The status of the U.S. commercial lignocellulosic ethanol facilities.
\r\n\tIn sum, the book presents a reflective analysis of the pedagogical hubs for a changing world, considering the most fundamental areas of the current contingencies in education.
",isbn:"978-1-83968-793-8",printIsbn:"978-1-83968-792-1",pdfIsbn:"978-1-83968-794-5",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"b01f9136149277b7e4cbc1e52bce78ec",bookSignature:"Dr. María Jose Hernandez-Serrano",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10229.jpg",keywords:"Teacher Digital Competences, Flipped Learning, Online Resources Design, Neuroscientific Literacy (Myths), Emotions and Learning, Multisensory Stimulation, Citizen Skills, Violence Prevention, Moral Development, Universal Design for Learning, Sensitizing on Diversity, Supportive Strategies",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 14th 2020",dateEndSecondStepPublish:"October 12th 2020",dateEndThirdStepPublish:"December 11th 2020",dateEndFourthStepPublish:"March 1st 2021",dateEndFifthStepPublish:"April 30th 2021",remainingDaysToSecondStep:"3 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Dr. Phil. Maria Jose Hernandez Serrano is a tenured lecturer in the Department of Theory and History of Education at the University of Salamanca, where she currently teaches on Teacher Education. She graduated in Social Education (2000) and Psycho-Pedagogy (2003) at the University of Salamanca. Then, she obtained her European Ph.D. in Education and Training in Virtual Environments by research with the University of Manchester, UK (2009).",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"187893",title:"Dr.",name:"María Jose",middleName:null,surname:"Hernandez-Serrano",slug:"maria-jose-hernandez-serrano",fullName:"María Jose Hernandez-Serrano",profilePictureURL:"https://mts.intechopen.com/storage/users/187893/images/system/187893.jpg",biography:"DPhil Maria Jose Hernandez Serrano is a tenured Lecturer in the Department of Theory and History of Education at the University of Salamanca (Spain), where she currently teaches on Teacher Education. She graduated in Social Education (2000) and Psycho-Pedagogy (2003) at the University of Salamanca. Then, she obtained her European Ph.D. on Education and Training in Virtual Environments by research with the University of Manchester, UK (2009). She obtained a Visiting Scholar Postdoctoral Grant (of the British Academy, UK) at the Oxford Internet Institute of the University of Oxford (2011) and was granted with a postdoctoral research (in 2021) at London Birbeck University.\n \nShe is author of more than 20 research papers, and more than 35 book chapters (H Index 10). She is interested in the study of the educational process and the analysis of cognitive and affective processes in the context of neuroeducation and neurotechnologies, along with the study of social contingencies affecting the educational institutions and requiring new skills for educators.\n\nHer publications are mainly of the educational process mediated by technologies and digital competences. Currently, her new research interests are: the transdisciplinary application of the brain-based research to the educational context and virtual environments, and the neuropedagogical implications of the technologies on the development of the brain in younger students. Also, she is interested in the promotion of creative and critical uses of digital technologies, the emerging uses of social media and transmedia, and the informal learning through technologies.\n\nShe is a member of several research Networks and Scientific Committees in international journals on Educational Technologies and Educommunication, and collaborates as a reviewer in several prestigious journals (see public profile in Publons).\n\nUntil March 2010 she was in charge of the Adult University of Salamanca, by coordinating teaching activities of more than a thousand adult students. She currently is, since 2014, the Secretary of the Department of Theory and History of Education. Since 2015 she collaborates with the Council Educational Program by training teachers and families in the translation of advances from educational neuroscience.",institutionString:"University of Salamanca",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Salamanca",institutionURL:null,country:{name:"Spain"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"23",title:"Social Sciences",slug:"social-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"301331",firstName:"Mia",lastName:"Vulovic",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/301331/images/8498_n.jpg",email:"mia.v@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6942",title:"Global Social Work",subtitle:"Cutting Edge Issues and Critical Reflections",isOpenForSubmission:!1,hash:"222c8a66edfc7a4a6537af7565bcb3de",slug:"global-social-work-cutting-edge-issues-and-critical-reflections",bookSignature:"Bala Raju Nikku",coverURL:"https://cdn.intechopen.com/books/images_new/6942.jpg",editedByType:"Edited by",editors:[{id:"263576",title:"Dr.",name:"Bala",surname:"Nikku",slug:"bala-nikku",fullName:"Bala Nikku"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"68704",title:"Introductory Chapter: Metallic Glasses",doi:"10.5772/intechopen.88891",slug:"introductory-chapter-metallic-glasses",body:'\nFast-growing technological development imposes a need for new functional materials with improved physical and mechanical properties. Since their first synthesis in 1960 [1], amorphous alloys, also known as metallic glasses, have been a focus of numerous investigations due to their advanced mechanical, electrical, magnetic, and anti-corrosion properties, related to their isotropic structure and short-range atomic arrangement [2, 3, 4, 5, 6].
\nGenerally speaking, metallic glasses are multi-component systems involving different metals (MI-MII) or metal and non-metal, i.e., metalloid (M-NM) components [7, 8, 9]. For the MI-MII systems, the metals belong to the groups of transition, rare-earth or alkaline metals, or are uranium, neptunium, or plutonium [2, 10, 11]. The M-NM systems can be represented by the general formula M75–85NM15–25 (at.%), where M is one or more metal elements, usually the transition or noble one, and NM is one or more metalloid or non-metal elements, most commonly B, Si, Ge, C, or P.
\nThe metallic glasses are solid materials without structural translational periodicity, characteristic for a crystalline structure. From the atomic aspect, the structure of metallic glasses is analogous to the structure of liquids, characterized by macroscopic isotropy, nonexistence of the long-range atomic ordering, but existence of a short-range ordering at the atomic level. The short-range ordering of the atoms means that each atom is surrounded by the same atoms positioned at similar distances, where the lines drawn between the atom centers form similar angles, as a consequence of chemical bonds keeping the atoms together in solid state. Variation in inter-atomic distances and angles means the variation in the strength of chemical bonds, causing the softening of material in defined temperature interval instead of melting at defined temperature [12].
\nThe ability of a liquid alloy to transform into the metallic glass is called the glass-forming ability (GFA). The GFA is determined by structural, thermodynamic, and kinetic parameters characterizing the system, i.e., chemical composition, geometrical arrangement of atoms, bonding and atomic size effects, cooling rate, and crystallization kinetics [5]. So far, many empirical criteria were proposed with the aim of predicting and explaining the GFA [5, 13, 14, 15]. The empirical criteria for easier glass formation can be expressed in five points as follows:
alloy is multi-component containing at least three elements, two of which are metals;
atomic radii difference among the three constituent elements should be at least 12%;
heats of mixing among the main three elements should be negative;
total content of non-metals (metalloids) amounts to around 20 at.%; and
heteronucleants (oxide crystal inclusions) must be removed.
Generally speaking, the metallic glasses are solid materials exhibiting all the important features of the solid state. However, the short-range ordered glassy structure is manifested by broad halo peaks in XRD patterns. Due to the macroscopic isotropy of amorphous materials, for the description of their atomic structure, radial distribution function can be used. It represents the average number density of atoms as a function of the distance from the chosen atom.
\nIn order to explain the amorphous structure of metallic glasses, different models were proposed [16, 17, 18, 19, 20]. Bernal introduced the model of dense random packing of hard spheres (DRPHS) [16, 17], which includes the presence of only metal atoms in the structure. The Polk’s modification of the Bernal’s model positioned the metalloid atoms at the larger holes of the DRPHS structure, but gave satisfactory results only for B and C as non-metallic components [18]. On the other hand, according to Gaskell’s model [19], the alloy structure is built from the ordered structural units composed of 200–400 atoms, identified as trigonal prisms, tetrahedra, or octahedra, forming random long-range structures. In spite of a relatively large number of the proposed models and their modifications, many details related to the structure of amorphous alloys still remain unclear.
\nThe term “metallic glasses” denotes those amorphous alloys obtained by rapid quenching techniques. During fabrication of a glassy alloy, the crystallization, including the steps of nucleation and growth of the formed nuclei, must be avoided. This can be achieved in different ways, involving very fast cooling of an alloy melt, often at a rate of 106 K min−1. The most frequently used amorphization procedures aimed at preparation of amorphous alloys include rapid quenching of a melt of appropriate chemical composition, most commonly on a cold rotating metal disc [21]. Cooling rate necessary for amorphization is determined by the chemical composition, i.e., by the nature of the components forming a melt [8, 14]. Other methods used to obtained amorphous alloys include vapor deposition [22], spray deposition [23], ion implantation [24], laser processing [25], chemical reduction [26], electrodeposition [27], mechanical alloying [28], etc.
