Sample details (synthesis temperature, gas flow rate, growth time).
\\n\\n
IntechOpen Book Series will also publish a program of research-driven Thematic Edited Volumes that focus on specific areas and allow for a more in-depth overview of a particular subject.
\\n\\nIntechOpen Book Series will be launching regularly to offer our authors and editors exciting opportunities to publish their research Open Access. We will begin by relaunching some of our existing Book Series in this innovative book format, and will expand in 2022 into rapidly growing research fields that are driving and advancing society.
\\n\\nLaunching 2021
\\n\\nArtificial Intelligence, ISSN 2633-1403
\\n\\nVeterinary Medicine and Science, ISSN 2632-0517
\\n\\nBiochemistry, ISSN 2632-0983
\\n\\nBiomedical Engineering, ISSN 2631-5343
\\n\\nInfectious Diseases, ISSN 2631-6188
\\n\\nPhysiology (Coming Soon)
\\n\\nDentistry (Coming Soon)
\\n\\nWe invite you to explore our IntechOpen Book Series, find the right publishing program for you and reach your desired audience in record time.
\\n\\nNote: Edited in October 2021
\\n"}]',published:!0,mainMedia:{caption:"",originalUrl:"/media/original/132"}},components:[{type:"htmlEditorComponent",content:'With the desire to make book publishing more relevant for the digital age and offer innovative Open Access publishing options, we are thrilled to announce the launch of our new publishing format: IntechOpen Book Series.
\n\nDesigned to cover fast-moving research fields in rapidly expanding areas, our Book Series feature a Topic structure allowing us to present the most relevant sub-disciplines. Book Series are headed by Series Editors, and a team of Topic Editors supported by international Editorial Board members. Topics are always open for submissions, with an Annual Volume published each calendar year.
\n\nAfter a robust peer-review process, accepted works are published quickly, thanks to Online First, ensuring research is made available to the scientific community without delay.
\n\nOur innovative Book Series format brings you:
\n\nIntechOpen Book Series will also publish a program of research-driven Thematic Edited Volumes that focus on specific areas and allow for a more in-depth overview of a particular subject.
\n\nIntechOpen Book Series will be launching regularly to offer our authors and editors exciting opportunities to publish their research Open Access. We will begin by relaunching some of our existing Book Series in this innovative book format, and will expand in 2022 into rapidly growing research fields that are driving and advancing society.
\n\nLaunching 2021
\n\nArtificial Intelligence, ISSN 2633-1403
\n\nVeterinary Medicine and Science, ISSN 2632-0517
\n\nBiochemistry, ISSN 2632-0983
\n\nBiomedical Engineering, ISSN 2631-5343
\n\nInfectious Diseases, ISSN 2631-6188
\n\nPhysiology (Coming Soon)
\n\nDentistry (Coming Soon)
\n\nWe invite you to explore our IntechOpen Book Series, find the right publishing program for you and reach your desired audience in record time.
\n\nNote: Edited in October 2021
\n'}],latestNews:[{slug:"intechopen-supports-asapbio-s-new-initiative-publish-your-reviews-20220729",title:"IntechOpen Supports ASAPbio’s New Initiative Publish Your Reviews"},{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"}]},book:{item:{type:"book",id:"10060",leadTitle:null,fullTitle:"Cement Industry - Optimization, Characterization and Sustainable Application",title:"Cement Industry",subtitle:"Optimization, Characterization and Sustainable Application",reviewType:"peer-reviewed",abstract:"Cement is the basis of the building and construction industry and of fundamental importance for many civil engineering applications. As such, the cement industry is one of the key industries worldwide necessary for the current and future sustainable development of society. Despite its undisputed importance, the cement industry is one of those industrial branches predominately responsible for high energy consumption and excessive generation of large amounts of carbon dioxide and other contaminants that significantly endanger human health and the environment and contributes to global warming.In this context, nanomaterials, polymeric materials, and natural additives are being used for cement enhancement in various applications. This book examines these novel materials and their optimization, characterization, and sustainable application in the building industry and for stabilizing hazardous waste.",isbn:"978-1-83962-315-8",printIsbn:"978-1-83962-314-1",pdfIsbn:"978-1-83962-328-8",doi:"10.5772/intechopen.87890",price:119,priceEur:129,priceUsd:155,slug:"cement-industry-optimization-characterization-and-sustainable-application",numberOfPages:236,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"9a1e79b25dad63378b81fdb16909cd09",bookSignature:"Hosam El-Din Mostafa Saleh",publishedDate:"June 9th 2021",coverURL:"https://cdn.intechopen.com/books/images_new/10060.jpg",numberOfDownloads:4599,numberOfWosCitations:0,numberOfCrossrefCitations:3,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:6,numberOfDimensionsCitationsByBook:0,hasAltmetrics:1,numberOfTotalCitations:9,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 8th 2020",dateEndSecondStepPublish:"September 11th 2020",dateEndThirdStepPublish:"November 10th 2020",dateEndFourthStepPublish:"January 29th 2021",dateEndFifthStepPublish:"March 30th 2021",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh",profilePictureURL:"https://mts.intechopen.com/storage/users/144691/images/system/144691.png",biography:"Hosam M. Saleh is a Professor of Radioactive Waste Management in the Radioisotope Department, Atomic Energy Authority, Egypt. He obtained an MSc and Ph.D. in Physical Chemistry from Cairo University, Egypt. He has more than 25 years of experience in hazardous waste management with an emphasis on treatment and developing new matrixes for the immobilization of these wastes. He is also interested in studying innovative economic and environmentally friendly techniques for the management of hazardous and radioactive wastes. He has authored many peer-reviewed scientific papers and chapters and served as an editor of several books. He was selected among the top 2% of scientists in the world according to the Stanford University report for 2020 and 2021.",institutionString:"Egyptian Atomic Energy Authority",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"15",totalChapterViews:"0",totalEditedBooks:"14",institution:{name:"Egyptian Atomic Energy Authority",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1348",title:"Concrete Technology",slug:"concrete-technology"}],chapters:[{id:"74307",title:"Introductory Chapter: Cement Industry",doi:"10.5772/intechopen.95053",slug:"introductory-chapter-cement-industry",totalDownloads:323,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Abeer M. El-Sayed, Abeer A. Faheim, Aida A. Salman and Hosam M. Saleh",downloadPdfUrl:"/chapter/pdf-download/74307",previewPdfUrl:"/chapter/pdf-preview/74307",authors:[{id:"144691",title:"Prof.",name:"Hosam M.",surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"},{id:"340227",title:"Dr.",name:"Abeer M.",surname:"El-Sayed",slug:"abeer-m.-el-sayed",fullName:"Abeer M. El-Sayed"},{id:"340228",title:"Dr.",name:"Abeer A.",surname:"Faheim",slug:"abeer-a.-faheim",fullName:"Abeer A. Faheim"},{id:"340229",title:"Dr.",name:"Aida A.",surname:"Salman",slug:"aida-a.-salman",fullName:"Aida A. Salman"}],corrections:null},{id:"73387",title:"Compressive Strength of Concrete with Nano Cement",doi:"10.5772/intechopen.93881",slug:"compressive-strength-of-concrete-with-nano-cement",totalDownloads:371,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Nano technology plays a very vital role in all the areas of research. The incorporation of nano materials in concrete offers many advantages and improves the workability, the strength and durability properties of concrete. In this study an attempt has been made to carry out an experimental investigation on concrete in which cement was replaced with nano sized cement. Ordinary Portland cement of 53 grade was ground in a ball grinding mill to produce nano cement. The characterization of nano cement was studied using Scanning Electron Microscope (SEM), Brunauer Emmett–Teller (BET), Energy Dispersive X ray microanalysis (EDAX) and Fourier Transform Infrared Spectroscopy (FTIR). From the characterization studies, it was confirmed that particles were converted to nano size, the specific surface area increased and the chemical composition remained almost the same. The properties of cement paste with and without nano cement were found. For the experimental study, cement was replaced with 10%, 20%, 30%, 40% and 50% of nano cement. Cement mortar of ratio 1:3 and concrete of grades M20, M30, M40 and M50 were used. Compressive strength of cement mortar and concrete with different percentages of nano cement was found. The cement mortar was also subjected to micro structural study. It was found that the strength increased even up to the replacement level of 50%. Further increase in the replacement is not possible since the addition of nano cement reduces the initial and final setting time of cement paste. At 50% replacement level, the initial setting time got reduced to 30 minutes which the least permitted value as per IS 12269: 2013. The increase in strength was due to the fact that nano cement acts not only as a filler material but also the reactivity increased due to the higher specific surface area. The SEM image shows the formation of additional C-S-H gel. The percentage increase in compressive strength was found to increase up to 32%. The workability of concrete with nano cement was found to be significantly more than that of the normal cement concrete.",signatures:"Jemimah Carmichael Milton and Prince Arulraj Gnanaraj",downloadPdfUrl:"/chapter/pdf-download/73387",previewPdfUrl:"/chapter/pdf-preview/73387",authors:[{id:"324310",title:"Associate Prof.",name:"M.Jemimah",surname:"Carmichael",slug:"m.jemimah-carmichael",fullName:"M.Jemimah Carmichael"},{id:"325093",title:"Dr.",name:"G. Prince",surname:"Arulraj",slug:"g.-prince-arulraj",fullName:"G. Prince Arulraj"}],corrections:null},{id:"74464",title:"The Resistance of New Kind of High-Strength Cement after 5 Years Exposure to Sulfate Solution",doi:"10.5772/intechopen.95240",slug:"the-resistance-of-new-kind-of-high-strength-cement-after-5-years-exposure-to-sulfate-solution",totalDownloads:340,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"This article deals with the determination of technically important properties, the recognition of microstructure and pore structure, and the mortar resistance of a new cement kind NONRIVAL CEM I 52.5 N containing 7.94% wt. of C3A to 5% sodium sulfate solution. Both reference types of cement were industrially manufactured: 1) ordinary Portland cement CEM I 42.5 R and 2) Portland cement CEM I 42.5 R – SR 0, declared as sulfate resistant because of C3A = 0%. The research was carried out at standardized mortars. The used sodium sulfate solution, which contained 33802.8 mg of aggressive SO42− per liter, exceeded approximately 5 to 10 times the concentration of the third degree of aggressiveness of the XA chemical environment according to STN EN 206 + A1. The reference medium was drinking water. The 5-year results of non-destructive and destructive physical-mechanical tests as well as the formed microstructure and pore structure in both liquid media were evaluated. The cause of the NONRIVAL CEM I 52.5 N sulfate resistance was explained, despite the manufacturer’s declared C3A content of up to 8% by weight. Sulfate resistance of NONRIVAL CEM I 52.5 N is found comparable to that of sulfate resistant CEM I 42.5 R – SR 0.",signatures:"Michal Bačuvčík, Pavel Martauz, Ivan Janotka and Branislav Cvopa",downloadPdfUrl:"/chapter/pdf-download/74464",previewPdfUrl:"/chapter/pdf-preview/74464",authors:[{id:"298898",title:"Dr.",name:"Ivan",surname:"Janotka",slug:"ivan-janotka",fullName:"Ivan Janotka"},{id:"298917",title:"MSc.",name:"Pavel",surname:"Martauz",slug:"pavel-martauz",fullName:"Pavel Martauz"},{id:"298919",title:"Dr.",name:"Michal",surname:"Bacuvcik",slug:"michal-bacuvcik",fullName:"Michal Bacuvcik"},{id:"330787",title:"Mr.",name:"Branislav",surname:"Cvopa",slug:"branislav-cvopa",fullName:"Branislav Cvopa"}],corrections:null},{id:"75282",title:"Impact of Nanosilica in Ordinary Portland Cement over Its Durability and Properties",doi:"10.5772/intechopen.96261",slug:"impact-of-nanosilica-in-ordinary-portland-cement-over-its-durability-and-properties",totalDownloads:258,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"The present examination illustrates the impact on the hardened and fresh cement mortar and cement with the inclusion of nanosilica of size 40 nm in various environmental conditions (UltraTech, India). It is quite notified that an elevation in compressive strength as well as flexural strength along with an improvisation in the performance and life span of cement mortar. The samples of M5 grade blended with a ninety percentage of concrete and remaining with nanosilica was identified to have a finer working elevation in as well as in standards when collated with the conventional cement mortar. The corollary of hardened and fresh cement, strength parameters were looked upon with the aid of XRD (X-ray Diffraction). Also, the SEM (Scanning Electron Microscope) test holds a predominant role in analysis.",signatures:"Gude Reddy Babu, Pala Gireesh Kumar, Nelluru Venkata Ramana and Bhumireddy Madhusudana Reddy",downloadPdfUrl:"/chapter/pdf-download/75282",previewPdfUrl:"/chapter/pdf-preview/75282",authors:[{id:"324469",title:"Prof.",name:"Gude Reddy",surname:"Babu",slug:"gude-reddy-babu",fullName:"Gude Reddy Babu"},{id:"335839",title:"Dr.",name:"Nelluru Venkata",surname:"Ramana",slug:"nelluru-venkata-ramana",fullName:"Nelluru Venkata Ramana"},{id:"346471",title:"Dr.",name:"Bhumireddy Madhusudana",surname:"Reddy",slug:"bhumireddy-madhusudana-reddy",fullName:"Bhumireddy Madhusudana Reddy"},{id:"346472",title:"Dr.",name:"Pala Gireesh",surname:"Kumar",slug:"pala-gireesh-kumar",fullName:"Pala Gireesh Kumar"}],corrections:null},{id:"75143",title:"Simulation and Optimization of an Integrated Process Flow Sheet for Cement Production",doi:"10.5772/intechopen.95269",slug:"simulation-and-optimization-of-an-integrated-process-flow-sheet-for-cement-production",totalDownloads:402,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"In this study the process flow diagram for the cement production was simulated using Aspen HYSYS 8.8 software to achieve high energy optimization and optimum cement flow rate by varying the flow rate of calcium oxide and silica in the clinker feed. Central composite Design (C.C.D) of Response Surface Methodology was used to design the ten experiments for the simulation using Design Expert 10.0.3. Energy efficiency optimization is also carried out using Aspen Energy Analyser. The optimum cement flow rate is found from the contour plot and 3D surface plot to be 47.239 tonnes/day at CaO flow rate of 152.346 tonnes/day and the SiO2 flow rate of 56.8241 tonnes/day. The R2 value of 0.9356 determined from the statistical analysis shows a good significance of the model. The overall utilities in terms of energy are found to be optimised by 81.4% from 6.511 x 107 kcal/h actual value of 1.211 x 107 kcal/h with 297.4 tonnes/day the carbon emission savings.",signatures:"Oluwafemi M. Fadayini, Adekunle A. Obisanya, Gloria O. Ajiboye, Clement Madu, Tajudeen O. Ipaye, Taiwo O. Rabiu, Shola J. Ajayi and Joseph T. Akintola",downloadPdfUrl:"/chapter/pdf-download/75143",previewPdfUrl:"/chapter/pdf-preview/75143",authors:[{id:"240430",title:"BSc.",name:"Joseph",surname:"Akintola",slug:"joseph-akintola",fullName:"Joseph Akintola"},{id:"331532",title:"Ph.D. Student",name:"Oluwafemi",surname:"Fadayini",slug:"oluwafemi-fadayini",fullName:"Oluwafemi Fadayini"},{id:"331533",title:"M.Sc.",name:"Adekunle",surname:"Obisanya",slug:"adekunle-obisanya",fullName:"Adekunle Obisanya"},{id:"331535",title:"Mrs.",name:"Gloria",surname:"Ajiboye",slug:"gloria-ajiboye",fullName:"Gloria Ajiboye"},{id:"338626",title:"MSc.",name:"Clement",surname:"Madu",slug:"clement-madu",fullName:"Clement Madu"},{id:"347138",title:"MSc.",name:"Tajudeen",surname:"Ipaye",slug:"tajudeen-ipaye",fullName:"Tajudeen Ipaye"},{id:"347144",title:"Mr.",name:"Shola",surname:"Ajayi",slug:"shola-ajayi",fullName:"Shola Ajayi"},{id:"347268",title:"Dr.",name:"Taiwo",surname:"Rabiu",slug:"taiwo-rabiu",fullName:"Taiwo Rabiu"}],corrections:null},{id:"74889",title:"Peculiarities of Portland Cement Clinker Synthesis in the Presence of a Significant Amount of SO3 in a Raw Mix",doi:"10.5772/intechopen.94915",slug:"peculiarities-of-portland-cement-clinker-synthesis-in-the-presence-of-a-significant-amount-of-so-sub",totalDownloads:281,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Due to the depletion of the raw material base and a technogenic materials addition into a raw mix for the Portland cement clinker synthesis, sulfur and its oxides amount in a raw mix increases. According to literature the Portland cement clinker synthesis in the presence of a sulfur oxides significant amount is difficult. As the content of SO3 in the raw mix increases the amount of C2S increases while C3S and C3A amount decrease. With an equal total content of C2S and C3S in the clinker their ratio C3S/C2S decreases with an increased content of SO3. These factors lead to a deterioration in the Portland cement clinker quality. The clinker formation reactions thermodynamic analysis and some experimental studies allow determining reasons for the Portland cement clinker quality deterioration. It was found that the presence significant amount of a SO3 in