Haematological and Biochemical Values of Bengal tigers ( Panthera tigris tigris)
\r\n\tThis book aims to comprise the current state of the art of the drying operations, at a laboratory and industrial scale, through the presentation of chapters that cover the fundamentals and applications of the different drying methods such as convective, freeze (lyophilization), osmotic, supercritical, vacuum- and irradiation-assisted drying. The comparison, analysis, modeling, and scale-up of the diverse type of dryers are also topics under the scope of the book. Besides, the engineering aspects of drying are considered, specifically the drying kinetics and the transport phenomena during the process, as well as energy consumption, operating costs, equipment safety, and environmental controls.
",isbn:"978-1-83880-110-6",printIsbn:"978-1-83880-109-0",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"3ebb761607fa27f2d32dd269ee2f2c0f",bookSignature:"Dr. Israel Pala-Rosas",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/8540.jpg",keywords:"convective drying, freeze drying, supercritical drying, cabinet tray dryer, drum dryer, equilibrium moisture, bound moisture, drying kinetics, drying constant, dryer design, dryer scale-up",numberOfDownloads:97,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"August 1st 2019",dateEndSecondStepPublish:"August 22nd 2019",dateEndThirdStepPublish:"October 21st 2019",dateEndFourthStepPublish:"January 9th 2020",dateEndFifthStepPublish:"March 9th 2020",remainingDaysToSecondStep:"4 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,editors:[{id:"284261",title:"Dr.",name:"Israel",middleName:null,surname:"Pala-Rosas",slug:"israel-pala-rosas",fullName:"Israel Pala-Rosas",profilePictureURL:"https://mts.intechopen.com/storage/users/no_image.jpg",biography:"Israel Pala-Rosas is Biochemical Engineer by the Instituto Tecnológico de Tehuacán (ITT), Master in Chemical Engineering by the Benemérita Universidad Autónoma de Puebla (BUAP) and Doctor in Sciences in Chemical Engineering by the Escuela Superior de Ingeniería Química e Industrias Extractivas del Instituto Politécnico Nacional (ESIQIE-IPN). \r\n\r\nCurrently, Israel Pala develops research at ESIQIE-IPN and at the Laboratorio de Procesos Catalíticos of the Universidad Autónoma Metropolitana-Azcapotzalco (UAM-A).\r\n\r\n His interest lies in, but is not limited to, the research and development of catalytic and biotechnological processes for the transformation of biomass to value-added compounds and biofuels, regarding the synthesis, characterization, and testing of catalysts, as well as the design and analysis of (bio)chemical reactors. Areas related to the catalytic processes, such as chemical thermodynamics and unit operations, are also under his scope.",institutionString:"Instituto Politécnico Nacional",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Instituto Politécnico Nacional",institutionURL:null,country:{name:"Mexico"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"8",title:"Chemistry",slug:"chemistry"}],chapters:[{id:"69858",title:"The Study of Fabric Drying Using Direct-Contact Ultrasonic Vibration",slug:"the-study-of-fabric-drying-using-direct-contact-ultrasonic-vibration",totalDownloads:8,totalCrossrefCites:0,authors:[null]},{id:"69050",title:"Convective Drying in the Multistage Shelf Dryers: Theoretical Bases and Practical Implementation",slug:"convective-drying-in-the-multistage-shelf-dryers-theoretical-bases-and-practical-implementation",totalDownloads:71,totalCrossrefCites:0,authors:[null]},{id:"69796",title:"Kinetics of Drying Medicinal Plants by Hybridization of Solar Technologies",slug:"kinetics-of-drying-medicinal-plants-by-hybridization-of-solar-technologies",totalDownloads:25,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"270941",firstName:"Sandra",lastName:"Maljavac",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/270941/images/7824_n.jpg",email:"sandra.m@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3794",title:"Swarm Intelligence",subtitle:"Focus on Ant and Particle Swarm Optimization",isOpenForSubmission:!1,hash:"5332a71035a274ecbf1c308df633a8ed",slug:"swarm_intelligence_focus_on_ant_and_particle_swarm_optimization",bookSignature:"Felix T.S. Chan and Manoj Kumar Tiwari",coverURL:"https://cdn.intechopen.com/books/images_new/3794.jpg",editedByType:"Edited by",editors:[{id:"252210",title:"Dr.",name:"Felix",surname:"Chan",slug:"felix-chan",fullName:"Felix Chan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"39118",title:"Tigers Blood: Haematological and Biochemical Studies",doi:"10.5772/50360",slug:"tigers-blood-haematological-and-biochemical-studies",body:'Tiger (Panthera tigris tigris) population in their historic ranges is critically endangered owing to habitat destructions, ruthless poaching and retaliatory killing. The tiger population now remains in few thousands located in about 150 fragments in 13 countries ( Karanth and Gopal, 2005).However, declination is also associated with health related problems such as nutritional deficiencies and infectious diseases (Prater, 2005). Therefore, health monitoring and scientific health management, disease diagnosis and treatment should be made mandatory for conservation of wildlife as the tiger is a key stone species and important member of forest ecology (Shrivastav, 2001).
Haematological and biochemical studies are important tool for health evaluation and their interpretations to know the status of physiological functions of various organs. The concentration of biochemical constituents in tissues as well as in body fluid is fixed and during adverse conditions, it may be elevated or decreased (Douglas and Nelson, 1991). However, qualitative and quantitative analysis of corpuscles and chemical constituents of plasma or serum are closely linked with functional unit of the cell and their assessments may reflect the physiological disorders (Harvey, 1997).
Nevertheless, several factors involved to transmit infectious diseases either mechanically or biologically through contaminated water, food or vectors (Lice, Flea, Ticks and Mites) and the pathogens may alter the normal physiology (Shah, 1983). Viral, bacterial and parasitic diseases are very common in tigers which can affect the haematological and biochemical normal values (Rao and Acharyjo, 2002). Types of anaemia and significant blood loss may be estimated through complete blood count (CBC) and physiological function of different organs by biochemical parameters (Jain, 1986). Qualitative and quantitative reduction in the blood commonly observed in captive felid particularly in cubs those maintaining on milk alone. The values of liver function test, elevated on repeated immobilization by sedative drugs. It has been experienced that the values of serum enzymes increased after 72 hrs interval of 2nd immobilization by Ketamine and Xylazine mixture (personal communication, Shrivastav 2012). Sign of anemia such as pale mucous membranes weakness, fatigue and tachycardia may be observed depending on the severity of anemia. A variety of abnormalities may be noticed by analysis of blood, bone marrow cytology, serum chemistry and urine analysis.
Wild felids are commonly injured in territorial fight or sometimes serious injuries and internal hemorrhages occur during hunting. If blood loss is above the 50% of total volume in short period may be fetal and tiger may die due to hypovolumeic shock. Information on haematology and blood biochemistry is meagre in wild animals. However, several studies on selected haematological parameters of exotic species of captive Felids have been reported. Currier and Russell (1982) studied the higher pack cell volume in wild and captive mountain lions (Felis concolor) and Fowler (1986) has reviewed the haematological and biochemical profile of Felids including captive tigers whereas Jain (1986) reviewed the information of the genera Panthera, Felis, Uncia and Acinonyx concluded that blood parameters were almost similar to that of domestic cat with exception of higher concentration of plasma protein and Pack cell volume (PCV). Seal et al. (1987) have studied the haematological and biochemical profile of captive Bengal tigers with emphasis of anaesthetic effect on blood parameters. Chandranaik et.al. (2006) also studied the haematology of physically restrained tigers that were kept in squeeze cages without using anaesthetics. However, the haematological and biochemical studies were made in twelve apparently healthy tigers in free ranges of Central India (Shrivastav et.al. 2011).
Health monitoring, assessment of health during treatment and disease diagnosis in free range tigers needs baseline data on haemato-biochemical parameters. This baseline data is important especially for comparative health assessment of felids during out breaks of diseases between sylvatic and domestic cycle vice versa. It is also required, as the tiger is on top of the sylvatic food chain and to be protected for maintaining balances in ecosystem (Gopal, 1993).
The collection of blood for laboratory investigations is comparatively difficult in both free range and captive tigers and only possible when animal is sedated or restrained properly in squeeze cage.
Withstanding facts, chemical capture is comparatively safe, if accomplished by trained and experienced wildlife veterinarians. There are several drugs available for sedation. Each drug works in a different manner and is more suited to some species only. The time required for a drug to have an effect depends upon the factors such as route of administration, absorption rate, concentration and physiological status of the animal while it is difficult to generalize the choice of drug and doses (WII, 1985). It depends upon circumstances like species of the animal, age, sex, weight, location, temperature regimes in season, time of the day and emotional state. Shrivastav et.al.(2011) have used Xylazine hydrochloride + Ketamine hydrochloride as sedative drugs with the help of Tel-inject projectile syringe to immobilize the tigers of free range while Yohimbine hydrochloride was used as reversal drug.
Prior to collection of blood from immobilized animal, it is an essential protocol to obtain normal values only through free flow of the collected blood drawn from the animal either at rest or under conditions of least excitement to minimize the physiological variations in cell count (Jain, 1986). Normally the cephalic saphenous, femoral and jugular veins are used for collection of blood from dog, cat and non human primates while in tigers these sites are not convenient because the blood collector remained in front of face of the tiger. The caudal vein is convenient and safer site for blood collection (Shrivastav et.al.2011).
From sedated free range tigers, 2-5 ml of blood is drawn by venipuncture of the caudal vein through 18 no gauge disposal syringe in a tube containing Ethylenediaminetetraacetate (EDTA at 2 mg/ml of blood) as the anticoagulant (Shrivastav et.al. 2011). The blood samples should be processed as soon as possible after collection. If a delay is anticipated, it should be refrigerated at 4oC (Jain, 1986).The blood sample should be mixed several times before a portion is removed for test procedure (Shrivastav and Sharma, 2000). Automatic devices providing a continuous rocking or circular motion have been found satisfactory, but prolonged mixing should be avoided, particularly on a device with circular motion, to prevent a mechanical trauma to various blood cells, especially erythrocyte. In any event, blood smear must be made immediately after blood collection, either directly from fresh blood or after anticoagulation. Blood films should be dried quickly and protected from dust and flies till stained (Shrivastav and Sharma, 2005). Blood films can be made on glass slides and on cover slips.The haematological analysis needs precautionary measures and blood smear is stained with Romanowsky stains and at least 200 white cells should be examined for the differential leukocytes count. Simultaneously, the blood smears must be screened for parasitic blood protozoa, flagellates and rickettsial infections.
The morphology of erythrocytes varies with 2 to 7.6, 7.3 ± 0.45 µm in size; appears circular, discoid, central pallor with slight anisocytosis whereas the rouleaux formation(Plate- 2) is common in tiger’s blood. Chandranaik, et.al. (2006) also reported the mild anisocytosis in physically restrained tigers. However, the range and mean (with one standard deviation) of total erythrocyte count (TEC) was 4.66 to 9.15, 7.9± 1.42 million /µl. Likewise haemoglobin concentration (Hb) was obtained 9.8 to13.5, 12.8 ±1.65 mg/dl in male and 7.8 to11.5, 10.8±1.05 mg/dl in female tigers (Shrivastav et.al. 2011).
Jain (1986) defined that the rouleaux formation is associated with erythrocyte sedimentation rate (ESR) and useful for evaluation of the disease status. Shrivastav et. al. (2011) encountered ESR (14 to 26, 21 ± 4.21 /hour) and PCV (36 to 45, 38 ± 4.45 %) in free range tigers (Table 1). The consequences of ESR and PCV up and downs mostly confined to erythrocyte osmotic fragility that increased in case of immune-mediated hemolytic anemia. Taketa et. al. (1967) have assessed the oxygen affinity of the haemoglobin is much lower in felines than that of other mammals including humans.
