Composition of global MSW [8].
\r\n\tMethadone maintenance treatment (MMT) has become the main pharmacological option for the treatment of opioid dependence. Methadone remains the gold standard in the substitution treatment, which is a harm reduction intervention, because the patient does not become abstinent, but there are a series of positive changes. Currently, the surveillance of methadone substitution treatment is considered an ongoing challenge, given the need for the individualization and the increasing of the therapy efficiency. Methadone has been also studied as an analgesic for the management of cancer pain and other chronic pain conditions.
\r\n\r\n\tThe complexity of methadone pharmacology, the high inter-individual variability in methadone pharmacokinetics, the risk of opioid diversion, the overdose and other adverse events pose many challenges to clinicians.
\r\n\tThe aim of the proposed book is to update and summarize the scientific knowledge on the opioid dependence, including the mechanism of opioid dependence, the misuse of prescription opioids and the substitution therapy of opioid dependence.
Survival of premature infants has improved steadily since neonatal care became a national focus in the 1960’s. A key component in this improvement is improved respiratory care, especially mechanical ventilation. Increased survival of vulnerable infants, however, is associated with complications and co-morbidities, some of which are directly caused by invasive ventilation. Therefore, minimizing exposure to mechanical ventilation is critical to the care of these babies. Gregory et al., in 1971, first described the use of continuous positive airway pressure (CPAP) to treat neonates afflicted with respiratory distress syndrome (RDS), which transformed respiratory care of neonates [1]. Subsequently, the use of CPAP and other forms of non-invasive ventilation have become the standard of care and have saved countless lives.
\nNon-invasive ventilation refers to any mode of respiratory support provided via the nasal airway of infants to support spontaneous breathing, without placement of an endotracheal tube. The most common non-invasive modes include nasal continuous positive airway pressure (NCPAP), non-invasive intermittent mandatory ventilation (NIMV), and humidified high-flow nasal cannula (HHFNC). The ultimate goal of each of these devices is to prevent barotrauma, volutrauma, and atelectotrauma, all of which contribute to lung injury and long-term complications. Proposed mechanisms of lung protection due to non-invasive ventilation include mitigation of shear-type injury by maintenance of optimal end-expiratory lung volumes and prevention of cyclical collapse and over-distention of alveoli. Other potential benefits include lung-recruitment, improved gas exchange, and decreased work of breathing [2].
\nIn this chapter, we will first explore historical aspects of the development of non-invasive ventilation in neonates. Then we will focus on specific respiratory mechanics unique to neonates and post-uterine adaptation. Finally, we will discuss specific non-invasive modalities.
\nImproved perinatal care, the advent of parenteral nutrition, advances in thermoregulation, and aggressive neonatal resuscitation have all contributed enormously to improved outcomes for neonates. Perhaps the most significant change, however, is a marked improvement in our ability to provide aggressive and sophisticated respiratory care and support to ever-smaller infants. In this section, we will focus on the historical development of innovative approaches to non-invasive ventilation in tiny premature infants.
\nAlthough Gregory et al. published the first modern description of the use of CPAP to treat RDS, a similar device was first described in 1914 by Professor August Ritter von Reuss [2]. This device resembled bubble CPAP, and consisted of an oxygen tank with tubing attached to the equivalent of a mask-and-bag device, with a simple valve to regulate oxygen flow. Unfortunately, it took almost six decades for this concept to gain acceptance. Prior to Gregory’s description of CPAP, there was very little respiratory support that could be provided to neonates. In the 1940s and 1950s, the provision of supplemental oxygen was the sole therapeutic option for ill neonates [3]. It was during this time that two seminal discoveries were made. The first was the discovery that supplemental oxygen provided benefit to ill neonates, but that exposure to high concentrations led to blindness due to retinopathy of prematurity (ROP) [3]. The second was a report by Avery and Mead in 1959 describing increased surface tension in lung fluid recovered from preterm babies that had died from respiratory distress syndrome, and the observation that preterm infants lacked some sort of “surface-active agent” that could alleviate these forces [4].
\nNeonatology was still a relatively new field in the latter part of the 20th century, and 1963 was a pivotal year in its development. President John F. Kennedy’s son, Patrick Bouvier Kennedy, was born 6 weeks prematurely and died from complications of respiratory distress syndrome on the third day of life [3]. This inspired rapid innovation in the development of new technologies geared towards critically ill neonates. Infant ventilators, blood gas machines, umbilical vascular catheterization and the development of the first true neonatal intensive care units all occurred in the late 1960s. As the field improved, survival rates for neonates with respiratory compromise began to improve as well, mainly due to the widespread use of infant ventilators. Unfortunately, these advances were also associated with complications and many of these neonates were left with a form of chronic lung disease. This was first described in 1967 by Northway et al., who noted that prolonged exposure to mechanical ventilation and supplemental oxygen were likely to blame [5].
\nSubsequently, in 1971, Gregory et al., described the use of CPAP to treat neonates with respiratory distress syndrome, using either an endotracheal tube or a head box [2]. This use of CPAP represented an intermediate step that was more supportive than supplemental oxygen alone, was relatively easy to use, and seemed to avoid exposure to the injury associated with mechanical ventilation. The introduction of CPAP in neonates was not the only milestone that this decade produced; in 1972, Liggins and Howie published the results of a randomized controlled trial of antenatal steroids in mothers expected to delivery premature infants. They demonstrated that steroids accelerated fetal lung maturation and decreased the risk of respiratory distress syndrome and death by as much as half [3].
\nDespite the successes associated with CPAP and antenatal steroids, there were substantial concerns about risks. Specifically, some observers suggested that air leaks and pneumothoraces were more common with CPAP than mechanical ventilation. In addition, CPAP seemed to lead to gastric and abdominal distention of unclear clinical significance. Finally, there were fears that the devices themselves would predispose infants to neurological and cosmetic injury [2]. For these among other reasons, intermittent mandatory ventilation using an endotracheal tube was widely adopted, and quickly overtook CPAP as the standard of respiratory care for critically ill neonates. In addition, for about two decades, CPAP was largely replaced by non-invasive intermittent mandatory ventilation (NIMV). It involved using time-cycled, pressure-controlled breaths delivered by a mechanical ventilator via an oronasal mask or prongs [2].
\nIn the late 1980s, there was renewed interest in CPAP and non-invasive ventilation, sparked by the seminal report in 1987 by Avery et al. which concluded that, among eight NICUs observed, the center with the most aggressive use of NCPAP had the lowest rates of chronic lung disease [6]. Coupled with the fact that the landscape of chronic lung disease, as originally described in 1967, was changing in both a clinical and histological sense due to prolonged exposure to mechanical ventilation, it was no surprise that non-invasive ventilation was resurgent. While CPAP was originally designed for the premature baby with respiratory distress syndrome, today it has multiple uses in neonates of varying ages and conditions. It is used to successfully treat transient tachypnea of the newborn, congenital pneumonia, meconium aspiration syndrome, primary pulmonary hypertension, as well as central apnea of prematurity and certain congenital upper airway lesions [2]. While the technology has certainly evolved quite a bit since Professor von Reuss’ initial apparatus in 1914, CPAP and other forms of non-invasive ventilation have become the cornerstones of neonatal respiratory care.
\nIt is important to understand the core concepts of fetal and neonatal lung development, as well as basic pulmonary mechanics, to better understand the most appropriate respiratory support modality. Fundamentally, the respiratory system is designed for the conduction and humidification of air into the lungs, uptake of oxygen from the ambient environment, and the removal of waste product in the form of carbon dioxide. All of this ensures that normal aerobic cellular metabolism is supported and that acid–base homeostasis is maintained.
\nThe respiratory system develops through five distinct, yet overlapping phases: embryonic, pseudoglandular, canalicular, saccular, and alveolar [7]. While a full review of the embryology is not necessary for the understanding of neonatal respiratory care, it is important to note that each particular phase leads to unique respiratory difficulties and opportunities. Lung growth begins in the third week of gestation during the embryonic phase, with a small growth of diverticulum from the ventral wall of the foregut. This is often referred to as the primitive respiratory diverticulum or primitive lung bud [7]. Three rounds of branching and division also occur during this phase, leading to a left & right half as well as the formation of multiple tertiary bronchi. The vascular components of the respiratory system also begin their development during this phase. The pseudoglandular phase occurs from weeks 5–17, and this time period is notable for the completion of all bronchial divisions as well as formation of cilia and cartilage [8]. After this phase, any further lung growth is simply by the elongation, widening and hypertrophy of existing tissue. The canalicular phase is particularly important, as it encompasses 16–26 weeks of development and includes neonates of periviable gestational ages (ie, around 23 weeks gestation). Here, the earliest capillary beds begin to form, and areas of gas exchange start to develop. Many of the overlying epithelial cells also begin to thin out and improve the air-blood interface, further enhancing regions of gas exchange. More importantly, these cells also start to differentiate into type I pneumocytes that help form and stabilize the alveoli. Type II pneumocytes also start to appear, and these cells are vitally important in the production of endogenous surfactant [7, 8]. The canalicular stage is the earliest gestational age at which interventions can be provided. The saccular phase occurs from weeks 24–38 and leads to further development of alveolar ducts and conducting airways. Mucous and cilated cell growth also increases. Surfactant synthesis continues to improve, but overall production compared to full-term infants remains low [9]. This time period encompasses the bulk of premature infants, including those that are “late preterm.” The relative structural immaturity coupled with insufficient (and often ineffective) surfactant production explains the need for respiratory support in this age group, even in infants born beyond 34 weeks gestation. Finally, the alveolar phase occurs from about 36 weeks – 8 years of age. This final stage is mainly characterized by further development of alveolar units, thinning of the air-blood interface, increased surface area for gas exchange, and increased numbers of type II pneumocytes, leading to enhanced synthesis of surfactant [7].
\nThroughout fetal development, fetal lung fluid is vital in the growth of normal lung structure. Fetal lung fluid is an isotonic fluid secreted by epithelial cells that helps promote growth and development. It is low in protein and high in chloride ions. Combined with contractions of fetal airway smooth muscle and fetal breathing in utero, these processes help promote the normal developmental process of lung growth. Fluid clearance is a process initiated by various labor mechanisms, and this also presents an area for maladaptation and one etiology of respiratory distress after birth [10].
\nLung function in neonates, especially those born prematurely, is altered for a number of reasons. Structural issues include poorly developed lung parenchyma, airways and a highly elastic chest wall, and surfactant deficiency complicates these issues. This results in dramatic changes in normal lung mechanics and physiology, manifested by an overall state of abnormally decreased compliance, low functional residual capacity (FRC), and increased respiratory effort by the neonate [8]. This is further compounded by deranged gas exchange. If undertreated, each of these mechanisms may combine to cause respiratory failure. Antenatal steroids improve some of the structural and biochemical derangements, but post-natally the clinician must provide the correct level of respiratory support and surfactant when appropriate. The goal, as we will discuss, is resolve the skewed lung mechanics towards a more normal physiologic state by re-establishing FRC and decreasing work of breathing.
\nFunctional residual capacity (FRC) is defined as the volume of air remaining in the lungs after a normal passive exhalation [8]. In most term, healthy neonates, this figure is typically about 20–30 mL/kg. To understand the significance of FRC in the management of neonatal respiratory care, it is important to understand normal transitional events in early postnatal life. During gestation, the developing fetus is entirely dependent on the placenta for gas exchange. This in-utero circulatory pattern consists of very limited pulmonary blood flow with intra-cardiac shunts in place to allow for adequate flow of blood to vital organs. The approximate oxygen saturation in a term fetus prior to delivery is about 60% [2]. When labor is initiated, epithelial lung cells halt their production of fetal lung fluid and begin to actively absorb it back into circulation. This process is triggered by thyroid hormone, glucocorticoids and epinephrine working in combination to change epithelial cells from chloride secreting to sodium reabsorption [11]. With the neonate’s first spontaneous breaths, the lungs inflate and there is an increase in pulmonary arterial pO2 as well as activation of stretch receptors. This process, in conjunction with production of endogenous nitric oxide, dramatically reduces pulmonary vascular resistance [2]. As pulmonary vascular resistance continues to decrease, more pulmonary blood flow is established and oxygen saturations steadily increase to normal postnatal levels. The intra-cardiac shunts at the level of the ductus arteriosus and foramen ovale close due to increasing arterial oxygen content and increasing systemic vascular resistance from clamping of the umbilical cord, respectively. This process results in physiologic changes that can be witnessed in real time, as most healthy term neonates will obtain oxygen saturations greater than 90% by about 10 minutes of life.