\nGlassy state is structurally and thermodynamically metastable and prone to transformations under the conditions of elevated pressure or temperature, or even during prolonged usage at moderate temperature. They could occur through the processes of relaxation, partial or complete crystallization, and recrystallization, changing the microstructure of a material, providing a simple procedure for production of polycrystalline and composite materials with targeted properties. Crystallization process can be [6, 12]:
polymorphous crystallization (amorphous phase transforms into a single crystalline phase without a change in composition);
primary crystallization (composition of the first crystalline phase formed from the glass differs from that of the amorphous matrix, and then the crystals of the phase formed primarily serve as the sites of secondary and tertiary crystallization);
eutectic crystallization (two different phases crystallize simultaneously, in a coupled fashion, and their overall composition does not differ from that of the glassy matrix).
The microstructural transformations show a significant impact on physical properties of the materials changing their functionality. Structural relaxation process preceding the crystallization, characteristic of metallic glasses, includes rearrangement of individual species on the atom level and decrease in free volume, changing the short-range order and influencing primarily their electrical and magnetic properties. Additionally, as a result of relaxation, density, elastic modulus, Curie temperature, and viscosity grow, while thermal resistivity, diffusivity, and fracture toughness decrease [12]. The relaxation process can be achieved by low-temperature annealing at temperatures below the crystallization temperature.
\nPartial crystallization of metallic glasses leads to the formation of nanostructured or composite materials, involving nanocrystals embedded in amorphous matrix, with specific physical properties. All these together make the metallic glasses extraordinary precursors for the production of materials with targeted functionality. Properties of metallic glasses and nanocrystalline alloys obtained from the amorphous precursors are determined by both, the alloy chemical composition and microstructure.
\nAlmost all the glassy alloys with favorable magnetic properties contain a high percentage of transition metals or rare earth elements. In this sense, iron, cobalt, and nickel-based metallic glasses are soft magnetic materials. Their excellent combination of magnetic properties including low coercivity, relatively high saturation magnetization, zero magnetostriction as well as their relatively high electrical resistivity allows their application in transformer cores, magnetic sensors, magnetic shielding, amplifiers, information handling technologies [6, 29, 30], etc. On the other hand, addition of Nd and Pr provides their hard magnetic properties [31].
\nMetallic glasses are considered, from a mechanical point of view, very hard and strong materials, with high wear resistance [2, 6]. The high strength of these materials is a consequence of the fact that they do not contain defects characteristic for crystalline structure. Advantageous mechanical properties are exhibited by the multi-component alloys based on Ti, Zr, Al, Mg, Fe, Co, or Ni [5, 32, 33, 34, 35, 36, 37, 38, 39, 40]. However, these materials are characterized by limited plastic strain in tension, while the inhomogeneous deformation occurs through the formation of shear bands [6]. Fracture toughness of metallic glasses is somewhat lower than that of crystalline materials, but two orders of magnitude higher than in the case of oxide glasses [12]. Metallic glasses based on Al and Mg possess high specific strength, due to their low density and mass [39, 40]. As a result of their favorable mechanical properties, including high strength and large elastic elongation limit, metallic glasses are used in reinforcing composites, for sporting goods, microgears, aircraft parts, brazing foils [6, 12, 41, 42], etc.
\nGood corrosion resistance, observed for the metallic glasses containing Cr, Zr, Ni, Nb, Mo, or V, is a particularly important characteristic of these materials from the aspect of their applicability in modern technology [43, 44, 45, 46]. Some metallic glasses are suitable for being used as biomedical materials (such as the TiZrCuPdSn alloys [47]), while some other glassy alloys show superconducting properties (such as the TiNb-based ones [48]).
\nFrom a technological point of view, nanocrystalline alloys obtained by partial crystallization of the glassy alloys represent a particularly interesting class of functional materials. The iron-based nanocrystalline alloys with the composition Fe-R-B (where R is rare earth element, B is boron) possess hard magnetic properties [49]. However, the soft magnetic materials in this class are nanocrystalline materials with the composition Fe-Si-B-Nb-Cu (FINEMET), Fe-M-B-Cu (M is Zr, Hb or F) (NANOPERM), Fe-Co-M-B-Cu (M is Zr, Hb or F) (HITPERM) [50], etc. To maintain favorable functional properties, in this case the soft magnetic ones, crystal size of the α-Fe or α-Fe(Si) in FINEMET or NANOPERM alloys must not exceed 15 nm [51]. To obtain nanocrystalline structure from the amorphous one, controlled fast nucleation and slow crystal growth are required. This can be achieved by an appropriate choice of the alloy composition and by thermal treatment as in the FINEMET-type alloys, where Cu is added to facilitate nucleation, while the Nb decreases the crystal growth rate [51, 52, 53].
\nIn order to provide and maintain an amorphous or nanocrystalline structure of targeted functionality, thermal stability, thermodynamics, and kinetics of phase transformations thermally induced of amorphous and nanocrystalline materials should be known [8, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75]. This requires determination of the temperatures of all of the phase transformations as well as the kinetic triplets of these processes, consisting of Arrhenius parameters, activation energy, and pre-exponential factor, as well as kinetic model (conversion function). By determining the crystallization kinetic model, information about crystallization mechanism, including nucleation, crystal growth, and impingement effects can be obtained. In this way, the lifetime of specific microstructure, important for reliable applicability of materials, can be predicted.
\nSolid-state transformations are often complex processes, consisting of several concurrent or consecutive steps, manifested experimentally by compounded curve forms. In order to discuss all these steps and propose the most probable mechanisms, during the analysis, deconvolution of the compounded peaks (DSC, TG, or even XRD) by using different mathematical tools is required [76, 77, 78, 79, 80, 81, 82, 83, 84].
\nIn view of the foregoing, metallic glasses have still been intriguing although studied for more than 50 years now, offering a wide range of practical applications either in the glassy or derivative form, and promising further technological improvement and development.
\nThe need to slow down and eventually stop global warming has driven commercial production of the bioethanol in the past two decades because the use of renewable fuel is one of the few ways to mitigate climate change as it helps reduce GHG emissions. Multiple independently produced datasets confirm that between 1880 and 2012, the global average land and ocean surface temperature increased by 0.85 [0.65–1.06]°C [1]. Since 1979 the rate of warming has approximately doubled (0.13°C/decade, against 0.07°C/decade) [2, 3]. The scientific consensus as of 2013 stated in the intergovernmental panel on climate change (IPCC) Fifth Assessment Report is that it “is extremely likely that human influence has been the dominant cause of the observed warming since the mid-20th century.” In 2018 the IPCC published a Special Report on Global Warming of 1.5°C which warned that, if the current rate of greenhouse gas (GHG) emissions is not mitigated, global warming is likely to reach 1.5°C between 2030 and 2052 causing major crises. The report said that preventing such crises will require a swift transformation of the global economy that has “no documented historic precedent” [4].
\nA mandate required developed countries to take the lead in reducing their emissions and was sustained in the Kyoto Protocol to the United Nations Framework Convention on Climate Change (UNFCCC), which entered into legal effect in 2005. In ratifying the Kyoto Protocol, most developed countries accepted legally binding commitments to limit their emissions. Biofuel mandates are set in more than 60 nations and incentives are provided by the governments to boost bioethanol production [5].
\nIn the U.S., production, transportation and fermentation of the corn was adapted quickly by industry for fuel ethanol production, primarily because corn was the only crop that had the existing infrastructure to easily modify for this purpose, especially when initially incentivized with tax credits, subsidies and import tariffs. Figure 1 shows total U.S. corn use from 1986 to 2018. The amount of corn used for ethanol production increased substantially between 2001 and 2010, as nearly all gasoline was transitioned to 10% ethanol. From 2013, the trend remains consistent with production and usage remaining relatively constant.
\nThe U.S. corn for fuel ethanol, feed, and other use. Source: the United States Department of Agriculture Economic Research Service Feed Grain Yearbook.
There is still some debate on whether biofuel production from food feedstock can truly reduce GHG emissions. The United Nations Intergovernmental Panel on Climate Change released two of its Working Group reports state that “Biofuels have direct, fuel-cycle GHG emissions that are typically 30–90% lower than those for gasoline or diesel fuels. However, since for some biofuels indirect emissions—including from land use change—can lead to greater total emissions than when using petroleum products, policy support needs to be considered on a case by case basis” (IPCC 2014 Chapter 8). The report lists many potential negative risks of ethanol production from food feedstock, such as direct conflicts between land for fuels and land for food, other land-use changes, water scarcity, loss of biodiversity and nitrogen pollution through the excessive use of fertilizers.
\nAlso, the potential of using bioethanol from food feedstock to replace petroleum fuels is limited. The United States will use over 130 billion gallons of gasoline in 2014, and over 50 billion gallons of diesel. On average, one bushel of corn can be used to produce just 2.8 gallons of ethanol. If all of the production of corn in the U.S. were converted into ethanol, it would only displace 25% of that 130 billion.
\nOn the other hand, there is less controversy over GHG reduction from production of lignocellulosic ethanol production as cellulosic materials are mostly the wastes of the agriculture and forest industry. The shift from food crop feedstocks to waste residues and native grasses offers significant opportunities for a range of players, from farmers to biotechnology firms, and from project developers to investors [6]. However, the process to convert lignocellulosic materials to ethanol is much more complex than that used to covert starch and sugars into ethanol.