the raw mix the synthesis in solid phase of low-basic C4A3S¯ (ye’elimite) is the thermodynamically preferred rather than high-basic C3A and C4AF. As a result, excess and crystallized free lime inhibits the C3S synthesis through the liquid phase. The experimental studies result helped to develop a methodology for calculating the composition of a raw mix from materials with significant amount of SO3. It allows to reduce the SO3 negative effect on the Portland cement clinker synthesis and to obtain high-quality Portland cement.",signatures:"Oleg Sheshukov and Michael Mikheenkov",downloadPdfUrl:"/chapter/pdf-download/74889",previewPdfUrl:"/chapter/pdf-preview/74889",authors:[{id:"324462",title:"Associate Prof.",name:"Michael",surname:"Mikheenkov",slug:"michael-mikheenkov",fullName:"Michael Mikheenkov"},{id:"324465",title:"Prof.",name:"Oleg",surname:"Sheshukov",slug:"oleg-sheshukov",fullName:"Oleg Sheshukov"}],corrections:null},{id:"76509",title:"Energy and Economic Comparison of Different Fuels in Cement Production",doi:"10.5772/intechopen.96812",slug:"energy-and-economic-comparison-of-different-fuels-in-cement-production",totalDownloads:369,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:1,abstract:"Cement clinkerisation is the major energy-consuming process in cement manufacturing due to the high-temperature requirement. In this paper, energy data including specific energy consumption, forms, and types of energy used at different units of cement manufacturing processes were analyzed and compared for effectiveness, availability, cost, environmental, and health impact. Data from three different cement industries in Nigeria labeled as A, B, and C were used for the analysis in this study. The results of this research work established that coal is the cheapest energy source but environmental issues exonerate it from being the choice energy source. LPFO and Natural gas give better production output while minimizing pollution and health issues. When benchmarked against each other, Factory B was found to be the most energy-efficient in terms of output and cost of production. Although coal is cheaper compared to fuel oil and supposed to contribute a share of fuel used in cement industries, the industries are moving towards the use of alternative and conventional fuels to reduce environmental pollution. It is therefore recommended that deliberate effort to achieve appreciable energy-efficient levels should be the priorities of the cement industries in Nigeria.",signatures:"Oluwafemi M. Fadayini, Clement Madu, Taiwo T. Oshin, Adekunle A. Obisanya, Gloria O. Ajiboye, Tajudeen O. Ipaye, Taiwo O. Rabiu, Joseph T. Akintola, Shola J. Ajayi and Nkechi A. Kingsley",downloadPdfUrl:"/chapter/pdf-download/76509",previewPdfUrl:"/chapter/pdf-preview/76509",authors:[{id:"240430",title:"BSc.",name:"Joseph",surname:"Akintola",slug:"joseph-akintola",fullName:"Joseph Akintola"},{id:"331532",title:"Ph.D. Student",name:"Oluwafemi",surname:"Fadayini",slug:"oluwafemi-fadayini",fullName:"Oluwafemi Fadayini"},{id:"347138",title:"MSc.",name:"Tajudeen",surname:"Ipaye",slug:"tajudeen-ipaye",fullName:"Tajudeen Ipaye"},{id:"347144",title:"Mr.",name:"Shola",surname:"Ajayi",slug:"shola-ajayi",fullName:"Shola Ajayi"},{id:"347118",title:"MSc.",name:"Clement",surname:"Madu",slug:"clement-madu",fullName:"Clement Madu"},{id:"347127",title:"MSc.",name:"Taiwo",surname:"Oshin",slug:"taiwo-oshin",fullName:"Taiwo Oshin"},{id:"347130",title:"MSc.",name:"Adekunle",surname:"Obisanya",slug:"adekunle-obisanya",fullName:"Adekunle Obisanya"},{id:"347136",title:"MSc.",name:"Gloria",surname:"Ajiboye",slug:"gloria-ajiboye",fullName:"Gloria Ajiboye"},{id:"347139",title:"MSc.",name:"Taiwo",surname:"Rabiu",slug:"taiwo-rabiu",fullName:"Taiwo Rabiu"},{id:"350655",title:"Ms.",name:"Nkechi",surname:"Kingsley",slug:"nkechi-kingsley",fullName:"Nkechi Kingsley"}],corrections:null},{id:"73421",title:"Accelerated Carbonation Curing as a Means of Reducing Carbon Dioxide Emissions",doi:"10.5772/intechopen.93929",slug:"accelerated-carbonation-curing-as-a-means-of-reducing-carbon-dioxide-emissions",totalDownloads:714,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Globally, carbon dioxide concentration has immensely increased post the industrial revolution. With more greenhouse gases generated from human activities, more radiation is being absorbed by the Earth’s atmosphere, causing an increase in global temperature. The phenomenon is referred to as the greenhouse gas effect. Alone, the cement industry contributes to approximately 5–8% of the global greenhouse gas emissions. Scientists and environmentalists have proposed different scenarios to alleviate such emissions. Among these, accelerated carbonation curing has been advocated as a promising mechanism to permanently sequester carbon dioxide. It has been applied to numerous construction applications, including concrete masonry blocks, concrete paving blocks, ceramic bricks, concrete pipes, and cement-bonded particleboards. Experimental results have shown that not only does it significantly reduce the carbon emissions, it also improves the mechanical and durability properties of carbonated products. The process enhances material performance, offers environmental benefits, and provides an excellent means to recycle carbon dioxide.",signatures:"Hilal El-Hassan",downloadPdfUrl:"/chapter/pdf-download/73421",previewPdfUrl:"/chapter/pdf-preview/73421",authors:[{id:"323668",title:"Associate Prof.",name:"Hilal",surname:"El-Hassan",slug:"hilal-el-hassan",fullName:"Hilal El-Hassan"}],corrections:null},{id:"74595",title:"Cement-Based Piezoelectricity Application: A Theoretical Approach",doi:"10.5772/intechopen.95255",slug:"cement-based-piezoelectricity-application-a-theoretical-approach",totalDownloads:358,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:1,abstract:"The linear theory of piezoelectricity has widely been used to evaluate the material constants of single crystals and ceramics, but what happens with amorphous structures that exhibit piezoelectric properties such as cement-based? In this chapter, we correlate the theoretical and experimental piezoelectric parameters for small deformations after compressive stress–strain, open circuit potential, and impedance spectroscopy on cement-based. Here, in detail, we introduce the theory of piezoelectricity for large deformations without including a functional for the energy; also, we show two generating equations in terms of a free energy’s function for later it will be reduced to constitutional equations of piezoelectricity for infinitesimal deformations. Finally, here is shown piezoelectric and electrical parameters of gold nanoparticles mixed to cement paste: the axial elasticity parameter Y=323.5±75.3kN/m2, the electroelastic parameter γ=−20.5±6.9mV/kN, and dielectric constant ε=939.6±82.9ε0F/m, which have an interpretation as linear theory parameters sijklD, gkij and εikT discussed in the chapter.",signatures:"Daniel A. Triana-Camacho, Jorge H. Quintero-Orozco and Jaime A. Perez-Taborda",downloadPdfUrl:"/chapter/pdf-download/74595",previewPdfUrl:"/chapter/pdf-preview/74595",authors:[{id:"193020",title:"Dr.",name:"Jaime Andres",surname:"Perez Taborda",slug:"jaime-andres-perez-taborda",fullName:"Jaime Andres Perez Taborda"},{id:"335636",title:"Dr.",name:"Jorge Hernan",surname:"Quintero Orozco",slug:"jorge-hernan-quintero-orozco",fullName:"Jorge Hernan Quintero Orozco"},{id:"335637",title:"Ph.D. Student",name:"Daniel Andres",surname:"Triana Camacho",slug:"daniel-andres-triana-camacho",fullName:"Daniel Andres Triana Camacho"}],corrections:null},{id:"73358",title:"Sustainable Recycling of Marble Dust as Cement Replacement in Concrete: Advances and Recent Trends",doi:"10.5772/intechopen.93915",slug:"sustainable-recycling-of-marble-dust-as-cement-replacement-in-concrete-advances-and-recent-trends",totalDownloads:485,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"In recent years, many researchers in the construction industry had taken up the challenge to incorporate non-biodegradable wastes as partial replacement of cement and/or natural aggregates in the daily production of cement-based materials. Various efforts were intended to understand the influence of using marble dust in concrete due to its availability and a relatively high volume of the generation that causes serious environmental problems. Previous studies have utilized marble dust as a replacement of cement, fine aggregate, or total paste in the concrete and mortar mixtures. In general, several investigations have shown that up to a certain cement replacement ratio, marble dust can positively impact on the strength and microstructure properties of concrete. Furthermore, the results have indicated that the considerably high degree of fineness in the marble dust provides sufficient cohesiveness of mortar and concrete even in low w/c ratio conditions. Hence, this powder can be utilized as a filler to improve the flowability of cement-based materials. Consequently, this chapter aims to summarize recent investigations on the properties of concrete incorporating marble waste as cement replacement materials, highlight the potential gaps in the literature, and propose a prediction model for estimating the compressive and flexural strengths of concrete with marble dust using regression analysis.",signatures:"Ahed Habib and Maan Habib",downloadPdfUrl:"/chapter/pdf-download/73358",previewPdfUrl:"/chapter/pdf-preview/73358",authors:[{id:"326894",title:"Mr.",name:"Ahed",surname:"Habib",slug:"ahed-habib",fullName:"Ahed Habib"},{id:"326896",title:"Dr.",name:"Maan",surname:"Habib",slug:"maan-habib",fullName:"Maan Habib"}],corrections:null},{id:"74211",title:"Applications of Cement in Pavement Engineering",doi:"10.5772/intechopen.94062",slug:"applications-of-cement-in-pavement-engineering",totalDownloads:342,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Recycled materials primarily Reclaimed Asphalt Pavement (RAP), and Recycled Concrete Aggregate (RCA) are produced from pavement rehabilitation and construction-demolition activities. Generally, these materials are utilized for landfills, parking lots, shoulders, and other places that are not environmentally friendly. The top layers of the pavement and concrete structures are constructed using superior qualities of aggregates that satisfy the specification. During their service life, the aggregates present in these structures undergo deterioration due to environmental and traffic factors. After reaching the end of their service life, the deteriorated structures are dismantled and considered as waste. Nevertheless, these recycled materials will have some retain value which can be used in different layers of the pavements in different percentages. The reuse of these materials in place of conventional aggregates preserves the environment and become a sustainable construction practice. Further, the direct utilization of these materials in the pavements may not satisfy the mechanical characteristics. To fulfill these gaps, cement stabilization of recycled materials is the best option. With this background, the proposed book chapter will highlight the usage of cement in pavement application, and a few types of research works carried in cement treated pavement layers will be discussed in a detailed and scientific manner.",signatures:"Sarella Chakravarthi, Galipelli Raj Kumar and Sabavath Shankar",downloadPdfUrl:"/chapter/pdf-download/74211",previewPdfUrl:"/chapter/pdf-preview/74211",authors:[{id:"324316",title:"Associate Prof.",name:"Shankar",surname:"Sabavath",slug:"shankar-sabavath",fullName:"Shankar Sabavath"},{id:"325034",title:"Mr.",name:"Chakravarthi",surname:"Sarella",slug:"chakravarthi-sarella",fullName:"Chakravarthi Sarella"},{id:"325035",title:"Mr.",name:"Raj Kumar",surname:"Galipelli",slug:"raj-kumar-galipelli",fullName:"Raj Kumar Galipelli"}],corrections:null},{id:"73934",title:"Cementitious Grouts Containing Irradiated Waste Polyethylene Terephthalate",doi:"10.5772/intechopen.94381",slug:"cementitious-grouts-containing-irradiated-waste-polyethylene-terephthalate",totalDownloads:356,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,abstract:"This chapter describes a review of the design and formulation of various cementitious grouts for semi-flexible pavement surfaces. Additionally, the authors also conducted extensive experimental work on the possibility of using a most effective and innovative way of recycling waste polyethylene terephthalate (PET) by exposing to gamma radiation and using as a replacement of Ordinary portland cement in the formulation of cement grouts for semi-flexible pavement surfaces. In the current study, cement in the grouts was replaced with PET (regular and irradiated), fly ash and silica fume and was evaluated for flowability and strength properties. The study concludes that normal PET causes a significant reduction in compressive strength, however, some of the strength is restored when irradiated PET was used. The recycling of waste PET, as a cement replacement in the cementitious grouts for semi-flexible pavement surfaces, with the irradiation process can be doubled as compared to utilizing normal/regular PET.",signatures:"Muhammad Imran Khan, Muslich Hartadi Sutanto, Madzlan Bin Napiah and Salah E. Zoorob",downloadPdfUrl:"/chapter/pdf-download/73934",previewPdfUrl:"/chapter/pdf-preview/73934",authors:[{id:"293717",title:"Dr.",name:"Muslich Hartadi",surname:"Sutanto",slug:"muslich-hartadi-sutanto",fullName:"Muslich Hartadi Sutanto"},{id:"324349",title:"Ph.D. Student",name:"Muhammad Imran",surname:"Khan",slug:"muhammad-imran-khan",fullName:"Muhammad Imran Khan"},{id:"330923",title:"Dr.",name:"Madzlan Bin",surname:"Napiah",slug:"madzlan-bin-napiah",fullName:"Madzlan Bin Napiah"},{id:"330924",title:"Prof.",name:"Salah E.",surname:"Zoroob",slug:"salah-e.-zoroob",fullName:"Salah E. Zoroob"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editedByType:"Edited by",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6534",title:"Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"a7573426a162c18f39acc575c1e69f67",slug:"heavy-metals",bookSignature:"Hosam El-Din M. Saleh and Refaat F. Aglan",coverURL:"https://cdn.intechopen.com/books/images_new/6534.jpg",editedByType:"Edited by",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2383",title:"Polyester",subtitle:null,isOpenForSubmission:!1,hash:"79fd9d6314f8e1abd60d7e21896ce878",slug:"polyester",bookSignature:"Hosam El-Din M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/2383.jpg",editedByType:"Edited by",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5242",title:"Management of Hazardous Wastes",subtitle:null,isOpenForSubmission:!1,hash:"cc1f32b478098cdda6b946d14a02ad81",slug:"management-of-hazardous-wastes",bookSignature:"Hosam El-Din M. Saleh and Rehab O. Abdel Rahman",coverURL:"https://cdn.intechopen.com/books/images_new/5242.jpg",editedByType:"Edited by",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6513",title:"Cement Based Materials",subtitle:null,isOpenForSubmission:!1,hash:"7c92db3d5c64117861b425cb692b5695",slug:"cement-based-materials",bookSignature:"Hosam El-Din M. Saleh and Rehab O. Abdel Rahman",coverURL:"https://cdn.intechopen.com/books/images_new/6513.jpg",editedByType:"Edited by",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7640",title:"Perspective of Carbon Nanotubes",subtitle:null,isOpenForSubmission:!1,hash:"8b85a9957fad5206369eadf0c1ffa27d",slug:"perspective-of-carbon-nanotubes",bookSignature:"Hosam El-Din Saleh and Said Moawad Mohamed El-Sheikh",coverURL:"https://cdn.intechopen.com/books/images_new/7640.jpg",editedByType:"Edited by",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8580",title:"Municipal Solid Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"e3554c02569fe3ac8afa79cb02daae97",slug:"municipal-solid-waste-management",bookSignature:"Hosam El-Din Mostafa Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/8580.jpg",editedByType:"Edited by",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6067",title:"Green Chemistry",subtitle:null,isOpenForSubmission:!1,hash:"f33464ef8bb9839d75b674a0f8409c77",slug:"green-chemistry",bookSignature:"Hosam El-Din M. Saleh and Martin Koller",coverURL:"https://cdn.intechopen.com/books/images_new/6067.jpg",editedByType:"Edited by",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6728",title:"Trace Elements",subtitle:"Human Health and Environment",isOpenForSubmission:!1,hash:"4e1144832b71a4ffcabc7cc31ce911b2",slug:"trace-elements-human-health-and-environment",bookSignature:"Hosam El-Din M. Saleh and Eithar El-Adham",coverURL:"https://cdn.intechopen.com/books/images_new/6728.jpg",editedByType:"Edited by",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6847",title:"Characterizations of Some Composite Materials",subtitle:null,isOpenForSubmission:!1,hash:"f0869b3bb91cf9acb7e69004b1bd17ec",slug:"characterizations-of-some-composite-materials",bookSignature:"Hosam El-Din M. Saleh and Martin Koller",coverURL:"https://cdn.intechopen.com/books/images_new/6847.jpg",editedByType:"Edited by",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"79356",slug:"erratum-public-perceptions-of-values-associated-with-wildfire-protection-at-the-wildland-urban-inter",title:"Erratum - Public Perceptions of Values Associated with Wildfire Protection at the Wildland-Urban Interface: A Synthesis of National Findings",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/68989.pdf",downloadPdfUrl:"/chapter/pdf-download/68989",previewPdfUrl:"/chapter/pdf-preview/68989",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/68989",risUrl:"/chapter/ris/68989",chapter:{id:"65057",slug:"public-perceptions-of-values-associated-with-wildfire-protection-at-the-wildland-urban-interface-a-s",signatures:"Jason Gordon, Adam S. Willcox, A.E. Luloff, James C. Finley and Donald G. Hodges",dateSubmitted:"June 21st 2018",dateReviewed:"October 22nd 2018",datePrePublished:"December 31st 2018",datePublished:"February 19th 2020",book:{id:"8295",title:"Landscape Reclamation",subtitle:"Rising From What's Left",fullTitle:"Landscape Reclamation - Rising From What's Left",slug:"landscape-reclamation-rising-from-what-s-left",publishedDate:"February 19th 2020",bookSignature:"Luis Loures",coverURL:"https://cdn.intechopen.com/books/images_new/8295.