\nFor gas exchange to properly occur after birth, there must be an immediate interface between environmental oxygen and pulmonary blood flow at the alveolar-capillary level. Ventilation (V) and perfusion (Q) ratios reflect this physiologic state, and there are a number of ways that this process can be deranged. To allow for a normal VQ matching, there must be both an adequate alveolar gas volume and normal FRC [7]. If adequately sustained, either due to spontaneous respirations or assisted ventilation, FRC serves as an intrapulmonary pool of oxygen. Preterm infants and ill term infants are prone to a low FRC. This may lead to decreased compliance, increased airway resistance, increased work of breathing, increased pulmonary vascular resistance, hypoxemia, atelectasis, and impaired gas exchange [8]. Conversely, too much FRC from overinflation can also have negative effects and may lead to lung injury, air leaks and decreased cardiac output. Positive distending pressure is therefore critical in recruiting collapsed alveoli and establishing optimal FRC in neonates that cannot achieve it spontaneously (Figure 1).
\nCompliance curve demonstrating different states of FRC. Area A represents poor lung volumes or collapse, where area C represents over distension of the lung. Area B demonstrates optimal lung volumes in which normal physiological FRC is maintained. Image used with permission by Elsevier Books, Inc.
Specific mechanical and physical properties of the lung also play an important role in neonatal respiratory care. The elasticity of a system refers to the property of matter such that a system will tend to return to its original position when all external forces are abated [8]. In the neonate, the elastic properties of the lung refer to not just the parenchyma, but also the air exchange spaces, muscle, connective tissue and vasculature. In addition, there is also a recoil effect from surface tension in the alveoli, which is artificially increased with impaired surfactant production. Lastly, there are opposing elastic forces that may be provide by the chest wall to assist with lung expansion and air entry. All of these elastic forces form a complex, interdependent balance that may determine FRC [8].
\nThe pressure required to inflate a lung is directly proportional to the volume of inflation – this is often referred to as Hooke’s Law [7]. While this relationship is often seen as an extension of the elastic properties of the lung, it brings us to our next biophysical property of respiratory physiology. The compliance of a lung is strictly defined as the change in lung volume due to a change in distending pressure during normal breathing, expressed as a ratio [8]. This is an extension of Hooke’s Law. Compliance may be further divided into static and dynamic compliance. Static compliance refers to the tendency of the lung to recoil to its original dimensions after a known volume of pressure is applied and then removed [2]. Dynamic compliance, on the other hand, is measured during spontaneous breathing and refers to the change in pressure from the end of exhalation to the end of inspiration for a given volume. It reflects both the intrinsic elastic and resistive properties of the lung [2]. The compliance of a given respiratory system includes both the lung and the chest wall. In neonates, the chest wall is primarily made up of cartilage and thus is a high compliance system. Conversely, the compliance of the lung is relatively low given surfactant deficiency and decreased alveolar radius, especially in premature infants [7]. This is a problematic scenario, as the balance of forces thereby is tilted towards lung collapse. This also negatively impacts FRC. Neonates respond by augmenting their FRC by increasing expiratory resistance through laryngeal abduction, clinically manifested as “grunting” [7]. Additionally, the higher respiratory rates seen in infants in low-compliant states creates relative gas trapping that helps slightly improve FRC [2]. The definitive treatment, however, is to deliver optimal PEEP via CPAP or another non-invasive modality to avoid atelectotrauma and to re-establish and sustain FRC (Figure 2).
\nComparison of compliance curves between a normal neonate (solid line) versus that of a neonate with RDS (dotted line). Note the very little volume change for an applied pressure seen in the infant with RDS due to the lack of surfactant and poor alveolar stabilization. Image used with permission by Elsevier Books, Inc.
The resistance to gas flow in a closed respiratory system is an important determinant of respiratory mechanics in neonates. Resistance is the direct result of friction, and can be defined as either viscous or airway resistance [2]. Viscous resistance refers to the resistance encountered by tissue elements as they touch and move past one another. Airway resistance refers to the resistance that occurs between moving gas molecules and between these molecules and the walls of the respiratory system [2]. Airway resistance makes up the majority of total resistance in a neonate. It is determined by the relationship between the velocity of gas flow, length of the airways, viscosity of the gas, and the diameter of the conducting airways. For laminar flow where all gas molecules move in an orderly fashion perfectly parallel to the walls of the airway, resistance is described by Poiseuille’s law. This states that resistance is directly proportional to the product of the tube length and gas viscosity, and inversely proportional the airway radius to the fourth power [2]. Thus airway diameter is the critical determinant of airway resistance, as even small changes in airway radius will have exponential effects on resistance. This effect in neonates is especially exaggerated as they have narrow airways relative to adults.
\nThere is an inverse, nonlinear relationship between airway resistance and lung volume. This is due to the fact that airway size increases as FRC increases, therefore decreasing the total resistance of the system [2]. The converse is also true: any pathologic state in which low lung volumes occur will increase the airway resistance of that system. This is another lung mechanical property that is affected by the FRC. That is, application of adequate PEEP via non-invasive ventilation will establish optimal FRC, increase airway size, and decrease airway resistance [2].
\nOne final concept to explore is work of breathing. Clinically, this term refers to the signs of respiratory distress exhibited by a patient. This can be manifested by tachypnea, grunting, intercostal retractions, or nasal flaring. Mathematically, work of breathing can be quantified as the energy needed to overcome the existing elastic and resistive forces. More specifically, this can be defined as the product of the force exerted and the volume of air displaced [2]. About two-thirds of this energy expenditure is used to overcome the elastic forces of the respiratory system, while one-third is used to overcome resistance [2]. While most clinicians recognize that a neonate exhibiting increased work of breathing is at risk for respiratory deterioration, it is important to realize that increased energy expenditure also results in increased oxygen consumption [8]. It is apparent that work of breathing can be decreased by the application of positive pressure via CPAP or some other non-invasive modality – but how? Of all the respiratory muscles, the diaphragm carries the majority of the workload. Like most skeletal muscles, its ability to generate optimal force is related to its initial relaxed position and the length of muscle fibers at the beginning of contraction [2]. Delivering PEEP via CPAP will not only help better inflate the lungs, but move the diaphragm into a more optimal position for contraction. In addition, PEEP may prevent atelectasis and move the neonate to a more ideal position on the pressure-volume curve where either extreme in atelectasis or over-distended are avoided, and instead optimal FRC is achieved [2, 12]. Lastly, one major role of the nasopharynx and lining of the upper airway is to provide warmth and moisture to inspired air. Non-invasive ventilation replaces the warming and humidification process required by the neonate, and in turn this may reduce metabolic demand [13].
\nSince Gregory’s initial description of CPAP via a head-box, the technology used to provide continuous distending pressure to neonates has greatly evolved, first with the introduction of binasal prongs. Subsequently, both Kattwinkel et al. and Caliumi-Pellegrini et al. described non-invasive devices in which binasal prongs were connected to a ventilator to provide both flow and pressure [2]. This approach remained standard for a number of years. While the latter parts of this chapter will focus on each of the specific non-invasive modalities themselves, there is a considerable amount of overlap in terms of using the interface devices.
\nDevices such as “head boxes” or negative pressure boxes are purely of historical interest and are no longer in clinical practice. Facial masks can be used to provide CPAP provided that the mask is attached to a flow-inflating bag or a T-piece resuscitator (for more precise pressures generated). This is a commonly used approach in the delivery room for initial stabilization of neonates, but rarely used in a prolonged manner. Nasal masks, on the other hand, are often used to provide long-term support to neonates receiving non-invasive ventilation. This is typically with variable-flow devices or SiPAP [8]. Nasal prongs, however, are the most popular and effective way to provide non-invasive ventilation. Neonates are obligate nasal breathers so prongs provide the most reliable way of delivering consistent distending pressure [8]. If the infant’s mouth is open, however, a large leak of pressure may occur and the neonate will not receive prescribed distending pressure. This may be addressed by using a chin strap or pacifier to keep the mouth closed. One other area where leak and loss of pressure can occur is at the nares; it is vital for nasal prongs to be large enough to fill the space within the nares to prevent this, but at the same time not so wide that they injure the surrounding mucosa and tissues [2, 8]. Long, thin prongs are generally avoided as they may increase the resistance in the system and even minor secretions can lead to significant obstruction and increased work of breathing. Endotracheal tubes are sometimes cut and used as “nasopharyngeal prongs.” This practice is less common given all the previously described advantages of shorter binasal prongs. In addition, a recent Cochrane review also suggested that binasal prongs are simply more effective [14]. While we will explore some of the complications associated with non-invasive ventilation later in the chapter, skin and nasal trauma is perhaps the most commonly encountered issue. Adequate skin care requires assiduous nursing care, and often skin barriers are applied.
\nThe pressure delivered by CPAP is typically via a continuous or variable flow device. Continuous flow was the method originally used in the 1970s and 1980s, and historically relied on gas flow generated from a ventilator [2]. Continuous-flow CPAP is still used today, typically via bubble or water-seal CPAP; this will be described in detail later in this chapter. Two of the most commonly used binasal prongs in continuous-flow CPAP are the Hudson (Hudson Respiratory Care, Inc., Arlington Heights, Illinois, USA) and Inca (Ackrad Laboratories, Inc., Cranford, New Jersey, USA) prongs. Argyle prongs are also occasionally used, but have fallen out of favor [14]. Many of these binasal prongs are interchangeable with different modes of non-invasive support, including CPAP, SiPAP/BiPAP or even nasal intermittent positive pressure ventilation (NIPPV) via a ventilator [15]. There are scant comparative studies in the literature comparing one prong type to another [2] (Figure 3).
\nThe Hudson NCPAP equipment very commonly used in many NICUs. Image used with permission by Elsevier Books, Inc.
Nasal masks are another avenue of providing non-invasive ventilation. The mask itself is connected to the pressure generator, typically a variable-flow device. Many units alternate the use of nasal masks with prongs to help prevent nasal and mucosal trauma. As with prongs, leaks can decrease the amount of pressure delivered to the patient. Therefore a proper seal around the nose must be maintained at all times. Very little data exists about the safety and efficacy of nasal masks versus prongs, and there are currently no reported studies of using NIPPV via nasal mask [2, 15] (Figure 4).
\nAn example of a typical nasal mask used to deliver NCPAP with the infant flow driver device. Image used with permission by Elsevier Books, Inc.
While nasal cannulae (NC) are routinely used to provide supplemental oxygen, some distending pressure can be generated. The rate of gas flow, size of the cannulae, and degree of leak around the nares determine the amount of pressure generated [2]. Higher flow rates delivered with relatively large sized nasal cannulae is termed “high flow nasal cannulae” (HFNC). Often heated and humidified, the physiology of respiratory support provided by HFNC is different than CPAP. The primary concern with a HFNC system is that depending on the flow rate and degree of leak, very high, uncontrolled positive pressure may be delivered. Not all HFNC devices contain “pop-off” valves to prevent this. These concepts will be explored later in this chapter. Finally, the RAM Nasal Cannula (Neotech, Valencia, California, USA) was originally designed to provide supplemental oxygen, but is a versatile interface device [2]. It has been used in various forms of CPAP as well as NIPPV via a ventilator. While at its core it is essentially another short binasal prong, it is designed with larger bore tubing to help reduce resistance and dead space. It has gained widespread use in many NICUs for its relative ease of use [2]. Early anecdotal reports also suggested lower rates nasal trauma. Concerns regarding the RAM Nasal Cannula have to do with the long segment of narrow tubing from the circuit connector to the prongs, creating a great deal of resistance. This can potentially lead to a sizeable drop in pressure and also raises concern about whether the clinician can accurately assess if the patient is receiving the desired distending pressure. It is important to also note that the use of the RAM Nasal Cannula in providing non-invasive ventilation is currently considered off-label use, as it is only approved for providing supplemental oxygen at this time.
\nContinuous positive airway pressure (CPAP) is positive pressure applied to the airways of spontaneously breathing neonates. As previously discussed, the primary function of the respiratory system is to move ambient air into the lungs for gas exchange. Any factor that limits this basic physiology will predispose the neonate to respiratory failure [8]. The inability to establish and maintain adequate lung volumes is perhaps the biggest risk factor for compromise. Low lung volumes and the resulting atelectasis may result in ventilation-perfusion mismatch and intrapulmonary shunting of blood. Oxygenation is typically affected the most, and while carbon dioxide can generally diffuse across biological membranes easily, its removal can be hampered by a low lung-volume state. Other mechanisms that contribute to respiratory distress in neonates include: retained lung fluid and pulmonary edema, suboptimal FRC, unstable chest wall with high compliance, upper airway more prone to collapse, poor laryngeal tone, and surfactant deficiency [8].
\nCPAP alleviates many of physiologic derangements by increasing mean airway pressure and distending the airways to establish and maintain optimal FRC. By stabilizing and opening terminal alveoli, surface area for gas exchange is enhanced, and ventilation-perfusion mismatching is reduced. CPAP also improves diaphragmatic contractility. In addition, CPAP decreases the range of different opening pressure gradients between different areas of the lung and helps homogenize the total delivered tidal ventilations [8]. By better distending the individual alveolar units, CPAP also reduces the pressure needed to overcome surface tension. Surfactant is better preserved on the alveolar surface, further preventing atelectasis and the resulting atelectotrauma. In addition, CPAP has been shown to reduce upper airway occlusion by increasing pharyngeal cross-sectional area and decreasing upper airway resistance [8]. Coupled with stabilization of the chest wall and improved compliance, CPAP also reduces work of breathing. Apnea of prematurity is a common issue for many neonates born before 35 weeks gestation. It is manifested by various episodes of apnea, bradycardia and oxygenation desaturation, or some combination of the three. While there is very limited evidence of CPAP being an effective treatment for apnea of prematurity, it is often clinically used in such a manner [2].
