thomas",middleName:null,surname:"Heinbockel",slug:"thomas-heinbockel",fullName:"Thomas Heinbockel"}]},{id:"58530",title:"Sleep Disorders in Multiple Sclerosis",slug:"sleep-disorders-in-multiple-sclerosis",totalDownloads:580,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"neuroplasticity-insights-of-neural-reorganization",title:"Neuroplasticity",fullTitle:"Neuroplasticity - Insights of Neural Reorganization"},signatures:"Montserrat González Platas and María Yaiza Pérez Martin",authors:[{id:"202099",title:"Dr.",name:"Montserrat",middleName:null,surname:"Gonzalez Platas",slug:"montserrat-gonzalez-platas",fullName:"Montserrat Gonzalez Platas"},{id:"231355",title:"Dr.",name:"Maria Yaiza",middleName:null,surname:"Perez Martín",slug:"maria-yaiza-perez-martin",fullName:"Maria Yaiza Perez Martín"}]},{id:"54067",title:"Neuroplasticity in Bipolar Disorder: Insights from Neuroimaging",slug:"neuroplasticity-in-bipolar-disorder-insights-from-neuroimaging",totalDownloads:1056,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"synaptic-plasticity",title:"Synaptic Plasticity",fullTitle:"Synaptic Plasticity"},signatures:"Marlos Vasconcelos Rocha, Fabiana Nery, Amanda Galvão-de-\nAlmeida, Lucas de Castro Quarantini and Ângela Miranda-Scippa",authors:[{id:"192139",title:"Ph.D.",name:"Marlos",middleName:"Vasconcelos",surname:"Rocha",slug:"marlos-rocha",fullName:"Marlos Rocha"},{id:"192876",title:"Dr.",name:"Fabiana",middleName:null,surname:"Nery-Fernandes",slug:"fabiana-nery-fernandes",fullName:"Fabiana Nery-Fernandes"},{id:"192877",title:"Prof.",name:"Ângela",middleName:null,surname:"Miranda-Scippa",slug:"angela-miranda-scippa",fullName:"Ângela Miranda-Scippa"},{id:"192878",title:"Prof.",name:"Lucas",middleName:null,surname:"De Castro Quarantini",slug:"lucas-de-castro-quarantini",fullName:"Lucas De Castro Quarantini"},{id:"192879",title:"Dr.",name:"Giovanna",middleName:null,surname:"Ladeia-Rocha",slug:"giovanna-ladeia-rocha",fullName:"Giovanna Ladeia-Rocha"},{id:"192880",title:"Prof.",name:"Amanda",middleName:null,surname:"Galvão-de Almeida",slug:"amanda-galvao-de-almeida",fullName:"Amanda Galvão-de Almeida"}]},{id:"55453",title:"Synaptic Plasticity by Afferent Electrical Stimulation",slug:"synaptic-plasticity-by-afferent-electrical-stimulation",totalDownloads:1038,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"synaptic-plasticity",title:"Synaptic Plasticity",fullTitle:"Synaptic Plasticity"},signatures:"Stefan Golaszewski",authors:[{id:"54888",title:"Prof.",name:"Stefan",middleName:null,surname:"Golaszewski",slug:"stefan-golaszewski",fullName:"Stefan Golaszewski"}]},{id:"53848",title:"Plasticity in Damaged Multisensory Networks",slug:"plasticity-in-damaged-multisensory-networks",totalDownloads:988,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"synaptic-plasticity",title:"Synaptic Plasticity",fullTitle:"Synaptic Plasticity"},signatures:"Karolina A Bearss and Joseph FX DeSouza",authors:[{id:"192667",title:"Prof.",name:"Joseph",middleName:null,surname:"DeSouza",slug:"joseph-desouza",fullName:"Joseph DeSouza"},{id:"192780",title:"Ph.D.",name:"Karolina",middleName:"Anna",surname:"Bearss",slug:"karolina-bearss",fullName:"Karolina Bearss"}]},{id:"53927",title:"GABAergic Synapse Dysfunction and Repair in Temporal Lobe Epilepsy",slug:"gabaergic-synapse-dysfunction-and-repair-in-temporal-lobe-epilepsy",totalDownloads:1139,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"synaptic-plasticity",title:"Synaptic Plasticity",fullTitle:"Synaptic Plasticity"},signatures:"Meghan A. Van Zandt and Janice R. Naegele",authors:[{id:"154904",title:"Prof.",name:"Janice",middleName:null,surname:"Naegele",slug:"janice-naegele",fullName:"Janice Naegele"},{id:"194530",title:"Ph.D. Student",name:"Meghan",middleName:null,surname:"Van Zandt",slug:"meghan-van-zandt",fullName:"Meghan Van Zandt"}]},{id:"57827",title:"A Role for the Longitudinal Axis of the Hippocampus in Multiscale Representations of Large and Complex Spatial Environments and Mnemonic Hierarchies",slug:"a-role-for-the-longitudinal-axis-of-the-hippocampus-in-multiscale-representations-of-large-and-compl",totalDownloads:732,totalCrossrefCites:3,totalDimensionsCites:6,book:{slug:"the-hippocampus-plasticity-and-functions",title:"The Hippocampus",fullTitle:"The Hippocampus - Plasticity and Functions"},signatures:"Bruce Harland, Marcos Contreras and Jean-Marc Fellous",authors:[{id:"210681",title:"Dr.",name:"Bruce",middleName:null,surname:"Harland",slug:"bruce-harland",fullName:"Bruce Harland"},{id:"210682",title:"Dr.",name:"Marco",middleName:null,surname:"Contreras",slug:"marco-contreras",fullName:"Marco Contreras"},{id:"210683",title:"Prof.",name:"Jean-Marc",middleName:null,surname:"Fellous",slug:"jean-marc-fellous",fullName:"Jean-Marc Fellous"}]}],onlineFirstChaptersFilter:{topicSlug:"neuroplasticity",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/76679/radu-albulescu",hash:"",query:{},params:{id:"76679",slug:"radu-albulescu"},fullPath:"/profiles/76679/radu-albulescu",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()