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"108118",title:"Dr.",name:"Luis",middleName:null,surname:"Loures",slug:"luis-loures",fullName:"Luis Loures"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"264298",title:"Dr.",name:"Jason",middleName:null,surname:"Gordon",fullName:"Jason Gordon",slug:"jason-gordon",email:"jason.gordon@uga.edu",position:null,institution:{name:"University of Georgia",institutionURL:null,country:{name:"United States of America"}}}]}},chapter:{id:"65057",slug:"public-perceptions-of-values-associated-with-wildfire-protection-at-the-wildland-urban-interface-a-s",signatures:"Jason Gordon, Adam S. Willcox, A.E. Luloff, James C. Finley and Donald G. Hodges",dateSubmitted:"June 21st 2018",dateReviewed:"October 22nd 2018",datePrePublished:"December 31st 2018",datePublished:"February 19th 2020",book:{id:"8295",title:"Landscape Reclamation",subtitle:"Rising From What's Left",fullTitle:"Landscape Reclamation - Rising From What's Left",slug:"landscape-reclamation-rising-from-what-s-left",publishedDate:"February 19th 2020",bookSignature:"Luis Loures",coverURL:"https://cdn.intechopen.com/books/images_new/8295.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"108118",title:"Dr.",name:"Luis",middleName:null,surname:"Loures",slug:"luis-loures",fullName:"Luis Loures"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"264298",title:"Dr.",name:"Jason",middleName:null,surname:"Gordon",fullName:"Jason Gordon",slug:"jason-gordon",email:"jason.gordon@uga.edu",position:null,institution:{name:"University of Georgia",institutionURL:null,country:{name:"United States of America"}}}]},book:{id:"8295",title:"Landscape Reclamation",subtitle:"Rising From What's Left",fullTitle:"Landscape Reclamation - Rising From What's Left",slug:"landscape-reclamation-rising-from-what-s-left",publishedDate:"February 19th 2020",bookSignature:"Luis Loures",coverURL:"https://cdn.intechopen.com/books/images_new/8295.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"108118",title:"Dr.",name:"Luis",middleName:null,surname:"Loures",slug:"luis-loures",fullName:"Luis Loures"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10007",leadTitle:null,title:"Propulsion",subtitle:"New Perspectives and Applications",reviewType:"peer-reviewed",abstract:"Almost all animals move around frequently in space. Their aim is to walk and fly in search of food or to propagate their species. Thus, changing positions is important for creatures’ survival and maintaining the environment. As such, this book examines movement with a focus on force and propulsion. Chapters cover topics including rocket engines, electric propulsion, mechanisms of force, and more.",isbn:"978-1-83968-835-5",printIsbn:"978-1-83968-834-8",pdfIsbn:"978-1-83968-836-2",doi:"10.5772/intechopen.87830",price:119,priceEur:129,priceUsd:155,slug:"propulsion-new-perspectives-and-applications",numberOfPages:102,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"042ab0c0a8270b1bacf6a8e385601863",bookSignature:"Kazuo Matsuuchi and Hiroaki Hasegawa",publishedDate:"December 15th 2021",coverURL:"https://cdn.intechopen.com/books/images_new/10007.jpg",keywords:null,numberOfDownloads:1417,numberOfWosCitations:0,numberOfCrossrefCitations:2,numberOfDimensionsCitations:4,numberOfTotalCitations:6,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 16th 2020",dateEndSecondStepPublish:"October 14th 2020",dateEndThirdStepPublish:"December 13th 2020",dateEndFourthStepPublish:"March 3rd 2021",dateEndFifthStepPublish:"May 2nd 2021",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 years",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:"Obtained his Ph.D. in Engineering from Osaka University and most of his career spent at the University of Tsukuba where he finally earned his Professor Emeritus title.",coeditorOneBiosketch:"Prof. Hasegawa worked for the Japan Defense Agency for ten years and obtained his Ph.D. in Engineering from the University of Tsukuba in 1999, his research interests lie in the application of fluid mechanics in the fields of aviation, outer space, medicine, and sports.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"42387",title:"Prof.",name:"Kazuo",middleName:null,surname:"Matsuuchi",slug:"kazuo-matsuuchi",fullName:"Kazuo Matsuuchi",profilePictureURL:"https://mts.intechopen.com/storage/users/42387/images/system/42387.jpg",biography:"Dr. Kazuo Matsuuchi obtained his Ph.D. in Engineering from Osaka University, Japan, in 1976. In 1977, he served as a research assistant at the Institute of Structural Engineering, University of Tsukuba, Japan. He became a full professor at the same university in 1995. In 2012 he earned the title of Professor Emeritus and he is still active at the University of Tsukuba. Dr. Matsuuchi was a visiting professor at Khon Kaen University, Thailand, and a specially appointed professor at the Oguz Khan Engineering and Technology University of Turkmenistan.",institutionString:"University of Tsukuba",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of Tsukuba",institutionURL:null,country:{name:"Japan"}}}],coeditorOne:{id:"321873",title:"Dr.",name:"Hiroaki",middleName:null,surname:"Hasegawa",slug:"hiroaki-hasegawa",fullName:"Hiroaki Hasegawa",profilePictureURL:"https://mts.intechopen.com/storage/users/321873/images/system/321873.png",biography:"In 1989, Dr. Hiroaki Hasegawa started as a research engineer working on research and development of ramjet and jet engines at the Japan Defense Agency. In 1998, he earned the title of senior research engineer at the same agency. He obtained a Ph.D. in Engineering from the University of Tsukuba, Japan, in 1999. Dr. Hasegawa was appointed a lecturer in the Department of Mechanical Engineering, Akita University, Japan, in 2002. He is currently a professor in the Department of Mechanical and Intelligent Engineering, Utsunomiya University, Japan.",institutionString:"Utsunomiya University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Utsunomiya University",institutionURL:null,country:{name:"Japan"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"124",title:"Vehicle Engineering",slug:"vehicle-engineering"}],chapters:[{id:"79180",title:"Introductory Chapter: Propulsion and Movement",slug:"introductory-chapter-propulsion-and-movement",totalDownloads:102,totalCrossrefCites:0,authors:[{id:"42387",title:"Prof.",name:"Kazuo",surname:"Matsuuchi",slug:"kazuo-matsuuchi",fullName:"Kazuo Matsuuchi"}]},{id:"76789",title:"Hybrid Propulsion System: Novel Propellant Design for Mars Ascent Vehicles",slug:"hybrid-propulsion-system-novel-propellant-design-for-mars-ascent-vehicles",totalDownloads:260,totalCrossrefCites:0,authors:[{id:"332637",title:"Dr.",name:"Ozan",surname:"Kara",slug:"ozan-kara",fullName:"Ozan Kara"}]},{id:"74791",title:"Keeping the Dream Alive: Is Propellant-less Propulsion Possible?",slug:"keeping-the-dream-alive-is-propellant-less-propulsion-possible-",totalDownloads:436,totalCrossrefCites:1,authors:[{id:"335130",title:"Emeritus Prof.",name:"James F.",surname:"Woodward",slug:"james-f.-woodward",fullName:"James F. Woodward"}]},{id:"75849",title:"Introduction to Plasma Based Propulsion System: Hall Thrusters",slug:"introduction-to-plasma-based-propulsion-system-hall-thrusters",totalDownloads:333,totalCrossrefCites:1,authors:[{id:"282807",title:"Dr.",name:"Sukhmander",surname:"Singh",slug:"sukhmander-singh",fullName:"Sukhmander Singh"}]},{id:"76364",title:"Estimation of Cumulative Noise Reduction at Certification Points for Supersonic Civil Aeroplane Using the Programmed Thrust Management at Take-off and Approach",slug:"estimation-of-cumulative-noise-reduction-at-certification-points-for-supersonic-civil-aeroplane-usin",totalDownloads:165,totalCrossrefCites:0,authors:[{id:"335693",title:"Dr.",name:"Artur",surname:"Mirzoyan",slug:"artur-mirzoyan",fullName:"Artur Mirzoyan"},{id:"345912",title:"Dr.",name:"Iurii",surname:"Khaletskii",slug:"iurii-khaletskii",fullName:"Iurii Khaletskii"}]},{id:"79119",title:"Thrust Force Generated by Heaving Motion of a Plate: The Role of Vortex-Induced Force",slug:"thrust-force-generated-by-heaving-motion-of-a-plate-the-role-of-vortex-induced-force",totalDownloads:122,totalCrossrefCites:0,authors:[{id:"42387",title:"Prof.",name:"Kazuo",surname:"Matsuuchi",slug:"kazuo-matsuuchi",fullName:"Kazuo Matsuuchi"}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"301331",firstName:"Mia",lastName:"Vulovic",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/301331/images/8498_n.jpg",email:"mia.v@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"7198",title:"Propulsion Systems",subtitle:null,isOpenForSubmission:!1,hash:"fd56f1620b0b201a3de0cd3f7e04d15c",slug:"propulsion-systems",bookSignature:"Alessandro Serpi and Mario Porru",coverURL:"https://cdn.intechopen.com/books/images_new/7198.jpg",editedByType:"Edited by",editors:[{id:"217145",title:"Dr.",name:"Alessandro",surname:"Serpi",slug:"alessandro-serpi",fullName:"Alessandro Serpi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10810",title:"Modern Ship Engineering, Design and Operations",subtitle:null,isOpenForSubmission:!1,hash:"579a9da63aca2172c0f0584328ae91c1",slug:"modern-ship-engineering-design-and-operations",bookSignature:"Carlos Reusser",coverURL:"https://cdn.intechopen.com/books/images_new/10810.jpg",editedByType:"Edited by",editors:[{id:"209816",title:"Dr.",name:"Carlos",surname:"Reusser",slug:"carlos-reusser",fullName:"Carlos Reusser"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"69915",title:"Synthesis of Metal Oxide Semiconductor Nanostructures for Gas Sensors",doi:"10.5772/intechopen.86815",slug:"synthesis-of-metal-oxide-semiconductor-nanostructures-for-gas-sensors",body:'\nFrom the last decade, nanotechnology has established a bridge among all the fields of science and technology. Low-dimensional materials and structures have exceptional properties that make them able to play a critical role in the rapid progress of field science. With these excellent properties, 1-D metal oxide semiconductors (MOS) have become the backbone of research in all fields of natural sciences.
\nNanotechnology deals with structures and materials of very small dimensions. Nanotechnology is the foundation and exploitation of nanomaterial with structural features in between those of atoms and their bulk material. The properties of the materials at nanoscale are extensively different from those of bulk materials. The high surface reactivity with the surrounding surface improves significantly. When the size of materials is in the nanoscale, the surface-area-to-volume-ratio (L/D) becomes large that makes the nanomaterial ideally an appropriate candidate for many types of sensing applications. That is why nanomaterial has opened up possibilities for new pioneering functional devices and technologies. Nanostructures have at least one dimension less than 100 nm. Crystal structures are much stable at nanoscale [1].
\nReduction of an object size results in large surface to volume ratio hence the surface turn out to more vital and that large surface to volume ratio greatly affected the chemical, electrical and optical properties of nanomaterials. Quantum effects owing to size confinement in nanostructures occurs, when the typical size of the object is equivalent to the crucial length (range 1–10 nm) of the equivalent physical properties’ screening length, then the mean free path of electrons; 0-D quantum dots, 1-D quantum dots, and 2-D quantum well are the characteristic structure forms.
\nLow power consumptions, best crystallinity, and high integration density 1-D with high aspect ratio are shown by the 1-D nanostructures. The nanostructure materials show high sensitivity to surface chemical reactions, with increased surface-to-volume ratio and a Debye length matching with small size. Tunable band gap is enabled by size confinement [2]. In the recent past, various synthesis methods, such as vapor phase method, electrochemical method, liquid phase methods, and solution-gel methods, were used. Out of these growth techniques, vapor transport method, using vapor-liquid-solid (VLS) growth mechanism or VS growth, is one of the finest growth techniques used for the growth of metal oxide semiconductor nanostructures. It is a cost-effective easy method used to create many single-crystalline 1-D nanostructures [3, 4, 5, 6, 7, 8, 9, 10, 11].
\nSmart and functional materials are based on metal oxides [10]. Synthesis and fabrication of devices based on metal oxide semiconductor have become more important recently, because the tuning of physical properties of these metal oxides is so easy. Among these MOS, ZnO is a material that has strong piezoelectric and optical properties on the bases of its wide band gap, stability at high temperature, large surface-to-volume ratio, and high excitonic binding energy. They are used in solar cells, photocatalysis, and antibacterial active material. Therefore research work has been carried out on ZnO nanostructures. Metal oxide materials possess electrical, chemical, and physical properties that are highly sensitive to the changes in a chemical environment, through a variety of detection principles based on ionic, conducting, photoconducting, piezoelectronic, pyroelectronic, and luminescence properties [12, 13, 14, 15, 16, 17, 18, 19, 20, 21].
\nDoping is another technique utilized to improve ultraviolet (UV) sensing properties of metal oxides, where the dopant atoms are believed to act as activators for surface reactions. In MOS, the electrical, optical, and chemical properties can be changed by adding the doping materials or by creating oxygen defects which results in large concentration of carriers, mobility, and electrical resistivity. So doping offers another avenue for expanding their sensing capability [12].
\nUp to now, various metal oxides’ 1-D nanostructures (SnO2 nanowhiskers, In2O3 nanowires, ZnO nanorods, WO3 nanowires, TiO2 nanowires etc.) have been fabricated into film-type nanosensors by means of thermal evaporation or vapor transport method. The most widely studied substances are SnO2 and ZnO nanowires [13]. In this research work, 1-D n-ZnO nanostructures (nanowires, nanorods, nanobelts with needle-like ends, and typical nanobelts) were grown by using vapor transport method using VLS mechanism on n-type Au-coated silicon substrate Si (100). The electrical and optical properties of ZnO nanostructures were investigated using different characterization techniques [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37].
\nAs work done in this chapter mainly deals with ZnO semiconductor, structural properties of ZnO material are presented below.
\nZnO is a key technological and prominent material. One of the important properties of ZnO is that it has a wide band gap that makes it suitable for optoelectronic applications of short wavelength. ZnO has high excitonic binding energy (60 meV) at room temperature by ensuring efficient excitonic emission. It has been noted that disordered nanoparticles and thin films at room temperature have ultraviolet (UV) luminescence. In addition, due to the unavailability of centrosymmetry in wurtzite structures that combines with large electromechanical coupling which result in strong piezoelectric and pyroelectric properties and make ZnO a prominent material in the use of mechanical actuators and piezoelectric sensors. As a versatile functional material, ZnO has a different group of growth morphologies, such as nanocombs, nanowires, nanobelts, nanosprings, etc. These ZnO nanostructures are easily obtained, even on cheap substrates such as glass. As work done in this thesis mainly deals with ZnO semiconductor, structural properties of this material are presented below.
\nAt normal temperature and pressure, ZnO crystallizes in wurtzite (B4 type) structure, as shown in \nFigure 1\n. It is a hexagonal lattice, belonging to the space group P63mc with lattice parameters a = 0.3296 nm and c = 0.52065 nm. The tetrahedral coordination in ZnO is responsible for noncentral symmetric structure and consequently results in piezoelectricity and pyroelectricity. Another important characteristic of ZnO is polar surfaces. The most common polar surface is the basal plane. The oppositely charged ions produced positively charged Zn+ (0001) and negatively charged O− (0001−) surfaces, which result in a normal dipole moment and spontaneous polarization along the c-axis as well as variance in surface energy. The two most commonly observed facets for ZnO are (2−1−10) and (01−10) which are nonpolar surfaces and have lower energy than the (0001) facets [14, 15]. ZnO has varied properties, covering all of its physical, chemical, or material properties. ZnO is a well-suited II–VI wide bandgap semiconductor, which is naturally found in three forms: cubic zinc blend, hexagonal wurtzite, and cubic rock salt which is not as common as other [16]. The most common phase of ZnO is hexagonal wurtzite, whose space group is C6v or P63mc, which can be found mainly in ambient condition [17].
\n(a) Crystal structure of hexagonal wurtzite ZnO, ZnO unit cell, including the tetrahedral coordination between Zn and its neighboring O. (b) ZnO has a noncentro-symmetric crystal structure that is made up of alternate layers of positive and negative ions, leading to spontaneous polarization.