Haematology | Unit | Range | Mean | SE (±) | |
1 | Red blood corpuscles | (TEC) ×106/μl | 4.66–9.15 | 7.90 | 1.42 |
2 | Total Leukocytes Count | (TLC) ×103/μl | 6.2–11.05 | 8.50 | 1.42 |
3 | Haemoglobin | (Hb) g/dl | 7.8–13.8 | 12.8 | 1.65 |
4 | Haematocrit | (PCV) Ratio | 36–45 | 38 | 2.54 |
5 | Erythrocyte sedimentation rate | (ESR) Hours | 14–26 | 21 | 4.21 |
6 | Icterus index | (II) u/l | 2– 5 | 2 | 1.51 |
7 | Differential leukocyte count | % | |||
i | Neutrophils – | 57–75 | 60 | 5.08 | |
ii | Lymphocytes – | 18–35 | 30 | 4.56 | |
iii | Monocytes – | 2– 6 | 0.5 | 1.21 | |
iv | Eosinophils – | 2–6 | 0.4 | 1.30 | |
v | Basophils – | 0–4 | 0.1 | 1.21 | |
Blood plasma biochemistry | |||||
1 | Albumin (ALB) | g/dl | 2.1–4.6 | 3.50 | 0.99 |
2 | Total protein ( TPROT) | g/dl | 3.7–8.7 | 6.40 | 1.88 |
3 | Total bilirubin TBIL) | mg/dl | 0.4–3.2 | 1.90 | 1.21 |
4 | Creatinine (CRE) | mg/dl | 1.6–4.6 | 2.90 | 1.03 |
5 | Blood urea nitrogen (BUN) | mg/dl | 6.5–48.2 | 27.90 | 13.77 |
6 | Alanine Aminotransferase (ALT) | IU/L | 21.2–109.0 | 67.88 | 27.84 |
7 | Aspertate Aminotransferase (AST) | IU/L | 14.4–84.0 | 57.96 | 17.27 |
Haematological and Biochemical Values of Bengal tigers ( Panthera tigris tigris)
Jain (1986) reviewed the haematological parameters of big cats including Panthera, Felis, Uncia and Acinonyx and found that the blood composition were almost similar. Among all cats few erythrocytes had single refractile structure (Heinz body) when stained with new methylene blue stain. The Heinz body appearance in erythrocytes is the unique feature of the family Felidae (Plate -1) while they are not visible usually in blood films with Romanowsky stain (Jain,1986). The reduction in erythrocyte count (TEC) and haemoglobin concentration(Hb) are generally associated with anaemia and classified on the basis of erythrocyte morphology, pathogenetic mechanism and bone marrow erythroid response ( Jain, 1986).In wild animals the clinical signs and their magnitude depends on habitat and availability of nutritive materials. Prolonged nutritional deficiencies of protein vitamins and minerals essential for erythrocytes production lead to anaemia. The type of anaemia varies with the nutritional deficiency, blood loss and the animal species involved. Despite the nutritional consequences the blood loss may be encountered through traumatic injuries, complication in blood vascular system, thrombocytopenia, and coagulation disorders. A normocytic – nonchromatic, non responsive anaemia is commonly found in association with chronic infections, chronic infectious inflammatory conditions and some type of malignancies though microcytic-hypochromic is the sign of iron deficiencies (Jain and Kono 1975).
Several blood sucking parasites produce blood loss anaemia in tigers like Ancylostomes, Toxoscaris that may cause haemolytic anaemia while Trypanosomes, Babesia and Haemobartonella (Mycoplasm haemofelis) may alter the total blood as well as plasma volumes with acute blood loss. Chronic blood loss may lead to gastrointestinal lesions, ulcers, heavy parasitism like coccidiosis, neoplasm with bleeding into body cavity, deficiency of Vitamin K and prothrembin etc.
Tiger Blood smear stained with Modified Wright Stain x1000.
Tiger Blood smear stained with Modified Wright Stain x1000.
The total leukocytes count (TLC) and differential leukocytes count are important parameters to judge the body response against diseases. The TLC was 6.2 to 11.05, 8.5 ±1.42 thousand/µl in free range tigers while differential leukocyte counts (DLC) reflect the information of infectious manifestations. A leukocytosis may be physiologic mediated by endogenous release of epinephrine or corticosteroids or it may be pathologic response to a diseases process (reactive leukocytosis) or a result of a neoplastic change in the haematopoiesis (proliferative leukocytosis) while leucopenia is always pathologic event. Quantitative and qualitative changes in a particular type of leukocyte indirectly reflect the nature of disease process and the body response to it.
Jain (1986) reported physiologic factors such as fright and “emotional” disturbances as an immediate effect on TLC and DLC and may confined to interpretation of conditions. The normal response to the stress is decrease in lymphocytes and eosinophil numbers. In “emotional” leucocytosis, lymphocyte numbers are increased and equal or exceed neutrophil numbers while eosinophil commonly not affected. Meyers-Wallen et. al. (1984) observed the young cats normally have high lymphocyte counts and hence a greater tendency to develop lymphocytosis than the adults. This observation may also be attributed in the case of tigers as they belong to the member of same family with wild habitat as an escape behavior. Increases in neutrophil numbers due to physiologic influences are more pronounced in felines than in canines because of the difference in the intravascular distribution of neutrophils. Prasse et. al.(1973) have observed 3 times mean marginal pool of neutrophils of clinically healthy cats than the circulating pool whereas in dog it was about equal or slightly greater.
Neutrophils considered as first line of defense against microbial infections and are important participants in inflammatory reactions. Shrivastav, et.al. (2011) encountered 57 to 75, 60 ±5.08 % with multi-lobed nuclei of 3-5 lobes while sometimes mono-lobed nuclei with pale to slightly pink granules in the cytoplasm in free range tigers( Plate3). Chandranaik, et.al. (2006) has also reported the segmented or multi lobed nuclei while Jain (1986) studied the sex chromatin in few neutrophils as the drumstick lobe in the female cats.
The changes in blood neutrophil differential count (Haden, 1935) is associated with many consequences related to infectious diseases. Several functions have been suggested for the contents of granules, as neutrophils are phagocytic cells and regulating adhesiveness and aggression hydroxyl radical formation and generation of compliment derived chemotactic factors while azurophilic granules are involved in modulation of inflammatory process (Gallin, et. al.1982). Condensation of nuclear chromatin leads to formation of darker-staining plaques separated by delicate, light-staining areas with slight brown colour cytoplasm.
Shrivastav et.al. (2011) observed eosinophils contained small, uniformly round bright eosinophilic granules almost occupying the entire and clear cytoplasm (Plate 3). These cells were encountered 2 to 6, 4 ±1.21 % in free range tigers (Table 1). The nuclei of the cells were generally less lobulated than those of the neutrophils. The eosinophils are slightly larger than neutrophils. Chandranaik, et.al. (2006) also observed the larger eosinophils larger than neutrophils and lobulated nuclei with orange cytoplasm in tigers. Jain (1986) reported the granules of the eosinophil are rod-like in domestic cats and Cheetah (Acinonyx jubatus ) while round granules in the eosinophils of Lion and Leopard. The eosinophils are commonly seen in prolonged parasitic infections or allergic disorders.
The basophile is a numerically insignificant but functionally important leukocyte that resemble with mast cells and it believed to share similar function as it is associated with allergic reaction, inflammatory process and immunocompitancy to the body fluids. Galli et. al. (1982) reported basophiles of cats have a limited capacity to phagocytised. Chadranaik et.al. (2006) have reported smaller basophiles than eosinophils with pale lavender pink stained cytoplasmic granules in physically restrained tigers. Jain (1986) observed the mature basophiles contains numerous small, round, lightly stained (pinkish or orangish) granules in light gray cytoplasm in experimental cats. The basophiles were rarely observed up to the size with 0 to 0.4 0.1 ±1.21 5 % in free range tigers.
The lymphocytes are comparatively smaller than eosinophils with round to oval nucleus occupying most space with spherical nucleus (Plate 3). Small and large lymphocytes were also seen in the blood smear. Some lymphocytes contained a few azurophilic granules in their cytoplasm.Jain (1986) reported small lymphocytes is common in cats with patchy nucleus and dense clumps of heterochromatin. In tigers, Shrivastav et.al.(2011) have report lymphocytes from 18 to 35, 30 ±4.56 % (Table 1& Plates 2).
Tiger Blood smear stained with Modified Wright Stain x1000.
The monocytes are usually larger than lymphocytes. Shrivastav et.al. (2011) encountered 2 to 6, 5 ± 1.21% monocytes in free range tigers with distinguishing feature of the reddish grey nucleus and well defined vacuoles, the nucleus of the monocytes reported amoeboid and some time noticed horseshoe shaped nucleus while cytoplasm stained slightly blue and appeared foamy – vacuolated. (Plate 3). Jain (1986) has also observed similar monocytes in experimental domestic cats.
The monocytes are associated with phagocytosis principally against intracellular bacteria, viruses, fungi and protozoa. The cells perform regulation of the immune response, phagocytic removal of tissue debris (affected cells, antibody coated cells and other foreign materials) as scavenger (Jain, 1986).
Rao and Acharjyo, (2002) have emphasized that macrophages, B-lymphocytes and bone marrow precursor cells are targeted cells for viral replication and commonly observed in Feline Pan-leucopenia (FPL), Feline Viral Rhinotracheitis (FVR), Immunodeficiency Syndrome (FIDS), Canine Distemper (CD) and Inclusion Body Hepatitis (IBH) etc. The body immune system is badly affected and gradually reduced.
Platelets are abundant in blood smear and usually distributed in small to large clumps. Shrivastav et.al.(2011) reported that individual platelets are pleomorphic with rounded to elongated shapes with a central cluster of azurophilic granules (Plate 3). Jain (1986) has observed the clumping platelets in cat blood and emphasized that the platelets of the cats clump readily during excitement of 3 minutes caused a sudden increase in platelet counts. A slight decrease occurred in sympathectomized cats and a somewhat greater decrease reported in splenectomized cats.
The concentration of biochemical compounds in tissues and body fluid can be measured in a colorimetery, as it is capable of absorbing light of a particular wave length (Singh, 2004). Thus the health status of animal can be assessed by evaluation of Blood gases, acid base balances, electrolytes, metabolic intermediates, inorganic ions, enzymes and hormones.
Shrivastav, et.al. (2011) have conducted blood biochemical analysis of free range tigers for Albumin, Total protein, Total bilirubin, glucose, creatinine, Blood urea nitrogen (BUN), Glutamic oxalo-transaminase (GOT/AST), Glutamic pyruvic transminase(GPT/ALT) by using an ERBA Chem-5 plus auto-analyzer (Transasia Bo-medicals Ltd.) with standard ERBA reagent kits for respective plasma constituents. The statistical analysis of obtained data is expressed in range, mean and standard deviation.
Jain (1986) reported an increase in the values of Icterus index in plasma is an indicative of an absolute increase in bilirubin concentration due to removal of aged erythrocytes from the circulation by the reticuloendothelial and liver. Shrivastav, et.al. (2011) reported 2 to 5, ± 2.1.5 units. in apparently healthy tigers of free range.
Protein in plasma can provide information reflecting functional status of various organ and systems as blood is composed of approx 20 % of protein excluding haemoglobin. However, the total protein values gives the information on nutritional consequences or severe organ diseases as they transported the carrier of most of the constituents of the plasma, maintains the colloid osmotic pressure, act as catalysts in biochemical reaction and play important role in formation of fibrin polymers during clot formation (Richard, 1991). The total plasma protein in tigers was estimated 3.7-8.7 to 6.4, ± 1.88g /dl. The values are commonly increases in haemoconcentration and reduced in malnutrition, hepatopathy, less intake of protein and in neoplastic condition etc.
The liver produces all the albumin and globulins while a small amount of globulins is produced by reticuloendothelial tissue (Benjamin, 1979).Liver synthetic capacity or protein-losing nephropathy can be measured by albumin estimation in the blood plasma or serum. It also can interpret high or low calcium and magnesium level since albumin binds about one half of each of the ions (Richard, 1991). However, it appears to be a direct correlation between albumin turnover and body size because it is clinically significant. It is usually constituted with two third of total plasma protein and also serve as mobile amino acids for the liver (Mc Pherson, 1991). Generally hypoalbuminism is observed in malnutrition, increased protein catabolism, nephropathy and chronic enterophathy. Shrivastav et. al. (2011) reported plasma albumin level 2.1 to 4.6, ± 3.5 g /dl, in free range tigers. Reduction in total albumin values is observed in malnutrition, liver diseases, stress, kidney dysfunction etc.