\nThe pressure delivered via CPAP is either via a continuous flow or variable flow device. One of the most common methods of providing continuous-flow CPAP is what is referred to as bubble or water-seal CPAP [2]. Blended gas is first heated and humidified, then delivered to the neonate, typically via binasal prongs or a nasal mask. The distal end of the expiratory tubing is submerged in either 0.25% acetic acid or sterile water to a specific depth; this depth determines the level of CPAP generated [2]. The bubbles from the exhalation limb produce observable chest vibrations that could potentially enhance gas exchange. Furthermore, the applied gas flow rate to the CPAP device affects the degree of bubbling, suggesting that there may be a low-amplitude, high-frequency oscillatory effect to the lungs [13]. Initial studies that reported these findings, however, were using bubble CPAP delivered via a nasopharyngeal tube and not binasal prongs [2]. More studies are needed to determine if there exists an oscillatory waveform that enhances ventilation while on bubble CPAP.
\nVariable-flow CPAP has been in use since 1995 and was originally developed by Moa et al. to help reduce neonatal work of breathing [2]. These devices use dual injector jets directed towards each nasal prong to establish a constant airway pressure. In addition, when the neonate makes a spontaneous expiration, there is a “fluidic flip” in which the flow of gas is reversed and allowed to exit via the expiratory limb of the device. This phenomenon is enhanced due to the Coanda effect, in which gas tends to follow a curved surface [2]. The two most common variable-flow devices currently available are the Infant Flow (Cardinal Health, Dublin, Ohio, USA) and the Arabella system (Hamilton Medical, Reno, Nevada, USA). Some studies have indeed demonstrated less work of breathing and better synchrony in neonates on variable-flow devices compared to bubble CPAP. Others have found similar rates of extubation failure after randomization to either bubble CPAP or variable-flow CPAP following extubation from mechanical ventilation [2]. Despite these differences in the literature, there is no definitive evidence to suggest one mode of CPAP is superior. Many of these studies were done with neonates of various gestational ages and weights, which may confound the results further. Clearly, the clinician must be familiar with the device(s) available to them in their particular units and to be comfortable with their management.
\nDetermining the optimal CPAP level should be individualized to each neonate’s underlying pathophysiology and should be aimed to obtain optimal without over-distention. This target may change based on the neonate’s disease course and postnatal age. The use of correctly sized binasal prongs with a chinstrap or pacifier to keep the mouth closed (if needed) is important to minimize any loss of pressure. Immediately after birth, most neonates of all gestational are started on a level of 5 or 6 cm H₂O, with escalation to 8–10 cm H₂O as needed [2, 8]. There is limited evidence, however, to suggest a singular approach to initiating or changing the CPAP level. Again, these decisions should be driven by the underlying pathophysiology and supported by clinical and laboratory measures when necessary. Many institutions have their own specific guidelines and goals, especially when caring for the very low birthweight or extremely low birthweight infant. In general, the CPAP level is deemed appropriate when the neonate’s oxygenation and ventilation are satisfactory, the chest radiograph is optimally inflated, work of breathing is minimal, and the neonate is otherwise hemodynamically stable. When the CPAP level is too high, one may see signs of over-distention on the chest radiograph manifested by a flattened diaphragm or small heart size. Gas exchange may be worsened and, in severe cases, over-distention can reduce cardiac output leading to tachycardia and hypotension [8].
\nWeaning the neonate off CPAP is another area that should be driven by the underlying physiology and any continued need for respiratory support. This is typically possible when the neonate is requiring little to no supplemental oxygen, work of breathing is negligible, and there are few episodes of apnea, bradycardia, and desaturation [8]. While some institutions wean the CPAP level during this time, other institutions do not. An alternative method of weaning CPAP consists of “sprinting” the neonate off CPAP support for a period of time, which gradually increases until off entirely. This is not well studied and this method of “sprinting” may actually lead to CPAP weaning failure and may prolong the length of time ultimately spent on CPAP [8]. Additional questions include at what postnatal age to consider removal of CPAP, and what level of support (if any) should the neonate be transitioned to. The duration of CPAP is often driven by the neonate’s gestational age even in the absence of significant lung disease, as very preterm infants often benefit from longer use of CPAP while their chest walls mature and offset the elastic recoil of the lungs [8]. While this may vary from one institution to another, typical goals for removing an extremely preterm neonate from CPAP are around 32–34 weeks postmenstrual age, when appropriate goals are achieved (ie, no work of breathing and/or minimal supplemental oxygen requirement, etc). When discontinuing CPAP, the neonate can either be taken directly to room air or transitioned to a lesser mode of support (typically some form of nasal cannula). Again, much of this decision-making is driven by the current lung disease (if any) being treated at the time, as well as any other factors that may predispose the neonate to continued need for respiratory support. For example, the neonate that is otherwise stable on a fairly low CPAP level, has no oxygen requirement, and is growing well can reasonably be taken to room air as the initial attempt at discontinuing CPAP. The neonate that still has a minimal oxygen requirement but otherwise meets other criteria for coming off CPAP can be taken to a nasal cannula.
\nBilevel CPAP (BiPAP) or sigh intermittent positive airway pressure (SiPAP) has been marketed as a means of delivering alternating levels of distending pressure. Both are typically used with the Infant Flow driver and can alternate between a lower and higher CPAP pressure throughout the respiratory cycle; some ventilators can provide this mode as well [2]. This method of support is not synchronized (synchrony is currently only available in Europe and Canada), and the neonate breathes spontaneously at both levels of support. This potentially creates two distinct FRCs [16]. The CPAP levels cycle at a specific rate. The higher pressure level is delivered during “inspiration”, with typical values of 8–10 cm H₂O, but sometimes as high as 15 cm H₂O if using a patient triggered BiPAP device. Most SiPAP devices, on the other hand, will have a “sigh” pop-off that will prevent inspiratory PEEP from exceeding 10 cm H₂O. During “expiration”, the neonate will breathe the lower pressure level, with typical values set at 4–6 cm H₂O. A higher “inspiratory time” is typically used, with some authors suggested as high as 1 second [8]. Lista et al. compared outcomes in preterm neonates with RDS that were initially supported with CPAP versus SiPAP [16]. They found that infants supported with SiPAP had a shorter duration of mechanical ventilation overall, needed less oxygen, and were discharged home sooner. A caveat of these studies is that it can be difficult to compare the actually distending mean airway pressure delivered between CPAP and BiPAP/SiPAP. The latter, with alternating levels of pressure, will typically generate a pressure that is 2–3 cm H₂O higher than CPAP [2]. It is quite possible that it is this higher overall level of pressure in addition to the cyclical tidal volumes delivered that result in benefit to the infant. A recent study in 2016 by Victor et al. aimed to compare the use of CPAP and BiPAP in infants born before 30 weeks’ gestation and less than two weeks old using equivalent mean airway pressures [17]. They did not find any difference in extubation failures between the two groups, nor did they find any difference in total duration of mechanical ventilation, oxygen requirement at 28 days & 36 weeks corrected, or length of hospitalization.
\nHHFNC use rapidly expanded in NICUs since 2005. The two major commercially available devices are Vapotherm (Exeter, New Hampshire, USA) and Fisher & Paykel (Auckland, New Zealand) [2]. While most clinicians refer to this technology as “HFNC,” the delivered air undergoes a heating and humidification process. Traditional nasal cannula was limited to flow rates of 2 lpm of either 100% or blended oxygen for neaontes [13]. Higher rates of flow often caused significant drying of the airway mucosa, leading to irritation and mucosal trauma. The new HFNC systems create nearly 100%, allowing clinicians to use higher flow rates. This can vary from one institution to another. Some centers will use flow rates of up to 4 lpm, while others use rates as high as 8 lpm. Many of the same physiological benefits seen with the use of CPAP can be extrapolated to the use of HHFNC, as the higher flow rates has been shown in some studies to provide comparable distending pressure [2]. These benefits include improved pharyngeal tone, nasopharyngeal deadspace washout, decreased work of breathing, and maintenance of FRC [13]. The primary concern with the use of HHFNC is that it can potentially deliver unpredictable, uncontrolled and widely variable levels of distending pressure. Some studies using esophageal probes have measured the pressure delivered by HHFNC; this level is a determined not only by the flow rate delivered, but also the weight of the neonate and the size of the cannulae [2]. Neither of the two commercially available HHFNC devices are capable of measuring the level of pressure provided. They do, however, have an internal pressure-limiting mechanism as a safety measure to prevent excessive pressures from reaching the patient [8]. Ultimately, though, there currently is no reliable way to calculate how much distending pressure is delivered. For that reason, it is vital that the nasal prongs selected allow for some leak around the nares so that extremely high pressures are avoided.
\nHHFNC has been tried in various domains of neonatal respiratory management, including as a means of avoiding extubation failure in premature neonates. There have been a handful of recent studies to look at this, and the general consensus seems to be that HHFNC was non-inferior to CPAP in terms of extubation failures [8]. The additional finding of less nasal and mucosal trauma was consistent across most of these studies. Overall, however, there is still insufficient evidence to suggest that HHFNC is equal or superior to CPAP in preventing extubation failure. Much of this has to do with wide variations in the previously mentioned study designs, use of different devices, and unknown severity of respiratory distress in enrolled patients [8]. These data are even more limited for extremely low birthweight infants or those born less than 28 weeks’ gestation [13].
\nHHFNC has also been studied for treatment of apnea of prematurity and work of breathing. Saslow et al. (2006) evaluated the effects of CPAP and Vapotherm HFNC on work of breathing patterns in a crossover study of preterm infants requiring either support modality and weighing <2.0 kg at birth. They did not find any significant differences between the two groups [8]. Sreenan et al. (2011) also looked at stable premature infants in a crossover study of CPAP and HHFNC. They did not find any differences between the two modalities with respect to apnea, bradycardia, or desaturation events, oxygen requirement, or work of breathing [8]. This remains an area where success with HHFNC can certainly be achieved, but it is important to note that no definitive evidence exists to prove it is equally efficacious as CPAP.
\nIn June 2015, an international group of experts met in Oxford, England to discuss the use of nasal high-flow therapy in neonatology. The goal of the meeting was to reach consensus among clinicians on how to best use and study HHFNC in neonates and to try to establish guidelines for its management [13]. At the time of their meeting, their review encompassed four current RCTs that involved over 1100 preterm infants [13]. The following is summary of the group’s findings.
\nThe Oxford group recommended that in general, HHFNC can be considered for most neonates in which CPAP would be used. This includes preterm infants with respiratory distress, increased work of breathing, or an oxygen requirement. Special consideration should be given to neonates with significant nasal trauma from CPAP use, as switching to HHFNC may allow the nares to heal [13]. The same level of monitoring and nursing care provided to a neonate on CPAP should be applied to a neonate on HHFNC [13].
\nAs previously mentioned, one of the major differences at the level of the nasal prongs between CPAP and HHFNC is the desired amount of leak. With HHFNC, there must be a moderate amount of leak around the nares to allow gas egress and to ensure that unpredictably high pressures do not occur. The group concluded that the prong dimensions be no greater than 50% of the diameter of the nares, and that the gas flow via HHFNC be heated between 34 and 37 degrees C [13]. Furthermore, the actual cannulae used should be per manufacturer recommendations, and components from different systems should not be mixed.
\nIndividual institutions may have their own particular guidelines, but the Oxford meeting recommends starting with flows of 4–6 lpm for most preterm infants. Lower flow rates of 2–3 lpm may be acceptable for larger neonates closer to or at term [13]. A maximum flow rate of 8 lpm is recommended, and only in response to increased work of breathing or higher oxygen requirements. Escalation from HHFNC to a different support modality should be considered in cases of increased work of breathing, increased apnea, or oxygen requirements greater than 50% [13]. Weaning the flow rate can be considered once the neonate is stable for about 24 hours and on 30% or less oxygen, with one recommended approach of weaning the flow rate by 1 lpm every 12 hours as tolerated. Again, institutions may have their own weaning protocols. Discontinuing HHFNC can be considered once flow rates of 2–4 lpm are achieved, as 2 lpm is actually the lowest most devices will sustain, and the benefits of rates less than 3 lpm are actually unclear at this point [13].