Samples | \nSource material | \nCatalyst used | \nCatalyst thickness (nm) | \nSynthesis temperature (°C) | \nGas flow rate (sccm) | \nGrowth time (min) | \n
---|---|---|---|---|---|---|
S1 | \nZnO + C | \nAu | \n4 | \n850 | \n50 | \n45 | \n
S2 | \n900 | \n|||||
S3 | \n950 | \n|||||
S4 | \n1030 | \n
Sample details (synthesis temperature, gas flow rate, growth time).
In \nFigure 1(a)\n is a crystal structure of ZnO which is a combination of alternating planes with tetrahedral coordination of Zn+2 and O−2 ions along the c-axis. Due to the presence of polar surfaces, ZnO crystal becomes spontaneously polarized in two type of planes, i.e., tetrahedrally coordinated O−2 and Zn+2 ions stacked alternately along the c-axis.
\nIn recent times due to environmental pollution and other chemical hazards, the needs for the development of a trusted chemical sensor have been significantly increased. For sensing of trace vapor of chemicals, different types of sensors, for example, potentiometric, fiber optics, amperometric, and biological sensors, are used, but ZnO nanostructure-based sensor has its own importance owing to its stability, high sensitivity, selectivity, as well as wide operating temperature range and flexibility in processing during device fabrication [18, 19, 20, 21, 22, 23, 24].
\nHigh surface area, well organized molecular structure, and single crystalline make ZnO nanostructures unique and prominent candidates for gas sensing application. Gas attachment sensing mechanism, such as O−, O2, H+, and OH− contact as analytes that result in change in the electrical conductivity of the charges, is mainly dependent on the redox reaction. This process can only be activated by activation energy because the classic metal oxide semiconductor sensors only operate at a temperature higher than 200°C. Because of the significant changes in optoelectronic properties at nanoscale, the problem of power consumption might be tackled, and the sensor with low energy consumption can operate even at room temperature. On exposing the surface of sensor to air, attachment of O or O2 takes place. Due to these attachments of O or O2 on the nanostructure surface, formation of space charge region with high resistivity takes place. Due to high aspect ratio (L/T), the nanobelt nanostructure surface give rise to a high resistance in the normal state; this is due to the thin thickness of nanobelt nanostructures that offer a significant amount of surface acceptor states. The removal of chemisorbed oxygen from nanostructure surface by chemical reaction on the surface of nanostructures results in the improvement of conductance of nanostructures in chemical environment as shown in \nFigure 2\n.
\nSchematic illustration of toxic chemical sensing process. (a) Adsorption of oxygen at surface of nanowires in air and creation of potential barrier and depletion region. (b) Modulation of potential barrier and depletion region after reaction of carbon monoxide (CO) at surface of n-type semiconductor.
It is important to note that two main types of semiconducting metal oxides exist which are used in chemiresistive sensors. The first one is n-type semiconductors (conductance increases, when redox reaction takes place on the surface of nanostructures, e.g., TiO2, ZnO, and SnO2) whose majority carriers are electrons. The second type of metal oxides used is p-type semiconductors (conductance decreases, when redox reaction takes place on the surface of nanostructures, e.g., NiO and CuO) whose majority carriers are holes. The majority of semiconducting metal oxides used in chemiresistive sensors are n-type because electrons are spontaneously produced via oxygen vacancies at the operating temperature of the sensors during the synthesis process. A typical metal oxide gas sensor can be described as an interactive material which interacts with the environment and generates a response (as receptor) plus a device which reads the response and converts it into an interpretable and quantifiable term (as transducer).
\nIt is necessary to understand the sensing mechanism of the chemiresistive gas sensors for the subsequent chapters in this thesis. Since sensing mechanism of metal oxide semiconductor is mainly based on band theory, band theory can be applied to the gas sensor to explain the sensing mechanism. On interaction of the analytes (undetected) with the surface of nanostructures, these analytes react with attached oxygen ions on the surface of nanostructures; a change in the carrier concentrations of the material occurs. Due to the change in carrier concentrations of the material, the electrical resistivity of the materials changes. Decrease in resistivity (increase in conductivity) occurs for n-type metal oxide semiconductor on interaction of reducing gas [25]. So the sensing mechanism of oxide semiconductor is mainly based on the principle of modification in electrical properties (resistivity/conductivity) as a consequence of chemical reaction between gas molecules and the reactive oxygen ions on the surface of MOS nanostructure material. The sensing mechanism can be divided into three sections: (a) adsorption of oxygen at surface, (b) detection of gases by a reaction with adsorbed oxygen, and (c) change in resistance due to charge transfer at the surface.
\nInteractions of oxygen with the surface of a metal oxide semiconductor are of utmost importance in gas sensing mechanism. Oxygen is a strong electron acceptor on the surface of a metal oxide. Since the majority of sensors operate in an air at ambient temperature, therefore the concentration of oxygen on the surface is directly related to the sensor electrical properties. The conversion to O2\n− or O− at prominent temperatures is useful in gas sensing mechanism, as only a monolayer of oxygen ions are present with these strongly chemisorbed species [26, 27]. Different forms of oxygen ions may be ionosorbed on the surface of metal oxide semiconductor nanostructures [28]. At low temperature ranges (150–200°C), molecules in the form of neutral O2 or charged O− are adsorbed. At higher temperatures ranges above 200°C, atomic form of oxygen as O− ions is adsorbed [29]. It is observed that the reaction kinetics increase with increase in temperature. Sensors based on resistivity/conductivity properties (resistive sensors) work better at temperature of 300°C or above to react with ionosorbed oxygen at the surface. At temperature T < 200°C, the following reactions take place at the surface of sensor (for physisorption):
\nAt temperature T > 200–400°C, the following reaction takes place at the surface of sensor (for chemisorptions):
\nAdsorption energy of oxygen on metals lies in the range of 4–6 eV. Extracted carriers originate from donor sites of the metal oxide surface in the material [30]. Intrinsic oxygen vacancies and other impurity defects give rise to donor sites and surface-trapped electrons. As a result of this, ionosorbed oxygen produces a depletion layer on the surface. A buildup charge is created on the surface of metal oxide semiconductors due to different events of adsorption, and this leads to upward band bending for n-type semiconductors [31].
\nOver decades, the capability of varying surface morphologies and the structure of MOS with near atomic scale have led to further idealization of semiconductor structures: quantum wells, wires, and dots. These variations at nanoscale of metal oxide semiconductors have led to different concentrations and densities of electronic states. On the bases of their fundamental dimensions (x, y, and z) in space, nanostructures can be classified into 0-D (zero-dimensional), 1-D (one-dimensional), 2-D (two-dimensional), and 3-D (three-dimensional). 0-D nanostructures are quantum dots or nanoparticles; 1-D nanostructures are nanorods, nanowires, nanobelts, and nanotubes; 2-D nanostructures refer to nanosheets, nanowalls, and nanoplates; and 3-D nanostructures refer to nanoflowers and other complex structures such as nanotetrapods [32, 33, 34]. Quantum effects dominate most of the properties of the nanomaterials. There is a great difference between density of states of the nanomaterials and those of the bulk materials. The density of states which describe the electronic states versus energy in the band diagram of the 0-D, 1-D, 2-D, and bulk materials are shown in \nFigure 3\n.
\nThe electron density of states in bulk metal oxide semiconductor and in that of quantum well (2-D), in quantum wire (1-D), and in quantum dot (0-D) nanomaterials.
Different methods are used for synthesis of ZnO nanostructures.
\nVapor transport process is one of the most common and cost-effective method used to synthesize ZnO nanostructures. In this process, ZnO vapors are transported usually by Argon (Ar) gas. Zinc (Zn) and oxygen (O) vapors can be generated by different ways. Decomposition of ZnO is a direct and simple method; however due to high melting point of ZnO, it requires high temperature (∼1975°C) [35]. To reduce the melting point of ZnO, graphite (C) powder is mixed with the same ratio with ZnO as a source material. At about 800–1000°C temperature, graphite reduces the melting point of ZnO to form Zn and CO/CO2 vapors. Zn and CO/CO2 later react and result in ZnO nanostructures. The advantage of this method is that the existence of graphite significantly reduces the decomposition temperature of ZnO, i.e., graphite acts as a catalyst. On the bases of difference on nanostructure formation mechanisms, the vapor transport process can be divided into the following:
Catalyst-free vapor-solid (VS) mechanism
Catalyst-assisted vapor-liquid-solid (VLS) mechanism
A rich variety of nanostructures, such as nanorods, nanowires, nanobelts, and other complex structures, can be synthesized by utilizing vapor-solid mechanism. In this mechanism, the nanostructures are produced by condensing directly from vapor phase. This mechanism is not so capable to provide best control on the geometry, alignment, and precise location of ZnO nanostructures.
\nVapor-liquid-solid mechanism is a catalyst-assisted mechanism which is used for controlled growth of oxide semiconductor nanostructures. So nanowires, nanorods, and nanobelts have been achieved by VLS mechanism [36]. In this mechanism metals such as Au, Cu, Co, Sn, etc. are used as catalyst materials [37]. Alloy droplets are formed at high temperature as a result of the reaction between catalyst film and the substrate surface interface. In the growth of 1-D oxide nanostructures, the liquid droplet plays the role of nucleation sites for the precursor’s vapors [38]. The vapors of the precursor are transported through carrier gases (usually noble gases are used as carrier gas) toward the substrate placed in the furnace tube during the growth of oxide semiconductor. During this process some materials are evaporated. The selection of catalyst is mainly based on its high surface tension and its high accommodation coefficient. These properties directly link with the supersaturation of the droplet with the source material vapors. The high Gibbs free energy carried by the precursor’s vapors enables it to diffuse into the alloy droplet in order to minimize its energy.
\nThe supersaturation of liquid droplet (that acts as nucleation’s site) with the source material vapors results in crystal structures of source material at the liquid-solid interface on the substrate, consequently forming one-dimensional nanostructure as shown in \nFigure 4\n.
\nSchematic illustration of VLS mechanism for ZnO nanorod catalyst droplets at the tip of nanorods.
Despite the growth of 1-D oxide semiconductor nanostructures such as ZnO, GaN, and nanowires, the vapor transport process is the most dominant and cost-effective synthesis method; other growth methods such as electrochemical deposition (ECD), sol-gel, polymer assisted growth, etc. have been developed so far in parallel [39]. The possibility of forming ZnO nanostructures even at low temperature may be provided by these methods.
\nThickness of the catalyst layer coated on the substrate plays a vital role in the growth of MOS nanostructure materials by reducing the activation energy of the reaction without taking part in the chemical reaction.
\nIn supersaturation state catalyst droplet acts as a sink for source material in vapor-liquid-solid mechanism. The supersaturation level of droplet becomes smaller than the surrounding atmosphere’s supersaturation level, when supersaturation of catalyst occurs. This difference creates a driving force, which drives the precursor vapors into the droplet, and growth of 1-D structures takes place in energetically favored crystallographic directions.
\nIn vapor-solid mechanism, various types of substances are used as catalyst for the growth of 1-D nanostructures. The size and morphology of nanostructures can be controlled by using various types and thicknesses of catalysts. The finest catalyst has ideal rough surface whose sticking coefficient for the impinging of precursor material’s atom from vapor phase is almost 1 [39].
\nOwing to its high surface tension, high accommodation coefficient, and high sticking power, gold (Au) is generally used as a catalyst in the synthesis of 1-D oxide nanostructure. Growth of 1-D oxide nanostructures with high crystallinity, density, and long controlled diameter can be obtained by using Au as a catalyst. Growth of 1-D nanostructures has been reported by Borchers et al. with high density using Au catalyst [40]. ZnO nanowires can be grown through VLS mechanism by adding the catalyst substance which provides the nucleation sites for the growth of nanowires. The formation of these nuclei takes place through internal chemical reaction. This is considered to be a self-catalytic VLS growth. During the growth process, the reaction at low temperature can be fastening for vapor generation by adding some external materials in the source material. ZnO powder has a melting point of 1975°C, so pure ZnO does not sublimate at 900–1100°C. So for this purpose carbon powder is mixed with ZnO power with equal mass ratio that gives rise to the formation of Zn or Zn suboxide vapors at 1000°C [41], i.e.,
\nVarious forms of ZnO nanostructures grow even at lower temperature because Zn or Zn suboxides act as nucleation sites for ZnO nanostructures. Other parameters like vacuum conditions, carrier gases, and catalysts are not essential in this condition. So the temperature is the only parameter that plays a vital role in the formation of various kinds of ZnO nanostructures. The formation of CO takes place by the direct reaction between graphite (C) and ZnO or O2 depending upon the reaction condition (tube condition).
\nThe formations of suboxides take place in open quartz tube due to the partially oxidized Zn vapor or droplet by the addition of graphite (C) at low melting temperature. Due to the high reactive power of suboxides as compared to ZnO, the deposition of zinc at the tips of grown nanostructures may increase during the synthesis process [42]. It is the main advantage of self-catalytic growth that impurity-free growth can be obtained as compared to catalyst-assisted growth of VLS.
\nTemperature plays a crucial role in the growth of 1-D oxide nanostructures by thermal evaporation method through vapor-liquid-solid mechanism.
\nThe thermodynamic phenomena like stability, dissociation adsorption, surface diffusion, and solubility of certain phases can be directly affected by temperature.
\nThere are three types of ZnO fast growth direction from the structure point of view, namely, <2−1−10>, <01−10>, and ± [0001], as shown in \nFigure 5\n. ZnO consists of various structures due to the polar surface activities of different growth facets. Every crystal has a unique crystal plane with different kinetic parameters, which are to be considered under controlled growth conditions.
\n(a) Wurtzite structure. (b) Growth direction model of ZnO.
The tetrahedral coordination of ZnO is shown, which has noncentral symmetry and piezoelectric effect [43, 44]. [0001] is the fastest growing direction which is along the c-axis because its activation temperature is lower than other two directions. Due to activation, energy growth of nanorods with smaller lengths and diameters takes place at lower temperature, but when temperature increases, length and diameter of nanowires increase because the energy of this fast-growing direction [0001] increases. At the higher temperatures, nanobelts with further increase in temperature facets <2−1−10> and <0−1−10> get high activation energies to grow nanosheets.
\nDoping of the nanowires and nanorods through in situ or post processing techniques will provide a far more favorable approach to modulate their electrical, optical, and piezoelectric properties. Most metal dopant ions result in the increase of density of the conduction carriers by occupying the lattice sites in the ZnO crystal. The complete picture of the crystal can be changed by changing the doping level. The controlled modification of morphological features as well as enhancement of electrical and optical properties can be achieved by introducing dopant element in metal oxide semiconductor [45]. The electrical as well as optical properties of MOS can be tuned by adding the foreign elements or by the alternation of oxygen stoichiometry. By making these changes, one can get an increase in carrier’s concentration, electrical resistivity, and mobility [45]. Doped nanostructure-based sensors are fully capable of sensing different harmful gases, with good stability, selectivity, and sensitivity. Out of many other methods, doping is considered to be one of the best methods for enhancement of gas sensing properties of ZnO nanostructures at room temperature. Doped ZnO nanostructures were used in the past by many researchers for the detection of harmful gases in the environment. For example, the gas sensing properties of Sn-doped ZnO nanostructures were investigated by S.C. Navel and I.S. Mulla using the thermal evaporation method. The results show good response to different gases for pure Sn-doped nanostructures, in temperature range of 275°C to 300°C. They proved that the sensitivity toward UV sensing can be increased by the doping of Sn material [46].
\nExperimental process comprises the following steps:
Preparation of substrate for growth
Coating of Au catalyst in ultrahigh vacuum (UHV) chamber on Si substrate
Preparation of nanostructure samples by vapor transport method through VLS mechanism
Fabrication of sensor for toxic gas sensing applications
By using the diamond cutter, Si substrates were cut in suitable sizes and shapes. In order to avoid the contamination, the substrates were cleaned before the deposition of catalyst, as oily layer and dust particles may stick to the surface of the substrates. For the cleaning purpose, the acetone was poured into a beaker, and the beaker was filled up to half level. The substrates were put into the acetone-filled beaker to completely immerse in them. The acetone-filled beaker was placed in ultrasonic bath at room temperature for 30 min. Si (100) substrates were then put into ethanol and deionized water for decontamination purpose for 30 min.
\nFor the growth of 1-D ZnO nanostructures, n-type silicon substrates Si (100) were used through the following steps:
Si substrates were cleaned in isopropyl alcohol (IPA), acetone, and deionized water (DI) by sonication to remove the contaminations in ultrasonic bath for 30 min at room temperature.
Sample substrates were loaded in the ultrahigh vacuum chamber for deposition of thin film of gold under vacuum of 10−7 Torr.
In nm, a thin layer of gold catalyst was deposited on Si (100) substrates for the growth of ZnO nanostructures.
Around 200 nm of thin layer of gold catalyst was deposited on Si (100) and glass substrates for preparation of sensor.
The samples were taken out from UHV chamber and used for growth process of ZnO nanostructures.
