Part of the book: Cell Metabolism
Carbonic anhydrases (CAs) are enzymes catalyzing the reversible hydration of carbon dioxide with the generation of protons and bicarbonate. The components of the reaction are involved in almost all metabolic processes in higher plants and algae, maintaining the balance of electrolytes and pH, gluconeogenesis, lipogenesis, ethylene synthesis, and others. The CAs may take part in transmitting signals to activate cascades of protective response genes. Our findings reveal significant changes in the content of carbonic anhydrase gene transcripts in response to changes in environmental conditions. Here we discuss the functions of CAs located in the plasma membrane, chloroplast envelope, chloroplast stroma, and in thylakoids in plant protection under stress conditions, such as high illumination, low and high concentration of carbon dioxide in the environment, drought, and salinity.
Part of the book: Plant Stress Physiology
The present chapter describes the mechanisms of reactive oxygen species formation in photosynthetic reactions and the functional significance of reactive oxygen species as signal messengers in photosynthetic cells of plants. Attention is given to the acclimation mechanisms of higher plants to abiotic and biotic factors such as increased light, drought, soil salinity and colonization of plants by rhizosphere microorganisms. Special attention is paid to the reactions of reactive oxygen species with the components of the chloroplasts plastoquinone pool leading to production of hydrogen peroxide as a signal molecule, which is involved in acclimation of plants to these stress conditions. The chapter also presents the data demonstrating that regulation of the size of the light-harvesting antenna of photosystem II is one of the universal mechanisms of the structural and functional reorganization of the photosynthetic apparatus of higher plants exposed to the abiotic and biotic factors. These data were obtained for both model Arabidopsis (Arabidopsis thaliana) plants as well as for agricultural barley (Hordeum vulgare) plants. It is hypothesized that hydrogen peroxide, produced with involvement of the plastoquinone pool components, plays the role of a signaling molecule for regulation of the photosystem II antenna size in higher plants when environmental conditions change.
Part of the book: Vegetation Index and Dynamics