Bilirubin is a breakdown product of heme about 70 percent of which is derived from senescent red cells (Crawford et. al., 1988) however, 15 percent comes from hepatic cytoplasm and mitochondrial cytochromes and some from renal and other cytochromes, and some from defective red blood cell broken down in the bone marrow before release. Shrivastav et. al. (2011) reported 0.4 to 3.2, 1.90, ± 1.21mg /dl, total bilirubin in free range tigers. The yellow color of serum or plasma is due chiefly to the pressure of bilirubin. Increased concentration of bilirubin is commonly seen in haemolysis hepatocellular damage, biliary obstruction prolonged fasting reduced intake fluids etc.
Creatinine is important in muscles metabolism in that it provides storage of high energy phosphates through synthesis of phosphocreatine (Benjamin,1979).It was estimated in tigers as 1.6 to 4.6, 2.9, ±1.03 mg /dl. Serum or plasma creatinine concentration and urinary creatine secretion are increased significantly by skeletal muscles necrosis or atrophy and defect in renal functions (Pennington, 1971)
Urea is the end product of protein and amino acids and is generated in the liver through urea cycle (Woo and Cannon, 1991).Blood Urea Nitrogen is one of the important tools to know the renal function status. The values of BUN (6.5 to 48.2, 27.9, ± 13.7 mg /dl) was observed in free range tigers is commonly seen in malnutrition and hepatic insufficiencies, however, increased BUN is generally associated with renal disease congestive heart failure, shock, hypertension etc. Shrivastav et. al.( 2011) observed the high rise might be also due to adlib intake of meat as the Royal Bengal Tiger can consume 35-40 kg meat of pray animal at a time (Prater, 2005).
The serum enzymes used routinely in clinical diagnosis are synthesized in liver (Schaffner, and Schaffner, 1991). In hepatocellular or in cholestatic forms of liver injury these hepatic enzymes are released in to the serum. The serum enzyme activities that are elevated in hepato cellulardamage are Alanine Aminotransferase (ALT) Aspertate Aminotransferase (AST) Ornithine Carbamoyltransferase(OCT), Glutamic Dehydrogenase(GD) Sorbitol Dehydrogenase ( SDH) and arginase. The elevated serum activities that suggest cholestasis ( intra hepatic or extrahepatic ) are Alkaline phosphotase (AP), Gamma glutamyl transpeptidase (GGT) and 5’ nucleotidase (5’ND). The pathogenesis of the hepatic disease in carnivores especially in Felids are associated with viral hepatitis, parasitic infections or mechanical injuries (Rao and Acharjyo, 2002). The liver has great functional reserves and signs of hepatic failure often do not develop until 70% or more of the functional capacity of the liver is lost (Tennant, 1997).
Alanine Aminotransferase (ALT) was also termed as SGPT and used by many estimations and large number are found in Hepatocytes in cats, dogs and promates (Benjamin, 1979).The ALT was estimated 21.2 to 109.0, 67.9, 27.84 ± IU /L in free range healthy tigers (Shrivastav et. al, 2011).
Apart from liver, AST (Aspertate Aminotransferase) is also present in muscles and cardiac muscles. The higher value of AST though is not an organ specific but used as an indicator of liver dysfunctions. Shrivastav, et. al. (2011) reported 14.4 to 84.0, 57.9 17.27± IU /L in the free range tigers.
The haemato-biochemical profile of the Bengal tigers reported by Shrivastav et. al. (2011) was compared with the values of captive Bengal tigers (Seal et al. 1987), and no major differences were noticed except in ALT, AST and BUN. The mean values (BUN (27.90 ± 13.77 mg/dl), ALT (67.80 ± 27.84 IU/L) and AST (57.9. ± 17.27 IU/L) in free range tigers (Table1)) are comparatively higher with the values of BUN (23.4 ± 0.70 mg/dl), and AST (26.5 ± 4.7 IU/L) as recorded by Seal et al. (1987).The higher values in free range tigers might be associated with beasts of prey, its variety and intake of flesh in natural habits and habitat while zoo tigers are locally dependent on monitored diet in captivity.
Comprehensive information on haemato-biochemical parameters of free range tigers would be helpful for health monitoring and assessment of health status and prognosis of Bengal Tigers (Panthera tigris tigris) during treatment.
The Authors are highly thankful to Dr. H. S. Pabla, PCCF and Dr. Suhas Kumar APCCF (Wildlife) Govt. of M.P. for their interest and constant inspiration to support wildlife activities organized by the Centre for Wildlife Forensic and Health, MPPCVV, Jabalpur-482001, India.
Energy-related issues including energy resources, prices, demand, supply, and use always attract global attention. In particular, international governments from developed nations such as the US and UK have constantly allocated substantial budgets to carry out contemporary evaluations on relevant issues either on national or international levels. Two recent examples include the International Energy Outlook 2018 [1] by the US Energy Information Administration and the independent assessment delivered by the UK Committee on Climate Change [2] as requested by the UK Government. To indicate the seriousness of energy issues, [1] projected that world energy consumption in 2040 would reach up to 736 quadrillion British thermal units (Btu) where industry sector (which would show an 18% increase from 2015 to 2040) would attribute to more than 50% of the total world energy consumption. In the UK context, the Government has set a national target to achieve more than 20% of improvement in industrial energy efficiency by 2030 [2]. To support long-term energy efficiency improvement, action plans are also established, for instance, enabling innovation and dialog for finance access improvement opportunities.
\nExploiting the utilization of industrial waste heat and adopting more thermally efficient practices are examples of possible ways to improve industrial energy efficiency [3]. During industrial processes e.g. drying, heating and combustion, waste heat presents in the forms of vapor, fume, exhaust, waste water and heat; and is discharged from furnaces, motors, refrigeration systems, boilers etc. on without further utilization. The temperature of waste heat varies with industrial processes and the range is very broad, from as low as 30°C to more than 1000°C. Accordingly, waste heat is generally distinguished as high-, medium- and low-grade heat. Compared to medium- and high-grade heat, utilizing and recovering low-grade heat is far more challenging, less feasible and not commonly applied in practice. It is worth noting that low-grade heat has the potential to be utilized in producing (i) electrical power; (ii) heating; (iii) cooling; (iv) heating, cooling, and electricity simultaneously; (v) fresh water; and (vi) hydrogen [4], with the deployment of advanced technologies.
\nThis chapter aims to provide a basic understanding of the state-of-the-art technologies including adsorption, absorption, liquid desiccant, organic Rankine cycles (ORC), and Kalina cycles, which are developed based on the concept of thermodynamic cycles for low-grade heat recovery and utilization in industry. Following the definition of low-grade heat sources in Section 2, the working principle, recent advances in research and development (R&D) and commercial applications of each technology are presented in Section 3. This chapter is closed with concluding remarks on advantages and disadvantages, future outlook, barriers, and opportunities. By providing insights and strengthening knowledge in the subject, this chapter will be beneficial to engineering students, researchers and industrial practitioners.
\nDuring industrial processes, heat is transferred between heat sources and heat sinks. Low-grade waste heat and low-grade heat sources have been defined in literature where the definition applied in this chapter is adopted from [4]. In brief, low-grade waste heat is the (process) heat that is discharged to the environment as its recovery and utilization within the processes is not viable. Meanwhile, low-grade heat sources are the waste heat sources, which have a temperature (Tlow-grade heat source) higher than the sum of the temperature of the heat sink (Tsink) and the minimum allowable temperature difference in the system (ΔTmin) but not high enough to break through the minimum temperature required for viable heat recovery (Tviable min, which is 250°C). In other words, low-grade heat sources are the waste heat sources with a temperature ranging between Tviable min + ΔTmin and Tviable min, that is, Tviable min + ΔTmin < Tlow-grade heat source < Tviable min. Table 1 presents the temperature ranges of numerous industrial low-grade waste heat sources. Among all, flue gas from boilers, waste heat from compressor cooling systems and condensate from both steam heating and spent cooling water are common waste heat sources across all industrial sectors. Other waste heat sources are industrial sector specific. Most industrial waste heat sources have temperatures below 175°C rather than approaching Tviable min, i.e. 250°C.
\n\n | Low-grade waste heat source | \nTemperature (°C) | \n
---|---|---|
Generic unit/process | \n||
1. Boilers [5, 6] | \n\n
| \n110–260 | \n
2. Air compressors [7] | \n\n
| \n30–60 | \n
3. Heating/cooling network [7] | \n\n
| \n60–90 | \n
Industrial sector | \n||
1. Petrochemical [5] | \n\n
| \n156 | \n
\n
| \n216 | \n|
\n
| \n149 | \n|
2. Iron/steel making [5] | \n\n
| \n200 | \n
\n
| \n93 | \n|
\n
| \n250 | \n|
3. Aluminum [5] | \n\n
| \n121 | \n
4. Food and drink [7] | \n\n
| \n150–200 | \n
\n
| \n110–160 | \n|
\n
| \n100 | \n|
5. Textile [6] | \n\n
| \n90–94 | \n
\n
| \n180 | \n|
\n
| \n58–66 | \n|
6. Paper [8] | \n\n
| \n95–100 | \n
\n
| \n65–85 | \n|
\n
| \n35–45 | \n|
7. Cement [9] | \n\n
| \n204–300 | \n
\n
| \n100 | \n
Low-grade waste heat sources and temperatures.
Generally, vapor compression systems [10], which are also referred to as mechanical or refrigerative compressors have been established as the most mature machines for cooling, heat pumping and/or dehumidification purposes. As illustrated in Figure 1, a typical vapor compression system consists of a refrigeration circuit (which is made up of an evaporator, a condenser, a compressor, and an expansion valve) and an air circulation fan. Water, R407c and R134a are the refrigerants, which are commonly used as the working fluids of commercial vapor compression systems. When air is drawn to the evaporator by the fan, the low-pressure, low-temperature liquid-vapor refrigerant mixture coming from the expansion valve extracts heat from the air; the liquid refrigerant evaporates and the air is cooled. Leaving the evaporator, the saturated refrigerant vapor is compressed to high-pressure superheated state, which dumps condensation heat in the condenser. If in a dehumidifier, the high-temperature, high-pressure superheated refrigerant vapor is condensed by the cool but dry air from the evaporator, heat is rejected and the air becomes dryer and warmer. To run the fan and the compressor, electricity is consumed intensively. As vapor compression systems are conventional technology, they are not further discussed in this chapter. More details are available in [11].
\nA schematic diagram of a traditional vapor compression system.
Adsorption is the enrichment or depletion of one or more components in an interfacial layer between adsorbent and adsorbate, as defined by International Union of Pure and Applied Chemistry [12]. There are four types of adsorption depending on the interface: solid-gas, solid-liquid, liquid-liquid, and liquid-gas. The solid-gas adsorption has been extensively used and studied in recent decades and is often referred to adsorption or solid sorption [13]. If the solid-gas binding force involves intermolecular forces, i.e. Van der Waals forces, it is categorized as physical adsorption (physisorption) and the typical physisorption working pairs are silica gel-water [14], activated carbon-ammonia or methanol or ethanol [15], zeolite-water [16], etc. If the coordination reaction takes place on the exposed surface forms a strong ionic or covalent bond between the adsorbate and the adsorbent, it is recognized as chemical adsorption (chemisorption) that consists of mainly two types of working pairs for low-grade heat utilization: metal halides-ammonia [17] and salt hydrates-water [18]. In other words, multi-layers (in physisorption) or monolayer (chemisorption) of absorbate accumulates on the surface of an adsorbent during an adsorption.