The growth was performed by thermal evaporation in a temperature-controlled horizontal tube furnace by vapor transport process through VLS mechanism. An equimolar mixture (mixed in a ball mill for 2 h with 250 rpm) of ZnO (purity 99.99%) and graphite (purity 99.9%) was placed in a ceramic boat (88 mm of length) with a mass ratio1:1 (measured by physical balance). This boat containing the source material (mixture of ZnO + C) was placed at the center of quartz tube (length 100 cm and diameter 3.5 cm). Tube furnace was set at a temperature of 850, 900, 950, and 1030°C for the four different experiments. Catalyst-coated substrates of 4 nm labeled as S1, S2, S3, and S4 were placed at the downstream of the source material at a distance of 18 cm (S1, 850°C), 12 cm (S2, 900°C), 9 cm (S3, 950°C), and 6 cm (S4, 1030°C), respectively. Furnace temperature was raised at the rate of 10°C per minute. At the start Ar gas (99.99%) was introduced at a rate of 50 standard cubic centimeter per minute (sccm) to flush out the residual present in the tube. Brass rod fitted in the rubber cork was inserted in the quartz tube to connect it to argon (Ar) gas source through a plastic pipe of 5 mm diameter. Argon gas was used as a carrier for transport of vapors from source material to gold-coated substrates. The other end of quartz tube was kept opened. The temperature of the furnace was increased from room temperature to 850°C (S1), 900°C (S2), 950°C (S3), and 1030°C (S4) in four different experiments. When the temperature of the furnace reached the set temperature, the dwell or growth time was noted for 45 min. After 45 min the furnace program was “OFF,” and the temperature started decrease gradually. When the temperature decreased to 650°C, the Ar gas flow was switched “OFF.” Furnace was then cooled to room temperature after the reaction.
\nDoping of Mg was carried out, and for that purpose 0.05 g and 0.08 g of magnesium acetate [Mg(CH3COO)2·4H2O] (purity 99.99%) was added in 1 g of source material (ZnO + C). Mg-doped ZnO nanostructures were synthesized by thermal evaporation in a temperature-controlled horizontal furnace on an Au-coated Si (100) substrate. Vapor transport method has been used for the synthesis of Mg-doped ZnO nanostructures which was done in a temperature-controlled tube furnace. The temperature, growth time, and gas flow rate were 900°C, 45 min, and 50 sccm, respectively.
\nThe synthesized ZnO nanostructures were used for UV as well as for chemical sensing applications. ZnO nanostructures were annealed by heating it in digital furnace at 400°C for 2 h. The annealing process was usually done for attachment of oxygen on the surface of ZnO nanostructures. The nanostructures were scratched with the help of blades, and the gaps or cuts on gold-coated quartz substrate were filled with the scratched nanostructures as shown in \nFigure 6\n. A small drop of methanol was dropped on the nanostructures with the help of 5 cc disposable syringe so that a thick paste was formed. The sensor was then placed under IR (infrared) light for 10 min for the purposes of sticking material on the quartz substrate. The experimental setup for chemical sensing is shown in \nFigure 6\n.
\nSchematic illustration of chemical sensing experimental setup.
Morphology, size, and shape of the synthesized ZnO nanostructures were characterized by using scanning electron microscopy (SEM) characterization technique. The four samples were synthesized at different temperatures with the same flow rate of 50 sccm of Ar (argon) gas and with same growth time of 45 min. A total eight samples was prepared in four different experiments; out of eight samples, four samples were optimized. Four experiments were done at different temperatures, i.e., 850, 900, 950, and 1030°C. The catalyst used was 4 nm thin layer of gold coated on n-type Si (100) substrate.
\nIn the first experiment, ZnO nanowires with various dimensions were obtained. \nFigure 7(a)\n shows the SEM micrograph of the ZnO nanostructures of sample S1, consisting of randomly oriented ZnO nanowires. These nanowires were grown at a temperature of 850°C on a thin layer of pure gold-coated Si (100) substrate. The nanowires intertwine with each other and distribute on the whole substrate surface randomly. The average diameter and the average length are 0.95 ± 0.11 μm and 35.59 ± 9.90 μm, respectively.
\nSEM images of different morphologies of ZnO nanostructures at different synthesized temperatures. (a) SEM images of nanowires grown at 850°C. (b) SEM images of nanorods grown at 900°C. (c) SEM images of nanobelts with needle-like ends grown at 950°C. (d) SEM images of nanobelts grown at 1030°C.
In the second experiment, ZnO nanorods of different dimensions were obtained. \nFigure 7(b)\n shows the SEM micrograph of complex ZnO nanorods of sample S2. These complex nanorods were grown at temperature of 900°C on a thin layer of gold-coated Si (100) substrate. The average diameter and the average length of S2 SEM images are 12.66 ± 3.72 μm and 319.48 ± 93.50 μm, respectively.
\nIn the third experiment, ZnO nanobelts with needle-like ends were obtained. \nFigure 7(c)\n shows the SEM micrograph of ZnO nanobelts of sample S3 with needle-like ends. These nanobelts were obtained with different dimensions at temperature of 950°C grown on 4 nm Au-coated thin layer of Si substrate. The average width, average length, and average thickness of tips are 1.39 ± 0.44 μm, 10.34 ± 2.71 μm, and 0.38 ± 0.086 μm, respectively.
\n\n\nFigure 7\n shows the SEM micrograph of ZnO nanobelts of the fourth experiment which was grown at 1030°C on gold-coated Si substrate. The average length of 2.67 ± 0.42 μm, average width of 0.33 ± 0.03 μm, and the average thickness of 0.09 ± 0.01 μm of nanobelts were obtained.
\nThe scanning electron micrographs clearly showed that the morphologies tuned from nanowires and nanorods to nanobelts due to change in temperature. High temperature and supersaturation conditions lead to the formation of nanobelts with needle-like ends and typical nanobelts.
\nThe possible reason for this tune in morphologies is attributed to supersaturation, growth rate, and quick availability of ZnO polar surfaces for growth [46]. Overall, the supersaturation conditions are different at different temperatures which eventually change the morphology.
\nEDX spectroscopy analytic technique was used for the chemical composition analysis of the synthesized ZnO nanostructures. \nFigure 8\n shows the typical EDX spectrum of the sample S1 (ZnO nanowires). Only the Zn, O, and Au peaks were observed. The observation of Au peak may suggest that the growth is catalyst-assisted [47, 48, 49, 50, 51, 52]. The approximate atomic ratio was found to be 58:32. These ratios show nonstoichiometry, i.e., crystal defects of grown nanostructures during the growth process. Deviation from the stoichiometry is large due to carbothermal reaction and oxygen-deficient environment (Ar gas) during the growth process. Most of the oxygen is used in the formation of CO2, i.e.,
\n(a) SEM images of ZnO nanowires and (b) EDX image of the corresponding ZnO nanowires grown at 900°C.
The whole process of Mg-doped ZnO nanowires could be explained in two steps:
\nIn the first step, a thin layer (4 nm) of Au film was coated on Si (100) substrate in UHV chamber by ion sputtering technique. Cleaning of Si (100) substrates was carried out by sonicating in acetone, ethanol, and deionized water for 30 min. Si (100) substrates were then coated with SiO2 for 2 h at temperature of 1050°C for insulation purpose. The quartz tube was cleaned first with chromosulfuric acid (cleaning agent) to remove the permanent residue, then the deionized water was used to wash the tube, and last ethanol was used to clean the tube.
\nIn the second step, the Mg-doped ZnO nanostructures were grown by vapor transport method through VLS mechanism in a temperature-controlled digital horizontal furnace as shown in the schematic illustration. In the first experiment, doping of sample S1 (nanowires) was carried out. A mixture of ZnO (purity 99.9%), magnesium acetate [Mg(CH3COO)2·4H2O] (purity 99.99%), and graphite powders (carbon) with mass ratio in gram (weighted by physical balance) of 1:1:0.05 was used as the source materials. The source material was placed at the center of quartz tube of length 100 cm and diameter 3.5 cm in a ceramic boat of 88 mm length. Sample S1 substrate was placed on a second ceramic boat at the downstream at a distance of 18 cm away from the source materials in the quartz tube. The temperature of the furnace was maintained at 850°C.
\nAt the start Ar gas was introduced at the rate of 50 sccm to flush out the residual present in the tube. As the temperature reached 850°C, the dwell time was noted for 45 min. After 45 min the furnace program was “OFF,” and the temperature started to decrease gradually. When the temperature decreased to 650°C, the Ar gas flow was switch “OFF.” Furnace was then cooled down to room temperature after the reaction. In the second experiment, Mg doping of sample S2 (ZnO nanorods) was carried out. The same condition and parameters were used for doping of S2, except the magnesium acetate [Mg(CH3COO)2·4H2O] weight was 0.08 g, and the sample distance from the source material was 12 cm.
\nThe collected Mg-doped ZnO nanostructure sample characterization was carried out for crystallinity, morphology and elemental composition, and optical properties. Optical and gas sensing response of the respective Mg-doped ZnO nanostructures was carried out by measuring respective resistances by two probe methods using a multimeter (Keithly 2100).
\nMg-doped ZnO nanostructure morphology was probed by means of SEM. \nFigure 9(a)\n shows the SEM image of undoped ZnO nanorods (S2) with average diameter and length of 12.66 ± 3.72 μm and 319.48 ± 93.50 μm, respectively. \nFigure 9(b)\n shows SEM images of Mg-doped (0.05 g) ZnO nanobelts. The average thickness of 1.88 ± 0.70 μm, average width of 4.7 ± 1.04 μm, and average length of 72.03 ± 18.84 μm of the Mg-doped ZnO nanobelts were measured. \nFigure 9(c)\n shows the SEM image of undoped typical ZnO nanowires (S1) with different dimensions, having average diameter and average length of 0.95 ± 0.11 μm and 35.59 ± 9.90 μm, respectively. \nFigure 9(d)\n shows the respective EDX analysis spectrum of the undoped ZnO nanowires (S1). The EDX spectra show the attachment of O (oxygen) and Zn (zinc) in the ratio O/Zn which was found to be 32:58, respectively. These composition analyses clearly showed that no impurity peak was observed, showing the purity of ZnO nanostructures. The aspect ratio of undoped and doped ZnO nanorods and nanobelts was found to be 25 and 51, respectively. \nFigure 9(e)\n shows the Mg-doped (0.08 g) ZnO nanobelts having average thickness of 0.05 ± 0.009 μm, average width of 0.28 ± 0.02 μm, and average length of 2.93 ± 0.87 μm. The corresponding elemental compositions of the synthesized ZnO nanobelts were confirmed by EDX spectroscopy. \nFigure 9(f)\n shows the corresponding EDX analysis of the doped ZnO nanobelts, showing the presence of oxygen, magnesium, and zinc in the ratio O/Mg/Zn which was found to be 28:0.35:72 respectively. EDX analysis confirmed that the compositions of the products are Mg-doped ZnO without impurity. The aspect ratio of undoped ZnO nanowires and Mg-doped ZnO nanobelts was found to be 37 and 38, respectively. The possible reason for the formation of thin and transparent nanobelts is due to the morphology tuning from nanorods and nanowires to nanobelts by Mg doping, because doping of definite elements plays a key role in the alteration of the dimensions of nanostructures [52, 53, 54, 55, 56, 57, 58]. Growth rates and polar surfaces can provoke the asymmetric growth. Formation of nanobelts was explained as continuous process of 1-D branching and subsequent 2-D interspace filling.
\n(a) SEM image of undoped ZnO nanorods (S2). (b) SEM images of Mg-doped ZnO nanobelts. (c) SEM image of undoped ZnO nanowires (S1). (d) SEM images of Mg-doped ZnO nanobelts. (e) and (f) show EDX analysis of undoped and Mg-doped ZnO nanowires and nanobelts, respectively.
Polar surfaces of wurtzite crystals of oxide semiconductors can induce asymmetric growth which leads to the diverse nanostructures, e.g., nanocombs, nanobrushes, needle-like belts/rods, etc. [59].
\nThe first step was the preparation of CH4 gas sensor. In the fabrication of CH4 gas sensor, a thick layer (200 nm) of Au was coated by ion sputtering technique on Si (100) wafers. A small amount of ZnO nanostructures was put on a pair of interdigitated electrodes on Si substrates having a gap of 55 μm. A small drop of methanol was dropped on the nanomaterials so that a thick paste was formed. The annealing of sensors was carried out in an open furnace tube for 2 h at 400°C before performing the gas sensing experiments, for the purpose of attachment of oxygen on the surface of sensors. The sensing experiment was performed at 200°C with 5-min cycles of dry air and 400 ppm CH4 gas concentration. The sensing response (
(a) CH4 gas sensing response of undoped ZnO nanowires (S1). (b) CH4 gas sensing response of Mg-doped ZnO nanobelts.
Growth of 1-D ZnO nanostructures was presented in the present chapter. Vapor-liquid-solid mechanism has been employed for the synthesis of ZnO nanostructures. It was found that the morphologies tuned with change in temperature which leads to the formation of nanowires at 850°C, nanorods at 900°C, nanobelts at 950°C, and nanobelts with needle-like ends at 1030°C. The dimensions of the morphologies have been measured by SEM. The length of the structures from 2.93 to 319.48 μm, thickness of the structures from 0.05 to 1.88 μm, and diameter of the structures from 0.95 to 12.66 μm have been obtained successfully. XRD peaks show that the crystallinity and intensity increase with increase in temperature. Doping of magnesium acetate (0.05 g) in ZnO through vapor transport method was successfully achieved. The sensing response of doped ZnO nanostructures for UV light at room temperature and CH4 gas at 200°C has increased. ZnO nanowires show great selectivity response toward different volatile organic compounds (ethanol, methanol, and acetone). At the same concentration and temperature, the ZnO nanowires show a huge sensing response to acetone (14), and those of the other solvents are no greater than 8.6.
\nThe Higher Education Commission (HEC) of Pakistan is acknowledged for financial support through project No. 9294/NRPU/R&D/HEC/2017. Thanks to Prof. Dr. Syed Zafar Ilyas and Dr. Waqar. A. Syed. The authors would also be thankful to COMSATS University Islamabad for necessary funds for the project.
\nThere is no conflict of interest in this chapter.
The study of stationary deterministic signal has been greatly explored and appreciated. On the other hand, most signals encountered in applications are random and nonstationary. Unlike the time-invariant statistical properties of stationary signal, the statistical properties of nonstationary signal are normally time-variant where a time-frequency combined analysis tool, time-frequency distribution (TFD), is required to observe the nonstationary signal in the time domain and the frequency domain at the same time. The early TFD is often given by Short Time Fourier Transform (STFT), Gabor Transform, or Continuous Wavelet Transform (CWT). The classical one is the quadratic Wigner-Ville Distribution (WVD). The latest type would be the parameterized TFD [1, 2, 3] developed in recent years. Both STFT and CWT, in the sense of transform, are not able to achieve a fine resolution in both time and frequency domain simultaneously, due to the restriction of the Heisenberg–Gabor inequality. Linear frequency modulated (LFM) is one of the pulse compression techniques in the Radar system to solve the conflict between rang and resolution where the carrier frequency is continuously modulated during the pulse duty time. The term of instantaneous frequency (IF) is used to describe how the carrier start frequency changes linearly all the way up to the end frequency. In fact, the LFM signal has no fixed period nor frequency within each pulse duty time. The quadratic WVD will achieve the highly accurate frequency component for noise-free LFM signal, where the constant amplitude brings WVD a row of delta functions along the linear IF trajectory [4, 5]. In the case of noisy LMF, the WVD peak position will bias from the true IF, where the bias-to-variance tradeoff is inevitable in the IF estimation. The Chirplet Transform (CT) [1, 2] is a typical parametric TFD, which is particularly designed for the analysis of chirp-like signals with linear IF. In the initialization process of the CT, the parameters estimation is based on the peak of the STFT magnitude, thus the estimation results are greatly affected by the background noise. For the multiple LFM signal, it is difficult to distinguish and track multiple IF lines. If the Hough Transform (HT) is applied to the spectrogram magnitude first, the robust parameter estimation can be obtained for each component, a set of time-frequency images can then be emerged by post processing to finally get a TFD with higher concentration.
Some scholars have analyzed the nonstationary signal with filtering viewpoint. In order to analyze the audio signal, Brown proposed the constant Q transform (CQT) [6], where the central frequency of each band is not uniformly distributed and its frequency resolution is not a fixed value in the frequency domain, that is more suitable for nonstationary audio signal processing. Another adaptive filter bank is proposed in [7] where the frequency resolution is changed by adjusting the window length in each sub-band. A more generalized TFD is proposes based on the traditional CQT [8]. It can be used to define a time-frequency analysis framework with arbitrary central frequency at arbitrary frequency resolution. The parameters in the framework are clearly defined to achieve a good resolution at any given frequency range. Another novel time-frequency analysis is proposed in [9] where the filter bank is a high-resolution Gaussian filter bank. Based on the nonlinear characteristics of the human auditory system, the Gaussian filter bank is designed to adjust the central frequency of each band. At the same time, the multi-resolution characteristic of the filter bank is discussed based on the idea of Wavelet transform.