\nCellulosic ethanol industry is still in its infancy. In the U.S., as of 2013, the first commercial-scale plants to produce cellulosic biofuels have begun operating. In the following 5 years, cellulosic ethanol production grown from 0 to 10 million gallons [7], and most likely topping 15 million in 2018. However, that is far from the Renewable Fuel Standard’s original target of 7 billion gallons of cellulosic biofuel by 2018 and 16 billion by 2022. Of all five commercial cellulosic ethanol plants that were built/to be built in the U.S. from 2010 to 2016, only POET’s Emmetsburg, Iowa facility is still in operation in 2019 (Table 1). In 2017, the total cellulosic ethanol produced was less than half the nameplate capacity (25 million gallons year−1) of this single plant [13].
\nCompany | \nLocation | \nFeedstock | \nCapacity (mg year−1) | \nStatus | \n
---|---|---|---|---|
Abengoa Bioenergy | \nHugoton, KS | \nWheat straw | \n25–30 | \n2013–2016 Bankrupt [8] | \n
BlueFire Ethanol | \nFulton, MS | \nMultiple sources 19 | \n20 | \nConstruction halted 2011 [9] | \n
DuPont | \nNevada, Iowa | \n\n | 30 | \nSold to Verbio in Nov. 2018 [10] | \n
Mascoma | \nKinross, MI | \nWood waste | \n20 | \nConstruction halted in 2013 [11] | \n
POET LLC | \nEmmetsburg, IA | \nCorn stover | \n20–25 | \nOperational in Sep. 2014 [12] | \n
The status of the U.S. commercial lignocellulosic ethanol facilities.
The future of bioethanol generation from lignocellulosic materials is not clear at this point of time. The sustainability of this renewable fuel business will depend on the success of development of cost-cutting technologies for every stage of lignocellulosic ethanol production.
\nFirst-generation biofuel includes biodiesel produced from vegetable oils through transesterification and bioethanol generated from food feedstock, mainly starchy materials (e.g., corn, wheat, barley, cassava, potato) and sucrose-containing feedstock (e.g., sugarcane, sugar beet, sweet sorghum) [14]. First-generation bioethanol is produced from fermentation of these starchy and sucrose-containing materials in four basic steps: enzymatic saccharification or hydrolysis of starch into sugars, microbial (yeast) fermentation of sugars, distillation, and dehydration.
\n\nFigure 2 shows global ethanol production by country or region, from 2007 to 2017. Together, the U.S. and Brazil produce 85% of the world’s ethanol. The vast majority of Brazil ethanol is produced from sugarcane.
\nGlobal ethanol production by country or region, from 2007 to 2017. Source: Renewable Fuels Association. Last updated October 2018.
The United States is the world’s leading producer of ethanol, with nearly 16 billion gallons in 2017 alone, mainly produced from corn. The annual U.S. production of ethanol from 1981 to 2018 is shown in Figure 3.
\nThe U.S. annual production of ethanol from 1981 to 2018 [15].
Second and subsequent generations of biofuels including bioethanol are produced from non-food raw materials [16]. Second-generation bioethanol is typically produced from sugars derived from lignocellulosic biomass. Various types of biomass have been studied for production of biofuels including agricultural wastes (e.g., corn stover, wheat straw, corn cob, rice husk, and sugar cane bagasse), energy crops which grow on low-quality soil (perennial grasses such as Miscanthus sinensis and M. giganteus and switchgrass), forest-based woody wastes (bark, sawdust, softwood trimmings and hardwood chips), waste from parks and gardens (leaves, grasses, and branches), municipal solid wastes such as food waste, kraft paper and paper sludge, the whey-a byproduct of the cheese industry, and crude glycerol from the biodiesel industry.
\nThe amount of available lignocellulosic biomass far exceeds the amount of food feedstock that can be used for biofuel production. However, the production of lignocellulosic bioethanol requires feedstock preparation prior to fermentation and finding/developing microbes that are able to hydrolyze polysaccharides and ferment sugars from cellulose and hemicellulose breakdown.
\nThe term third generation biofuel refers to biofuel derived from algae and has only recently enter the mainstream. Previously, algae were grouped with other non-food biomass types as feedstock for second generation biofuels. However, the uniqueness in algae’s production methods and potential of much higher yields of biofuel production warrants its separation from other types of non-food biomass to form their own category.
\nWhen it comes to the potential to produce fuel, algae is unique in several ways. First, algae produce an oil that can easily be refined into diesel or even certain components of gasoline [17]. Second, it can be genetically manipulated to produce a wide list of fuels including biodiesel, butanol, gasoline, methane, ethanol, vegetable oil, and jet fuel [18]. Third, it is also capable of producing outstanding yields. In fact, algae have been used to produce up to 9000 gallons of biofuel per acre, which is 10-fold what the best traditional feedstock have been able to generate. Yields as high as 20,000 gallons per acre are believed to be attainable. According to the US Department of Energy, yields of 10-fold high mean that only 0.42% of the U.S. land area would be needed to generate enough biofuel to meet all the U.S. needs.
\nAlgae do have a down side: they require large amounts of water, nitrogen and phosphorus to grow. So much that the production of fertilizer to meet the needs of algae used to produce biofuel would produce more greenhouse gas emissions than were saved by using algae-based biofuel. It also means the cost of algae-base biofuel is much higher than fuel from other sources. This single disadvantage means that the large-scale implementation of algae to produce biofuel will not occur for a long time, if at all. In fact, after investing more than $600 million USD into research and development of algae, Exxon Mobil came to the conclusion in 2013 that algae-based biofuels will not be viable for at least 25 years which was calculated on strictly economical term without considering the environmental impacts that have yet to be solved [19].
\nDry plant materials are mainly comprised of three types of biopolymers: cellulose, hemicellulose, and lignin. Cellulose and hemicellulose account for more than half of the entire dry biomass (see Table 2) [28]. Ethanol yield and conversion efficiency depend on the type of biomass, and benefit from a high content of cellulose and hemicellulose and low lignin content [29]. The domains of the three polymers in plant cell walls are connected strongly through covalent and hydrogen bonds. These bonds make lignocellulosic material resistant to degradation [30] and different methods of pretreatment [31].
\nBiomass | \nCellulose % | \nHemicellulose % | \nLignin % | \n
---|---|---|---|
Corn stover | \n37.5 | \n30 | \n10.3 [20] | \n
Corn cobs | \n33.6 | \n37.2 | \n19.3 [21] | \n
Sugarcane bagasse | \n45 | \n20 | \n30 [22] | \n
Grasses | \n25–40 | \n35–50 | \n10–30 [23] | \n
Switchgrass | \n31.98 | \n25.19 | \n18.13 [24] | \n
Wheat straw | \n35.9 | \n23.9 | \n19.3 [25] | \n
Oat straw | \n39.4 | \n27.1 | \n20.7 [23] | \n
Rice straw | \n44.3 | \n35.5 | \n20.4 [26] | \n
Rice husk | \n34.4 | \n29.3 | \n19.2 [27] | \n
Hardwood | \n\n | \n | \n |
Black locust | \n41.61 | \n17.66 | \n26.70 [24] | \n
Hybrid poplar | \n44.70 | \n18.55 | \n26.44 [24] | \n
Eucalyptus | \n49.50 | \n13.07 | \n27.71 [24] | \n
Hardwood stems | \n40–55 | \n24–40 | \n18–25 [23] | \n
Softwood-pine | \n44.55 | \n21.90 | \n27.67 [24] | \n
Nut shells | \n25–30 | \n25–30 | \n30–40 [23] | \n
Newspaper | \n40–55 | \n24–40 | \n18–25 [23] | \n
Biomass composition.
Cellulose is a β-glucan linear polymer of 500–14,000
Hemicellulose is a branched heteropolymer of different monosaccharides including pentoses (
C5 sugars such as xylose and arabinose are mostly found in xyloglucan, xylan, arabinan and arabinogalactan (substructures of pectin), which are components of polysaccharides in the plant cell wall [38]. Xylan is the largest hemicellulose component, consisted of β-1,4-linked xylose residues with side branches of α-arabinofuranose and α-glucuronic acids and contribute to cross-linking of cellulose microfibrils and lignin through ferulic acid residues [39].
\nLignin is a natural three-dimensional polymer (600–15,000 kda) bio-synthesized from phenylpropanoid units via radical reactions [40]. Lignin accounts for 20–35 wt% in woody biomass (40–50 wt% in bark) and 10–20 wt% in agricultural stems [41]. In lignin, phenolic units are connected by more than eight different linkages, among them arylglycerol β-aryl ether (β-O-4) is the dominant linkage in both softwood and hardwood in most plants, consisting of ~50% of spruce linkages and 60% of birch and eucalyptus linkage [42]. It has long been recognized as the major renewable source of aromatic chemicals such as phenols and aromatic hydrocarbons.