\nThe fundamental principle of an adsorption refrigeration cycle is schematically by a basic adsorption unit shown in Figure 2, where reversible sorption process operates or chemical reaction performs in an intermittent manner. Low-grade heat is supplied to the adsorbent bed to break the binding force between the adsorbent and the adsorbate (refrigerant) as the adsorbate (refrigerant) gas is desorbed from the adsorbent bed and heading for the refrigerant container that acts as a condenser. Such a process is referred to endothermic decomposition as shown in Figure 2(a). When the decomposition is finished, two vessels are isolated from each other for an internal prior to the exothermic synthesis. Once sufficient pressure difference has been built up between these two vessels and there is a need of refrigeration, as soon as two vessels are connected in Figure 2(b), driven by the pressure difference the adsorbate inside the refrigerant container (becomes evaporator in this process) evaporates and is adsorbed inside the adsorbent bed. The evaporation of the refrigerant provides the refrigeration power, and the adsorption heat of the adsorbent bed is to be released to the proper heat sink. For heating purpose in two types of heat pump applications, (1) adsorption unit can perform as a heat multiplier to produce a large quantity of medium temperature heat through both the condensation and synthesis process at the cost of a small quantity of high-temperature heat input for the decomposition [19]; or (2) in a heat transformer it can deliver concentrated high-temperature heat through synthesis process if both decomposition and evaporation processes are provided with medium temperature heat [20].
\n(a) Endothermic decomposition (left) and (b) exothermic synthesis (right).
Adsorption heating and cooling application have been widely developed in the past decade. Various advanced cycles have been developed for improvement in energy efficiency of thermal energy recovery and utilization in a wider temperature range e.g. cycles with heat and mass recovery, multi-stage, multi-sorbent, and cascaded cycles, etc. [21]. Considerable effort has been also focused on the development of composite adsorbent materials to enhance heat and mass transfer properties, improve adsorption capacity and enlarge specific power [13]. Especially, physisorption type air conditioning and heat pumping machines developed by some European and Japanese companies are on or near-market currently (SorTech, GBU mbH, Invensor, Mayekawa chillers; Vaillant and Viessmann heat pumps, etc.). Meanwhile, substantial R&D effort has been put on water-based adsorption systems for such as dehumidification/drying and desalination application. The first worldwide adsorption water desalination and cooling plant has been implemented in Riyadh, Saudi Arabia since 2016, and the process has a cooling capacity of up to 1 MW and desalinated water production up to 100 m3/day. With the inherent nature of intermittency, adsorption cycle also presents itself as a promising solution for energy storage as the decomposition is charging energy and the synthesis is the energy discharging process. Such an adsorption energy storage system is superior to the methods of sensible and latent heat storage not just because of its high energy density but also its low energy loss during long-term storage [22] as the binding energy is stored independently of the time span between decomposition (charging process) and synthesis (discharging process). With ever increasing energy prices and greater environmental concerns it can be expected that adsorption refrigeration and heat pumping will soon join the mainstream technologies.
\nAdsorption power generation concept, especially ammonia-based adsorption cycle which has greater potential of productive power generation than water-based types due to the higher working pressure, has recently started to attract interest for more versatile application, as the adsorption unit integrated with turbine or expander can convert thermal energy to mechanical work, or produce electricity when a generator is attached [23]. Modeling, simulation, and experimental investigation have been conducted and demonstrated the feasibility of the adsorption cogeneration of cooling and electric power [24, 25]. Most recently, a new dual energy storage system through the integrated ammonia-based resorption cycle is being developed for simultaneous electric and thermal energy storage [26, 27] as illustrated in Figure 3. In the energy charging process, mechanical or electrical power is stored together with the ultra-low-grade thermal energy (~100°C) as the ammonia (refrigerant) is desorbed in the endothermal decomposition and further pressurized through vapor compression driven by mechanical energy or electricity. In the energy discharging process, the stored energy can be delivered as either heating or cooling power as the conventional adsorption cycle promises, or even mechanical energy if the transferred high-pressure ammonia passes through a turbine or expander. In fact, when the integrated system restores mechanical energy, it would also generate a considerable quantity of upgraded thermal energy, plus a small quantity of cold energy depending on heat source temperature and the refrigeration requirement, as so-called the Tri-generation Recovery and Efficient Energy Storage (TREES) concept [26]. In contrast with conventional chemisorption systems, the TREES cycle embraces broader application with higher penetration of renewable energy; not just utilizing thermal energy (waste heat, solar energy, or geothermal energy) but also potentially storing intermittent electric power from solar PV and wind power or off-peak cheap electricity.
\n(a) Ultra low-grade heat input (top) and (b) power generation (bottom).
Absorption is a process where a device (i.e. an absorber) is used to enable any substance (i.e. an absorbent, also referred to as an “absorption medium”) to soak up or take in another substance e.g. liquid or gas (i.e. an absorbate). In other words, an absorber enables an absorbent to absorb an absorbate during absorption. To differentiate from adsorption, in absorption process the molecules of the adsorbate penetrate the surface layer and enter the structure of the bulk solid or liquid, causing the change of the composition of one or both bulk phases [28]. The absorption process using liquid absorbent and gas absorbate has been applied in refrigeration industry and also successfully adopted in commercial chillers and heat pumps for a long period. A liquid-gas absorption heat pump system (heat multiplier) is illustrated in Figure 4, consisting of a solution and refrigerant loops as the absorbate is also referred to as a refrigerant.
\nThe schematic diagram of an absorption heat multiplier.
The key components of an absorption system include a generator, an absorber, a condenser and an evaporator whilst a heat exchanger, a solution pump, and expansion valves are commonly incorporated. The working fluid is made of an absorbent-refrigerant solution, which presents in the generator and the absorber. Lithium bromide-water (LiBr-H2O) and water-ammonia (H2O-NH3) are two absorbent-refrigerant solutions commonly chosen for absorption systems. For an absorption cooling system, in the absorption loop, the solution weak in refrigerant leaves the generator as its temperature and pressure are lowered by the heat exchanger and the expansion valve respectively before entering the absorber where absorption takes place and the refrigerant is absorbed, which releases absorption heat to the surroundings. The solution strong in refrigerant from the absorber is then pumped and preheated before entering the generator. In the refrigerant loop, high-pressure refrigerant vapor from the generator condenses in the condenser and releases heat to the surroundings. The pressure of the refrigerant liquid is lowered by the expansion valve before it reaches the evaporator and evaporates. The low-pressure refrigerant vapor then enters the absorber where the vapor is absorbed. As the working fluid is regenerated in the generator and the absorption in the system repeats continuously, the quantity of the solution remains the same. In addition to utilizing waste heat for solution regeneration in the generator, industrial low-grade waste heat can be supplied to the evaporator to assist the evaporation processes of the refrigerant in a heat transformer so that the upgraded heat can be gained from the absorber; or in a heat multiplier, condensation and absorption processes in the condenser and absorber respectively can be collected for further utilization.
\nVarious modifications have been proposed to advance absorption systems for enhanced capacity, improved coefficient of performance, and increased temperature lift for heating or temperature drop for cooling. For instance, the system can be simplified to form an open-cycle absorption heat pump by removing the evaporator and bringing the solution in the absorber in direct contact with the absorbate source (e.g. moist air, waste vapor, or exhaust flue, etc.) to release the absorption heat [29]. When solution and refrigerant tanks are additionally incorporated to absorption systems, the systems work as absorption heat storage systems [30]. Two or three absorption systems can be coupled with each other in series to form a two- or three-stage absorption heat transformer by recovering the absorption heat of one system for the generation and vaporization heat of the next system (and so on) [30]. Also, an absorption system can deploy high- and low-pressure absorbers, to form a double absorption heat transformer. The low-pressure absorber also acts as an additional evaporator where the adsorption heat is used to vaporize the refrigerant vapor that is to be absorbed by the high-pressure absorber [30, 31]. A double-effect absorption heat transformer employs two generators as the high-temperature refrigerant vapor generated from the high-pressure generator is recovered to provide the low-pressure generator with generation heat, thus two streams of refrigerant vapor from two generators converge in the condenser [31]. There are also researches on 1.X (or variable) effect cycles that can flexibly perform in larger working range with higher energy efficiency [32]. The combination of an absorption system and a traditional heat exchanger, as so-called absorption heat exchanger, can realize larger temperature drop through heat exchange, i.e. the outlet temperature of the cold fluid becomes higher than the outlet temperature of the hot fluid [29]. In relation to the working fluid of the systems, the use of alternative mixtures e.g. water-ternary hydroxides, water-lithium iodide, ammonia-sodium thyocianate, ammonia-ionic liquid etc. have been explored. More details are available in [29, 30].
\nSolid or liquid desiccant materials can be used in industry for dehumidification and cooling purposes. Desirable characteristics required for desiccants include low vapor pressure, regeneration temperature, crystallization point, viscosity and cost with high density [33]. Whilst silica gel, zeolites, aluminas and polymers are solid desiccants, organic desiccant e.g. tri-ethylene glycol (TEG) and inorganic salt solutions such as LiBr, lithium chloride (LiCl), and calcium chloride (CaCl2) are examples of liquid desiccants [33, 34]. LDSs involve liquid-gas absorption. They have the edge over solid desiccant systems as they can operate at regeneration temperatures, which are very low and they show higher thermodynamic coefficient of performance with lower pressure drops [35]. Compared to traditional vapor compression systems, apart from the advantages of being environmental friendly and heat driven LDSs are more flexible in temperature and humidity controls [34].
\nAn LDS employs (i) a desiccant as a working fluid; (ii) two towers (also referred to as columns) which serve as a dehumidifier (i.e. an absorber, also referred to as a conditioner) and a regenerator respectively for air dehumidification and desiccant regeneration processes; (iii) devices e.g. pumps and fans for desiccant solution circulation; and (iv) a heat source and a heat sink (e.g. low-grade heat and a coolant) to heat up and cool down desiccant solution. Figure 5 shows a typical LDS design. The strong desiccant solution is sprayed on top of the absorber whilst the wet, cool air used by industrial processes (referred to as “process air”) is drawn into the absorber by a fan. The water vapor pressure of the strong solution is lower than that of process air. When the strong solution contacts with process air directly, the difference in the water vapor pressures results in mass transfer i.e. the strong solution absorbs moisture from the process air and becomes weak whilst it is chilled (by a coolant). The weak desiccant solution is heated (by a low-grade heat, hot water or renewable energy sources) and sprayed into the regenerator and heated (by a low-grade heat) whilst regeneration air is circulated by a fan. The water vapor pressure of the weak solution is higher than that of regeneration air. When the weak solution makes contact with regeneration air directly, the difference in the water vapor pressures results in mass transfer i.e. the weak solution releases moisture to regeneration air and becomes strong. An inter-stage heat exchanger may be used to chill or preheat the desiccant solution before entering the absorber and the regenerator.
\nA schematic diagram of a LDS.
R&D has been advanced in connection to the design of the towers, flow directions, liquid desiccant materials and system design. Following the introduction of membrane-based LDSs, towers applied for LDSs can be classified as randomly or structured packed, spray, wetted wall (also referred to as failing-film), and hollow fiber or parallel-plate membrane based (also referred to as membrane modules or membrane contactors), as illustrated in Figure 6. The directions in which the solution and the air enter and leave the towers distinguish the flow i.e. counter flow if both are in opposite directions and cross/parallel flow if both are in the same direction. To improve performance and cost-effectiveness, composite desiccant materials such as silica gel or SiO2 impregnated with an inorganic salt (including CaCl2, LiCl, LiBr, SrCl2, and NaSO4) have also been explored [36]. To enhance heat and mass transfer between desiccant solution and air, multi-stage LDSs have been proposed by [37], which operates in a cascade way to cool the solution in multiple stages when it flows through more than one absorber. Moreover, a pilot study has been carried out in power plants to investigate an LDS application, which integrates with a CO2 capture system for moisture recovery [38]. Recently, vertical and horizontal discharge dehumidifiers, fiberglass packed regenerators and small packaged dehumidifier-regenerator commercial LDSs have been made available by Alfa Laval Kathabar [39].
\nVarious tower designs for absorbers and regenerators to enable heat and mass transfer between desiccant solution and process or regeneration air.
An ORC is an emerging prime mover technology, which recovers low-grade heat for power generation. As a derivative of the conventional steam Rankine cycle, a basic ORC consists of four main components, as shown in Figure 7, including an evaporator, an expander, a condenser, and a feed pump. In the system, the working fluid at its lowest temperature and pressure is pumped by a feed pump to achieve the required pressure (maximum pressure in the cycle) before it goes into an evaporator where the working fluid is isobarically heated to form dry vapor. The dry vapor enters an expander where expansion takes place to generate mechanical work. The expander is connected to a generator where the resulting work is converted into electric power. Leaving the expander, the working fluid, which is now a mixture of vapor and liquid at minimum pressure, cools down in a condenser. The saturated liquid from the condenser flows into the feed pump and the cycle repeats.