However, little has been reported about the STFT in the filtering viewpoint. The STFT is always regarded as time shifted Fourier transformations where frame length is fixed for every transformation. If STFT is treated as the outputs of a filter bank, the length of each channel impulse response can be set differently according to the different signal frequency of different channel. This chapter combines our two recent conference papers [10, 11] and provides a unified framework derived from a System-of-Systems perspective for analyzing LFM signal using Filtering Viewpoint approach. Based on a series of experiments, the impact of the filter impulse response length is observed with the variation of TFD. It is also proved that longer filter does not always guarantee a better energy concentration in the TFD. To obtain the best TFD for the LFM signal processing, an optimal impulse response length needs to be determined beforehand.
This chapter presents a SoS approach for frequency estimation with a focus on LFM signal. Using a standard system engineering approach, we can decompose the frequency estimation process into three systems consisting of:
System 1: responsible for transforming the time-domain signal into (i) frequency-domain signal, and (ii) TF transform using CWT. For LFM signal type, CT is selected for CWT. Section 2 provides detailed description of STFT and CT transforms.
System 2: responsible for detecting instantaneous signal frequency (IF) in the presence of noise. Section 3 describes a proposed technique using Hough transform for detecting IF straight lines.
System 3: responsible for (i) assessing of filter impulse response length on TFD (see Section 4), and (ii) analyzing the time-frequency behavior and applying Hough transform for frequency estimation (see Section 5).
Section 4 presents a series of experiments showing the influence of the impulse response length to the time-frequency concentration in TFD and provides the steps of finding the optimal impulse response length. Section 5 provides an example of time-frequency analysis and proves the feasibilities of the proposed approach before the conclusion.
The STFT is normally regarded as the Fourier transform of the framed signals with an observation window of fixed length. Whereas being looked from the filtering viewpoint, the filter bank has some advantages that the traditional transform does not have. For example, if the frequency range of the signal is known, the corresponding bands can be selected in advance and only the selected bands need to be calculated, which will greatly reduce the computation cost. From the viewpoint of filtering, STFT can be actually regarded as the outputs of a filter bank, in which each band is called “analytical filter” and has its own impulse response function,
Rewrite the demodulated signal into
This can also be expressed as:
where the sequence
Following this idea, the entire STFT covering
STFT at N DFT frequencies using filtering viewpoint.
The CT of a signal
where
where
From this definition, it can be seen that the CT can be decomposed into a series of operations: 1) rotating the signal under consideration by an angle in the time-frequency plane; 2) shifting the signal by a frequency increment; and 3) applying STFT with the Gaussian window.
This process can be depicted in the Figure 2. The solid line is the IF line of the target LFM signal that has the IF function
The Chirplet transform.
As mentioned earlier, given a set of properly determined kernel characteristic parameters, the CT could produce a high-quality TFD for a considered signal. The result can have an excellent T-F concentration, which measure the IF trajectory width over the TFD surface, so the IF trajectory can be easily identified. Therefore, the determination of proper parameters is critical for the application of the CT method. Briefly speaking, the basic idea of the CT based T-F analysis uses the kernel characteristic parameter (
To measure the T-F concentration of the TFD, the Rényi entropy can be used with the definition:
And the termination condition can be set as
or
where
Through the description of the previous section, we know that as long as we can get the precise FM parameters, we can get the TFD with high T-F concentration. However, for multicomponent signal with low SNR, the difficulty will be significantly huge. Inspired by the reference [12], we apply the robust HT to detect the IF lines in the CT-TFD to depress the noise during the process of line fitting. The reason why we adopt this image processing technique is that the HT can detect multiple lines accurately, even in the low SNR situations.
For an IF straight line in the Cartesian coordinate plane, there are two common representations: point-slope form and two points form. In the HT, however, another representation is considered: coordinate (
The line representation in Hough transform.
The idea of using HT to detect straight lines needs to assume
The below simulations are all conducted on the Matlab 2015b installed in Windows10 system on the Dell T7910 workstation with 2 Intel Xeon E5-2630v3 CPUs and 256G LRDIMM memories.
To see the influence of the filter impulse response length on the concentration of the TFD, the LFM signals of different FM parameters start with the simulated signal:
where its IF line function is
TFDs of z1(t) using filter bank at 4 different filter lengths of 40 (a), 80 (b), 100(c), and 150 (d) samples.
It can be seen clearly that as the impulse response length grows, the T-F concentration of the TFD increases first and then decreases. In order to check whether this is a universal phenomenon, the following multiple LFM signal is built.
The IF slopes of all the components of
TFDs of z2(t) using filter bank with 12 different filter lengths running from 50 (a) to 600 (l) samples at the step of 50 samples.
In order to verify the above conclusion, a complex stationary signal below of 5 Hz is also tested.
The testing range of the impulse response length, the selected channels, the signal duration, and the sampling frequency are taken in the same way as that of
TFDs of z3(t) using filter bank at 4 different filter lengths of 40 (a), 80 (b), 100(c), and 150 (d) samples.
The next simulation is about the harmonically related multiple LFM signals as given below.
The length of the impulse response runs within {150, 250, 350, 450, 550, 650}. The selected channels, the signal duration, and the sampling frequency are taken in the same way as what has been done on
TFD magnitudes of z4(t) using filter bank at the filter length of 150 (a), 250 (b), 350 (c), 450 (d), 550 (e), and 650 (f) samples.
It can be seen from Figure 7 that with the increasing of impulse response length, the TFD T-F concentration of each component of the signal
Through the description in the previous section, the high T-F concentration over the TFD surface can be obtained if the impulse response length matches to the IF slope of FLM signal. In order to obtain this optimal filter length, the T-F concentration
When the LFM slope coefficient is given, the channels of the filter bank can be precisely selected to cover that IF range. Even for the signal with unknown LFM slope coefficient, one can always observe the rough IF range using traditional STFT, so no difficulty will be met in the filter bank channel selection. Figure 8 compares the proposed TFD of filtering viewpoint with the traditional STFT of transform viewpoint. The LFM signal is
Proposed TFD (a) vs. traditional STFT (b) of z1(t) at the same frequency resolution.
Taking the two-component signal as an example, it will give more accurate parameters through line fitting before applying them to CT. In order to see the TFD difference between parameter matched and nonmatched CTs, a simulated multiple LFM signal is considered as:
where IF lines are
(a)
From Figure 9, one can see that when the parameter
The TFD results of
The results of threshold filtering: (a) α1 = -4π, (b) α2 = 5π, (c) the superposition of (a) and (b).
In order to highlight the advantages of HT, the analog signal of Eq. (16) is generated at the SNR of 2 dB, 0 dB, and -2 dB. Then the STFT and the corresponding HT are calculated as shown in Figure 11. From the below results, one can see clearly that in the case of low SNR, the STFT is relatively fuzzy, and the ridge edge extraction alone will not give the good results. However, the accuracy of HT is relatively high at all the 3 SNR levels. That is the reason why the HT is adopted in the time-frequency analysis of multiple LFM signal.
The STFT (a), the corresponding HT (b), and the TFD after CT & HT (c) of s(t) at the SNR of 2 dB(top), 0 dB(middle), and -2 dB(bottom).
This chapter investigates an SoS approach for frequency estimation using TFD calculation techniques of the LFM signal through a linear filtering viewpoint. The influence of filter length on the TFD concentration is closely observed through a series of simulations. The simulation results show that the IF slope of the LFM signal is related with the optimal filter length, the higher the slope is, the shorter the optimal filter length is. On the other hand, the same IF slope results the same TFD concentration at the same filter length, no matter how high the IF is. Under the same time-frequency resolution, the traditional STFT shows significantly lower time-frequency concentration than that of the TFD obtained by the proposed filter bank based on the filtering viewpoint. Thought the channel frequency can be freely selected as needed, which saves the computation in the irrelevant frequency bands, many nonstationary signals are not always linearly modulated. For the signals with the nonlinear FM coefficient, the advantage of the filter bank TFD is no longer obvious. This is also a question that needs to be studied further.
The CT has the advantage of high T-F centralization but is easily affected by the noise. In addition, many nonstationary signals are of multicomponent. The decomposition of multicomponent signal [12, 13] into single component signals under noise conditions is a difficult problem. For the multicomponent LFM signal, the Hough transform is adopted to the parametric T-F analysis to obtain the result with good concentration. However, for the multicomponent nonlinear FM signal, there is no effective trajectory detection method, so it will be more difficult to decompose each nonlinear FM component. That will be the focus of our future work.
The authors would like to express great thanks to the Shanghai Key Lab in Information Security Management (AGK201709), and Shandong Nature Science Fund Committee (ZR2016FM44) for their financial supports.
IntechOpen - where academia and industry create content with global impact
",metaTitle:"Team",metaDescription:"Advancing discovery in Open Access for the scientists by the scientist",metaKeywords:null,canonicalURL:"page/team",contentRaw:'[{"type":"htmlEditorComponent","content":"Our business values are based on those any scientist applies to their research. We have created a culture of respect and collaboration within a relaxed, friendly and progressive atmosphere, while maintaining academic rigour.
\\n\\nCo-founded by Alex Lazinica and Vedran Kordic: “We are passionate about the advancement of science. As Ph.D. researchers in Vienna, we found it difficult to access the scholarly research we needed. We created IntechOpen with the specific aim of putting the academic needs of the global research community before the business interests of publishers. Our Team is now a global one and includes highly-renowned scientists and publishers, as well as experts in disseminating your research.”
\\n\\nBut, one thing we have in common is -- we are all scientists at heart!
\\n\\nSara Uhac, COO
\\n\\nSara Uhac was appointed Managing Director of IntechOpen at the beginning of 2014. She directs and controls the company’s operations. Sara joined IntechOpen in 2010 as Head of Journal Publishing, a new strategically underdeveloped department at that time. After obtaining a Master's degree in Media Management, she completed her Ph.D. at the University of Lugano, Switzerland. She holds a BA in Financial Market Management from the Bocconi University in Milan, Italy, where she started her career in the American publishing house Condé Nast and further collaborated with the UK-based publishing company Time Out. Sara was awarded a professional degree in Publishing from Yale University (2012). She is a member of the professional branch association of "Publishers, Designers and Graphic Artists" at the Croatian Chamber of Commerce.
\\n\\nAdrian Assad De Marco
\\n\\nAdrian Assad De Marco joined the company as a Director in 2017. With his extensive experience in management, acquired while working for regional and global leaders, he took over direction and control of all the company's publishing processes. Adrian holds a degree in Economy and Management from the University of Zagreb, School of Economics, Croatia. A former sportsman, he continually strives to develop his skills through professional courses and specializations such as NLP (Neuro-linguistic programming).
\\n\\nDr Alex Lazinica
\\n\\nAlex Lazinica is co-founder and Board member of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his Ph.D. in Robotics at the Vienna University of Technology. There, he worked as a robotics researcher with the university's Intelligent Manufacturing Systems Group, as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and, most importantly, co-founded and built the International Journal of Advanced Robotic Systems, the world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career since it proved to be the pathway to the foundation of IntechOpen with its focus on addressing academic researchers’ needs. Alex personifies many of IntechOpen´s key values, including the commitment to developing mutual trust, openness, and a spirit of entrepreneurialism. Today, his focus is on defining the growth and development strategy for the company.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Our business values are based on those any scientist applies to their research. We have created a culture of respect and collaboration within a relaxed, friendly and progressive atmosphere, while maintaining academic rigour.
\n\nCo-founded by Alex Lazinica and Vedran Kordic: “We are passionate about the advancement of science. As Ph.D. researchers in Vienna, we found it difficult to access the scholarly research we needed. We created IntechOpen with the specific aim of putting the academic needs of the global research community before the business interests of publishers. Our Team is now a global one and includes highly-renowned scientists and publishers, as well as experts in disseminating your research.”
\n\nBut, one thing we have in common is -- we are all scientists at heart!
\n\nSara Uhac, COO
\n\nSara Uhac was appointed Managing Director of IntechOpen at the beginning of 2014. She directs and controls the company’s operations. Sara joined IntechOpen in 2010 as Head of Journal Publishing, a new strategically underdeveloped department at that time. After obtaining a Master's degree in Media Management, she completed her Ph.D. at the University of Lugano, Switzerland. She holds a BA in Financial Market Management from the Bocconi University in Milan, Italy, where she started her career in the American publishing house Condé Nast and further collaborated with the UK-based publishing company Time Out. Sara was awarded a professional degree in Publishing from Yale University (2012). She is a member of the professional branch association of "Publishers, Designers and Graphic Artists" at the Croatian Chamber of Commerce.
\n\nAdrian Assad De Marco
\n\nAdrian Assad De Marco joined the company as a Director in 2017. With his extensive experience in management, acquired while working for regional and global leaders, he took over direction and control of all the company's publishing processes. Adrian holds a degree in Economy and Management from the University of Zagreb, School of Economics, Croatia. A former sportsman, he continually strives to develop his skills through professional courses and specializations such as NLP (Neuro-linguistic programming).