\nDue to the complex polymer structure and heterogeneity in the ways monomeric units are linked, lignin is particularly difficult to biodegrade, making it an undesirable component in plant cell walls for bioethanol production. In plant cell wall, lignin functions like a glue to hold all components together [43]. As such, its recalcitrant character makes this three-dimensional polymer molecule a physical barrier to the enzymes that act on cellulose and hemicellulose.
\nIn biorefinery, around 62 million tonnes of lignin is obtained in the commercial production of lignocellulosic ethanol. A large amount of lignin is also being generated in the pulp industry as lignin has also to be separated from cellulose for a different reason: the aromatic components in lignin can turn yellow as it is oxidized slowly in air. Despite that lignin has mainly been burned to supply heat and to generate electricity, it has long been recognized as the major renewable source of aromatic polymer and chemicals [44].
\nDue to the lower oxygen content in lignin as compared to that in cellulose, the energy value of lignin could be as high as cellulose despite of its lower weight percentage in lignocellulosic biomass. This has generated a lot of interest in converting lignin into liquid fuels using thermochemical and biological methods including pyrolysis, hydrothermal liquefaction, and enzymatic decomposition [45]. Among these methods, hydrothermal liquefaction has been more investigated recently and appears to be a promising way to decompose lignin into bio oil which could be further processed into liquid transportation fuels.
\nSecond-generation bioethanol is produced using a process involving the four primary steps of (i) pre-treatment, (ii) hydrolysis to sugars, (iii) fermentation, and (iv) product/coproduct recovery [46]. During pre-treatment, the feedstock is subjected to physical (heat, steam) or chemical (acid or base) conditions that disrupt the fibrous matrix of the material, resulting in the separation of the hemicelluloses from the cellulose chains and the lignin that binds them together. Hydrolysis follows pre-treatment, releasing individual glucose from cellulose and hexose and pentose from hemicellulose. These monomers can then be fermented to ethanol by yeasts that have been modified to ferment both hexose and pentose sugars and adapted to deal with the inhibitors that are produced during pre-treatment and unavoidably associated with the hexose and pentose sugars [34]. Distillation and dehydration of the aqueous ethanol solution produces ethanol of 99.9% purity. Coproduct recovery will depend upon the feedstock and pre-treatment process used and can include a range of products such as extractives, lignin, and unhydrolyzed cellulose [47].
\nIn the following three sections (Sections 4–7), each of the four primary steps will be reviewed. Current topics of research, which are concentrated on recombinant fermentative microbes development and a consolidated process of hydrolysis and co-fermentation of hexoses and pentoses, will be covered in Section 8. A review on cost analysis is given in Section 9 to present opportunities for cost reduction for second-generation bioethanol production.
\nWithout pretreatment before the enzymatic saccharification stage, the non-biodegradable lignin in lignocellulosic material presents as a major obstacle to the enzymatic hydrolysis of crystalline cellulose and hemicellulose which themselves already have low digestibility [48]. Pretreatment removes or decomposes the lignin (delignification) [49] and thus makes cellulose and hemicellulose more readily available to cellulases and hemicellulose’s.
\nIn principle, there are three methods for pretreatment: biological, chemical and physical processes. Some processes, where chemical and physical actions are inherently inseparable, are termed physiochemical. Two or all of these basic methods can be used in combination to gain benefits from each method. Various pretreatment methods have been described and compared critically in a recent review [50].
\nBiological treatment uses microorganisms such as white, brown or soft rot fungi which break up the structure of lignin via the action of extracellular lignolytic enzymes released by the fungi [51]. Further research is needed to overcome the issues of selectivity, cost, retention time and effectiveness to make it a practical choice [50].
\nChemical treatments include treatment with bases, diluted acids, and oxygen as an oxidizer. These reagents react with lignin and cause the polymer to breakdown into smaller and more soluble fragments. Physical pretreatment is usually performed before chemical or biological treatment to reduces cell wall crystallinity and particle size by physical milling or grinding [50]. In some treatment methods, both physical action and chemical reaction play important roles in lignin removal. Such physicochemical pretreatment can involve steam explosion, liquid hot water, ammonia fiber explosion, ammonia recycle percolation or a supercritical carbon dioxide.
\nPretreatment contributes a vital role in the cost evaluation process of whole technology, because they contribute about 30–35% of overall production cost [52]. There are many issues that arise from this process [50] including loss of sugars (mainly pentose sugars derived from hemicellulose degradation), and generation of toxic substances that inhibits the downstream fermentation process. Both need to be minimized to make ethanol production more efficient.
\nSteam explosion has become one of the most adopted pretreatment processes, where hydrolysis of hemicellulose also happens which improves cellulose digestibility. It is a physiochemical method that uses both physical changes caused by sudden pressure reduction and heat- and catalyst-induced chemical changes. An impregnation agent is sometimes used before the pretreatment step. Upon steam explosion after 1–5 min soaking in 160–270°C and 20–50 bar steam, fibers loose up and sugar polymers (mainly hemicellulose) partially degrade into sugars via hydrolysis of glycoside bonds in polysaccharides and lignin into soluble fragments including some inhibitors and phenolic products [50]. The process allows for subsequent solubilization of hemicellulose in water and lignin in organic or alkaline solvent. Cellulose undergoes some degree of polymerization but is still insoluble in water or organic solvents and remains in the solid phase. Acid (sulfuric acid and sulfur dioxide) impregnation before steam explosion reduce the time and temperature necessary for proper depolymerization of the feedstock, increases the efficiency of enzymatic hydrolysis of polysaccharides to glucose and xylose and reduce enzyme consumption [53]. Compared to other methods of biomass fractionation, steam explosion uses less dangerous chemicals, less demanding on investment and energy consumption [54]. Steam explosion is not recommended for agricultural and hardwood wastes with high contents of pentoses and low levels of lignin, due to the susceptibility of pentoses to thermal degradation. Steam explosion is recommended for processing straw and bagasse.
\nOne of the lasting issues in the second-generation bioethanol production is the formation of inhibitors during the pretreatment. The inhibitors create unfriendly environments for fermentative microbes, increases the length of lag phase, causes loss of cell density and lower growth rates of fermenting microbes, and consequently decreases ethanol yields [55]. The commonly observed inhibitors are aldehydes such as 5-hydroxymethyl-2-furaldehyde and 2-furaldehyde (furfural), weak organic acids (formic, acetic and levulinic acids) and phenolic compounds [56]. Acetic acid is the major organic acid found in hydrolysates coming from the hydrolysis of acetyl side-chain groups in hemicellulose [57]. Cell growth of fermentative microbes is inhibited by the intracellular process of anions of weak acids. Furan aldehydes are poisonous for microbes and phenolic compounds interfere with the function and integrity of cell membranes [58].
\nThere are several methods used for the removal of inhibitors [59]. The detoxification of lignocellulosic hydrolysates can be performed using inhibitor sorbents such as excess of lime, active carbon or lignite (brown coal).
\nAfter pretreatment to partially remove lignin and loose up polysaccharide structures, polysaccharides need to be hydrolyzed into sugar molecules which will be converted into ethanol by fermentation [38]. The hydrolysis can be accomplished chemically via acid-catalyzed cleavage of glycosidic bonds or by enzymes produced by microbes. Enzymatic method is more popular due to less impact on the environment and higher selectivity in the hydrolysis. Glucose and xylose are the main products in hydrolysates from the enzymatic breakdown of polysaccharides.
\nEnzymes produced by the filamentous fungi such as Aspergillus nidulans, Aspergillus niger, Penicillium spp. and Trichoderma reesei are dominant in commercial biorefinery [38]. Among different types of cellulases, endoglucanases attack the internal glycosidic bonds in the amorphous cellulose regions, causing fragmentation of the cellulose structure, and exoglucanase works of the termini of β-glucan molecules to release glucose molecules one at a time, while β-glucosidase attacks catalyzes the hydrolysis of the glycosidic bonds to terminal non-reducing residues in beta-
Various strains of yeasts and bacteria are being investigated with the goal of developing a consolidated process of hydrolysis and co-fermentation of glucose and xylose, without the need for adding exogenous cellulases [63].
\nSugars in the hydrolysate are converted into ethanol by fermentation using microorganisms such as yeasts. Ethanol-producing ability of yeasts depends on lignocellulosic hydrolysate, their strain and fermentation conditions (temperature, pH, aeration and nutrient supplementation). For use in industrial bioethanol production, microorganisms (mainly yeasts) must show thermotolerance and high fermentative activity for simple carbohydrates such as glucose and xylose. They should also be resistant to environmental stressors, including inhibitors mentioned in Section 4.3, acidic pH, high sugar level at the beginning of fermentation (causing hyperosmotic stress), and higher temperatures which prevents microbiological contamination, and are able to grow on various lignocellulosic substrates at a fast growth rate [58, 64].