\nA growing body of evidence seems to suggest that HHFNC is fairly safe and efficacious in supporting many preterm infants, however no definitive evidence exists. Flow rates of 2–8 lpm are generally acceptable, with careful attention to prong size and adherence to all manufacturer recommendations. Clearly, however, more research is needed. Specifically, more studies are needed to evaluate the use of HHFNC in extremely low birth weight infants and those born less than 27 weeks’ gestation, as well as the potential use of HHFNC in delivery room resuscitation and during neonatal transport [13]. This is one specific age group in which the evidence still overwhelmingly supports the use of CPAP as the initial mode of support. More studies are also needed to compare different HHFNC devices, types of cannulas, and true flow rate recommendations based on weight and gestational age. Finally, the Oxford group strongly recommends that each institution devise and adhere to their own agreed-upon guidelines so that a standardized approach to the use of HHFNC can be applied and subsequently studied.
\nNasal intermittent mandatory ventilation (NIMV), also known as nasal intermittent positive pressure ventilation (NIPPV), refers to ventilation provided via a conventional ventilator in a non-invasive fashion. This is usually administered via short binasal prongs, the RAM Nasal Cannula, or a nasal mask [2, 8]. Depending on the type of ventilator and settings used, NIPPV is designed to deliver positive pressure throughout the respiratory cycle with defined, intermittent increases in pressure, often in synchrony with respiratory efforts [8]. This method of respiratory support was initially described in the early 1970s when via time-cycled inflations using a ventilator with an oronasal mask [2]. In the 1980s, more than 50% of the level III NICUs in Canada were consistently using this method of respiratory support. Shortly after, it fell out of favor due to reports of facial neurological injuries and gastrointestinal perforations; subsequent studies regarding the use of NIPPV in neonates have not reported higher rates of these complications [2, 13]. Of note, nasal high-frequency ventilation (NHFV) is also described in the literature and is increasingly common in some centers in Europe. Given its relative new nature and lack of extensive comparative studies, it will not be discussed here.
\nThe physiological benefits of NIPPV are similar to other modes of positive pressure delivery. Specifically, NIPPV will expand the lung and recruit terminal alveoli, increase FRC, prevent atelectasis and atelectotrauma, and improve ventilation-perfusion mismatches [8, 18]. In addition, the positive pressure delivered helps splint the upper airways, improves laryngeal tone, and stabilizes the highly compliant neonatal chest wall. Synchronized NIPPV, or sNIPPV, has been shown in several studies to deliver higher tidal volumes than CPAP or non-synchronized NIPPV [13, 18]. In addition, all forms of NIPPV deliver additional positive pressure breaths, further increasing mean airway pressure. This in turn helps to further improve tidal volumes and reduces thoraco-abdominal asynchrony (especially true with sNIPPV), which has may reduce work of breathing and improve pulmonary mechanics [8]. Animal studies have also shown that the intermittent distending pressure above PEEP that NIPPV provides can more effectively recruit the lung than CPAP alone, leading to further improvements in FRC [13].
\nNIPPV has been studied in three major domains: preventing extubation failures, treating apnea of prematurity, and as the primary mode of treating respiratory distress in premature neonates. As of 2015, there have been ten randomized controlled trials comparing NIPPV with CPAP after extubation in premature infants. Friedlich et al. were the first to publish a study comparing CPAP with sNIPPV, and demonstrated that sNIPPV reduced extubation failures significantly [19]. In 2017, a Cochrane meta-analysis of these trials demonstrated a reduction in extubation failure (NNT = 4), but the studies included various NIPPV devices with a mix of synchrony versus asynchrony [8]. Furthermore, there was variability in the definition of extubation success. Despite these caveats, the conclusion from the review was that NIPPV may reduce extubation failure within 48 hours to one week after extubation more effectively than CPAP. No effect, however, was seen on chronic lung disease or mortality [18].
\nFor treatment of apnea of prematurity, there are three studies comparing CPAP with NIPPV. The evidence is conflicting and there is no current recommendation whether NIPPV is superior to CPAP [8, 13]. A total of eight studies with 850 patients have looked at NIPPV as the primary mode of initial ventilation in premature neonates with respiratory distress syndrome, with the primary outcome being failure of non-invasive support and the need for intubation. The studies included different devices with mixed populations. Furthermore, some studies allowed the use of surfactant while others did not. As one might imagine, the results were mixed, with six of the trials essentially finding no difference between the two respiratory modalities [8]. As mentioned above, the strongest evidence in this area as demonstrated by the 2017 Cochrane review appears to be the use of NIPPV to prevent extubation failure when used immediately after extubation [18].
\nAs with every mode of respiratory support, the settings applied to any particular neonate should be based on the particular device used and the underlying pathophysiology. Initial settings on NIPPV are typically similar to those of a mechanical ventilator, with two exceptions, applied peak inspiratory pressure (PIP) and inspiratory time (Ti). Higher PIP is often necessary as pressure is delivered via a nasal interface and pressure is attenuated prior to delivery to the lungs. Therefore, NIPPV PIP is typically started about 2–4 cm H₂O higher than that normally used for mechanical ventilation via an endotracheal tube [8]. This is then adjusted based on adequate chest rise and blood gas measurements. For similar reasons, slightly higher inspiratory times of 0.4–0.5 seconds are also typical, as breaths delivered nasally have more resistance to overcome versus those delivered via an endotracheal tube.
\nWeaning from conventional ventilator to NIPPV should be done according to the same general recommendations as for any other mode. The goal should be well inflated lungs with an adequate FRC and minimal work of breathing. Settings on NIPPV are typically similar to prior settings on mechanical ventilation at the time of extubation. While this will differ from one institution to the next, this typically consists of rates below 25 breaths/min, a PIP of less than 20 cm H₂O, and an oxygen requirement of less than 30–35%. PEEP can be variable depending on oxygen requirement and need for lung expansion, but ideally will be 6 cm H₂O or less [8].
\nAlthough the means of delivering non-invasive respiratory support are widely variable, with numerous interfaces, devices and modes, the underlying goal is the same for all. Each baby’s physiology should be assessed and non-invasive respiratory support must be tailored to resolve the most important underlying pathophysiology. When properly supported, babies should be well oxygenated, with minimal work of breathing, infrequent apnea, and a stable respiratory status.
\nI would like to thank my colleagues, Drs. Schlegel and Shepherd, for all their support and guidance in undertaking this endeavor. Furthermore, I want to recognize all of the neonatal nurse practitioners, nurses, respiratory therapists, pharmacists, nutritionists, and occupational/physical therapists that work so tirelessly so that we can provide the best care for our most vulnerable patients.
\nWith the growth of world population and progressive increase in living standards, the consumption of goods and energy has also increased, along with land use change and deforestation, intensified agricultural practices, industrialization and energy use from fossil fuel sources. All of these have contributed to ever-increasing concentrations of greenhouse gases in the atmosphere, since the industrial era.
\nMunicipal solid waste (MSW) is a manifestation of the unsustainable consumption of natural resources by humankind, which has led to—and continues to—the depletion of natural capital and environmental degradation.
\nCurrent global MSW generation levels are approximately 1.3 billion tons/year, and by 2025, these are expected to increase to approximately 2.2 billion tons/year. This represents a significant increase in per capita waste generation rates, from 1.20 to 1.42 kg per person per day, in the next 15 years (2018–2033). However, global averages are broad estimates only, as rates vary considerably by region, country, and even within cities [1].
\nOn a global scale, 70% of MSW is landfilled, 19% is recycled, and only 11% is utilized in Waste-to-Energy (WtE) schemes—this occurs due to logistical and economic issues—such as primary fossil energy scarcity and landfill volume restrictions [2].
\nThe concept of circular economy (CE)—while not entirely new—has recently gained importance in the agendas of policymakers, to address the aforementioned and other sustainability issues [3]. The aim of CE is to maintain the value of products, materials and resources as long as possible, to minimize the use of resources; in other words, CE is based on a “win-win” philosophy that states that prosper economy and healthy environment can co-exist [4].
\nWtE plants have a dual objective: reduce the amount of waste sent to landfills and produce useful energy (heat and/or power). The WtE supply chain provides a method for simultaneously addressing issues related to energy demand, waste management and emission of greenhouse gases (GHG), achieving a circular economy system (CES) [5].
\nTraditionally, WtE has been associated with incineration. Yet, the term is much broader, embracing several waste treatment processes that generate energy (electricity and/or heat), such as pyrolysis, conventional or plasma arc gasification, as well as nonthermal processes such as anaerobic digestion and landfill-gas recovery.
\nMunicipal solid waste (MSW), also referred to as trash or garbage, consists of several items that are discarded after use, such as grass clippings, furniture, clothing, food scraps, product packaging, bottles, newspapers, appliances, paint, and batteries [6]. Construction, industrial, and hazardous waste are not considered MSW.
\nIn recent decades, there has been increasing pressure on developed countries to reduce their waste associated with single-use discarded materials. The objective is to conserve natural resources, including energy (which is utilized for the production of such materials), and reduce the amount of materials disposed in sanitary landfills. The philosophy of waste management aims at decreasing the amount of waste generated by society and incentivizing reutilization and recovery of its energy content, when reutilization or recycling is not possible through biochemical or thermochemical technological routes.
\nFigure 1 presents a scheme based on the pyramid proposed by the European Commission. Different management strategies are ranked from most to least environmentally preferred.
\nWaste hierarchy, adapted from [7].
Most WtE transformation processes require pre-treatment of MSW. The characteristics of the raw materials within solid waste are affected by several factors, which range from the storage method (influence of humidity), maturity (wide variety of waste within an excavated landfill), classification policies (which vary depending on the country), to name a few. Successful implementation of WtE conversion technologies depends considerably on the efficiency of the process, which, in turn, depends on the quality of the waste considered. Table 1 presents the global average composition of MSW.
\nComponent | \nFraction (%) | \n
---|---|
Organic | \n46 | \n
Metal | \n4 | \n
Plastic | \n10 | \n
Paper | \n17 | \n
Other | \n18 | \n
Composition of global MSW [8].
The recovery of energy and materials from MSW through the production of a refuse derived fuel (RDF) is one of the alternatives advocated by waste management planners and government regulations [9]. RDF is the product of processing MSW to separate the noncombustible from the combustible portion, enabling better reuse of materials and recycling of MSW, with the possibility of achieving higher efficiencies in energy recovery treatments. RDF is an efficient fuel with several advantages in comparison with MSW, due to its high calorific value, more homogeneous chemical composition, more convenient storage and handling characteristics, and less carbon emissions.
\nSome studies have characterized the streams of materials involved in the RDF production process [9, 10], with descriptions on the characteristics of RDF in terms of composition and proximate and ultimate analysis [11, 12]. Also, the energy potential of RDF obtained from combustible solid waste has been evaluated by [13, 14].
\nTable 2 shows data compiled by [15] for the elemental composition of MSW and RDF.
\n\n | \n | MSW | \nRDF | \nRDF processed from landfill waste | \n
---|---|---|---|---|
Water content | \nwt% wet | \n34.2 [31.0–38.5] | \n10.8 [2.9–38.7] | \n14.4 [12–35.4] | \n
Volatiles | \nwt% dafa | \n87.1 [87.1] | \n88.5 [74.6–99.4] | \n80.4 | \n
Ash | \nwt% dry | \n33.4 [16.6–44.2] | \n15.8 [7.8–34.5] | \n27.1 | \n
Net calorific value | \nMJ/kg daf | \n18.7 [12.1–22.5] | \n22.6 [1.1–29.3] | \n22 | \n
C | \nwt% daf | \n49.5 [33.9–56.8] | \n54.6 [42.5–68.7] | \n54.9 | \n
H | \nwt% daf | \n5.60 [1.72–8.46] | \n8.37 [5.84–15.16] | \n7.38 | \n
O | \nwt% daf | \n32.4 [22.4–38.5] | \n34.4 [15.8–43.7] | \nNAb | \n
N | \nwt% daf | \n1.33 [0.70–1.95] | \n0.91 [0.22–2.37] | \n2.03 | \n
S | \nwt% daf | \n0.51 [0.22–1.40] | \n0.41 [0.01–1.27] | \n0.36 | \n
The direct utilization of MSW in processes for the recovery of energy can lead to variable operation conditions, even unstable, with quality fluctuations in the final product. This is a consequence of the heterogeneity of the material regarding size, shape and composition. This is why firstly fuel is derived from waste, which is then utilized in the energy generation system [16]. For gasification and pyrolysis technologies, pretreatment is a fundamental requirement, which does not occur when considering plasma gasification and incineration.
\nWith the objective of improving the handling characteristics and homogeneity of the material, the conversion process of MSW into fuels is constituted by different steps: trituration, sifting, selection, drying and/or pelletization. The least expensive and most well-established current practice to produce RDF from MSW is mechanical pretreatment (MT); however, different schemes can be used, as presented by [17].
\nThe characteristics of waste are important when selecting a specific WtE technology. The energy recovery efficiency depends on variables such as technology and quality of waste. An optimized plant that treats preselected waste can recover two or three times more electricity and heat than a more traditional plant that treats raw waste [18].
\nThere is a wide range of WtE technologies, biochemical and thermochemical, for the conversion of solid waste into energy (steam or electricity). Fuels such hydrogen, natural gas, synthetic diesel and ethanol can be utilized [19, 20].