\nThe schematic diagram of an ORC.
The working fluids of ORCs are organic compounds, which have lower boiling points, critical points, specific volumes, and viscosity values than water. They can be classified as organic refrigerants, hydrocarbons, and siloxanes. Each works well for different heat source temperatures i.e. organic refrigerants are suitable for temperatures between 100 and 175°C; hydrocarbons for 175–250°C; and silozanes for 250–400°C. As industrial waste heat sources are generally below 175°C, organic refrigerants are more ideal for applications. Some working fluids with low supercritical temperatures, such as CO2 (the critical pressure and temperature at 73.8 bar and 31.1°C) and hydrocarbons, have been studied for ORC systems, as the cycles operate at supercritical condition, and therefore is known as the supercritical Rankine cycle (SRC). Because SRCs bypass a two-phase region during the heating process, they have a better thermal match with a heat source which results in less irreversibility. After expansion, the working fluid exiting the turbine can be purely superheated in vapor form or as a mixture of vapor and liquid [40].
\nUsing pure fluids as the working fluid of ORCs involves isothermal condition in the boiler and the condenser, which creates a bad thermal match between the working fluid and the heat source or heat sink, leading to large irreversibilities. The issue can be diminished by adopting a mixture of working fluids (also referred to as “multi-component fluids,” “fluid blends,” or “binary mixtures”), such as zeotropic mixtures. This is because working fluid mixtures can offer a boiling temperature range rather than a boiling point at constant pressure. Likewise, SRCs using zeotropic mixtures potentially have further reduced exergy destruction during both boiling and condensation, leading to higher efficiency.
\nTo safeguard the overall performance of ORCs in particular when the application scale is small and the temperature of heat sources is low, expanders play a key role, and therefore, have been researched for highly efficient design. To date, expanders proposed for ORCs can be classified as velocity- or volume-type [41], which show different characteristics. Velocity-type expanders e.g. axial turbine expanders possess higher flow rates but contain lower pressure ratios, rotational speeds, and tolerance of a two-phase condition at the outlet. Volume-type expanders e.g. screw expanders, scroll expanders, and reciprocal piston expanders are simpler with less moving parts, a wider power output range, and require less maintenance. The selection should be made by taking account of cost, efficiency, operating conditions, noise level, safety and leaking issues.
\nVarious configurations with the potential of higher energy efficiency have been explored in R&D. When a regenerator (also known as feed-water heater, preheater, recuperator, and internal heat exchanger) is deployed to achieve a better thermal match between the working fluids and the heat sources, the working fluid will be preheated before entering the evaporator using either the vapor exiting the turbine or via the turbine bleeding during expansion. Such ORC configuration is referred to as a regenerative ORC. Also, one or more flash evaporator can be incorporated in an ORC to form single-, double-, or multiple-stage organic flash cycles, in which the working fluid of an ORC is flash evaporated before the gas vapor entering the expander. When more than two separate stages are incorporated in an ORC to enable the condenser of Stage 1 acting as the evaporator of Stage 2 (and so on), the configuration is known as a cascade ORC. More details can be found in [42].
\nTo date, a number of ORC manufacturers (e.g., Turboden, Opcon Powerbox, and EXERGY) and commercial applications in industry sectors have been reported. To recover waste heat from furnace exhaust, the ORC units manufactured by Turboden have been operated by iron and steel foundries, including (i) Fonderia di Torbole in Italy since 1996; (ii) Toscelik Hot Strip Mill in Turkey with a 1000 kW net electric power output since 2011; (iii) NatSteel in Singapore with a 555 kW gross electric power output since 2013; (iv) Elbe-Stahlwerke Feralpi in Germany with a 2700 kW gross electric power output since 2013; and (v) ORI Martin in Italy with a 1900 kW gross electric power output since 2016 [43]. In Sweden, a NH3 based, fully automated, remotely controlled ORC system supplied by Opcon Powerbox has been recovering low-grade heat from wastewater stream originated from the manufacturing processes in the Munksjö pulp mill since 2010, which produces electricity with a net output capacity of 750 kWel [44]. ORC systems manufactured by EXERGY have been operated in three glass manufacturing plants of Sisecamin in Italy, each with a capacity of 5 MWe electricity [45]. According to [46], recovering industrial waste heat using ORCs commercially is limited to 10 applications around the world with a total installed power of 29 MWel, and therefore, the market is still in its infancy.
\nKalina cycles can recover industrial waste heat ranging between 80 and 400°C for power generation. In principle, Kalina cycles are absorption-based power generation cycle. Kalina cycles show superior performance over ORCs and supercritical cycles. Irresibility is scaled down as Kalina cycles reduce the heat transfer temperature difference between its working fluid i.e. ammonia-water (NH3-H2O) and heat source. Moreover, the Kalina cycle has one more degree of freedom than the Rankine cycles to be flexibly adopted to match with a certain heat source and heat sink, as the NH3-H2O composition can be adjusted as well as the system high- and low-pressure levels. Other benefits of using NH3-H2O as the working fluid include (i) enabling efficient use of low-grade heat for vapor generation at higher pressure; (ii) less oxidation due to extremely low oxygen levels within the mixture, therefore, standard materials like carbon steel and standard high-temperature alloys can be used to handle ammonia [47].
\nTo suit heat source characteristics and accommodate specific applications, more than 30 configurations, that is, Kalina Cycle Systems (KCSs) 1–34 have been introduced to date [45]. Figure 8 depicts the system configuration developed for waste heat recovery in cement industry, which is based on KCSs 1–2 for power generation [48]. Low-grade heat is fed to the vapor generators respectively to boil and superheat the working fluid. The superheated vapor expands in the turbine to generate electrical power. The turbine exhaust is cooled down when passing through one of the recuperative heat exchangers, diluted by the working fluid from the vapor separator and condensed in the low-pressure condenser. Some saturated working fluid from the condenser passes through the other recuperative heat exchanger before reaching vapor separator while the remaining mixes with the vapor steam from the separator to form ammonia-rich working fluid. It is condensed in the high-pressure condenser by the cooling medium before being pumped back to the heat recovery vapor generators. As ammonia and water have close molecular weights, Kalina cycles do not require specific equipment design and piping system. Due to the lower boiling points of the mixture, a higher turbine inlet pressure and lower mass flow rate are permissible for Kalina cycles, which helps to minimize the running costs of the system. KCS-11 is the most suitable cycle for low-grade heat between about 121 and 204°C and KSC-34 or KSC-34 g are popular for application with heat source temperature below 121°C. More details can be found in [42].
\nThe schematic diagram of KCSs 1–2 developed for cement industry application.
System development, modeling, and experimental studies, which analyze the working fluid (including zeotropic mixtures), thermodynamic performance (i.e. entransy, entropy, and/or exergy), and parametric optimization of the cycles have been extensively researched over the years. Substituting an ejector for the absorber and the throttle valve has been proposed to reduce the pressure of the expander exhaust, which results in a larger difference in the working pressure of expansion [49]. As such, thermal efficiency and the power output of Kalina cycles are improved. Also aiming for greater power output, Kalina-Flash cycles have been introduced [50] where a flash vessel is incorporated into the cycles to produce secondary NH3-rich vapor by depressurizing the NH3-poor solution. Recently, Kalina cogeneration cycles [51] integrating an ejector have been developed to improve system performance and produce power and refrigeration simultaneously.
\nFocusing on industrial waste heat recovery, recent R&D direction has steered toward comparing ORCs and Kalina cycles. For instance, recovery of multiple heat streams in the process industry has been compared based on three waste heat patterns [52], which shows that the Kalina cycles are more superior when the temperatures of the heat streams form a linear relationship or increase slowly with enthalpy but become inferior if the temperatures increase rapidly. R&D has also advanced to integrate an ORC and a Kalina cycle to recover waste heat from the exhaust of a natural gas power generation system using the combination of solid oxide fuel cells and a gas turbine while the cryogenic energy of liquefied natural gas (LNG) is used as the heat sink, which shows an acceptable thermal efficiency with reduced exergy loss through temperature matches between heat sources and heat sinks [53].
\nExisting industrial waste heat recovery applications include [54] (i) 3.5 MW Sumitomo plant in Japan from 98°C hot water since 1999; (ii) 2.0 MW Kalina plant in Husavik, Iceland using geothermal brine at 124°C since 2000; (iii) 4.0 MW Fuji Oil plant in Japan from 116°C condensing vapors since 2005; (iv) 8.6 MW DG KHAN plant in Pakistan from the gas and air rejected from the kiln since 2013; and (v) 4.75 MW Star Cement plant in Dubai from hot air from kiln since 2013. Still, commercial application of Kalina cycles are limited due to a few practical issues (on top of expensive capital investment), including (i) the requirement of an accurate evaporation ratio in the boiler; (ii) the tendency of NH3-H2O mixture to prematurely condense during expansion; (iii) requirement of low condensation temperature for productive generation; and (iv) the patents of Kalina cycles.
\nThe technologies discussed in this chapter bring both advantages and disadvantages, as summarized in Table 2.
\nTechnology | \nAdvantage | \nDisadvantage | \n
---|---|---|
Adsorption [13] | \n\n
| \n\n
| \n
Absorption [29] | \n\n
| \n\n
| \n
LDS [34, 36] | \n\n
| \n\n
| \n
ORC [41, 55] | \n\n
| \n\n
| \n
Kalina cycle [47] | \n\n
| \n\n
| \n
Advantages and disadvantages of the state-of-the-art technologies.
R&D has been ongoing to resolve technical constraints and enhance coefficient of performance of the state-of-the-art technologies. To achieve a low-carbon future, it is envisaged that R&D for these low-grade heat utilization and recovery technologies will continue to carry out more experimental studies, investigate working fluids and materials, examine thermodynamic properties (including energetic, exergy and entransy analyzes), cover performance analysis and optimization, develop and verify modeling with experimental results, propose new system design, integrate technologies with renewable sources and compare alternative systems or technologies. As evidenced by the examples of worldwide commercial applications, utilizing, or recovering industrial low-grade heat (which is otherwise discharged to the environment) for useful work is possible by taking advantage of the state-of-the-art technologies discussed in this chapter. Inevitably, the number of commercial applications is still very limited, even though industrial waste heat is abundantly available and the concept of utilization or recovery is not new. This is because of resource constraints and lack of motivation due to the technical, regulatory, business, and organizational barriers as illustrated in Figure 9.
\nTechnical, regulatory, business and organizational barriers to commercially deploying low-grade heat utilization and recovery technologies.
From a technical perspective, the varied nature of the low-grade heat sources including temperature, availability, flow rate, composition, contaminating content and working fluids affect the application significantly. From a business and organizational perspective, capital cost and payback period are the key factors considered by the management boards of industrial organizations. Currently, commercial applications are also hindered by the regulatory barriers such as the absence of financial incentives, tax breaks, strong policies and legislation. Nevertheless, the successful stories of the existing commercial applications indicate more possibilities and opportunities in future. Indeed, they have set important precedents for feasible uptake of the technologies in various industry sectors. Opportunities present for wider commercial applications in future as a result of the following drives:
Technical—R&D has been ongoing to (i) identify more working fluids from a wider range of fluid types and mixtures for different heat source temperatures; (ii) enhance heat transfer and exchange; and (iii) achieve optimal system performance.
Economic—Significant energy cost savings are realized from the commercial applications in particular when energy prices soar.
Business—The deployment of the state-of-the-art technologies is (i) justifiable on the grounds of improved corporate images when organizations endeavor in energy efficiency and sustainability; and (ii) possible for upcoming facility expansion and renovation while existing infrastructure can be used as a backup.
Policy—Industrial willingness to go beyond business as usual can be stimulated by tax breaks or exemption and new feed-in tariffs for low-grade heat utilization and recovery.
Information, training and knowledge transfer—More commercial applications can be realized provided manufacturers, dealers and technicians are informed about R&D advance on a regular basis.
Social—The deployment brings along some advantages to the society, for instance, local/national economic development, new job opportunities, energy security, and indirect health benefits from reduced green house gas (GHG) emission.