\nSaccharomyces cerevisiae JRC6 and Candida tropicalis JRC1 are recommended for hydrolysates after alkali pretreatment and acid pretreatment, respectively [41]. Saccharomyces sp. yeasts are used in biorefineries to ferment glucose released during starch hydrolysis. Apart from glucose, they are capable of fermenting galactose and mannose.
\nZymomonas mobilis is a Gram negative, facultative anaerobic, non-sporulating, polarly-flagellated, rod-shaped bacterium. It has notable bioethanol-producing capabilities, which surpass yeast in some respects. However, it only ferments glucose, fructose and sucrose [65]. This prevents them from being used in industrial production of bioethanol. The Z. mobilis strains are tolerant to ethanol concentration up to 120 g/L, and have low nutritional requirements for growth [58]. However, its tolerance to acetic acid is low: as little as 2.5 g/L of HOAc. Its recombinant strain AX101 also has low tolerance to acetic acid.
\nAfter fermentation, the mash is heated so that the ethanol evaporates. This process, known as distillation, separates the ethanol, but its purity is limited to 95–96% due to the formation of a water-ethanol azeotrope with maximum 96.5% v/v) ethanol. This hydrous ethanol can be used as a fuel alone, but is not miscible in all ratios with gasoline, so the water fraction is typically removed before ethanol is added to gasoline.
\nWater can be removed by passing hydrous ethanol vapor through a bed of molecular sieve beads. The bead’s pores are sized to allow adsorption of water while excluding ethanol. Two beds are often used so that one is available to adsorb water while the other is being regenerated. This dehydration technology can save 3000 BTUs/gallon over the azeotropic distillation and has been adopted by most modern ethanol plants.
\nRecent research has demonstrated that complete dehydration prior to blending with gasoline is unnecessary. When the azeotropic mixture is blended directly with gasoline, water separates from the gasoline/ethanol phase and can be removed in a two-stage counter-current setup of mixer-settler tanks with minimal energy consumption [66].
\nNumerous life cycle analyses (LCAs) of lignocellulosic ethanol have been published over the last 15 years and several reviews of these LCA studies have been completed and are cited in a more recent review [67]. These studies show a clear reduction in GHG emissions for lignocellulosic ethanol compared to gasoline. However, accurate quantification of GHG emission reduction is hard to obtain as gaps remain in understanding life cycle performance due to insufficient data, and model and methodological issues. Critical unresolved issues that are expected to impact its energy/GHG emissions performance include feedstock-related emissions, consequential versus attributional life cycle aspects, choice of system boundaries, and allocation methods.
\nDecisions regarding feedstock, process technology and co-products can significantly impact GHG emissions calculations. Predicted life cycle GHG emissions vary widely depending on how the following key parameters are considered: nitrogen-related emissions due to supplemental fertilizer requirements and the N content of feedstock, cellulase requirements, farming energy, ethanol yield, and how the value of co-products such as lignin are realized, among others.
\nGovernment support (i.e., Ethanol mandate, tax credit, etc.) is not expected to last forever. To be sustainable, lignocellulosic biofuels production must meet or exceed the economic performance of their first-generation counterparts. The growth in the capacity of commercial lignocellulosic ethanol production has been slow in the past decade, despite significantly better predicted performance on various environmental and energy security criteria than corn-based ethanol in the various techno-economic evaluations published before 2010 [68]. The slow growth has been due to both large technological risk, large capital cost, and the poor predicted economic performance of biorefineries in the short term.
\nAn LCA of US softwood cellulosic ethanol was reported in 2012 by Stephen et al. [68]. In the paper, the base case (capacity: 50 mL ethanol year−1) softwood ethanol production cost was compared with costs of ethanol produced from corn and sugarcane found in the literature. Softwood lignocellulosic ethanol was predicted to have a production cost of $0.90 L−1, 250–300% higher than US corn and Brazilian sugarcane ethanol production costs, which were in the range of $0.30–$0.40 L−1. The lignocellulosic base case scale of 50 mL year−1, compared to 150 mL year−1 of US corn and 365 mL year−1 of and Brazilian sugarcane, is much smaller as it was chosen based both on the projects funded under the US Department of Energy’s commercial biorefinery program and those operating in other places such as Denmark. Production costs of sugar- or starch-based ethanol are expected to continue to decline to $0.22–$0.25 L−1 by 2020. Thus, second-generation ethanol is not going to catch up with first-generation ethanol on production cost soon.
\nAnother very recent techno-economic evaluation was performed on production cost of ethanol produced from corn stover using either biochemical or thermochemical methods. For heat integrated biochemical route, the predicted bioethanol product costs at $2.00 for a production capacity of 43,300,000 gallon year−1 [69]. This result was clearly an underestimation of lignocellulosic ethanol as a major cost item, capital investment cost, was not included. Furthermore, the corn stover price of 46.8 $/ton was an underestimation, and feedstock transportation cost was not included in LCA. Feedstock cost can impact total cost by 40 percent according to a Lux Research report of 2016 [70]. The Brazilian birefinery company Raizen has the lowest projected minimum ethanol selling price of $2.17 per gallon while Abengoa’s capital-intensive $500 million Hugoton facility has the highest price of $4.55 with feedstock cost emerging as the most critical variable. The low cost of Raizen’s cellulosic ethanol is largely attributed to its access to low cost sugarcane straw and sugarcane bagasse ($40 and $38 per dry metric ton), respectively, compared with corn stover ($90) used by Abengoa and POET-DSM and wheat straw ($75) used by Beta Renewables [71].
\nIt is apparent that second-generation ethanol is currently much more costly to produce than first-generation ethanol. It is hard to predict when the cost of lignocellulosic ethanol will be reduced to the level of corn/sugar cane ethanol. Dramatic reductions in the capital and operational costs must occur before the potential superior environmental benefits from cellulosic ethanol relative to corn ethanol can be realized. Pretreatment, enzymatic hydrolysis and distillation are responsible for much of the cost of producing bioethanol. Currently, intensive research is being conducted to improve each of the processes to make them more economical.
\nAn effective pretreatment increases specific surface area of biomass, making cellulose better available for the action of hydrolytic enzymes obtained from fungi and bacteria, minimizing reductions in enzyme activity, and thus improving the rate of biomass hydrolysis and providing the highest possible concentration of fermentable sugars. Effective pretreatment also reduces the degradation of monosugars [72]. In selecting pretreatment methods, factors such as their environmental impact and recycling of chemical compounds (for example ammonia in the ammonia fiber explosion process [73, 74]) must be considered. Different pretreatment methods and their combinations are being explored for different types of biomass [50].
\nBetter results, e.g., improved ethanol yield, have been obtained from combination of two or more pretreatment methods, but have resulted often at the cost of more energy consumption compared to single method of pretreatment. Among single treatment methods, dilute acid pretreatment is more suitable for various types of biomass as it solubilizes most of hemicellulose and partially remove lignin [50].
\nIt is vital to analyze the pros and cons of each pretreatment technology before scaling up for industrial application. However, technoeconomic assessment will only give a rough estimate on capital cost and the final fuel cost in commercial scale production when many research findings are still in pilot scale level and demonstration plant level [52].