\nThe biochemical route, in the case of MSW, refers to anaerobic digestion, which consists of controlled decomposition by microbes to reduce the organic material. Biochemical processes are used in the treatment of waste with high percentages of biodegradable organic matter and high moisture content. Methane, fuel for electricity generation, steam and heat can be produced.
\nOne of the disadvantages of the biological treatment is the preprocessing required to separate MSW. Biochemical conversion of waste can be grouped into four categories: anaerobic digestion/fermentation, aerobic digestion, composting, and landfill gas power (LFG). These technologies are the most economic and environmentally safe means of obtaining energy from MSW [21].
\nIn thermochemical conversion, both biodegradable and nonbiodegradable matters contribute to the energy output. Incineration, gasification and pyrolysis are types of thermochemical conversion processes, which are fundamental and necessary components of a comprehensive and integral urban solid waste management system [22].
\nThe main advantages of thermochemical processes include lower masses and volumes of waste, decrease in the space occupied by landfills, destruction of organic pollutants such as halogenated hydrocarbons, and decrease in the emission of GHGs due to anaerobic decomposition. When considering the life cycle, the use of waste as a source of energy generates less environmental impacts than other conventional energy sources.
\nWith incineration, the energy value of waste can be recovered; however, pyrolysis and gasification can be utilized to recover the chemical value of waste. The derived chemical products, in some cases, can be utilized as inputs in other processes or as secondary fuels.
\nWith the conversion of MSW into fuels, higher calorific values are obtained along with more homogeneous physical and chemical compositions, lower levels of pollutants and ashes, less excess air required for combustion, and better conditions for storage, handling, and transportation. Therefore, it is recommended to establish a balance between increasing production costs and the potential reduction of costs associated with designing and operating the system. Figure 2 shows thermochemical conversion processes, the products involved, and energy and material recovery systems.
\nThermochemical conversion processes and products, adapted from [23].
In the next topic, the main aspects of each of the mentioned routes will be analyzed.
\nWaste incineration is a specific treatment that reduces the volume of waste and its level of dangerousness, selecting and concentrating, or destroying the potentially harmful substances. Incineration processes can also offer the possibility of recovering the energy, mineral or chemical content of waste.
\nDuring recent decades, most industrialized countries with high population densities have employed incineration as an alternative procedure to controlled landfilling, for the treatment of MSW.
\nAccording to Ref. [24], the two main processes applied for the thermal treatment of waste are fluidized bed combustion and grate combustion. Another technological alternative is the rotary furnace or rotary kiln frequently employed in the field of waste treatment, for the combustion of hazardous waste in combination with other devices for gasification and pyrolysis [25].
\nGrate combustion, also known as mass burn combustion, is by far the most utilized, as it can handle larger items and only oversized materials have to be crushed. Fluidized bed combustion (as well as most pyrolysis and gasification processes) requires the waste to be shredded into small particles before being introduced in the combustion (pyrolysis/gasification) chamber [24].
\nThe calorific value of the material to be incinerated and the polluting potential of the emissions generated are the main reasons for the evolution of incineration systems (higher combustion efficiencies and effective removal of contaminants).
\nDue to the heterogeneous nature of waste, some differences with respect to conventional fossil fuel power plants have to be considered in the energy conversion process. The efficiency of a coal burning cycle is generally around 40%, while the efficiency of a garbage incineration cycle varies between 20 and 25%, if operating in a cogeneration mode, and up to 25–35% in the case of power production only [8, 26, 27, 28]. In general, fuel quality (i.e., waste) and other technical conditions (e.g., plant size, low temperature sources, etc.) limit the electrical efficiency of incinerators. This means that more than 70–80% of the heat generated by waste combustion is rejected to the environment.
\nThe conversion efficiency of steam energy into electricity increases with higher steam temperatures and pressures. However, when increasing steam temperature, the heat transfer surfaces are submitted to severe high-temperature corrosion, caused by metal chlorides in the ash particles deposited on the gas tubes and by high concentrations of chlorine and sulfur in MSW. Most chlorines are present in plastics (e.g., PVC), while fluorines are present in polytetrafluoroethylene (PTEF), along with other inorganic compounds. Corrosion limits steam properties to maximums of 450–500°C and 4.0–6.0 MPa, while the steam temperature can reach 600°C in a coal cycle [27, 29].
\nHCl is highly corrosive at high (>450°C) and low (<110°C) temperatures. The heating surfaces of radiant parts are protected by a resistant refractory material and/or welded high-alloy to prevent corrosive attacks in the furnace of the boiler system. The feed water should be preheated to a minimum of 125°C, before being sent to the boiler, to prevent low-temperature corrosion [29].
\nBeyond corrosion problems, another negative aspect related to WtE plants is represented by erosion, especially the abrasion of surface material responsible for the vertical wear and tear. This is primarily caused by the ash particles present in flue-gas, and erosion appears mostly in the area of gas redirection. Tube wear is caused by a combination of corrosion and abrasion.
\nThe pollutants released with exhaust gases after the burning of the waste affect the efficiency of the boiler. In an MSW incineration plant, efficiency is influenced by the heat lost with exhaust gases and by corrosion, which means that the temperature of exhaust gases cannot be significantly changed. For this reason, until 2013, the maximum efficiency of a boiler was approximately 87% [30].
\nThe incineration of MSW emits GHG such as carbon dioxide (CO2), methane (CH4), nitric oxide (N2O), hydrofluorocarbons (HFCs), polyfluorocarbons (PFCs), and sulfur hexafluoride (SF). When the furnace is maintained under high oxidizable conditions, there is no CH4 being emitted in the gases exiting the chimney. When primary air is supplied from the storage tank, CH4 is oxidized to CO2 and H2O.
\nThe pollutants emitted during incineration hinder the improvement of the steam cycle, but new technologies developed for the recovery of energy have managed to improve the overall efficiency of the plant. Some of the factors that have contributed the most to the improvement of new plants include two-second increase in residence time for dioxin destruction, high performance with mobile grills, utilization of new metal alloys and high-performance exhaust gas cleaning systems [31].
\nMost recent data from the Eurostat database highlight that municipal waste was treated differently in the EU 28 in 2014: 16.1% is composted (Eurostat shows it as biological treatment), 27.3% is incinerated (total incineration including energy recovery), 28.2% is recycled and 28.4% is landfilled [32].
\nJapan has 1172 incinerators for the treatment of 80% of MSW; approximately 71% of MSW is incinerated with energy recovery generating 1770 MW [33]. In the United States, there are 77 WtE power plants, of which 78% employ mass burn technology (60 facilities), 17% refuse derived fuel (13 facilities), and 4% utilize modular combustion (4 facilities). Of these facilities, 77% produce electricity (59 units), 4% export steam (3 units), and 19% cogeneration—or combined heat and power (15 units) [32].
\nLFG power represents one of the most readily available, cheap and relatively simple forms of WtE options. However, the carbon dioxide emissions from landfills per ton of MSW processed are at least 1.2 t CO2, much higher than WtE plants. Considering all environmental performance criteria (energy, material, and land consumption, air and water emissions, risks), WtE is the most favorable solution [24].
\nGasification is the thermal conversion of carbon-based material into a mixture of combustible gases, called syngas. Gasification is used to convert solid materials such as coal, coke, biomass and solid waste into a gas, with average composition 15–30% CO, 12–40% H, and 4.5–9% CH4. The lower heating value (LHV) of syngas is between 4 and 13 MJ/Nm3, depending on the oxidizing agent used in gasification, operating conditions, among other factors [34]. From the syngas gas produced, different chemical intermediate products can be obtained, with different industrial uses. Energy can also be obtained, in the form of power, heat or biofuel. Gasification temperature is one of the most important operation parameters that affects the performance of the process, due to the balance between endothermic and exothermic reactions involved.
\nRef. [35] compared different thermochemical conversion processes, and verified that gasification technology is the best choice considering energy and environmental perspectives. Gasification has attracted attention and gained importance in recent years, presenting higher energy efficiency and being friendlier to the environment.
\nOne of the challenges of MSW gasification is the characteristics of MSW, with variable size and moisture content, and highly variable on calorific value [36].
\nThe gasification of MSW is an effective technique to reduce the amount of waste, and is relatively faster than the conventional processes (more residues can be treated in less time). The process of integrated gasification and combustion emits dioxin and furan within acceptable limits established by national and international agencies [37].
\nAlthough gasification has been employed for over 200 years, gasification of MSW is still in its early development stages. Some companies are developing smaller, compact gasifiers designed to be used by cities, towns, and military bases. Companies engaged in waste gasification and the characteristics of gasification plants can be consulted in the Global Syngas Technologies Council Database (GSTC) [38].
\nPlasma gasification is a technology suitable for MSW that uses a specific type of allothermal gasifiers. The heat that maintains the endothermic gasification reactions is provided by electrically generated thermal plasma (a plasma torch where an electric arc is created between two electrodes inside a vase and an inert gas is injected through this arc) [39].
\nThe plasma torch temperature varies between 2700 and 4500°C, which is sufficient to crack the complex hydrocarbons in syngas, and all inorganic compounds (glass, metals, heavy metals) are melted in a volcanic-type lava that becomes a basaltic slag after cooling. The advantage of this system is that the syngas is produced in high temperatures, which ensures the destruction of all dioxins and furans. More information about this technology can be found in Refs. [40, 41].
\nTable 3 shows why gasification is attractive among other waste-to-energy technologies, due to its high efficiency for electricity generation at a lower unit cost.
\nPerformance parameter | \nIncineration | \nPyrolysis | \nPlasma gasification | \nConventional gasification | \n
---|---|---|---|---|
Capacity (t/day) | \n250 | \n250 | \n250 | \n250 | \n
Conversion efficiency (MWh/t) | \n0.5 | \n0.3 | \n0.4 | \n0.9 | \n
Power generation capacity (MWh/day) | \n160 | \n180 | \n108 | \n224 | \n
Unit cost/kWh installed | \n435 | \n222 | \n1000 | \n125 | \n
Unit cost (US$/nominal ton/day) | \n500 | \n160 | \n960 | \n112 | \n
Comparison between different MSW thermal treatment technologies [42].
Pyrolysis is the thermal degradation of organic material in an oxygen-deficient atmosphere at approximately 400–900°C, producing gas, liquid and solid products. The yield and composition of the products are influenced by a range of pyrolysis process parameters, including the type of waste, reactor system, gas residence time, contact time, heating rate, temperature, pressure ranges, and presence of catalysts [43].
\nDue to the different operation conditions, pyrolysis can be classified into three main categories: slow, fast and flash pyrolysis.
\nPyrolysis is a promising technology and is currently utilized in many regions of the world for MSW disposal and energy generation. The objective of MSW pyrolysis is to treat waste, reduce its volume and associated hazards, destroying potentially harmful substances. Pyrolysis can also involve energy recovery from waste, in the form of heat, steam, electricity, or fuel (e.g., oil, char, and gas).
\nThere are several types of pyrolysis reactors for MSW treatment operating in different countries, of which the most common are fixed-bed, fluidized bed, and rotary kiln reactors. Fixed-bed equipment is easy to operate and control, but presents disadvantages such as uneven heating and discontinuous running. The fluidized bed reactor can operate continuously and presents some advantages, such as high heat transfer efficiency and manageable temperature, but the resulting pyrolysis gas presents low calorific value. The rotary kiln reactor presents high internal heating and good adaptability to MSW; however, this technology presents a difficulty associated with the sealing of connectors [44].
\nMore details on typical pyrolysis reactors, problems and MSW plants and products can be found in Refs. [42, 45, 46].
\nAnaerobic digestion consists of a set of processes in which microorganisms consume the organic matter present in waste, in the absence of oxygen. This process occurs naturally in some types of soil and in the sediments settled on the bottom of a body of water (e.g., rivers, lakes, oceans, and swamps), where oxygen cannot penetrate. Decomposition of the submerse biomass occurs at the bottom of hydroelectricity reservoirs, producing methane.
\nThere are several chemical reactions associated with conversion processes, which are in chemical balance. Generally, although some authors classify the anaerobic digestion process in two or even three steps, it is more common to utilize four steps to describe the process, as depicted in Table 4.
\nThe main aspects that influence anaerobic digestion are [48, 49]:
\npH/alkalinity: methanogenic bacteria are sensitive to acid environments, and an increase in the pH will inhibit their growth. pH varies throughout the different steps of the process due to the generation of fatty acids, CO2, and bicarbonates. pH correction is accomplished through the addition of a basic compound (CaCO3, NaOH). The optimal range of pH is between 6.6 and 7.4.
\nTemperature: temperature is related to the growth of microbes, and therefore, its control is very important for optimal growth/development of microorganisms and performance of anaerobic digestion. The process can occur in two ranges, mesophilic (25–40°C) and thermophilic (55–65°C). The mesophilic range is an interval of temperature conditions that enables bacteria to be more tolerant to changes in the environment, constituting more resistant microorganisms, but with higher retention times and lower production of biogas. This condition enables the use of simpler reactors, without complex control systems, with simpler operation strategies that entail lower capital costs. However, within thermophilic conditions, there is a higher production of biogas, with lower retention times. In these conditions, microorganisms are less tolerant to changes in the environment, which if occur, can compromise the production. A more complex, precise control system is required, with higher capital costs associated.