Prior to commercial applications, the system must be designed with precautions and assessed thoroughly using a whole-system approach by taking account of technical, economic, legislative, social and environmental consideration. Life cycle assessment, which is a methodology widely applied for environmental assessment, is not further discussed but can be found in [56].
\nWith support from the Research Councils UK Energy Program (EP/P005667/1), the chapter was delivered as a research outcome of the Thermal Energy Challenge Network.
\n"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality. Throughout the world, we are seeing progress in attracting, retaining, and promoting women in STEMM. IntechOpen are certainly supporting this work globally by empowering all scientists and ensuring that women are encouraged and enabled to publish and take leading roles within the scientific community." Dr. Catrin Rutland, University of Nottingham, UK
",metaTitle:"Advantages of Publishing with IntechOpen",metaDescription:"We have more than a decade of experience in Open Access publishing. \n\n ",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"We have more than a decade of experience in Open Access publishing. The advantages of publishing with IntechOpen include:
\\n\\nOur platform – IntechOpen is the world’s leading publisher of OA books, built by scientists, for scientists.
\\n\\nOur reputation – Everything we publish goes through a two-stage peer review process. We’re proud to count Nobel laureates among our esteemed authors. We meet European Commission standards for funding, and the research we’ve published has been funded by the Bill and Melinda Gates Foundation and the Wellcome Trust, among others. IntechOpen is a member of all relevant trade associations (including the STM Association and the Association of Learned and Professional Society Publishers) and has a selection of books indexed in Web of Science's Book Citation Index.
\\n\\nOur expertise – We’ve published more than 4,200 books by more than 116,000 authors and editors.
\\n\\nOur reach – Our books have more than 125 million downloads and more than 84,800 Web of Science citations. We increase citations via indexing in all the major databases, including the Book Citation Index at Web of Science and Google Scholar.
\\n\\nOur services – The support we offer our authors and editors is second to none. Each book in our program receives the following:
\\n\\nOur end-to-end publishing service frees our authors and editors to focus on what matters: research. We empower them to shape their fields and connect with the global scientific community.
\\n\\n"In developing countries until now, advancement in science has been very limited, because insufficient economic resources are dedicated to science and education. These limitations are more marked when the scientists are women. In order to develop science in the poorest countries and decrease the gender gap that exists in scientific fields, Open Access networks like IntechOpen are essential. Free access to scientific research could contribute to ameliorating difficult life conditions and breaking down barriers." Marquidia Pacheco, National Institute for Nuclear Research (ININ), Mexico
\\n\\nInterested? Contact Ana Pantar (book.idea@intechopen.com) for more information.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'We have more than a decade of experience in Open Access publishing. The advantages of publishing with IntechOpen include:
\n\nOur platform – IntechOpen is the world’s leading publisher of OA books, built by scientists, for scientists.
\n\nOur reputation – Everything we publish goes through a two-stage peer review process. We’re proud to count Nobel laureates among our esteemed authors. We meet European Commission standards for funding, and the research we’ve published has been funded by the Bill and Melinda Gates Foundation and the Wellcome Trust, among others. IntechOpen is a member of all relevant trade associations (including the STM Association and the Association of Learned and Professional Society Publishers) and has a selection of books indexed in Web of Science's Book Citation Index.
\n\nOur expertise – We’ve published more than 4,200 books by more than 116,000 authors and editors.
\n\nOur reach – Our books have more than 125 million downloads and more than 84,800 Web of Science citations. We increase citations via indexing in all the major databases, including the Book Citation Index at Web of Science and Google Scholar.
\n\nOur services – The support we offer our authors and editors is second to none. Each book in our program receives the following:
\n\nOur end-to-end publishing service frees our authors and editors to focus on what matters: research. We empower them to shape their fields and connect with the global scientific community.
\n\n"In developing countries until now, advancement in science has been very limited, because insufficient economic resources are dedicated to science and education. These limitations are more marked when the scientists are women. In order to develop science in the poorest countries and decrease the gender gap that exists in scientific fields, Open Access networks like IntechOpen are essential. Free access to scientific research could contribute to ameliorating difficult life conditions and breaking down barriers." Marquidia Pacheco, National Institute for Nuclear Research (ININ), Mexico
\n\nInterested? Contact Ana Pantar (book.idea@intechopen.com) for more information.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:null},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5313},{group:"region",caption:"Middle and South America",value:2,count:4819},{group:"region",caption:"Africa",value:3,count:1468},{group:"region",caption:"Asia",value:4,count:9362},{group:"region",caption:"Australia and Oceania",value:5,count:837},{group:"region",caption:"Europe",value:6,count:14778}],offset:12,limit:12,total:108153},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"16"},books:[{type:"book",id:"7927",title:"Selected Topics in Child and Adolescent Mental Health",subtitle:null,isOpenForSubmission:!0,hash:"d0afa3f41927509c4a21502c591726b8",slug:null,bookSignature:"Dr. Maria Rosaria Muzio",coverURL:"https://cdn.intechopen.com/books/images_new/7927.jpg",editedByType:null,editors:[{id:"286957",title:"Dr.",name:"Maria",surname:"Rosaria Muzio",slug:"maria-rosaria-muzio",fullName:"Maria Rosaria Muzio"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8710",title:"Eosinophils",subtitle:null,isOpenForSubmission:!0,hash:"310c9d9e1510937f3bec11533ead88be",slug:null,bookSignature:"Dr. Seyyed Shamsadin Athari and Dr. Entezar Mehrabi Nasab",coverURL:"https://cdn.intechopen.com/books/images_new/8710.jpg",editedByType:null,editors:[{id:"139889",title:"Dr.",name:"Seyyed Shamsadin",surname:"Athari",slug:"seyyed-shamsadin-athari",fullName:"Seyyed Shamsadin Athari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7632",title:"Beyond LEO - Human Health Issues for Deep Space Exploration",subtitle:null,isOpenForSubmission:!0,hash:"800d9e65b9eca19dd1372fa0db7478cd",slug:null,bookSignature:"Dr. Robert J. Reynolds",coverURL:"https://cdn.intechopen.com/books/images_new/7632.jpg",editedByType:null,editors:[{id:"220737",title:"Dr.",name:"Robert",surname:"J. Reynolds",slug:"robert-j.-reynolds",fullName:"Robert J. Reynolds"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9133",title:"Hospital Acquired Infection and Legionnaires Disease",subtitle:null,isOpenForSubmission:!0,hash:"67e9b00ffb1203f7a41d2bb8507367c4",slug:null,bookSignature:"Dr. Salim Surani and Dr. Joseph Varon",coverURL:"https://cdn.intechopen.com/books/images_new/9133.jpg",editedByType:null,editors:[{id:"15654",title:"Dr.",name:"Salim",surname:"Surani",slug:"salim-surani",fullName:"Salim Surani"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9087",title:"Anemia",subtitle:null,isOpenForSubmission:!0,hash:"f94d3fb270e4af2b9813b12455424c22",slug:null,bookSignature:"Dr. Ota Fuchs",coverURL:"https://cdn.intechopen.com/books/images_new/9087.jpg",editedByType:null,editors:[{id:"36468",title:"Dr.",name:"Ota",surname:"Fuchs",slug:"ota-fuchs",fullName:"Ota Fuchs"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9451",title:"Learning Disabilities",subtitle:null,isOpenForSubmission:!0,hash:"9c7a717ecf24f759a2b2111dfca99960",slug:null,bookSignature:" Sandro Misciagna",coverURL:"https://cdn.intechopen.com/books/images_new/9451.jpg",editedByType:null,editors:[{id:"103586",title:null,name:"Sandro",surname:"Misciagna",slug:"sandro-misciagna",fullName:"Sandro Misciagna"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7966",title:"Diagnosis and Treatment of Osteomyelitis",subtitle:null,isOpenForSubmission:!0,hash:"764c30adac79d07c33b37020ee81218b",slug:null,bookSignature:"Prof. Mauricio S. Baptista and Dr. João Paulo Tardivo",coverURL:"https://cdn.intechopen.com/books/images_new/7966.jpg",editedByType:null,editors:[{id:"85863",title:"Prof.",name:"Mauricio S.",surname:"Baptista",slug:"mauricio-s.-baptista",fullName:"Mauricio S. Baptista"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7845",title:"Platelets",subtitle:null,isOpenForSubmission:!0,hash:"d33b20516d6ff3a5b7446a882109ba26",slug:null,bookSignature:"Dr. Steve W. W. Kerrigan and Prof. Niamh Moran",coverURL:"https://cdn.intechopen.com/books/images_new/7845.jpg",editedByType:null,editors:[{id:"73961",title:"Dr.",name:"Steve W.",surname:"Kerrigan",slug:"steve-w.-kerrigan",fullName:"Steve W. Kerrigan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9069",title:"Zinc and Human Health",subtitle:null,isOpenForSubmission:!0,hash:"b40ada91c760e960017f31af036f60e0",slug:null,bookSignature:"Dr. Andreas Grabrucker",coverURL:"https://cdn.intechopen.com/books/images_new/9069.jpg",editedByType:null,editors:[{id:"178792",title:"Dr.",name:"Andreas",surname:"Grabrucker",slug:"andreas-grabrucker",fullName:"Andreas Grabrucker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9464",title:"Health Benefits of Tea (Camellia sinensis)",subtitle:null,isOpenForSubmission:!0,hash:"f8945b63ec8437f5589e4168ff682e2d",slug:null,bookSignature:"Dr. Kula Kamal Senapati",coverURL:"https://cdn.intechopen.com/books/images_new/9464.jpg",editedByType:null,editors:[{id:"234221",title:"Dr.",name:"Kula Kamal",surname:"Senapati",slug:"kula-kamal-senapati",fullName:"Kula Kamal Senapati"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9056",title:"Multiple Chronic Conditions - Overview and Management of Chronic Disease Clusters",subtitle:null,isOpenForSubmission:!0,hash:"c842c2f3339a6a9290603393ab741253",slug:null,bookSignature:"Prof. Sevgi Akarsu",coverURL:"https://cdn.intechopen.com/books/images_new/9056.jpg",editedByType:null,editors:[{id:"182444",title:"Prof.",name:"Sevgi",surname:"Akarsu",slug:"sevgi-akarsu",fullName:"Sevgi Akarsu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9126",title:"Respiratory Physiology",subtitle:null,isOpenForSubmission:!0,hash:"e57374d11c8da9e7c70631881dcf55fa",slug:null,bookSignature:"Dr. Ketevan Nemsadze",coverURL:"https://cdn.intechopen.com/books/images_new/9126.jpg",editedByType:null,editors:[{id:"149748",title:"Dr.",name:"Ketevan",surname:"Nemsadze",slug:"ketevan-nemsadze",fullName:"Ketevan Nemsadze"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:35},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:32},{group:"topic",caption:"Business, Management and Economics",value:7,count:9},{group:"topic",caption:"Chemistry",value:8,count:29},{group:"topic",caption:"Computer and Information Science",value:9,count:26},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:14},{group:"topic",caption:"Engineering",value:11,count:75},{group:"topic",caption:"Environmental Sciences",value:12,count:13},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:37},{group:"topic",caption:"Mathematics",value:15,count:14},{group:"topic",caption:"Medicine",value:16,count:142},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:5},{group:"topic",caption:"Neuroscience",value:18,count:6},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:8},{group:"topic",caption:"Physics",value:20,count:20},{group:"topic",caption:"Psychology",value:21,count:2},{group:"topic",caption:"Robotics",value:22,count:6},{group:"topic",caption:"Social Sciences",value:23,count:14},{group:"topic",caption:"Technology",value:24,count:10},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3},{group:"topic",caption:"Intelligent System",value:535,count:1}],offset:12,limit:12,total:142},popularBooks:{featuredBooks:[{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7614",title:"Fourier Transforms",subtitle:"Century of Digitalization and Increasing Expectations",isOpenForSubmission:!1,hash:"ff3501657ae983a3b42fef1f7058ac91",slug:"fourier-transforms-century-of-digitalization-and-increasing-expectations",bookSignature:"Goran S. Nikoli? and Dragana Z. Markovi?