\n\nDr Alex Lazinica
\n\nAlex Lazinica is co-founder and Board member of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his Ph.D. in Robotics at the Vienna University of Technology. There, he worked as a robotics researcher with the university's Intelligent Manufacturing Systems Group, as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and, most importantly, co-founded and built the International Journal of Advanced Robotic Systems, the world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career since it proved to be the pathway to the foundation of IntechOpen with its focus on addressing academic researchers’ needs. Alex personifies many of IntechOpen´s key values, including the commitment to developing mutual trust, openness, and a spirit of entrepreneurialism. Today, his focus is on defining the growth and development strategy for the company.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13389},{group:"region",caption:"Middle and South America",value:2,count:11658},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22334},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33642}],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"5,6,12,13,18"},books:[{type:"book",id:"11369",title:"RNA Viruses Infection",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11610",title:"New Insights in Herbicide Science",subtitle:null,isOpenForSubmission:!0,hash:"eb3830b8176caf3d1fd52c32313c5168",slug:null,bookSignature:"Ph.D. Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/11610.jpg",editedByType:null,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11608",title:"Candida and Candidiasis",subtitle:null,isOpenForSubmission:!0,hash:"862074d07a4355fe3035ae1d14f3e2e6",slug:null,bookSignature:"Dr. Tulin Askun",coverURL:"https://cdn.intechopen.com/books/images_new/11608.jpg",editedByType:null,editors:[{id:"89795",title:"Dr.",name:"Tulin",surname:"Askun",slug:"tulin-askun",fullName:"Tulin Askun"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11630",title:"Life in Extreme Environments - Diversity, Adaptability and Valuable Resources of Bioactive Molecules",subtitle:null,isOpenForSubmission:!0,hash:"9c39aa5fd22296ba53d87df6d761a5fc",slug:null,bookSignature:"Dr. Afef Najjari",coverURL:"https://cdn.intechopen.com/books/images_new/11630.jpg",editedByType:null,editors:[{id:"196823",title:"Dr.",name:"Afef",surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11804",title:"CRISPR Technology",subtitle:null,isOpenForSubmission:!0,hash:"4051570f538bd3315e051267180abe37",slug:null,bookSignature:"Dr. Yuan-Chuan Chen",coverURL:"https://cdn.intechopen.com/books/images_new/11804.jpg",editedByType:null,editors:[{id:"185559",title:"Dr.",name:"Yuan-Chuan",surname:"Chen",slug:"yuan-chuan-chen",fullName:"Yuan-Chuan Chen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11793",title:"Production, Nutritional and Industrial Perspectives of Barley",subtitle:null,isOpenForSubmission:!0,hash:"996125d4599193b3b6b749f5d8aa3cb2",slug:null,bookSignature:"Dr. Farhan Saeed and Dr. Muhammad Afzaal",coverURL:"https://cdn.intechopen.com/books/images_new/11793.jpg",editedByType:null,editors:[{id:"192244",title:"Dr.",name:"Farhan",surname:"Saeed",slug:"farhan-saeed",fullName:"Farhan Saeed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11810",title:"Animal Behavior - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"db1dacc9284b2fc73f38fa985a586e15",slug:null,bookSignature:"Associate Prof. Volkan Gelen and Dr. Abdulsamed Kükürt",coverURL:"https://cdn.intechopen.com/books/images_new/11810.jpg",editedByType:null,editors:[{id:"178366",title:"Dr.",name:"Volkan",surname:"Gelen",slug:"volkan-gelen",fullName:"Volkan Gelen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12157",title:"Rice Crops - Productivity, Quality and Sustainability",subtitle:null,isOpenForSubmission:!0,hash:"2a38bb2448f4516740db05ce746f08e3",slug:null,bookSignature:"Dr. Min Huang, Dr. Jiana Chen, Dr. Xiaowu Pan and Dr. Haiming Tang",coverURL:"https://cdn.intechopen.com/books/images_new/12157.jpg",editedByType:null,editors:[{id:"189829",title:"Dr.",name:"Min",surname:"Huang",slug:"min-huang",fullName:"Min Huang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11637",title:"Neuropsychology of Dementia",subtitle:null,isOpenForSubmission:!0,hash:"d40f707b9ef020bb202be89404f77a1e",slug:null,bookSignature:"Dr. Devendra Kumar, Prof. Sushil Kumar Singh and Dr. Ankit Ganeshpurkar",coverURL:"https://cdn.intechopen.com/books/images_new/11637.jpg",editedByType:null,editors:[{id:"454030",title:"Dr.",name:"Devendra",surname:"Kumar",slug:"devendra-kumar",fullName:"Devendra Kumar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11624",title:"Agricultural Waste - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"f86a9f720cc3ac0f1c385d0367ea89b9",slug:null,bookSignature:"Dr. Fiaz Ahmad and Prof. Muhammad Sultan",coverURL:"https://cdn.intechopen.com/books/images_new/11624.jpg",editedByType:null,editors:[{id:"338219",title:"Dr.",name:"Fiaz",surname:"Ahmad",slug:"fiaz-ahmad",fullName:"Fiaz Ahmad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11788",title:"Plant Stress Responses and Defense Mechanisms",subtitle:null,isOpenForSubmission:!0,hash:"fd76ac80924e5a4d530ad0a1b54ca1f4",slug:null,bookSignature:"Dr. Saddam Hussain, Dr. Tahir Hussain Awan, Dr. Ejaz Waraich and Dr. Masood Iqbal Awan",coverURL:"https://cdn.intechopen.com/books/images_new/11788.jpg",editedByType:null,editors:[{id:"247858",title:"Dr.",name:"Saddam",surname:"Hussain",slug:"saddam-hussain",fullName:"Saddam Hussain"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11643",title:"Genetic Diversity - Recent Advances and Applications",subtitle:null,isOpenForSubmission:!0,hash:"0b1e679fcacdec2448603a66df71ccc7",slug:null,bookSignature:"Prof. Mahmut Çalışkan and Dr. Sevcan Aydin",coverURL:"https://cdn.intechopen.com/books/images_new/11643.jpg",editedByType:null,editors:[{id:"51528",title:"Prof.",name:"Mahmut",surname:"Çalışkan",slug:"mahmut-caliskan",fullName:"Mahmut Çalışkan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:28},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:8},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:16},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:43},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:9},{group:"topic",caption:"Materials Science",value:14,count:17},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:69},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:3},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:6},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:7},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:53},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11263",title:"Supply Chain",subtitle:"Recent Advances and New Perspectives in the Industry 4.0 Era",isOpenForSubmission:!1,hash:"aab634c9c1f9a692c1e9881d18e9c9b7",slug:"supply-chain-recent-advances-and-new-perspectives-in-the-industry-4-0-era",bookSignature:"Tamás Bányai, Ágota Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/11263.jpg",editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4805},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7107,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1955,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1452,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2289,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11263",title:"Supply Chain",subtitle:"Recent Advances and New Perspectives in the Industry 4.0 Era",isOpenForSubmission:!1,hash:"aab634c9c1f9a692c1e9881d18e9c9b7",slug:"supply-chain-recent-advances-and-new-perspectives-in-the-industry-4-0-era",bookSignature:"Tamás Bányai, Ágota Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/11263.jpg",publishedDate:"July 27th 2022",numberOfDownloads:888,editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1566,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2054,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",publishedDate:"July 27th 2022",numberOfDownloads:780,editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318480,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271760,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"136",title:"Environmental Sustainability",slug:"environmental-sciences-environmental-sustainability",parent:{id:"12",title:"Environmental Sciences",slug:"environmental-sciences"},numberOfBooks:19,numberOfSeries:0,numberOfAuthorsAndEditors:465,numberOfWosCitations:163,numberOfCrossrefCitations:204,numberOfDimensionsCitations:403,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"136",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10682",title:"Pathways and Challenges for Efficient Desalination",subtitle:null,isOpenForSubmission:!1,hash:"ca25e9eca70d54deb503d2663f75218c",slug:"pathways-and-challenges-for-efficient-desalination",bookSignature:"Muhammad Wakil Shahzad, Mike Dixon, Giancarlo Barassi, Ben Bin Xu and Yinzhu Jiang",coverURL:"https://cdn.intechopen.com/books/images_new/10682.jpg",editedByType:"Edited by",editors:[{id:"174208",title:"Dr.",name:"Muhammad Wakil",middleName:null,surname:"Shahzad",slug:"muhammad-wakil-shahzad",fullName:"Muhammad Wakil Shahzad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10976",title:"Water Conservation",subtitle:"Inevitable Strategy",isOpenForSubmission:!1,hash:"2a5f75a1eed9cb67133fe6ce0f8848f5",slug:"water-conservation-inevitable-strategy",bookSignature:"Murat Eyvaz, Ahmed Albahnasawi, Ercan Gürbulak and Ebubekir Yüksel",coverURL:"https://cdn.intechopen.com/books/images_new/10976.jpg",editedByType:"Edited by",editors:[{id:"170083",title:"Associate Prof.",name:"Murat",middleName:null,surname:"Eyvaz",slug:"murat-eyvaz",fullName:"Murat Eyvaz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10754",title:"The Nature, Causes, Effects and Mitigation of Climate Change on the Environment",subtitle:null,isOpenForSubmission:!1,hash:"8994a915a306910a01cbe2027aa2139b",slug:"the-nature-causes-effects-and-mitigation-of-climate-change-on-the-environment",bookSignature:"Stuart A. Harris",coverURL:"https://cdn.intechopen.com/books/images_new/10754.jpg",editedByType:"Edited by",editors:[{id:"12539",title:"Emeritus Prof.",name:"Stuart",middleName:"Arthur",surname:"Harris",slug:"stuart-harris",fullName:"Stuart Harris"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11074",title:"Water Quality",subtitle:"Factors and Impacts",isOpenForSubmission:!1,hash:"c3f3c2405260fed102e4ef982cff54c6",slug:"water-quality-factors-and-impacts",bookSignature:"Daniel Dunea",coverURL:"https://cdn.intechopen.com/books/images_new/11074.jpg",editedByType:"Edited by",editors:[{id:"180202",title:"Associate Prof.",name:"Daniel",middleName:null,surname:"Dunea",slug:"daniel-dunea",fullName:"Daniel Dunea"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9981",title:"Groundwater Management and Resources",subtitle:null,isOpenForSubmission:!1,hash:"4f408ce58f029e746911fe558ca4bbd0",slug:"groundwater-management-and-resources",bookSignature:"Bahareh Kalantar",coverURL:"https://cdn.intechopen.com/books/images_new/9981.jpg",editedByType:"Edited by",editors:[{id:"267005",title:"Dr.",name:"Bahareh",middleName:null,surname:"Kalantar",slug:"bahareh-kalantar",fullName:"Bahareh Kalantar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9555",title:"Green Supply Chain",subtitle:"Competitiveness and Sustainability",isOpenForSubmission:!1,hash:"7a403c686a47c5af28a8568d40dfd94a",slug:"green-supply-chain-competitiveness-and-sustainability",bookSignature:"Tamás Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/9555.jpg",editedByType:"Edited by",editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editedByType:"Edited by",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editedByType:"Edited by",editors:[{id:"110471",title:"Prof.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8903",title:"Carbon-Based Material for Environmental Protection and Remediation",subtitle:null,isOpenForSubmission:!1,hash:"19da699b370f320eca63ef2ba02f745d",slug:"carbon-based-material-for-environmental-protection-and-remediation",bookSignature:"Mattia Bartoli, Marco Frediani and Luca Rosi",coverURL:"https://cdn.intechopen.com/books/images_new/8903.jpg",editedByType:"Edited by",editors:[{id:"188999",title:"Dr.",name:"Mattia",middleName:null,surname:"Bartoli",slug:"mattia-bartoli",fullName:"Mattia Bartoli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7720",title:"CO2 Sequestration",subtitle:null,isOpenForSubmission:!1,hash:"ed248a547024414e5c4fb0b149f8565f",slug:"co2-sequestration",bookSignature:"Leidivan Almeida Frazão, Adriana Marcela Silva-Olaya and Junio Cota Silva",coverURL:"https://cdn.intechopen.com/books/images_new/7720.jpg",editedByType:"Edited by",editors:[{id:"237834",title:"Dr.",name:"Leidivan",middleName:null,surname:"Almeida Frazão",slug:"leidivan-almeida-frazao",fullName:"Leidivan Almeida Frazão"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8983",title:"Sustainability Concept In Developing Countries",subtitle:null,isOpenForSubmission:!1,hash:"2b7e452ede9e56b4a3b7e35c835f8446",slug:"sustainability-concept-in-developing-countries",bookSignature:"Surendra N. Kulshreshtha",coverURL:"https://cdn.intechopen.com/books/images_new/8983.jpg",editedByType:"Edited by",editors:[{id:"37057",title:"Dr.",name:"Surendra N.",middleName:null,surname:"Kulshreshtha",slug:"surendra-n.-kulshreshtha",fullName:"Surendra N. Kulshreshtha"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:19,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"44241",doi:"10.5772/55124",title:"Coping Mechanisms of Plants to Metal Contaminated Soil",slug:"coping-mechanisms-of-plants-to-metal-contaminated-soil",totalDownloads:4165,totalCrossrefCites:24,totalDimensionsCites:46,abstract:null,book:{id:"3364",slug:"environmental-change-and-sustainability",title:"Environmental Change and Sustainability",fullTitle:"Environmental Change and Sustainability"},signatures:"Melanie Mehes-Smith, Kabwe Nkongolo and Ewa Cholewa",authors:[{id:"78238",title:"Prof.",name:"Kabwe",middleName:null,surname:"Nkongolo",slug:"kabwe-nkongolo",fullName:"Kabwe Nkongolo"}]},{id:"64381",doi:"10.5772/intechopen.82025",title:"Sustainability and Vernacular Architecture: Rethinking What Identity Is",slug:"sustainability-and-vernacular-architecture-rethinking-what-identity-is",totalDownloads:4435,totalCrossrefCites:8,totalDimensionsCites:22,abstract:"Sustainability has often been a fundamental part of the composition of both tangible and intangible cultural resources; sustainability and preservation of cultural identity are complementary. Elements of sustainable design are integral to vernacular architecture that have evolved over time using local materials and technology emerging from ambient natural and cultural environment creating optimum relationships between people and their place. This chapter aims to redefine what identity is as a concept and the impact of globalization on contemporary architecture especially on regions with rich heritage and unique culture as the Arab World. To accomplish this, the chapter examines the emergence of “local identity” as a reaction to the globalization of cultural values, uniform architectural styles, and stereotype patterns through discussing sustainability as a motivation for identity in culture and architecture. The research methodology is based on conducting a qualitative analysis of literature review to the main concepts discussed in this chapter such as: identity, culture, vernacular architecture, and sustainability. Through comparative analysis, the chapter investigates sustainability potential of vernacular architecture in the region to derive core concepts as guidelines of reproducing the characteristics of society and reveal identity of contemporary architecture in the Arab World.",book:{id:"8260",slug:"urban-and-architectural-heritage-conservation-within-sustainability",title:"Urban and Architectural Heritage Conservation within Sustainability",fullTitle:"Urban and Architectural Heritage Conservation within Sustainability"},signatures:"Maha Salman",authors:[{id:"258226",title:"Dr.",name:"Maha",middleName:null,surname:"Salman",slug:"maha-salman",fullName:"Maha Salman"}]},{id:"51000",doi:"10.5772/63726",title:"Towards Sustainable Sanitation in an Urbanising World",slug:"towards-sustainable-sanitation-in-an-urbanising-world",totalDownloads:3202,totalCrossrefCites:11,totalDimensionsCites:17,abstract:"Urban sanitation in low‐ and middle‐income countries is at an inflection point. It is increasingly acknowledged that conventional sewer‐based sanitation cannot be the only solution for expanding urban areas. There are other objective reasons apart from the lack of capital. The lack of stable energy supplies, of spare parts and of human resources for reliable operation, and the increasing water scarcity are factors that seriously limit the expansion of centralised systems. This chapter argues that a new paradigm for urban sanitation is possible, if the heterogeneity within developing cities is reflected in the implementation of different sanitation systems, adapted to each urban context and integrated under one institutional roof. This new paradigm entails: (1) innovative management arrangements; (2) increased participation and the integration of individual, community and private sector initiatives; (3) thinking at scale to open new opportunities; (4) improved analysis of the situation and awareness raising. Moving beyond conventional approaches towards sustainable urbanisation needs to follow both a top‐down and a bottom‐up approach, with proper incentives and a variety of sanitation systems which, in a future perspective, will become part of the ‘urban ecosystem’.",book:{id:"5235",slug:"sustainable-urbanization",title:"Sustainable Urbanization",fullTitle:"Sustainable Urbanization"},signatures:"Philippe Reymond, Samuel Renggli and Christoph Lüthi",authors:[{id:"181079",title:"Dr.",name:"Christoph",middleName:null,surname:"Lüthi",slug:"christoph-luthi",fullName:"Christoph Lüthi"},{id:"182136",title:"Mr.",name:"Philippe",middleName:null,surname:"Reymond",slug:"philippe-reymond",fullName:"Philippe Reymond"},{id:"182137",title:"Mr.",name:"Samuel",middleName:null,surname:"Renggli",slug:"samuel-renggli",fullName:"Samuel Renggli"}]},{id:"42926",doi:"10.5772/55736",title:"Disaster Risk Management and Social Impact Assessment: Understanding Preparedness, Response and Recovery in Community Projects",slug:"disaster-risk-management-and-social-impact-assessment-understanding-preparedness-response-and-recove",totalDownloads:10044,totalCrossrefCites:3,totalDimensionsCites:11,abstract:null,book:{id:"3364",slug:"environmental-change-and-sustainability",title:"Environmental Change and Sustainability",fullTitle:"Environmental Change and Sustainability"},signatures:"Raheem A. Usman, F.B. Olorunfemi, G.P. Awotayo, A.M. Tunde and\nB.A. Usman",authors:[{id:"156875",title:"Dr.",name:"Usman A",middleName:null,surname:"Raheem",slug:"usman-a-raheem",fullName:"Usman A Raheem"},{id:"166449",title:"Dr.",name:"A.M",middleName:null,surname:"Tunde",slug:"a.m-tunde",fullName:"A.M Tunde"},{id:"167886",title:"Dr.",name:"F.B.",middleName:null,surname:"Olorunfemi",slug:"f.b.-olorunfemi",fullName:"F.B. Olorunfemi"},{id:"167887",title:"Dr.",name:"G.P.",middleName:null,surname:"Awotayo",slug:"g.p.-awotayo",fullName:"G.P. Awotayo"}]},{id:"44263",doi:"10.5772/54339",title:"Conservation and Sustainability of Mexican Caribbean Coral Reefs and the Threats of a Human-Induced Phase-Shift",slug:"conservation-and-sustainability-of-mexican-caribbean-coral-reefs-and-the-threats-of-a-human-induced-",totalDownloads:2352,totalCrossrefCites:4,totalDimensionsCites:11,abstract:null,book:{id:"3364",slug:"environmental-change-and-sustainability",title:"Environmental Change and Sustainability",fullTitle:"Environmental Change and Sustainability"},signatures:"José D. Carriquiry, Linda M. Barranco-Servin, Julio A. Villaescusa,\nVictor F. Camacho-Ibar, Hector Reyes-Bonilla and Amílcar L. Cupul-\nMagaña",authors:[{id:"158136",title:"Prof.",name:"Jose D.",middleName:"D.",surname:"Carriquiry",slug:"jose-d.-carriquiry",fullName:"Jose D. Carriquiry"},{id:"160078",title:"Dr.",name:"Julio A.",middleName:null,surname:"Villaescusa",slug:"julio-a.-villaescusa",fullName:"Julio A. Villaescusa"},{id:"160079",title:"MSc.",name:"Linda M.",middleName:null,surname:"Barranco-Servin",slug:"linda-m.-barranco-servin",fullName:"Linda M. Barranco-Servin"},{id:"160082",title:"Prof.",name:"Victor F.",middleName:null,surname:"Camacho-Ibar",slug:"victor-f.