\nSubstrate concentrations: an increase in the organic load can lead to an excessive production of acids, which can act as inhibitors for other reactions and cause lower biogas yield.
\nPartial H2pressure: an increase in pressure can lead to system collapse due to accumulation of acids.
\nC/N ratio: in the anaerobic digestion process, carbon corresponds to the source of energy, and nitrogen enables microbial growth. The optimal ratio between carbon (C) and nitrogen (N) varies between 20 and 30. High values of the C/N relationship are associated with a fast consumption of nitrogen, which can limit microbial growth and reduce gas production. Lower C/N values lead to accumulation of ammonia, which affects the pH of the reactor.
\nAnaerobic digestion adds value to MSW, generating an overall positive impact on the environment as it avoids a series of issues (negative impacts) associated with the natural decomposition process that occurs in landfills, besides enabling the substitution of other fossil raw materials.
\nThe process of anaerobic digestion can occur in controlled environments, such as in biodigesters, which recover energy from waste, and in sanitary landfills. Sanitary landfills are locations for the controlled disposal of waste, reducing its negative environmental impact, and for the control of lixiviate material. Some landfills generate electricity from the biogas produced.
\nBiogas production from organics within the MSW stream is in the range of 100–150 m3 of biogas per ton of source separated organics (SSO) [50].
\nThere are currently several commercially consolidated technologies for biodigestion, such as the Dranco, Valorga, Kompoga, BTA, and Linde-BRV systems. These technologies are widely employed in Europe, with 118 plants in operation, which totalize a combined treatment capacity 5.12 million tons of MSW per year. The Valorga system alone presents an installed capacity of 2.19 million tons of MSW [51, 52]. Table 5 presents a summary of size, capacity and applications of anaerobic digestion systems.
\nStep | \nDescription | \n
---|---|
Hydrolysis | \nOrganic polymolecules are cracked into standard molecules such as sugars, amino, and fatty acids with the addition of hydroxyl groups. This is accomplished by hydrolytic bacteria. | \n
Acidogenesis | \nSugars, fatty, and amino acids are converted into smaller molecules, with the formation of volatile fatty acids (acetic, propionic, butyric, and valeric acids) and production of ammonia, carbon dioxide, and H2S as subproducts. | \n
Acetogenesis | \nThe molecules produced during acidogenesis are digested, producing carbon dioxide, hydrogen, and acetic acid. | \n
Methanogenesis | \nFormation of methane, carbon dioxide, and water. | \n
Description of the anaerobic digestion phases [47].
Size | \nCapacity (t/year) | \nElectricity production | \nTypical applications | \n
---|---|---|---|
Small | \nUp to 7500 | \n25–250 kWe | \nResidential and agricultural (farms) applications | \n
Intermediate | \n7500–30,000 | \n250–1 MWe | \nAgricultural applications or digestible waste production facilities | \n
Large | \nAbove 30,000 | \nOver 1 MWe | \nCentralized, with several mixed raw materials (municipal, industrial) | \n
Size, capacity, and applications of anaerobic digestion systems [53].
More details about WtE such as biogas technologies, process, efficiencies, economic, and environment aspects can be found in Refs. [50, 54].
\nLandfill gas (LFG) is formed when organic wastes decompose anaerobically in a landfill. Although LFG gas is generated under aerobic and anaerobic conditions, the initial aerobic phase is short-lived and produces a gas with a much lower energy content than does the long-term anaerobic phase which follows.
\nThere are several models developed to estimate the amount of biogas that can be produced from a sanitary landfill. According to Ref. [55], these models can be divided into:
\nZero-order models: generation of biogas is considered constant throughout time, with no influence of age and type of waste.
\nFirst-order models: consider waste characteristics, such as humidity, carbon content, MSW availability.
\nSecond-order models: utilize the reactions that occur during organic matter degradation, constituting a second-order kinetic model.
\nNumerical and mathematical models: consider the different variables involved in the process, and require a higher number of inputs.
\nThe most utilized models for the estimation of biogas production from waste are the first-order models, of which the IPCC and LandGEM [55] are the most employed.
\nDeveloped by the Intergovernmental Panel on Climate Change (IPCC), it is a first-order decay model (revised equations of IPCC-2006). It considers the degradation rates of waste and generation of methane throughout time. In the case of MSW, information on the different types of residues (food scraps, paper, wood, textiles, etc.) is required [56]. According to the IPCC model, the amount of methane produced is given by:
\n\n\n
L0(t) is the methane generation potential, expressed as:
\nMCF(t) is the methane correction factor and reflects the management of the disposal locations (dimensionless), DOC(t) is the degradable organic carbon (t carbon/t waste), DOCf is the fraction of degradable carbon (dimensionless), F is the methane fraction within biogas (dimensionless), 16/12 is the conversion ratio between carbon (C) and methane (CH4) (dimensionless), R(n) is the recovered methane (t CH4/t waste), n are the years considered, and OX is an oxidation factor (reflects the amount of methane in the residual mass that is oxidized in the soil and cover layer (dimensionless).
\nThe Landfill Gas Emissions Model (LandGEM) was developed in 2005 by the Control Technology Center of the Environmental Protection Agency of the U.S.A. This mathematical model is utilized to estimate the amount of landfill gas generated in a specific location, allowing for variations to be introduced. Besides methane, 49 other compounds can be calculated. It is based on electronic worksheets that use a first-order decay equation. It is considered that methane generation peaks soon after initial disposal of waste and the methane generation rate decays exponentially as organic matter is consumed by bacteria [55]:
\n\n\n
There is a great potential for electricity generation from landfill gas (biogas), as 1 ton of methane can be equivalent to 3.67 MWh—considering a conversion efficiency of 30%, this can be equivalent to 1.1 MWhe [57]. This way, considering the ever-growing restrictions regarding MSW disposal along with the high volumes of MSW generated (with high energy potential), the use of anaerobic digestion has been the focus of several studies. The International Energy Agency (IEA) has a study group dedicated to biogas energy, Task 37: energy from biogas, with the objective of approaching the challenges related to economic and environmental sustainability of the production and utilization of biogas [58].
\nWith the increasing necessity of promoting renewable energies, along with the emergence of new technologies that have lowered production costs, anaerobic digestion has been attracting the attention of developed European countries and also of populous countries such as India and China [1].
\nAnother factor that contributes to the economic viability of anaerobic biodigestion is the progressive trend of countries adopting laws that prohibit the disposal of organic waste in sanitary landfills, demanding technologies that can effectively manage waste and recover the energy still contained within the covalent bonds of organic waste [58].
\nThe study by Ref. [59] presented step-by-step, thorough calculations for landfill gas generation capacity, including the total amount of solid waste disposed, total organic matter, fractions of degradable organics, methane generated, methane captured, and finally, the amount of approximately 65,000 tons of captured LFG in 30 years. The leachate flow in the landfill was 8000 m3/year. The landfill could produce approximately 135 GWh of electricity throughout its lifetime, with a global efficiency of almost 84%.
\nInvestment costs depend on the degree of complexity of the technology, as well as whether the system requires auxiliary processes such as pretreatment, gas cleaning, among others. Table 6 presents cost estimated for different waste treatment technologies.
\nWTE technologies | \nCapital cost (US$/ton of MSW/year) | \nOperational cost (US$/ton of MSW/year) | \n
---|---|---|
Incineration | \n400–700 | \n40–70 | \n
Pyrolysis | \n400–700 | \n50–80 | \n
Gasification | \n250–850 | \n45–85 | \n
Anaerobic digestion | \n50–350 | \n5–35 | \n
Landfilling with gas recovery | \n10–30 | \n1–3 | \n
Cost estimates for different waste treatment technologies [60].
Regarding the costs associated with MSW disposal, biological routes present considerably lower costs than thermochemical routes. The facilities that utilize biological routes present simpler construction, when compared with thermochemical facilities. Besides, operational costs correspond to approximately 1% of the capital cost required.
\nNowadays, it becomes more evident that mankind is facing serious difficulties regarding waste disposal and therefore can be its own victim. Waste disposal is unavoidable, but special, systematic efforts must be directed to establish a turnaround strategy.
\nOne of the biggest challenges for modern society is establishing an effective strategy for the management and treatment of municipal solid waste. This strategy should consider, whenever possible, economic and environmental viewpoints. Global warming mitigation alternatives include the harvesting of landfill gas as an important waste management strategy.
\nThere are currently different technological routes for municipal solid waste, which could transform these from a challenge or a problem into a source of clean energy and useful recyclable raw materials. At the same time, the impact of waste on the environment would decrease, benefitting human health and natural resources.
\nJosé Carlos Escobar Palacio wishes to express his thanks to the Brazilian National Research and Development Council (CNPq), grant no. 310674/2015-8 and the Foundation for Research Support of the State of Minas Gerais (FAPEMIG). Monica Carvalho would also like to acknowledge the support received by CNPq, grant no. 303199/2015-6. José Joaquim Conceição Soares Santos would like to thank the National Agency of Petroleum Gas and Biofuels (ANP) and the Foundation for Support to Research and Innovation of Espírito Santo (FAPES) for the financial support. Dimas José Rúa Orozco wish to express their thanks to the Coordination of Improvement of Higher Level Personnel (CAPES) for the financial support through the National Postdoctoral Program—PNPD/CAPES.
\nIntechOpen aims to ensure that original material is published while at the same time giving significant freedom to our Authors. To that end we maintain a flexible Copyright Policy guaranteeing that there is no transfer of copyright to the publisher and Authors retain exclusive copyright to their Work.
',metaTitle:"Publication Agreement - Chapters",metaDescription:"IN TECH aims to guarantee that original material is published while at the same time giving significant freedom to our authors. For that matter, we uphold a flexible copyright policy meaning that there is no transfer of copyright to the publisher and authors retain exclusive copyright to their work.\n\nWhen submitting a manuscript the Corresponding Author is required to accept the terms and conditions set forth in our Publication Agreement as follows:",metaKeywords:null,canonicalURL:"/page/publication-agreement-chapters",contentRaw:'[{"type":"htmlEditorComponent","content":"The Corresponding Author (acting on behalf of all Authors) and INTECHOPEN LIMITED, incorporated and registered in England and Wales with company number 11086078 and a registered office at 5 Princes Gate Court, London, United Kingdom, SW7 2QJ conclude the following Agreement regarding the publication of a Book Chapter:
\\n\\n1. DEFINITIONS
\\n\\nCorresponding Author: The Author of the Chapter who serves as a Signatory to this Agreement. The Corresponding Author acts on behalf of any other Co-Author.
\\n\\nCo-Author: All other Authors of the Chapter besides the Corresponding Author.
\\n\\nIntechOpen: IntechOpen Ltd., the Publisher of the Book.
\\n\\nBook: The publication as a collection of chapters compiled by IntechOpen including the Chapter. Chapter: The original literary work created by Corresponding Author and any Co-Author that is the subject of this Agreement.
\\n\\n2. CORRESPONDING AUTHOR'S GRANT OF RIGHTS
\\n\\n2.1 Subject to the following Article, the Corresponding Author grants and shall ensure that each Co-Author grants, to IntechOpen, during the full term of copyright and any extensions or renewals of that term the following:
\\n\\nThe aforementioned licenses shall survive the expiry or termination of this Agreement for any reason.
\\n\\n2.2 The Corresponding Author (on their own behalf and on behalf of any Co-Author) reserves the following rights to the Chapter but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Chapter as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\\n\\nThe Corresponding Author confirms that they (and any Co-Author) are and will remain a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\\n\\nSubject to the license granted above, copyright in the Chapter and all versions of it created during IntechOpen's editing process (including the published version) is retained by the Corresponding Author and any Co-Author.
\\n\\nSubject to the license granted above, the Corresponding Author and any Co-Author retains patent, trademark and other intellectual property rights to the Chapter.
\\n\\n2.3 All rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the Corresponding Author's or any Co-Author’s specific approval.
\\n\\n2.4 The Corresponding Author (on their own behalf and on behalf of each Co-Author) will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Chapter as a consequence of IntechOpen's changes to the Chapter arising from translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits.
\\n\\n3. CORRESPONDING AUTHOR'S DUTIES
\\n\\n3.1 When distributing or re-publishing the Chapter, the Corresponding Author agrees to credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen. The Corresponding Author warrants that each Co-Author will also credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Chapter.
\\n\\n3.2 When submitting the Chapter, the Corresponding Author agrees to:
\\n\\nThe Corresponding Author will be held responsible for the payment of the Open Access Publishing Fees.
\\n\\nAll payments shall be due 30 days from the date of the issued invoice. The Corresponding Author or the payer on the Corresponding Author's and Co-Authors' behalf will bear all banking and similar charges incurred.