-Nikoli?",coverURL:"https://cdn.intechopen.com/books/images_new/7614.jpg",editors:[{id:"23261",title:"Prof.",name:"Goran",middleName:"S.",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7087",title:"Tendons",subtitle:null,isOpenForSubmission:!1,hash:"786abac0445c102d1399a1e727a2db7f",slug:"tendons",bookSignature:"Hasan Sözen",coverURL:"https://cdn.intechopen.com/books/images_new/7087.jpg",editors:[{id:"161402",title:"Dr.",name:"Hasan",middleName:null,surname:"Sözen",slug:"hasan-sozen",fullName:"Hasan Sözen"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,isOpenForSubmission:!1,hash:"61c627da05b2ace83056d11357bdf361",slug:"current-topics-in-neglected-tropical-diseases",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",editors:[{id:"131400",title:"Dr.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7610",title:"Renewable and Sustainable Composites",subtitle:null,isOpenForSubmission:!1,hash:"c2de26c3d329c54f093dc3f05417500a",slug:"renewable-and-sustainable-composites",bookSignature:"António B. Pereira and Fábio A. O. Fernandes",coverURL:"https://cdn.intechopen.com/books/images_new/7610.jpg",editors:[{id:"211131",title:"Prof.",name:"António",middleName:"Bastos",surname:"Pereira",slug:"antonio-pereira",fullName:"António Pereira"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8416",title:"Non-Equilibrium Particle Dynamics",subtitle:null,isOpenForSubmission:!1,hash:"2c3add7639dcd1cb442cb4313ea64e3a",slug:"non-equilibrium-particle-dynamics",bookSignature:"Albert S. Kim",coverURL:"https://cdn.intechopen.com/books/images_new/8416.jpg",editors:[{id:"21045",title:"Prof.",name:"Albert S.",middleName:null,surname:"Kim",slug:"albert-s.-kim",fullName:"Albert S. Kim"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8463",title:"Pediatric Surgery, Flowcharts and Clinical Algorithms",subtitle:null,isOpenForSubmission:!1,hash:"23f39beea4d557b0ae424e2eaf82bf5e",slug:"pediatric-surgery-flowcharts-and-clinical-algorithms",bookSignature:"Sameh Shehata",coverURL:"https://cdn.intechopen.com/books/images_new/8463.jpg",editors:[{id:"37518",title:"Prof.",name:"Sameh",middleName:null,surname:"Shehata",slug:"sameh-shehata",fullName:"Sameh Shehata"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4392},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7614",title:"Fourier Transforms",subtitle:"Century of Digitalization and Increasing Expectations",isOpenForSubmission:!1,hash:"ff3501657ae983a3b42fef1f7058ac91",slug:"fourier-transforms-century-of-digitalization-and-increasing-expectations",bookSignature:"Goran S. Nikoli? and Dragana Z. Markovi?-Nikoli?",coverURL:"https://cdn.intechopen.com/books/images_new/7614.jpg",editors:[{id:"23261",title:"Prof.",name:"Goran",middleName:"S.",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7087",title:"Tendons",subtitle:null,isOpenForSubmission:!1,hash:"786abac0445c102d1399a1e727a2db7f",slug:"tendons",bookSignature:"Hasan Sözen",coverURL:"https://cdn.intechopen.com/books/images_new/7087.jpg",editors:[{id:"161402",title:"Dr.",name:"Hasan",middleName:null,surname:"Sözen",slug:"hasan-sozen",fullName:"Hasan Sözen"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,isOpenForSubmission:!1,hash:"61c627da05b2ace83056d11357bdf361",slug:"current-topics-in-neglected-tropical-diseases",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",editors:[{id:"131400",title:"Dr.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7610",title:"Renewable and Sustainable Composites",subtitle:null,isOpenForSubmission:!1,hash:"c2de26c3d329c54f093dc3f05417500a",slug:"renewable-and-sustainable-composites",bookSignature:"António B. Pereira and Fábio A. O. Fernandes",coverURL:"https://cdn.intechopen.com/books/images_new/7610.jpg",editors:[{id:"211131",title:"Prof.",name:"António",middleName:"Bastos",surname:"Pereira",slug:"antonio-pereira",fullName:"António Pereira"}],productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8463",title:"Pediatric Surgery, Flowcharts and Clinical Algorithms",subtitle:null,isOpenForSubmission:!1,hash:"23f39beea4d557b0ae424e2eaf82bf5e",slug:"pediatric-surgery-flowcharts-and-clinical-algorithms",bookSignature:"Sameh Shehata",coverURL:"https://cdn.intechopen.com/books/images_new/8463.jpg",editedByType:"Edited by",editors:[{id:"37518",title:"Prof.",name:"Sameh",middleName:null,surname:"Shehata",slug:"sameh-shehata",fullName:"Sameh Shehata"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7187",title:"Osteosarcoma",subtitle:"Diagnosis, Mechanisms, and Translational Developments",isOpenForSubmission:!1,hash:"89096359b754beb806eca4c6d8aacaba",slug:"osteosarcoma-diagnosis-mechanisms-and-translational-developments",bookSignature:"Matthew Gregory Cable and Robert Lawrence Randall",coverURL:"https://cdn.intechopen.com/books/images_new/7187.jpg",editedByType:"Edited by",editors:[{id:"265693",title:"Dr.",name:"Matthew Gregory",middleName:null,surname:"Cable",slug:"matthew-gregory-cable",fullName:"Matthew Gregory Cable"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editedByType:"Edited by",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editedByType:"Edited by",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"e7ea7e74ce7a7a8e5359629e07c68d31",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",editedByType:"Edited by",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8256",title:"Distillation",subtitle:"Modelling, Simulation and Optimization",isOpenForSubmission:!1,hash:"c76af109f83e14d915e5cb3949ae8b80",slug:"distillation-modelling-simulation-and-optimization",bookSignature:"Vilmar Steffen",coverURL:"https://cdn.intechopen.com/books/images_new/8256.jpg",editedByType:"Edited by",editors:[{id:"189035",title:"Dr.",name:"Vilmar",middleName:null,surname:"Steffen",slug:"vilmar-steffen",fullName:"Vilmar Steffen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7240",title:"Growing and Handling of Bacterial Cultures",subtitle:null,isOpenForSubmission:!1,hash:"a76c3ef7718c0b72d0128817cdcbe6e3",slug:"growing-and-handling-of-bacterial-cultures",bookSignature:"Madhusmita Mishra",coverURL:"https://cdn.intechopen.com/books/images_new/7240.jpg",editedByType:"Edited by",editors:[{id:"204267",title:"Dr.",name:"Madhusmita",middleName:null,surname:"Mishra",slug:"madhusmita-mishra",fullName:"Madhusmita Mishra"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editedByType:"Edited by",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editedByType:"Edited by",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editedByType:"Edited by",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"278",title:"Social Psychology",slug:"social-psychology",parent:{title:"Social Sciences",slug:"social-sciences"},numberOfBooks:2,numberOfAuthorsAndEditors:40,numberOfWosCitations:0,numberOfCrossrefCitations:5,numberOfDimensionsCitations:8,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"social-psychology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8262",title:"The New Forms of Social Exclusion",subtitle:null,isOpenForSubmission:!1,hash:"29bf235aa7659d3651183fe9ea49dc0d",slug:"the-new-forms-of-social-exclusion",bookSignature:"Rosalba Morese and Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/8262.jpg",editedByType:"Edited by",editors:[{id:"214435",title:"Dr.",name:"Rosalba",middleName:null,surname:"Morese",slug:"rosalba-morese",fullName:"Rosalba Morese"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5761",title:"Quality of Life and Quality of Working Life",subtitle:null,isOpenForSubmission:!1,hash:"f6000bc0eeed7fcf0277a2f8d75907d9",slug:"quality-of-life-and-quality-of-working-life",bookSignature:"Ana Alice Vilas Boas",coverURL:"https://cdn.intechopen.com/books/images_new/5761.jpg",editedByType:"Edited by",editors:[{id:"175373",title:"Dr.",name:"Ana Alice",middleName:null,surname:"Vilas Boas",slug:"ana-alice-vilas-boas",fullName:"Ana Alice Vilas Boas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,mostCitedChapters:[{id:"55323",doi:"10.5772/intechopen.68873",title:"Positive Psychology: The Use of the Framework of Achievement Bests to Facilitate Personal Flourishing",slug:"positive-psychology-the-use-of-the-framework-of-achievement-bests-to-facilitate-personal-flourishing",totalDownloads:743,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"quality-of-life-and-quality-of-working-life",title:"Quality of Life and Quality of Working Life",fullTitle:"Quality of Life and Quality of Working Life"},signatures:"Huy P. Phan and Bing H. Ngu",authors:[{id:"196435",title:"Prof.",name:"Huy",middleName:"P",surname:"Phan",slug:"huy-phan",fullName:"Huy Phan"}]},{id:"55530",doi:"10.5772/intechopen.69151",title:"Quality of Life and Physical Activity: Their Relationship with Physical and Psychological Well-Being",slug:"quality-of-life-and-physical-activity-their-relationship-with-physical-and-psychological-well-being",totalDownloads:758,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"quality-of-life-and-quality-of-working-life",title:"Quality of Life and Quality of Working Life",fullTitle:"Quality of Life and Quality of Working Life"},signatures:"Arantzazu Rodríguez-Fernández, Ana Zuazagoitia-Rey-Baltar and\nEstibaliz Ramos-Díaz",authors:[{id:"90485",title:"Dr.",name:"Arantzazu",middleName:null,surname:"Rodriguez-Fernández",slug:"arantzazu-rodriguez-fernandez",fullName:"Arantzazu Rodriguez-Fernández"},{id:"205182",title:"Dr.",name:"Ana",middleName:null,surname:"Zuazagoitia-Rey-Baltar",slug:"ana-zuazagoitia-rey-baltar",fullName:"Ana Zuazagoitia-Rey-Baltar"},{id:"205183",title:"Dr.",name:"Estibaliz",middleName:null,surname:"Ramos-Díaz",slug:"estibaliz-ramos-diaz",fullName:"Estibaliz Ramos-Díaz"}]},{id:"54577",doi:"10.5772/67821",title:"Building a Quality of Life Index",slug:"building-a-quality-of-life-index",totalDownloads:763,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"quality-of-life-and-quality-of-working-life",title:"Quality of Life and Quality of Working Life",fullTitle:"Quality of Life and Quality of Working Life"},signatures:"Ryan M. Yonk, Josh T. Smith and Arthur R. Wardle",authors:[{id:"196259",title:"Dr.",name:"Ryan Merlin",middleName:null,surname:"Yonk",slug:"ryan-merlin-yonk",fullName:"Ryan Merlin Yonk"},{id:"197814",title:"Mr.",name:"Joshua",middleName:null,surname:"Smith",slug:"joshua-smith",fullName:"Joshua Smith"}]}],mostDownloadedChaptersLast30Days:[{id:"55349",title:"The Development of a Human Well-Being Index for the United States",slug:"the-development-of-a-human-well-being-index-for-the-united-states",totalDownloads:971,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"quality-of-life-and-quality-of-working-life",title:"Quality of Life and Quality of Working Life",fullTitle:"Quality of Life and Quality of Working Life"},signatures:"J. Kevin Summers, Lisa M. Smith, Linda C. Harwell and Kyle D. Buck",authors:[{id:"197485",title:"Dr.",name:"J. Kevin",middleName:null,surname:"Summers",slug:"j.