-camacho-ibar",fullName:"Victor F. Camacho-Ibar"},{id:"167394",title:"Dr.",name:"Hector",middleName:null,surname:"Reyes-Bonilla",slug:"hector-reyes-bonilla",fullName:"Hector Reyes-Bonilla"},{id:"167395",title:"Dr.",name:"Amilcar L.",middleName:null,surname:"Cupul-Magaña",slug:"amilcar-l.-cupul-magana",fullName:"Amilcar L. Cupul-Magaña"}]}],mostDownloadedChaptersLast30Days:[{id:"64381",title:"Sustainability and Vernacular Architecture: Rethinking What Identity Is",slug:"sustainability-and-vernacular-architecture-rethinking-what-identity-is",totalDownloads:4441,totalCrossrefCites:8,totalDimensionsCites:22,abstract:"Sustainability has often been a fundamental part of the composition of both tangible and intangible cultural resources; sustainability and preservation of cultural identity are complementary. Elements of sustainable design are integral to vernacular architecture that have evolved over time using local materials and technology emerging from ambient natural and cultural environment creating optimum relationships between people and their place. This chapter aims to redefine what identity is as a concept and the impact of globalization on contemporary architecture especially on regions with rich heritage and unique culture as the Arab World. To accomplish this, the chapter examines the emergence of “local identity” as a reaction to the globalization of cultural values, uniform architectural styles, and stereotype patterns through discussing sustainability as a motivation for identity in culture and architecture. The research methodology is based on conducting a qualitative analysis of literature review to the main concepts discussed in this chapter such as: identity, culture, vernacular architecture, and sustainability. Through comparative analysis, the chapter investigates sustainability potential of vernacular architecture in the region to derive core concepts as guidelines of reproducing the characteristics of society and reveal identity of contemporary architecture in the Arab World.",book:{id:"8260",slug:"urban-and-architectural-heritage-conservation-within-sustainability",title:"Urban and Architectural Heritage Conservation within Sustainability",fullTitle:"Urban and Architectural Heritage Conservation within Sustainability"},signatures:"Maha Salman",authors:[{id:"258226",title:"Dr.",name:"Maha",middleName:null,surname:"Salman",slug:"maha-salman",fullName:"Maha Salman"}]},{id:"67342",title:"Introductory Chapter: Heritage Conservation - Rehabilitation of Architectural and Urban Heritage",slug:"introductory-chapter-heritage-conservation-rehabilitation-of-architectural-and-urban-heritage",totalDownloads:2616,totalCrossrefCites:3,totalDimensionsCites:6,abstract:null,book:{id:"8260",slug:"urban-and-architectural-heritage-conservation-within-sustainability",title:"Urban and Architectural Heritage Conservation within Sustainability",fullTitle:"Urban and Architectural Heritage Conservation within Sustainability"},signatures:"Kabila Faris Hmood",authors:[{id:"214741",title:"Prof.",name:"Dr. Kabila",middleName:"Faris",surname:"Hmood",slug:"dr.-kabila-hmood",fullName:"Dr. Kabila Hmood"}]},{id:"76898",title:"The Relationship between Land Use and Climate Change: A Case Study of Nepal",slug:"the-relationship-between-land-use-and-climate-change-a-case-study-of-nepal",totalDownloads:700,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"Land Use and Climate change are interrelated to each other. This change influences one another at various temporal and spatial scales; however, improper land uses are the primary causal factor on climate change. It studies relevant literature and Nepal’s case to assess the relationship between land use and climate change. Similarly focuses on how land-use impacts climate change and vice versa. In recent centuries land-use change significant effects on ecological variables and climate change. Likewise, understanding the research on both topics will help decision-makers and conservation planners manage land and climate.",book:{id:"10754",slug:"the-nature-causes-effects-and-mitigation-of-climate-change-on-the-environment",title:"The Nature, Causes, Effects and Mitigation of Climate Change on the Environment",fullTitle:"The Nature, Causes, Effects and Mitigation of Climate Change on the Environment"},signatures:"Pawan Thapa",authors:[{id:"349566",title:"M.Sc.",name:"Pawan",middleName:null,surname:"Thapa",slug:"pawan-thapa",fullName:"Pawan Thapa"}]},{id:"50282",title:"Relation Between Land Use and Transportation Planning in the Scope of Smart Growth Strategies: Case Study of Denizli, Turkey",slug:"relation-between-land-use-and-transportation-planning-in-the-scope-of-smart-growth-strategies-case-s",totalDownloads:4667,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"In the decision-making process of planning residential areas in developing countries, importance of the commercial areas and need for a sustainable urban transportation infrastructure have generally been ignored based on several sociopolitical reasons. Meanwhile, decision-making periods of location choice and determining areal densities are conducted without quantitative spatial/technical analyses. Those urban matters bring along new planning paradigms like smart growth (SG) and new urbanism. SG is a land use planning paradigm which indicates that traffic problems should be minimized by transit alternatives, effective demand management and providing a balance between land use and transportation planning. This study aims to apply SG strategies to the land use planning process and evaluate the accuracy of land use planning decisions in the perspective of sustainable transportation. In order to reveal the effects of land use planning decisions on the available transportation infrastructure, two scenarios are investigated for 2030. In the first scenario “do nothing” option is considered, while the residential area densities and trip generation rates are regulated based on SG strategies in the second scenario. The results showed that the land use and traffic impact analyses should simultaneously be conducted before land use configuration process.",book:{id:"5235",slug:"sustainable-urbanization",title:"Sustainable Urbanization",fullTitle:"Sustainable Urbanization"},signatures:"Gorkem Gulhan and Huseyin Ceylan",authors:[{id:"182126",title:"Dr.",name:"Gorkem",middleName:null,surname:"Gulhan",slug:"gorkem-gulhan",fullName:"Gorkem Gulhan"},{id:"185555",title:"Dr.",name:"Huseyin",middleName:null,surname:"Ceylan",slug:"huseyin-ceylan",fullName:"Huseyin Ceylan"}]},{id:"42926",title:"Disaster Risk Management and Social Impact Assessment: Understanding Preparedness, Response and Recovery in Community Projects",slug:"disaster-risk-management-and-social-impact-assessment-understanding-preparedness-response-and-recove",totalDownloads:10045,totalCrossrefCites:3,totalDimensionsCites:11,abstract:null,book:{id:"3364",slug:"environmental-change-and-sustainability",title:"Environmental Change and Sustainability",fullTitle:"Environmental Change and Sustainability"},signatures:"Raheem A. Usman, F.B. Olorunfemi, G.P. Awotayo, A.M. Tunde and\nB.A. Usman",authors:[{id:"156875",title:"Dr.",name:"Usman A",middleName:null,surname:"Raheem",slug:"usman-a-raheem",fullName:"Usman A Raheem"},{id:"166449",title:"Dr.",name:"A.M",middleName:null,surname:"Tunde",slug:"a.m-tunde",fullName:"A.M Tunde"},{id:"167886",title:"Dr.",name:"F.B.",middleName:null,surname:"Olorunfemi",slug:"f.b.-olorunfemi",fullName:"F.B. Olorunfemi"},{id:"167887",title:"Dr.",name:"G.P.",middleName:null,surname:"Awotayo",slug:"g.p.-awotayo",fullName:"G.P. Awotayo"}]}],onlineFirstChaptersFilter:{topicId:"136",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"82644",title:"Climate-Driven Temporary Displacement of Women and Children in Anambra State, Nigeria: The Causes and Consequences",slug:"climate-driven-temporary-displacement-of-women-and-children-in-anambra-state-nigeria-the-causes-and-",totalDownloads:24,totalDimensionsCites:0,doi:"10.5772/intechopen.104817",abstract:"With increasing periods of extreme wet seasons, low lying geographic position, with socioeconomic, and political factors; some communities in Anambra State, Nigeria experience heightened floods annually resulting in loss of shelter, displacement of people with breakdown of livelihoods, particularly in rural communities worsening their risks and vulnerabilities. In 2012, a major flood event in the state temporarily displaced about 2 million people. In this chapter, we used a community-based adaptation approach to investigate the causes and consequences of climate-related temporary displacement on community members in Ogbaru LGA, Anambra State following flood events. We used global positioning system to obtain the community’s ground control points and gathered our data via field observation, transects walks, focus group discussions, photography, and in-depth interviews. Our findings reveal a heightened magnitude of flood related disasters with decreased socio-economic activities, affecting their health and well-being. Also, the community members have a practice of returning to their land, after flood events, as a local mitigating risk management strategy. For multilevel humanitarian responses at the temporary shelter camps, it becomes imperative to meaningfully engage the community members on the challenging risks and vulnerabilities they experience following climate-driven temporary displacement to inform adaptation and resilience research, policy change and advocacy.",book:{id:"7724",title:"Climate Change in Asia and Africa - Examining the Biophysical and Social Consequences, and Society's Responses",coverURL:"https://cdn.intechopen.com/books/images_new/7724.jpg"},signatures:"Akanwa Angela Oyilieze, Ngozi N. Joe-Ikechebelu, Ijeoma N. Okedo-Alex, Kenebechukwu J. Okafor, Fred A. Omoruyi, Jennifer Okeke, Sophia N. Amobi, Angela C. Enweruzor, Chinonye E. Obioma, Princess I. Izunobi, Theresa O. Nwakacha, Chinenye B. Oranu, Nora I. Anazodo, Chiamaka A. Okeke, Uwa-Abasi E. Ugwuoke, Uche M. Umeh, Emmanuel O. Ogbuefi and Sylvia T. Echendu"},{id:"79637",title:"Evaluation of the Spatial Distribution of the Annual Extreme Precipitation Using Kriging and Co-Kriging Methods in Algeria Country",slug:"evaluation-of-the-spatial-distribution-of-the-annual-extreme-precipitation-using-kriging-and-co-krig",totalDownloads:53,totalDimensionsCites:0,doi:"10.5772/intechopen.101563",abstract:"In this chapter, we have conducted a statistical study of the annual extreme precipitation (AMP) for 856 grid cells and during the period of 1979–2012 in Algeria. In the first step, we compared graphically the forecasts of the three parameters of the generalized extreme value (GEV) distribution (location, scale and shape) which are estimated by the Spherical model. We used the Cross validation method to compare the two methods kriging and Co-kriging, based on the based on some statistical indicators such as Mean Errors (ME), Root Mean Square Errors (RMSE) and Squared Deviation Ratio (MSDR). The Kriging forecast error map shows low errors expected near the stations, while co-Kriging gives the lowest errors on average at the national level, which means that the method of co-Kriging is the best. From the results of the return periods, we calculate that after 50 years the estimated of the annual extreme precipitation will exceed the maximum AMP is observed in the 33-year.",book:{id:"7724",title:"Climate Change in Asia and Africa - Examining the Biophysical and Social Consequences, and Society's Responses",coverURL:"https://cdn.intechopen.com/books/images_new/7724.jpg"},signatures:"Hicham Salhi"},{id:"77854",title:"Flooding and Flood Modeling in a Typhoon Belt Environment: The Case of the Philippines",slug:"flooding-and-flood-modeling-in-a-typhoon-belt-environment-the-case-of-the-philippines",totalDownloads:162,totalDimensionsCites:0,doi:"10.5772/intechopen.98738",abstract:"Flooding is a perennial world-wide problem and is a serious hazard in areas where the amount of precipitable water has potential to dump excessive amount of water. The warming of the Earth’s climate due to the increase in greenhouse gases (GHGs) increases the availability of water vapor and hence, of extreme precipitation as observed and forecasted by researchers. With rainfall intensity too high, the torrential rains coupled with weather systems that enhances its effects, flooding not only submerges anything low-lying, it also washes away living and non-living things along the course of the river and the floodplain. The flooding is even worsened by the increase in velocity of flow caused by unsustainable urbanization and denudation of the watershed at the headwaters. Nature’s strength is an order of a magnitude that is way beyond that of the strength of men but human ingenuity enables us to transform our living environment into models that could help us better understand it. Flood modeling provides us decision support tools to deal better with nature. It also enables us to simulate the future especially nowadays that changes in our climate is imminent and even happening already in many parts of the world. Therefore, strategies on how to cope with our ever changing environment is very important particularly to countries that are at more risk to climate change such as the archipelagic Philippines.",book:{id:"7724",title:"Climate Change in Asia and Africa - Examining the Biophysical and Social Consequences, and Society's Responses",coverURL:"https://cdn.intechopen.com/books/images_new/7724.jpg"},signatures:"Fibor J. Tan"},{id:"77797",title:"Adapting to Climatic Extremes through Climate Resilient Industrial Landscapes: Building Capacities in the Southern Indian States of Telangana and Andhra Pradesh",slug:"adapting-to-climatic-extremes-through-climate-resilient-industrial-landscapes-building-capacities-in",totalDownloads:98,totalDimensionsCites:0,doi:"10.5772/intechopen.98732",abstract:"There is now greater confidence and understanding of the consequences of anthropogenic caused climate change. One of the many impacts of climate change, has been the occurrence of extreme climatic events, recent studies indicate that the magnitude, frequency, and intensity of hydro-meteorological events such as heat waves, cyclones, droughts, wildfires, and floods are expected to increase several fold in the coming decades. These climatic extremes are likely to have social, economic, and environmental costs to nations across the globe. There is an urgent need to prepare various stakeholders to these disasters through capacity building and training measures. Here, we present an analysis of the capacity needs assessment of various stakeholders to climate change adaptation in industrial parks in two southern states of India. Adaptation to climate change in industrial areas is an understudied yet highly urgent requirement to build resilience among stakeholders in the Indian subcontinent. The capacity needs assessment was conducted in two stages, participatory rural appraisal (PRA) and focus group discussion (FGD) were conducted among various stakeholders to determine the current capacities for climate change adaptation (CCA) for both, stakeholders and functional groups. Our analysis indicates that in the states of Telangana and Andhra Pradesh, all stakeholder groups require low to high levels of retraining in infrastructure and engineering, planning, and financial aspects related to CCA. Our study broadly supports the need for capacity building and retraining of functionaries at local and state levels in various climate change adaptation measures; likewise industry managers need support to alleviate the impacts of climate change. Specific knowledge, skills, and abilities, with regard to land zoning, storm water management, developing building codes, green financing for CCA, early warning systems for climatic extremes, to name a few are required to enhance and build resilience to climate change in the industrial landscapes of the two states.",book:{id:"7724",title:"Climate Change in Asia and Africa - Examining the Biophysical and Social Consequences, and Society's Responses",coverURL:"https://cdn.intechopen.com/books/images_new/7724.jpg"},signatures:"Narendran Kodandapani"},{id:"77460",title:"Changing Climatic Hazards in the Coast: Risks and Impacts on Satkhira, One of the Most Vulnerable Districts in Bangladesh",slug:"changing-climatic-hazards-in-the-coast-risks-and-impacts-on-satkhira-one-of-the-most-vulnerable-dist",totalDownloads:210,totalDimensionsCites:0,doi:"10.5772/intechopen.98623",abstract:"Changes in the climate due to anthropogenic and natural variation are indicated by parameters including temperature and rainfall. Climate change variability with changing trends of the two have been unpredictable and unprecedented globally leading to changing weather patterns, natural disasters, leading to sectoral impacts on food and water security, livelihood, human health among others. This research analyses the changing patterns of these parameters over the last 35/37 years of Satkhira district of Bangladesh to assess the state and trend across spatial and temporal dimensions. Such, the study validates to rationalize the observed seasonal changes that persist in Satkhira of Bangladesh. Both in terms of intensity and frequency of the occurrences of natural disasters, the series of natural events have been triangulated, with impacts and vulnerability being assessed from temperature variations, erratic rainfall, cyclone, flood and water logging etc. The study’s prime contribution remains in attribution of climate change in relation contextual circumstances in the region including sea level rise, salinity intrusion. Therefore, the risk and climatic hazards and its resulting impacts over time has been assessed to draw deeper connection between theoretical and practical values. The series of analyses also draw conclusion that assets are at risk from changing climatic condition.",book:{id:"7724",title:"Climate Change in Asia and Africa - Examining the Biophysical and Social Consequences, and Society's Responses",coverURL:"https://cdn.intechopen.com/books/images_new/7724.jpg"},signatures:"Md. Golam Rabbani, Md. Nasir Uddin and Sirazoom Munira"},{id:"76915",title:"The Impacts of Climate Change in Lwengo, Uganda",slug:"the-impacts-of-climate-change-in-lwengo-uganda",totalDownloads:101,totalDimensionsCites:0,doi:"10.5772/intechopen.97279",abstract:"Climate Change has become a threat worldwide. Vulnerable communities are at foremost risk of repercussions of climate change. The present study aimed at highlighting a case study of climate change impacts on Lwengo District of Uganda. Out of the total geographical area of the district, 85% hectares are under cultivation and most of its population depends majorly on the rain- fed agriculture sector to meet the food requirement and as a major income source. With the changing climatic conditions, agriculture is the major sector which is being impacted. The region has experienced disasters from some time, usually the second seasons rains used to result in such disasters but since 2016 both seasons have occurred disasters, which majorly include hailstorm, strong wind, long dry spells, pests and diseases. The situation became more severe due to shortage of availability of skilled human resources, quality equipment for disaster management, limited financial resources and weak institutional capacity, which resulted in increasing vulnerability of small farm holders. Some of the adaptation strategies are being taken up by the government but there is a need to understand prospects of decision-making that are site specific and more sustainable for smallholder communities. Climatic changes possess many obstacles to farming communities which require sustainable adaptation to enhance the adaptive capacities of the communities through continued production systems, which are more resilient to the vagaries of weather. Farmers are practising such options which are location specific, governed by policy framework and dependent on dynamism of farmers. This study investigated how these drivers influence farmers’ decision- making in relation to climate change adaptations.",book:{id:"7724",title:"Climate Change in Asia and Africa - Examining the Biophysical and Social Consequences, and Society's Responses",coverURL:"https://cdn.intechopen.com/books/images_new/7724.jpg"},signatures:"Shyamli Singh and Ovamani Olive Kagweza"}],onlineFirstChaptersTotal:13},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:139,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:122,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:21,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:"2753-6580",scope:"