\\n\\n3.3 The Corresponding Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Chapter worldwide for the full term of the above licenses, and shall provide to IntechOpen upon request the original copies of such consents for inspection (at IntechOpen's option) or photocopies of such consents.
\\n\\nThe Corresponding Author shall obtain written informed consent for publication from people who might recognize themselves or be identified by others (e.g. from case reports or photographs).
\\n\\n3.4 The Corresponding Author and any Co-Author shall respect confidentiality rights during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Corresponding Author and any Co-Author are confidential and are intended only for the recipient. The contents may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\\n\\n4. CORRESPONDING AUTHOR'S WARRANTY
\\n\\n4.1 The Corresponding Author represents and warrants that the Chapter does not and will not breach any applicable law or the rights of any third party and, specifically, that the Chapter contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy. The Corresponding Author warrants and represents that: (i) the Chapter is the original work of themselves and any Co-Author and is not copied wholly or substantially from any other work or material or any other source; (ii) the Chapter has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) they themselves and any Co-Author are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) they themselves and any Co-Author have not assigned and will not during the term of this Publication Agreement purport to assign any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\\n\\nThe Corresponding Author also warrants and represents that: (i) they have the full power to enter into this Publication Agreement on their own behalf and on behalf of each Co-Author; and (ii) they have the necessary rights and/or title in and to the Chapter to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licenses expressed to be granted in this Publication Agreement. If the Chapter was prepared jointly by the Corresponding Author and any Co-Author, the Corresponding Author warrants and represents that: (i) each Co-Author agrees to the submission, license and publication of the Chapter on the terms of this Publication Agreement; and (ii) they have the authority to enter into this Publication Agreement on behalf of and bind each Co-Author. The Corresponding Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each such Co-Author.
\\n\\nThe Corresponding Author agrees to indemnify and hold IntechOpen harmless against all liabilities, costs, expenses, damages and losses and all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of or in connection with any breach of the aforementioned representations and warranties. This indemnity shall not cover IntechOpen to the extent that a claim under it results from IntechOpen's negligence or willful misconduct.
\\n\\n4.2 Nothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\\n\\n5. TERMINATION
\\n\\n5.1 IntechOpen has a right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Corresponding Author or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Corresponding Author or any Co-Author (being an individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Corresponding Author or any Co-Author (being a company) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for or enters into any compromise or arrangement with any of its creditors.
\\n\\nIn case of termination, IntechOpen will notify the Corresponding Author, in writing, of the decision.
\\n\\n6. INTECHOPEN’S DUTIES AND RIGHTS
\\n\\n6.1 Unless prevented from doing so by events outside its reasonable control, IntechOpen, in its discretion, agrees to publish the Chapter attributing it to the Corresponding Author and any Co-Author.
\\n\\n6.2 IntechOpen has the right to use the Corresponding Author’s and any Co-Author’s names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Chapter and has the right to contact the Corresponding Author and any Co-Author until the Chapter is publicly available on any platform owned and/or operated by IntechOpen.
\\n\\n6.3 IntechOpen is granted the authority to enforce the rights from this Publication Agreement, on behalf of the Corresponding Author and any Co-Author, against third parties (for example in cases of plagiarism or copyright infringements). In respect of any such infringement or suspected infringement of the copyright in the Chapter, IntechOpen shall have absolute discretion in addressing any such infringement which is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\\n\\n7. MISCELLANEOUS
\\n\\n7.1 Further Assurance: The Corresponding Author shall and will ensure that any relevant third party (including any Co-Author) shall, execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\\n\\n7.2 Third Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\\n\\n7.3 Entire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces and extinguishes all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by or on behalf of the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (together "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of its pre-contract fraudulent misrepresentation or fraudulent concealment.
\\n\\n7.4 Waiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\\n\\n7.5 Variation: No variation of this Publication Agreement shall be effective unless it is in writing and signed by the parties (or their duly authorized representatives).
\\n\\n7.6 Severance: If any provision or part-provision of this Publication Agreement is or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted.
\\n\\nAny modification to or deletion of a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\\n\\n7.7 No partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Corresponding Author or any Co-Author, nor authorize any party to make or enter into any commitments for or on behalf of any other party.
\\n\\n7.8 Governing law: This Publication Agreement and any dispute or claim (including non-contractual disputes or claims) arising out of or in connection with it or its subject matter or formation shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of or in connection with this Publication Agreement (including any non-contractual disputes or claims).
\\n\\nLast updated: 2020-11-27
\\n\\n\\n\\n
\\n"}]'},components:[{type:"htmlEditorComponent",content:"
The Corresponding Author (acting on behalf of all Authors) and INTECHOPEN LIMITED, incorporated and registered in England and Wales with company number 11086078 and a registered office at 5 Princes Gate Court, London, United Kingdom, SW7 2QJ conclude the following Agreement regarding the publication of a Book Chapter:
\n\n1. DEFINITIONS
\n\nCorresponding Author: The Author of the Chapter who serves as a Signatory to this Agreement. The Corresponding Author acts on behalf of any other Co-Author.
\n\nCo-Author: All other Authors of the Chapter besides the Corresponding Author.
\n\nIntechOpen: IntechOpen Ltd., the Publisher of the Book.
\n\nBook: The publication as a collection of chapters compiled by IntechOpen including the Chapter. Chapter: The original literary work created by Corresponding Author and any Co-Author that is the subject of this Agreement.
\n\n2. CORRESPONDING AUTHOR'S GRANT OF RIGHTS
\n\n2.1 Subject to the following Article, the Corresponding Author grants and shall ensure that each Co-Author grants, to IntechOpen, during the full term of copyright and any extensions or renewals of that term the following:
\n\nThe aforementioned licenses shall survive the expiry or termination of this Agreement for any reason.
\n\n2.2 The Corresponding Author (on their own behalf and on behalf of any Co-Author) reserves the following rights to the Chapter but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Chapter as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\n\nThe Corresponding Author confirms that they (and any Co-Author) are and will remain a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\n\nSubject to the license granted above, copyright in the Chapter and all versions of it created during IntechOpen's editing process (including the published version) is retained by the Corresponding Author and any Co-Author.
\n\nSubject to the license granted above, the Corresponding Author and any Co-Author retains patent, trademark and other intellectual property rights to the Chapter.
\n\n2.3 All rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the Corresponding Author's or any Co-Author’s specific approval.
\n\n2.4 The Corresponding Author (on their own behalf and on behalf of each Co-Author) will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Chapter as a consequence of IntechOpen's changes to the Chapter arising from translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits.
\n\n3. CORRESPONDING AUTHOR'S DUTIES
\n\n3.1 When distributing or re-publishing the Chapter, the Corresponding Author agrees to credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen. The Corresponding Author warrants that each Co-Author will also credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Chapter.
\n\n3.2 When submitting the Chapter, the Corresponding Author agrees to:
\n\nThe Corresponding Author will be held responsible for the payment of the Open Access Publishing Fees.
\n\nAll payments shall be due 30 days from the date of the issued invoice. The Corresponding Author or the payer on the Corresponding Author's and Co-Authors' behalf will bear all banking and similar charges incurred.
\n\n3.3 The Corresponding Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Chapter worldwide for the full term of the above licenses, and shall provide to IntechOpen upon request the original copies of such consents for inspection (at IntechOpen's option) or photocopies of such consents.
\n\nThe Corresponding Author shall obtain written informed consent for publication from people who might recognize themselves or be identified by others (e.g. from case reports or photographs).
\n\n3.4 The Corresponding Author and any Co-Author shall respect confidentiality rights during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Corresponding Author and any Co-Author are confidential and are intended only for the recipient. The contents may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\n\n4. CORRESPONDING AUTHOR'S WARRANTY
\n\n4.1 The Corresponding Author represents and warrants that the Chapter does not and will not breach any applicable law or the rights of any third party and, specifically, that the Chapter contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy. The Corresponding Author warrants and represents that: (i) the Chapter is the original work of themselves and any Co-Author and is not copied wholly or substantially from any other work or material or any other source; (ii) the Chapter has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) they themselves and any Co-Author are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) they themselves and any Co-Author have not assigned and will not during the term of this Publication Agreement purport to assign any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\n\nThe Corresponding Author also warrants and represents that: (i) they have the full power to enter into this Publication Agreement on their own behalf and on behalf of each Co-Author; and (ii) they have the necessary rights and/or title in and to the Chapter to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licenses expressed to be granted in this Publication Agreement. If the Chapter was prepared jointly by the Corresponding Author and any Co-Author, the Corresponding Author warrants and represents that: (i) each Co-Author agrees to the submission, license and publication of the Chapter on the terms of this Publication Agreement; and (ii) they have the authority to enter into this Publication Agreement on behalf of and bind each Co-Author. The Corresponding Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each such Co-Author.
\n\nThe Corresponding Author agrees to indemnify and hold IntechOpen harmless against all liabilities, costs, expenses, damages and losses and all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of or in connection with any breach of the aforementioned representations and warranties. This indemnity shall not cover IntechOpen to the extent that a claim under it results from IntechOpen's negligence or willful misconduct.
\n\n4.2 Nothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\n\n5. TERMINATION
\n\n5.1 IntechOpen has a right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Corresponding Author or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Corresponding Author or any Co-Author (being an individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Corresponding Author or any Co-Author (being a company) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for or enters into any compromise or arrangement with any of its creditors.
\n\nIn case of termination, IntechOpen will notify the Corresponding Author, in writing, of the decision.
\n\n6. INTECHOPEN’S DUTIES AND RIGHTS
\n\n6.1 Unless prevented from doing so by events outside its reasonable control, IntechOpen, in its discretion, agrees to publish the Chapter attributing it to the Corresponding Author and any Co-Author.
\n\n6.2 IntechOpen has the right to use the Corresponding Author’s and any Co-Author’s names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Chapter and has the right to contact the Corresponding Author and any Co-Author until the Chapter is publicly available on any platform owned and/or operated by IntechOpen.
\n\n6.3 IntechOpen is granted the authority to enforce the rights from this Publication Agreement, on behalf of the Corresponding Author and any Co-Author, against third parties (for example in cases of plagiarism or copyright infringements). In respect of any such infringement or suspected infringement of the copyright in the Chapter, IntechOpen shall have absolute discretion in addressing any such infringement which is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\n\n7. MISCELLANEOUS
\n\n7.1 Further Assurance: The Corresponding Author shall and will ensure that any relevant third party (including any Co-Author) shall, execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\n\n7.2 Third Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\n\n7.3 Entire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces and extinguishes all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by or on behalf of the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (together "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of its pre-contract fraudulent misrepresentation or fraudulent concealment.
\n\n7.4 Waiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\n\n7.5 Variation: No variation of this Publication Agreement shall be effective unless it is in writing and signed by the parties (or their duly authorized representatives).
\n\n7.6 Severance: If any provision or part-provision of this Publication Agreement is or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted.
\n\nAny modification to or deletion of a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\n\n7.7 No partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Corresponding Author or any Co-Author, nor authorize any party to make or enter into any commitments for or on behalf of any other party.
\n\n7.8 Governing law: This Publication Agreement and any dispute or claim (including non-contractual disputes or claims) arising out of or in connection with it or its subject matter or formation shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of or in connection with this Publication Agreement (including any non-contractual disputes or claims).