\nEfficient fermentation of pentoses helps reduce ethanol production cost since pentoses can be 25.8 wt% as in sugarcane bagasse [75, 76] 22.3–74.9 wt% in corn stover (Table 3). Wild microorganisms are incapable of producing ethanol in high yields, as they are unable to utilize both pentoses and hexoses. Pentose-specific transporter proteins and enzymatic reactions determining the metabolism of pentoses such as
Biomass | \nLignin | \nHexoses | \nPentoses | \nCarbohydrate | \n|||
---|---|---|---|---|---|---|---|
Glucan | \nMannan | \nGalactan | \nXylan | \nArabinan | \n|||
Corn stover | \n18.2 | \n30.6 | \n0.5 | \n0.7 | \n16.0 | \n1.9 | \n49.7 [76] | \n
\n | 20.2 | \n38.1 | \n0.4 | \n0.7 | \n20.3 | \n2.0 | \n61.5 [76] | \n
\n | 17.2 | \n36.1 | \nN/A | \n2.5 | \n21.4 | \n3.5 | \n65.3 [77] | \n
Corn leaf | \nN/A | \n34.2 | \n1.8 | \n2.5 | \n22.1 | \n3.5 | \n64.1 [68] | \n
Corn stalk | \nN/A | \n36.5 | \n1.7 | \n2.4 | \n21.6 | \n3.2 | \n65.4 [68] | \n
Corn fiber | \n6.9 | \n36.5 | \nN/A | \n2.9 | \n18.4 | \n13.3 | \n71.1 [77] | \n
DDG | \n3.1 | \n22.0 | \nN/A | \n0.3 | \n9.5 | \n5.5 | \n37.3 [77] | \n
Wheat straw | \n14.5 | \n36.6 | \n0.8 | \n2.4 | \n19.2 | \n2.4 | \n61.4 [77] | \n
\n | 16.9 | \n32.6 | \n0.3 | \n0.8 | \n19.2 | \n2.4 | \n55.3 [76] | \n
Switchgrass | \n23.2 | \n32.2 | \n0.4 | \n0.0 | \n20.3 | \n3.7 | \n56.6 [77] | \n
\n | 23.1 | \n35.9 | \n0.4 | \n0.5 | \n19.6 | \n1.5 | \n57.9 [76] | \n
\n | 27.6 | \n31.9 | \n0.3 | \n0.3 | \n10.6 | \n1.1 | \n44.2 [76] | \n
\n | 24.1 | \n42.6 | \n0.3 | \n0.5 | \n23.1 | \n1.5 | \n68.0 [76] | \n
S. bagasse | \n18.4 | \n38.1 | \n0.4 | \n0.0 | \n23.3 | \n2.5 | \n65.0 [77] | \n
Softwood | \n\n | \n | \n | \n | \n | \n | \n |
Spruce | \n28.3 | \n43.2 | \n11.5 | \n2.7 | \n5.7 | \n1.4 | \n64.5 [76] | \n
Red pine | \n29.0 | \n42.0 | \n7.4 | \n1.8 | \n9.3 | \n2.4 | \n62.9 [76] | \n
Lodgepole pine | \n27.9 | \n42.5 | \n11.6 | \n2.1 | \n5.5 | \n1.6 | \n63.3 [76] | \n
Ponderosa pine | \n26.9 | \n41.7 | \n10.8 | \n3.9 | \n6.3 | \n1.8 | \n64.5 [76] | \n
Loblolly pine | \n28.0 | \n45.0 | \n11.0 | \n2.3 | \n6.8 | \n1.7 | \n66.8 [76] | \n
Douglas-fir | \n32.0 | \n44.0 | \n11.0 | \n4.7 | \n2.8 | \n2.7 | \n65.2 [76] | \n
Hardwood | \n\n | \n | \n | \n | \n | \n | \n |
Red maple | \n24.0 | \n46.0 | \n2.4 | \n0.6 | \n19.0 | \n0.5 | \n68.5 [76] | \n
Aspen | \n23.0 | \n45.9 | \n1.2 | \n0.0 | \n16.7 | \n0.0 | \n63.8 [76] | \n
Yellow poplar | \n23.3 | \n42.1 | \n2.4 | \n1.0 | \n15.1 | \n0.5 | \n61.1 [76] | \n
Poplar | \nN/A | \n39.8 | \n2.4 | \n0.0 | \n14.8 | \n1.2 | \n58.2 [77] | \n
Poplar stem | \nN/A | \n40.3 | \n3.1 | \n0.7 | \n17.6 | \n0.6 | \n62.3 [68] | \n
Poplar DN34 | \n23.9 | \n43.7 | \n2.9 | \n0.6 | \n17.4 | \n0.6 | \n65.2 [76] | \n
Euclyptus saligna | \n26.9 | \n48.1 | \n1.3 | \n0.7 | \n10.4 | \n0.3 | \n60.8 [76] | \n
Salix | \n26.4 | \n41.4 | \n3.2 | \n2.3 | \n15.0 | \n1.2 | \n63.1 [76] | \n
Hexose, pentose and lignin contents in different types of biomass.
S. bagasse = sugarcane bagasse.
Owing to large microbial biodiversity, fermentation of pentoses can be achieved either by finding a potent naturally occurring pentose utilizing microorganism or by a genetically engineered C5 utilizing strain [78, 79]. One effective strategy is to create recombinant strain with genes for xylose metabolism [80]. Genetic engineering has been conducted mainly on Saccharomyces cerevisiae yeast, [81] the Gram-positive bacteria Clostridium cellulolyticum and Lactobacillus casei and the Gram-negative bacteria Zymomonas mobilis, Escherichia coli and Klebsiella oxytoca [43]. Recombinant yeasts consume xylose much slower than glucose, thus requiring prolonged fermentation time due to a lack of reaction intermediates and efficient pentose transporters [82].
\nA common problem of xylose-fermenting strains is the production of xylitol or the reabsorption of ethanol, which lead to low ethanol yield. One grand challenge is glucose repression, which results in di-auxic fermentation of a mixture of glucose and pentoses since glucose prevents the catabolism and/or utilization of other non-glucose sugars, leading reduced volumetric ethanol yield [83]. Approaches and conditions sought to improve glucose and xylose fermentation to ethanol are reviewed in a recent paper with emphasis on microbial systems used to maximize biomass resource efficiency, ethanol yield, and productivity [64].
\nSeparate processes have been established for enzymatic hydrolysis of cellulose and hemicellulose and fermentation (SHF) of sugars in hydrolysate. In the SHF processes, saccharification and fermentation take place in separate vessels, so the two processes can be optimized separately. One drawback of SHF is that accumulation of simple carbohydrates (such as cellobiose) causes end-product inhibition of hydrolytic enzymes, for example cellulases or cellobioses. To prevent end-product inhibition, extra doses of β-glucosidase are needed together with the commercial cellulase preparations [84].
\nThere is a strong incentive to develop a process to perform simultaneous saccharification and fermentation (SSF) as it reduces investment costs by reducing the number of vessels and has the potential to become the preferred approach. In SSF, the problem of end-product feedback inhibition is largely eliminated because glucose molecules are fermented immediately by the fermentative microbes as it is produced from hydrolysis of cellulose [85]. However, the benefits come with a major downside which is an inherent mismatch between the optimal temperatures for the enzymes (fungal cellulases and hemicellulose’s) on the one hand, and yeast biocatalysts on the other. The temperature optima for saccharifying enzymes (50–55°C for cellulase) are higher than those for fermenting mesophilic culture. The optimal temperature for yeasts is below 35°C. Mesophilic yeasts (that thrive best in a moderate temperature) exhibit slower growth rates at higher temperatures. Currently, SSF must run at temperatures between the optimum temperature for cellulase and the optimum temperature for fermentative organisms. The compromise results in higher cellulase loading and an increase in enzyme costs. Efficient bioethanol production by SSF requires the use of thermotolerant ethanologenic yeast. It is a hot topic for research to genetically modify microorganisms with the ability to ferment at higher temperatures [43]. Some isolated yeasts, including Pichia, Candida, Saccharomyces and Wickerhamomyces, are found to grow at temperatures of 40°C and ferment sugars at higher temperatures [41]. To make SSF process highly efficient in ethanol production, the pentose metabolic pathway is been engineered into microorganisms to enables the use of C5 sugars by microbes that do not ferment them earlier [86].
\nReduction in enzyme cost is been sought by searching for new organisms with cellulolytic and hemicellulytic activities [87], lowering the enzyme dosage through protein engineering [86, 88], and improving cellulase thermostability for performing hydrolysis at elevated temperatures to increase the efficiency of cellulose hydrolysis [89]. Cellulase enzyme cost reductions are challenging as cellulase costs need to be significantly lower than those of amylase enzymes on a unit-of-protein basis. The high price of the enzymes encouraged research into solutions to the problem of glucose inhibition and to the deactivation caused by lignin by-products [90].
\nFurther integration of enzyme production with SSF leads to a new technology of consolidated bioprocessing (CBP). One area of research is aimed at engineering all three capabilities (saccharification, hexose fermentation and pentose fermentation) into a single strain for the CBP process [91, 92]. Cellulase-encoding genes may be introduced into specific species during recombination [63] to eliminate the need for exogenous cellulases in the process of SSF and decrease the capital costs of processing. CBP technology promises to eliminate costs associated with enzyme production and additional infrastructure/vessels [93].
\nWorking with a high dry matter (DM) concentration is also potentially an effective way to reduce the hydrolytic enzyme costs. However, high DM content causes an increase in viscosity, inadequate mass and heat transfer within the bioreactor, and, consequently, a strong reduction in the conversion of cellulose/hemicellulose to fermentable sugars. This problem could be overcome by adopting various fed-batch strategies or coprocessing substrates with different degrees of porosity [94].
\nA variation of SSF, simultaneous saccharification and co-fermentation (SSCF), in which a starch material is co-fermented, has been adopted to address low ethanol concentration issue in lignocellulosic ethanol production. SSCF can reduce ethanol production cost by increasing ethanol concentration and thus reducing distillation cost [95].
\nRecycling yeasts and enzymes is also an effective way to reduce the cost of ethanol production. The remaining unhydrolyzed solids with some enzymes adsorbed are collected by filtration or centrifuge and are recycled to the next cycle for further hydrolysis. In one study, the enzyme loading was reduced from 36 to 22.3 and 25.8 mg protein per gram glucan, respectively, for separate hydrolysis and fermentation (SHF) and for SSCF on AFEX™ pretreated corn stover [96]. Enzyme adsorption to the residual solids is probably inhibited at high sugar concentrations in the fast SHF process [97] and hence affected enzyme recycling. The fast SSCF process removed most of the sugars by fermentation but produced ethanol whose effect on enzyme adsorption is unclear.