-kevin-summers",fullName:"J. Kevin Summers"},{id:"197486",title:"Ms.",name:"Lisa",middleName:null,surname:"Smith",slug:"lisa-smith",fullName:"Lisa Smith"},{id:"197487",title:"Ms.",name:"Linda",middleName:null,surname:"Harwell",slug:"linda-harwell",fullName:"Linda Harwell"},{id:"197488",title:"Dr.",name:"Kyle",middleName:null,surname:"Buck",slug:"kyle-buck",fullName:"Kyle Buck"}]},{id:"56529",title:"Well-being and Quality of Working Life of University Professors in Brazil",slug:"well-being-and-quality-of-working-life-of-university-professors-in-brazil",totalDownloads:814,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"quality-of-life-and-quality-of-working-life",title:"Quality of Life and Quality of Working Life",fullTitle:"Quality of Life and Quality of Working Life"},signatures:"Alessandro Vinicius de Paula and Ana Alice Vilas Boas",authors:[{id:"175373",title:"Dr.",name:"Ana Alice",middleName:null,surname:"Vilas Boas",slug:"ana-alice-vilas-boas",fullName:"Ana Alice Vilas Boas"},{id:"196534",title:"Dr.",name:"Alessandro Vinicius",middleName:null,surname:"De Paula",slug:"alessandro-vinicius-de-paula",fullName:"Alessandro Vinicius De Paula"}]},{id:"55323",title:"Positive Psychology: The Use of the Framework of Achievement Bests to Facilitate Personal Flourishing",slug:"positive-psychology-the-use-of-the-framework-of-achievement-bests-to-facilitate-personal-flourishing",totalDownloads:743,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"quality-of-life-and-quality-of-working-life",title:"Quality of Life and Quality of Working Life",fullTitle:"Quality of Life and Quality of Working Life"},signatures:"Huy P. Phan and Bing H. Ngu",authors:[{id:"196435",title:"Prof.",name:"Huy",middleName:"P",surname:"Phan",slug:"huy-phan",fullName:"Huy Phan"}]},{id:"55530",title:"Quality of Life and Physical Activity: Their Relationship with Physical and Psychological Well-Being",slug:"quality-of-life-and-physical-activity-their-relationship-with-physical-and-psychological-well-being",totalDownloads:758,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"quality-of-life-and-quality-of-working-life",title:"Quality of Life and Quality of Working Life",fullTitle:"Quality of Life and Quality of Working Life"},signatures:"Arantzazu Rodríguez-Fernández, Ana Zuazagoitia-Rey-Baltar and\nEstibaliz Ramos-Díaz",authors:[{id:"90485",title:"Dr.",name:"Arantzazu",middleName:null,surname:"Rodriguez-Fernández",slug:"arantzazu-rodriguez-fernandez",fullName:"Arantzazu Rodriguez-Fernández"},{id:"205182",title:"Dr.",name:"Ana",middleName:null,surname:"Zuazagoitia-Rey-Baltar",slug:"ana-zuazagoitia-rey-baltar",fullName:"Ana Zuazagoitia-Rey-Baltar"},{id:"205183",title:"Dr.",name:"Estibaliz",middleName:null,surname:"Ramos-Díaz",slug:"estibaliz-ramos-diaz",fullName:"Estibaliz Ramos-Díaz"}]},{id:"54577",title:"Building a Quality of Life Index",slug:"building-a-quality-of-life-index",totalDownloads:763,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"quality-of-life-and-quality-of-working-life",title:"Quality of Life and Quality of Working Life",fullTitle:"Quality of Life and Quality of Working Life"},signatures:"Ryan M. Yonk, Josh T. Smith and Arthur R. Wardle",authors:[{id:"196259",title:"Dr.",name:"Ryan Merlin",middleName:null,surname:"Yonk",slug:"ryan-merlin-yonk",fullName:"Ryan Merlin Yonk"},{id:"197814",title:"Mr.",name:"Joshua",middleName:null,surname:"Smith",slug:"joshua-smith",fullName:"Joshua Smith"}]},{id:"54386",title:"Human Work and its Discontents",slug:"human-work-and-its-discontents",totalDownloads:673,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"quality-of-life-and-quality-of-working-life",title:"Quality of Life and Quality of Working Life",fullTitle:"Quality of Life and Quality of Working Life"},signatures:"Anderson de Souza Sant'Anna, Zélia Miranda Kilimnik and Daniela\nMartins Diniz",authors:[{id:"197768",title:"Prof.",name:"Daniela",middleName:null,surname:"Diniz",slug:"daniela-diniz",fullName:"Daniela Diniz"},{id:"197896",title:"Dr.",name:"Anderson",middleName:"S.",surname:"Sant\\'Anna",slug:"anderson-sant'anna",fullName:"Anderson Sant\\'Anna"},{id:"197897",title:"Prof.",name:"Zélia",middleName:null,surname:"Kilimnik",slug:"zelia-kilimnik",fullName:"Zélia Kilimnik"}]},{id:"54549",title:"Physical and Psychical Well-Being and Stress: The Perspectives of Leaders and Employees",slug:"physical-and-psychical-well-being-and-stress-the-perspectives-of-leaders-and-employees",totalDownloads:534,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"quality-of-life-and-quality-of-working-life",title:"Quality of Life and Quality of Working Life",fullTitle:"Quality of Life and Quality of Working Life"},signatures:"Simona Šarotar Žižek and Vesna Čančer",authors:[{id:"192730",title:"Associate Prof.",name:"Simona",middleName:null,surname:"Šarotar Žižek",slug:"simona-sarotar-zizek",fullName:"Simona Šarotar Žižek"},{id:"197783",title:"Dr.",name:"Vesna",middleName:null,surname:"Čančer",slug:"vesna-cancer",fullName:"Vesna Čančer"}]},{id:"54570",title:"Exploring the Antecedents of Happiness: Reconceptualization of Human Needs with Glasser's Choice Theory",slug:"exploring-the-antecedents-of-happiness-reconceptualization-of-human-needs-with-glasser-s-choice-theo",totalDownloads:761,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"quality-of-life-and-quality-of-working-life",title:"Quality of Life and Quality of Working Life",fullTitle:"Quality of Life and Quality of Working Life"},signatures:"Turgut Turkdogan",authors:[{id:"197018",title:"Ph.D.",name:"Turgut",middleName:null,surname:"Turkdogan",slug:"turgut-turkdogan",fullName:"Turgut Turkdogan"}]},{id:"66422",title:"Vulnerability and Social Exclusion: Risk in Adolescence and Old Age",slug:"vulnerability-and-social-exclusion-risk-in-adolescence-and-old-age",totalDownloads:241,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"the-new-forms-of-social-exclusion",title:"The New Forms of Social Exclusion",fullTitle:"The New Forms of Social Exclusion"},signatures:"Rosalba Morese, Sara Palermo, Matteo Defedele, Juri Nervo and Alberto Borraccino",authors:[{id:"214435",title:"Dr.",name:"Rosalba",middleName:null,surname:"Morese",slug:"rosalba-morese",fullName:"Rosalba Morese"},{id:"218983",title:"BSc.",name:"Juri",middleName:null,surname:"Nervo",slug:"juri-nervo",fullName:"Juri Nervo"},{id:"218984",title:"MSc.",name:"Matteo",middleName:null,surname:"Defedele",slug:"matteo-defedele",fullName:"Matteo Defedele"},{id:"233998",title:"Dr.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"},{id:"266453",title:"Prof.",name:"Alberto",middleName:null,surname:"Borraccino",slug:"alberto-borraccino",fullName:"Alberto Borraccino"}]},{id:"54807",title:"Understanding the Concept of Life Quality within the Framework of Social Service Provision: Theoretical Analysis and a Case Study",slug:"understanding-the-concept-of-life-quality-within-the-framework-of-social-service-provision-theoretic",totalDownloads:557,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"quality-of-life-and-quality-of-working-life",title:"Quality of Life and Quality of Working Life",fullTitle:"Quality of Life and Quality of Working Life"},signatures:"Zuzana Palovičová",authors:[{id:"196861",title:"Associate Prof.",name:"Zuzana",middleName:null,surname:"Palovicova",slug:"zuzana-palovicova",fullName:"Zuzana Palovicova"}]}],onlineFirstChaptersFilter:{topicSlug:"social-psychology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"6837",title:"Lithium-ion Batteries - Thin Film for Energy Materials and Devices",subtitle:null,isOpenForSubmission:!0,hash:"ea7789260b319b9a4b472257f57bfeb5",slug:null,bookSignature:"Prof. Mitsunobu Sato, Dr. Li Lu and Dr. Hiroki Nagai",coverURL:"https://cdn.intechopen.com/books/images_new/6837.jpg",editedByType:null,editors:[{id:"179615",title:"Prof.",name:"Mitsunobu",middleName:null,surname:"Sato",slug:"mitsunobu-sato",fullName:"Mitsunobu Sato"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9423",title:"Applications of Artificial Intelligence in Process Industry Automation, Heat and Power Generation and Smart Manufacturing",subtitle:null,isOpenForSubmission:!0,hash:"10ac8fb0bdbf61044395963028653d21",slug:null,bookSignature:"Prof. Konstantinos G. Kyprianidis and Prof. Erik Dahlquist",coverURL:"https://cdn.intechopen.com/books/images_new/9423.jpg",editedByType:null,editors:[{id:"35868",title:"Prof.",name:"Konstantinos",middleName:"G.",surname:"Kyprianidis",slug:"konstantinos-kyprianidis",fullName:"Konstantinos Kyprianidis"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9428",title:"New Trends in the Use of Artificial Intelligence for the Industry 4.0",subtitle:null,isOpenForSubmission:!0,hash:"9e089eec484ce8e9eb32198c2d8b34ea",slug:null,bookSignature:"Dr. Luis Romeral Martinez, Dr. Roque A. Osornio-Rios and Dr. Miguel Delgado Prieto",coverURL:"https://cdn.intechopen.com/books/images_new/9428.jpg",editedByType:null,editors:[{id:"86501",title:"Dr.",name:"Luis",middleName:null,surname:"Romeral Martinez",slug:"luis-romeral-martinez",fullName:"Luis Romeral Martinez"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10107",title:"Artificial Intelligence in Oncology Drug Discovery & Development",subtitle:null,isOpenForSubmission:!0,hash:"043c178c3668865ab7d35dcb2ceea794",slug:null,bookSignature:"Dr. John Cassidy and Dr. Belle Taylor",coverURL:"https://cdn.intechopen.com/books/images_new/10107.jpg",editedByType:null,editors:[{id:"244455",title:"Dr.",name:"John",middleName:null,surname:"Cassidy",slug:"john-cassidy",fullName:"John Cassidy"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8903",title:"Carbon Based Material for Environmental Protection and Remediation",subtitle:null,isOpenForSubmission:!0,hash:"19da699b370f320eca63ef2ba02f745d",slug:null,bookSignature:"Dr. Mattia Bartoli and Dr. Marco Frediani",coverURL:"https://cdn.intechopen.com/books/images_new/8903.jpg",editedByType:null,editors:[{id:"188999",title:"Dr.",name:"Mattia",middleName:null,surname:"Bartoli",slug:"mattia-bartoli",fullName:"Mattia Bartoli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10132",title:"Applied Computational Near-surface Geophysics - From Integral and Derivative Formulas to MATLAB Codes",subtitle:null,isOpenForSubmission:!0,hash:"38cdbbb671df620b36ee96af1d9a3a90",slug:null,bookSignature:"Dr. Afshin Aghayan",coverURL:"https://cdn.intechopen.com/books/images_new/10132.jpg",editedByType:null,editors:[{id:"311030",title:"Dr.",name:"Afshin",middleName:null,surname:"Aghayan",slug:"afshin-aghayan",fullName:"Afshin Aghayan"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10110",title:"Advances and Technologies in Building Construction and Structural Analysis",subtitle:null,isOpenForSubmission:!0,hash:"df2ad14bc5588577e8bf0b7ebcdafd9d",slug:null,bookSignature:"Dr. Ali Kaboli and Dr. Sara Shirowzhan",coverURL:"https://cdn.intechopen.com/books/images_new/10110.jpg",editedByType:null,editors:[{id:"309192",title:"Dr.",name:"Ali",middleName:null,surname:"Kaboli",slug:"ali-kaboli",fullName:"Ali Kaboli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10175",title:"Ethics in Emerging Technologies",subtitle:null,isOpenForSubmission:!0,hash:"9c92da249676e35e2f7476182aa94e84",slug:null,bookSignature:"Prof. Ali Hessami",coverURL:"https://cdn.intechopen.com/books/images_new/10175.jpg",editedByType:null,editors:[{id:"108303",title:"Prof.",name:"Ali",middleName:null,surname:"Hessami",slug:"ali-hessami",fullName:"Ali Hessami"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:16},humansInSpaceProgram:{},teamHumansInSpaceProgram:{},route:{name:"profile.detail",path:"/profiles/75432/nicola-de-stefano",hash:"",query:{},params:{id:"75432",slug:"nicola-de-stefano"},fullPath:"/profiles/75432/nicola-de-stefano",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()