\n\nLast updated: 2020-11-27
\n\n\n\n
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5699},{group:"region",caption:"Middle and South America",value:2,count:5172},{group:"region",caption:"Africa",value:3,count:1689},{group:"region",caption:"Asia",value:4,count:10243},{group:"region",caption:"Australia and Oceania",value:5,count:888},{group:"region",caption:"Europe",value:6,count:15652}],offset:12,limit:12,total:117315},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"ebgfFaeGuveeFgfcChcyvfu"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:14},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:6},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:4},{group:"topic",caption:"Engineering",value:11,count:16},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:57},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:5},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5146},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"27",title:"Agricultural Science",slug:"agricultural-science",parent:{title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences"},numberOfBooks:4,numberOfAuthorsAndEditors:52,numberOfWosCitations:5,numberOfCrossrefCitations:10,numberOfDimensionsCitations:23,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"agricultural-science",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6988",title:"Multifunctionality and Impacts of Organic and Conventional Agriculture",subtitle:null,isOpenForSubmission:!1,hash:"113e59b70ead35364159d2d954eca1ad",slug:"multifunctionality-and-impacts-of-organic-and-conventional-agriculture",bookSignature:"Jan Moudrý, Kassio Ferreira Mendes, Jaroslav Bernas, Rafael da Silva Teixeira and Rodrigo Nogueira de Sousa",coverURL:"https://cdn.intechopen.com/books/images_new/6988.jpg",editedByType:"Edited by",editors:[{id:"170254",title:"Associate Prof.",name:"Jan",middleName:null,surname:"Moudrý",slug:"jan-moudry",fullName:"Jan Moudrý"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8952",title:"Coffee",subtitle:"Production and Research",isOpenForSubmission:!1,hash:"ec7add8fac804b29cdb70b142414b49e",slug:"coffee-production-and-research",bookSignature:"Dalyse Toledo Castanheira",coverURL:"https://cdn.intechopen.com/books/images_new/8952.jpg",editedByType:"Edited by",editors:[{id:"303770",title:"Dr.",name:"Dalyse",middleName:null,surname:"Toledo Castanheira",slug:"dalyse-toledo-castanheira",fullName:"Dalyse Toledo Castanheira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6166",title:"Maize Germplasm",subtitle:"Characterization and Genetic Approaches for Crop Improvement",isOpenForSubmission:!1,hash:"c417c25f765a026f5ebbf9d3119edb2e",slug:"maize-germplasm-characterization-and-genetic-approaches-for-crop-improvement",bookSignature:"Mohamed El-Esawi",coverURL:"https://cdn.intechopen.com/books/images_new/6166.jpg",editedByType:"Edited by",editors:[{id:"191770",title:"Dr.",name:"Mohamed A.",middleName:null,surname:"El-Esawi",slug:"mohamed-a.-el-esawi",fullName:"Mohamed A. El-Esawi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5978",title:"New Perspectives in Forage Crops",subtitle:null,isOpenForSubmission:!1,hash:"129c29bcddd8225ed58e908138b2cda5",slug:"new-perspectives-in-forage-crops",bookSignature:"Ricardo Loiola Edvan and Leilson Rocha Bezerra",coverURL:"https://cdn.intechopen.com/books/images_new/5978.jpg",editedByType:"Edited by",editors:[{id:"171035",title:"Dr.",name:"Ricardo",middleName:null,surname:"Loiola Edvan",slug:"ricardo-loiola-edvan",fullName:"Ricardo Loiola Edvan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:4,mostCitedChapters:[{id:"55856",doi:"10.5772/intechopen.69616",title:"Halophytes as Forages",slug:"halophytes-as-forages",totalDownloads:964,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"new-perspectives-in-forage-crops",title:"New Perspectives in Forage Crops",fullTitle:"New Perspectives in Forage Crops"},signatures:"Salah A. Attia-Ismail",authors:[{id:"204190",title:"Emeritus Prof.",name:"Salah",middleName:"Abdelaty",surname:"Attia-Ismail",slug:"salah-attia-ismail",fullName:"Salah Attia-Ismail"}]},{id:"69683",doi:"10.5772/intechopen.89716",title:"Organic Farming: A Good Production Decision for Slovenian Small Size Farms and Farms in the Areas with Restrictions/Limitations or Natural Obstacles for Agriculture?",slug:"organic-farming-a-good-production-decision-for-slovenian-small-size-farms-and-farms-in-the-areas-wit",totalDownloads:324,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"multifunctionality-and-impacts-of-organic-and-conventional-agriculture",title:"Multifunctionality and Impacts of Organic and Conventional Agriculture",fullTitle:"Multifunctionality and Impacts of Organic and Conventional Agriculture"},signatures:"Anton Perpar and Andrej Udovč",authors:[{id:"83670",title:"Dr.",name:"Anton",middleName:null,surname:"Perpar",slug:"anton-perpar",fullName:"Anton Perpar"},{id:"87129",title:"Prof.",name:"Andrej",middleName:null,surname:"Udovč",slug:"andrej-udovc",fullName:"Andrej Udovč"}]},{id:"57115",doi:"10.5772/intechopen.70345",title:"Best Management Practices (BMPs) for Nitrogen Fertilizer in Forage Grasses",slug:"best-management-practices-bmps-for-nitrogen-fertilizer-in-forage-grasses",totalDownloads:984,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"new-perspectives-in-forage-crops",title:"New Perspectives in Forage Crops",fullTitle:"New Perspectives in Forage Crops"},signatures:"Ademar Pereira Serra, Marlene Estevão Marchetti, Elisângela Dupas,\nSimone Candido Ensinas, Elaine Reis Pinheiro Lourente, Eulene\nFrancisco da Silva, Roberto Giolo de Almeida, Carla Eloize Carducci\nand Alessandra Mayumi Tokura Alovisi",authors:[{id:"182258",title:"Dr.",name:"Ademar",middleName:"Pereira",surname:"Serra",slug:"ademar-serra",fullName:"Ademar Serra"}]}],mostDownloadedChaptersLast30Days:[{id:"71528",title:"A Detail Chemistry of Coffee and Its Analysis",slug:"a-detail-chemistry-of-coffee-and-its-analysis",totalDownloads:469,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"coffee-production-and-research",title:"Coffee",fullTitle:"Coffee - Production and Research"},signatures:"Hemraj Sharma",authors:null},{id:"65759",title:"Agricultural Homoeopathy: A New Insight into Organics",slug:"agricultural-homoeopathy-a-new-insight-into-organics",totalDownloads:634,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"multifunctionality-and-impacts-of-organic-and-conventional-agriculture",title:"Multifunctionality and Impacts of Organic and Conventional Agriculture",fullTitle:"Multifunctionality and Impacts of Organic and Conventional Agriculture"},signatures:"Mazón-Suástegui José Manuel, Ojeda-Silvera Carlos Michel, García-Bernal Milagro, Avilés-Quevedo María Araceli, Abasolo-Pacheco Fernando, Batista-Sánchez Daulemys, Tovar-Ramírez Dariel, Arcos-Ortega Fabiola, Murillo-Amador Bernardo, Nieto-Garibay Alejandra, Ferrer-Sánchez Yarelys, Morelos-Castro Rosa María, Alvarado-Mendoza Alex, Díaz-Díaz Miriam and Bonilla-Montalvan Boris",authors:null},{id:"65591",title:"Insect Pest Management in Organic Farming System",slug:"insect-pest-management-in-organic-farming-system",totalDownloads:1493,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"multifunctionality-and-impacts-of-organic-and-conventional-agriculture",title:"Multifunctionality and Impacts of Organic and Conventional Agriculture",fullTitle:"Multifunctionality and Impacts of Organic and Conventional Agriculture"},signatures:"Hamadttu Abdel Farag El-Shafie",authors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"El-Shafie",slug:"hamadttu-el-shafie",fullName:"Hamadttu El-Shafie"}]},{id:"70151",title:"The Harvest and Post-Harvest Management Practices’ Impact on Coffee Quality",slug:"the-harvest-and-post-harvest-management-practices-impact-on-coffee-quality",totalDownloads:681,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"coffee-production-and-research",title:"Coffee",fullTitle:"Coffee - Production and Research"},signatures:"Mesfin Haile and Won Hee Kang",authors:null},{id:"57115",title:"Best Management Practices (BMPs) for Nitrogen Fertilizer in Forage Grasses",slug:"best-management-practices-bmps-for-nitrogen-fertilizer-in-forage-grasses",totalDownloads:984,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"new-perspectives-in-forage-crops",title:"New Perspectives in Forage Crops",fullTitle:"New Perspectives in Forage Crops"},signatures:"Ademar Pereira Serra, Marlene Estevão Marchetti, Elisângela Dupas,\nSimone Candido Ensinas, Elaine Reis Pinheiro Lourente, Eulene\nFrancisco da Silva, Roberto Giolo de Almeida, Carla Eloize Carducci\nand Alessandra Mayumi Tokura Alovisi",authors:[{id:"182258",title:"Dr.",name:"Ademar",middleName:"Pereira",surname:"Serra",slug:"ademar-serra",fullName:"Ademar Serra"}]},{id:"72082",title:"Revalorization of Coffee Waste",slug:"revalorization-of-coffee-waste",totalDownloads:280,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"coffee-production-and-research",title:"Coffee",fullTitle:"Coffee - Production and Research"},signatures:"Felipe J. Cerino-Córdova, Nancy E. Dávila-Guzmán, Azucena M. García León, Jacob J. Salazar-Rabago and Eduardo Soto-Regalado",authors:null},{id:"58077",title:"Sustainable Pasture Management",slug:"sustainable-pasture-management",totalDownloads:1278,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"new-perspectives-in-forage-crops",title:"New Perspectives in Forage Crops",fullTitle:"New Perspectives in Forage Crops"},signatures:"Atanas Sevov, Chtistina Yancheva and Yanka Kazakova",authors:[{id:"220128",title:"Dr.",name:"Christina",middleName:"Georgieva",surname:"Yancheva",slug:"christina-yancheva",fullName:"Christina Yancheva"},{id:"220129",title:"Dr.",name:"Atanas",middleName:null,surname:"Sevov",slug:"atanas-sevov",fullName:"Atanas Sevov"},{id:"222141",title:"Dr.",name:"Yanka",middleName:null,surname:"Kazakova",slug:"yanka-kazakova",fullName:"Yanka Kazakova"}]},{id:"56856",title:"Polyembryony in Maize: A Complex, Elusive, and Potentially Agronomical Useful Trait",slug:"polyembryony-in-maize-a-complex-elusive-and-potentially-agronomical-useful-trait",totalDownloads:683,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"maize-germplasm-characterization-and-genetic-approaches-for-crop-improvement",title:"Maize Germplasm",fullTitle:"Maize Germplasm - Characterization and Genetic Approaches for Crop Improvement"},signatures:"Mariela R. Michel, Marisol Cruz-Requena, Marselino C. Avendaño-\nSanchez, Víctor M. González-Vazquez, Adriana C. Flores-Gallegos,\nCristóbal N. Aguilar, José Espinoza-Velázquez and Raúl Rodríguez-\nHerrera",authors:[{id:"67240",title:"Prof.",name:"Cristobal",middleName:null,surname:"Aguilar",slug:"cristobal-aguilar",fullName:"Cristobal Aguilar"},{id:"183439",title:"Dr.",name:"Raul",middleName:null,surname:"Rodriguez-Herrera",slug:"raul-rodriguez-herrera",fullName:"Raul Rodriguez-Herrera"},{id:"185302",title:"Dr.",name:"Mariela R.",middleName:null,surname:"Michel",slug:"mariela-r.-michel",fullName:"Mariela R. Michel"},{id:"185304",title:"Dr.",name:"Adriana Carolina",middleName:null,surname:"Flores Gallegos",slug:"adriana-carolina-flores-gallegos",fullName:"Adriana Carolina Flores Gallegos"},{id:"217785",title:"Dr.",name:"Marisol",middleName:null,surname:"Cruz-Requena",slug:"marisol-cruz-requena",fullName:"Marisol Cruz-Requena"},{id:"217786",title:"Mr.",name:"Marcelino",middleName:null,surname:"Avendaño-Sanchez",slug:"marcelino-avendano-sanchez",fullName:"Marcelino Avendaño-Sanchez"},{id:"217787",title:"Mr.",name:"Victor",middleName:null,surname:"González-Vazquez",slug:"victor-gonzalez-vazquez",fullName:"Victor González-Vazquez"},{id:"217788",title:"Dr.",name:"Jose",middleName:null,surname:"Espinoza-Velázquez",slug:"jose-espinoza-velazquez",fullName:"Jose Espinoza-Velázquez"}]},{id:"56029",title:"Production of Spineless Cactus in Brazilian Semiarid",slug:"production-of-spineless-cactus-in-brazilian-semiarid",totalDownloads:1217,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"new-perspectives-in-forage-crops",title:"New Perspectives in Forage Crops",fullTitle:"New Perspectives in Forage Crops"},signatures:"Wilma Cristina Cavalcante dos Santos Sá, Edson Mauro Santos,\nJuliana Silva de Oliveira and Alexandre Fernandes Perazzo",authors:[{id:"139631",title:"Dr.",name:"Edson Mauro",middleName:null,surname:"Santos",slug:"edson-mauro-santos",fullName:"Edson Mauro Santos"},{id:"180036",title:"Dr.",name:"Juliana",middleName:null,surname:"Oliveira",slug:"juliana-oliveira",fullName:"Juliana Oliveira"},{id:"203022",title:"MSc.",name:"Wilma",middleName:null,surname:"Sá",slug:"wilma-sa",fullName:"Wilma Sá"},{id:"207265",title:"Dr.",name:"Alexandre",middleName:null,surname:"Perazzo",slug:"alexandre-perazzo",fullName:"Alexandre Perazzo"}]},{id:"57540",title:"Impacts of Nitrogen Fertilization and Conservation Tillage on the Agricultural Soils of the United States: A Review",slug:"impacts-of-nitrogen-fertilization-and-conservation-tillage-on-the-agricultural-soils-of-the-united-s",totalDownloads:698,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"maize-germplasm-characterization-and-genetic-approaches-for-crop-improvement",title:"Maize Germplasm",fullTitle:"Maize Germplasm - Characterization and Genetic Approaches for Crop Improvement"},signatures:"Meimei Lin",authors:[{id:"208050",title:"Dr.",name:"Meimei",middleName:null,surname:"Lin",slug:"meimei-lin",fullName:"Meimei Lin"}]}],onlineFirstChaptersFilter:{topicSlug:"agricultural-science",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/74106/natascha-oppelt",hash:"",query:{},params:{id:"74106",slug:"natascha-oppelt"},fullPath:"/profiles/74106/natascha-oppelt",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()