\nCost effect renewable fuel generation from lignocellulosic materials is one of the few options the human beings have to slow down/eliminate global warming and achieve energy independence from fossil fuels. Second generation bioethanol is a promising path in the roadmap to the future world of renewable energy. The cellulosic ethanol industry is still in its infancy and its survival is relying on heavy policy support. Major technological advances at every stage of the cellulosic ethanol production are critically needed to lower the ethanol production cost to a level comparable to the corn ethanol. The key problems that remain to be solved include: (1) Effective and low-cost biomass pretreatment method that exposes polysaccharides to enzymes for efficient saccharification, (2) efficient fermentation of all sugars (pentoses and hexoses) released during the pretreatment and hydrolysis steps into ethanol, (3) development of enzymes that tolerate various inhibitors including monosaccharides (mainly glucose), and ethanol accumulation, and (4) heat-tolerant fermentation microbes and enzymes for efficient simultaneous saccharification and fermentation.
\nThe support of the South Dakota NSF EPSCoR Program (Grant No. IIA-1330842) is greatly appreciated.
\nThere is no conflict of interest involved in this work.
Unsubscribe unsuccessful, no matching records found in our database.
",metaTitle:"Unsubscribe Unsuccessful",metaDescription:"Unsubscribe unsuccessful, no matching records found in our database.",metaKeywords:null,canonicalURL:"/page/unsubscribe-unsuccessful",contentRaw:'[{"type":"htmlEditorComponent","content":""}]'},components:[{type:"htmlEditorComponent",content:""}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5698},{group:"region",caption:"Middle and South America",value:2,count:5172},{group:"region",caption:"Africa",value:3,count:1689},{group:"region",caption:"Asia",value:4,count:10244},{group:"region",caption:"Australia and Oceania",value:5,count:888},{group:"region",caption:"Europe",value:6,count:15650}],offset:12,limit:12,total:117315},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"20"},books:[{type:"book",id:"10206",title:"Terahertz Technology",subtitle:null,isOpenForSubmission:!0,hash:"2cdb79bf6297623f1d6202ef11f099c4",slug:null,bookSignature:"Dr. Borwen You and Dr. Ja-Yu Lu",coverURL:"https://cdn.intechopen.com/books/images_new/10206.jpg",editedByType:null,editors:[{id:"191131",title:"Dr.",name:"Borwen",surname:"You",slug:"borwen-you",fullName:"Borwen You"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10575",title:"Magnetic Skyrmions",subtitle:null,isOpenForSubmission:!0,hash:"d93d7485e8a6a30d9e069aed78fdb355",slug:null,bookSignature:"Prof. Dipti Ranjan Sahu",coverURL:"https://cdn.intechopen.com/books/images_new/10575.jpg",editedByType:null,editors:[{id:"251855",title:"Prof.",name:"Dipti Ranjan",surname:"Sahu",slug:"dipti-ranjan-sahu",fullName:"Dipti Ranjan Sahu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10675",title:"Hydrostatics",subtitle:null,isOpenForSubmission:!0,hash:"c86c2fa9f835d4ad5e7efd8b01921866",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10675.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10957",title:"Liquid Crystals",subtitle:null,isOpenForSubmission:!0,hash:"b8dac1788dc54d12f8fc3d94a7e3e338",slug:null,bookSignature:"",coverURL:"//cdnintech.com/web/frontend/www/assets/cover.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:16},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:6},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:4},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:56},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:4},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5143},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"106",title:"Natural Disaster",slug:"natural-disaster",parent:{title:"Earth and Planetary Sciences",slug:"earth-and-planetary-sciences"},numberOfBooks:10,numberOfAuthorsAndEditors:190,numberOfWosCitations:212,numberOfCrossrefCitations:188,numberOfDimensionsCitations:419,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"natural-disaster",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8979",title:"Tsunami",subtitle:"Damage Assessment and Medical Triage",isOpenForSubmission:!1,hash:"6c1406cbfe8404151d13f3d7236d38fa",slug:"tsunami-damage-assessment-and-medical-triage",bookSignature:"Mohammad Mokhtari",coverURL:"https://cdn.intechopen.com/books/images_new/8979.jpg",editedByType:"Edited by",editors:[{id:"52451",title:"Dr.",name:"Mohammad",middleName:null,surname:"Mokhtari",slug:"mohammad-mokhtari",fullName:"Mohammad Mokhtari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9983",title:"Flood Impact Mitigation and Resilience Enhancement",subtitle:null,isOpenForSubmission:!1,hash:"ce1f62165377d01892a7c7f1b17e43c9",slug:"flood-impact-mitigation-and-resilience-enhancement",bookSignature:"Guangwei Huang",coverURL:"https://cdn.intechopen.com/books/images_new/9983.jpg",editedByType:"Edited by",editors:[{id:"262657",title:"Prof.",name:"Guangwei",middleName:null,surname:"Huang",slug:"guangwei-huang",fullName:"Guangwei Huang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8011",title:"Natural Hazards",subtitle:"Risk, Exposure, Response, and Resilience",isOpenForSubmission:!1,hash:"43ca8c43ab0963f6c43350764f696b63",slug:"natural-hazards-risk-exposure-response-and-resilience",bookSignature:"John P. Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/8011.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",middleName:null,surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6821",title:"Natural Hazards",subtitle:"Risk Assessment and Vulnerability Reduction",isOpenForSubmission:!1,hash:"855e55f0cd51410f7013bb47181d3321",slug:"natural-hazards-risk-assessment-and-vulnerability-reduction",bookSignature:"José Simão Antunes do Carmo",coverURL:"https://cdn.intechopen.com/books/images_new/6821.jpg",editedByType:"Edited by",editors:[{id:"67904",title:"Prof.",name:"José Simão",middleName:null,surname:"Antunes Do Carmo",slug:"jose-simao-antunes-do-carmo",fullName:"José Simão Antunes Do Carmo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6018",title:"Flood Risk Management",subtitle:null,isOpenForSubmission:!1,hash:"e1c40b989aeffdd119ee3876621fa35d",slug:"flood-risk-management",bookSignature:"Theodore Hromadka and Prasada Rao",coverURL:"https://cdn.intechopen.com/books/images_new/6018.jpg",editedByType:"Edited by",editors:[{id:"181008",title:"Dr.",name:"Theodore",middleName:null,surname:"Hromadka",slug:"theodore-hromadka",fullName:"Theodore Hromadka"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5499",title:"Earthquakes",subtitle:"Tectonics, Hazard and Risk Mitigation",isOpenForSubmission:!1,hash:"a02b8c4079277fc2301b3fac46856ca4",slug:"earthquakes-tectonics-hazard-and-risk-mitigation",bookSignature:"Taher Zouaghi",coverURL:"https://cdn.intechopen.com/books/images_new/5499.jpg",editedByType:"Edited by",editors:[{id:"39860",title:"Dr.",name:"Taher",middleName:null,surname:"Zouaghi",slug:"taher-zouaghi",fullName:"Taher Zouaghi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3507",title:"Natural Disasters",subtitle:"Multifaceted Aspects in Management and Impact Assessment",isOpenForSubmission:!1,hash:"3608e266119f43880a9067fc25deaa4c",slug:"natural-disasters-multifaceted-aspects-in-management-and-impact-assessment",bookSignature:"Olga Petrucci",coverURL:"https://cdn.intechopen.com/books/images_new/3507.jpg",editedByType:"Edited by",editors:[{id:"76678",title:"Dr.",name:"Olga",middleName:null,surname:"Petrucci",slug:"olga-petrucci",fullName:"Olga Petrucci"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3088",title:"Updates in Volcanology",subtitle:"New Advances in Understanding Volcanic Systems",isOpenForSubmission:!1,hash:"16d9b1a78c646969f6405d7e17039df5",slug:"updates-in-volcanology-new-advances-in-understanding-volcanic-systems",bookSignature:"Karoly Nemeth",coverURL:"https://cdn.intechopen.com/books/images_new/3088.jpg",editedByType:"Edited by",editors:[{id:"51162",title:"Dr.",name:"Karoly",middleName:null,surname:"Nemeth",slug:"karoly-nemeth",fullName:"Karoly Nemeth"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"600",title:"Approaches to Managing Disaster",subtitle:"Assessing Hazards, Emergencies and Disaster Impacts",isOpenForSubmission:!1,hash:"e97caba8487382025a1e70eb85e4e390",slug:"approaches-to-managing-disaster-assessing-hazards-emergencies-and-disaster-impacts",bookSignature:"John Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/600.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",middleName:null,surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"863",title:"Natural Disasters",subtitle:null,isOpenForSubmission:!1,hash:"7d03632c95c81e3de1eba473b9975204",slug:"natural-disasters",bookSignature:"Sorin Cheval",coverURL:"https://cdn.intechopen.com/books/images_new/863.jpg",editedByType:"Edited by",editors:[{id:"123456",title:"Dr.",name:"Sorin",middleName:null,surname:"Cheval",slug:"sorin-cheval",fullName:"Sorin Cheval"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:10,mostCitedChapters:[{id:"31818",doi:"10.5772/28441",title:"Comprehensive Monitoring of Wildfires in Europe: The European Forest Fire Information System (EFFIS)",slug:"comprehensive-monitoring-of-wildfires-in-europe-the-european-forest-fire-information-system-effis-",totalDownloads:3826,totalCrossrefCites:52,totalDimensionsCites:115,book:{slug:"approaches-to-managing-disaster-assessing-hazards-emergencies-and-disaster-impacts",title:"Approaches to Managing Disaster",fullTitle:"Approaches to Managing Disaster - Assessing Hazards, Emergencies and Disaster Impacts"},signatures:"Jesús San-Miguel-Ayanz, Ernst Schulte, Guido Schmuck, Andrea Camia, Peter Strobl, Giorgio Liberta, Cristiano Giovando, Roberto Boca, Fernando Sedano, Pieter Kempeneers, Daniel McInerney, Ceri Withmore, Sandra Santos de Oliveira, Marcos Rodrigues, Tracy Durrant, Paolo Corti, Friderike Oehler, Lara Vilar and Giuseppe Amatulli",authors:[{id:"73894",title:"Dr.",name:"Jesús",middleName:null,surname:"San-Miguel-Ayanz",slug:"jesus-san-miguel-ayanz",fullName:"Jesús San-Miguel-Ayanz"},{id:"126055",title:"MSc.",name:"Ernst",middleName:null,surname:"Schulte",slug:"ernst-schulte",fullName:"Ernst Schulte"},{id:"126056",title:"Dr.",name:"Guido",middleName:null,surname:"Schmuck",slug:"guido-schmuck",fullName:"Guido Schmuck"},{id:"126057",title:"Dr.",name:"Andrea",middleName:null,surname:"Camia",slug:"andrea-camia",fullName:"Andrea Camia"},{id:"126058",title:"Dr.",name:"Peter",middleName:null,surname:"Strobl",slug:"peter-strobl",fullName:"Peter Strobl"},{id:"126059",title:"Mr.",name:"Giorgio",middleName:null,surname:"Liberta",slug:"giorgio-liberta",fullName:"Giorgio Liberta"},{id:"126060",title:"MSc.",name:"Cristiano",middleName:null,surname:"Giovando",slug:"cristiano-giovando",fullName:"Cristiano Giovando"},{id:"126061",title:"BSc.",name:"Roberto",middleName:null,surname:"Boca",slug:"roberto-boca",fullName:"Roberto Boca"},{id:"126062",title:"Dr.",name:"Fernando",middleName:null,surname:"Sedano",slug:"fernando-sedano",fullName:"Fernando Sedano"},{id:"126063",title:"Dr.",name:"Pieter",middleName:null,surname:"Kempeners",slug:"pieter-kempeners",fullName:"Pieter Kempeners"},{id:"126064",title:"Dr.",name:"Daniel",middleName:null,surname:"McInerney",slug:"daniel-mcinerney",fullName:"Daniel McInerney"},{id:"126066",title:"BSc.",name:"Ceri",middleName:null,surname:"Whitmore",slug:"ceri-whitmore",fullName:"Ceri Whitmore"},{id:"126068",title:"MSc.",name:"Sandra",middleName:null,surname:"Santos De Oliveira",slug:"sandra-santos-de-oliveira",fullName:"Sandra Santos De Oliveira"},{id:"126070",title:"MSc.",name:"Marcos",middleName:null,surname:"Rodrigues",slug:"marcos-rodrigues",fullName:"Marcos Rodrigues"},{id:"126072",title:"MSc.",name:"Tracy",middleName:null,surname:"Durrant",slug:"tracy-durrant",fullName:"Tracy Durrant"},{id:"126073",title:"MSc.",name:"Paolo",middleName:null,surname:"Corti",slug:"paolo-corti",fullName:"Paolo Corti"},{id:"126074",title:"MSc.",name:"Friderike",middleName:null,surname:"Oehler",slug:"friderike-oehler",fullName:"Friderike Oehler"},{id:"126075",title:"Dr.",name:"Lara",middleName:null,surname:"Vilar",slug:"lara-vilar",fullName:"Lara Vilar"},{id:"126076",title:"Dr.",name:"Giuseppe",middleName:null,surname:"Amatulli",slug:"giuseppe-amatulli",fullName:"Giuseppe Amatulli"}]},{id:"41478",doi:"10.5772/51387",title:"Monogenetic Basaltic Volcanoes: Genetic Classification, Growth, Geomorphology and Degradation",slug:"monogenetic-basaltic-volcanoes-genetic-classification-growth-geomorphology-and-degradation",totalDownloads:5266,totalCrossrefCites:53,totalDimensionsCites:107,book:{slug:"updates-in-volcanology-new-advances-in-understanding-volcanic-systems",title:"Updates in Volcanology",fullTitle:"Updates in Volcanology - New Advances in Understanding Volcanic Systems"},signatures:"Gábor Kereszturi and Károly Németh",authors:[{id:"51162",title:"Dr.",name:"Karoly",middleName:null,surname:"Nemeth",slug:"karoly-nemeth",fullName:"Karoly Nemeth"},{id:"62029",title:"Dr.",name:"Gabor",middleName:null,surname:"Kereszturi",slug:"gabor-kereszturi",fullName:"Gabor Kereszturi"}]},{id:"31820",doi:"10.5772/28402",title:"A Diagnostic Method for the Study of Disaster Management: A Review of Fundamentals and Practices",slug:"diagnosis-method-for-the-study-of-disaster-management-a-review-of-fundamentals-and-practices",totalDownloads:2799,totalCrossrefCites:0,totalDimensionsCites:18,book:{slug:"approaches-to-managing-disaster-assessing-hazards-emergencies-and-disaster-impacts",title:"Approaches to Managing Disaster",fullTitle:"Approaches to Managing Disaster - Assessing Hazards, Emergencies and Disaster Impacts"},signatures:"Carole Lalonde",authors:[{id:"73765",title:"Prof.",name:"Carole",middleName:null,surname:"Lalonde",slug:"carole-lalonde",fullName:"Carole Lalonde"}]}],mostDownloadedChaptersLast30Days:[{id:"74250",title:"Introductory Chapter: The Lessons Learned from Past Tsunamis and Todays Practice",slug:"introductory-chapter-the-lessons-learned-from-past-tsunamis-and-todays-practice",totalDownloads:116,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"tsunami-damage-assessment-and-medical-triage",title:"Tsunami",fullTitle:"Tsunami - Damage Assessment and Medical Triage"},signatures:"Mohammad Mokhtari",authors:[{id:"52451",title:"Dr.",name:"Mohammad",middleName:null,surname:"Mokhtari",slug:"mohammad-mokhtari",fullName:"Mohammad Mokhtari"}]},{id:"41478",title:"Monogenetic Basaltic Volcanoes: Genetic Classification, Growth, Geomorphology and Degradation",slug:"monogenetic-basaltic-volcanoes-genetic-classification-growth-geomorphology-and-degradation",totalDownloads:5266,totalCrossrefCites:53,totalDimensionsCites:107,book:{slug:"updates-in-volcanology-new-advances-in-understanding-volcanic-systems",title:"Updates in Volcanology",fullTitle:"Updates in Volcanology - New Advances in Understanding Volcanic Systems"},signatures:"Gábor Kereszturi and Károly Németh",authors:[{id:"51162",title:"Dr.",name:"Karoly",middleName:null,surname:"Nemeth",slug:"karoly-nemeth",fullName:"Karoly Nemeth"},{id:"62029",title:"Dr.",name:"Gabor",middleName:null,surname:"Kereszturi",slug:"gabor-kereszturi",fullName:"Gabor Kereszturi"}]},{id:"55369",title:"One- and Two-Dimensional Hydrological Modelling and Their Uncertainties",slug:"one-and-two-dimensional-hydrological-modelling-and-their-uncertainties",totalDownloads:1899,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"flood-risk-management",title:"Flood Risk Management",fullTitle:"Flood Risk Management"},signatures:"Mohd Talha Anees, Khiruddin Abdullah, Mohd Nawawi Mohd\nNordin, Nik Norulaini Nik Ab Rahman, Muhammad Izzuddin Syakir\nand Mohd. Omar Abdul Kadir",authors:[{id:"11196",title:"Dr.",name:"Khiruddin",middleName:null,surname:"Abdullah",slug:"khiruddin-abdullah",fullName:"Khiruddin Abdullah"},{id:"151303",title:"Prof.",name:"Nik Norulaini",middleName:null,surname:"Ab Rahman",slug:"nik-norulaini-ab-rahman",fullName:"Nik Norulaini Ab Rahman"},{id:"151344",title:"Prof.",name:"Mohd Omar",middleName:null,surname:"Ab Kadir",slug:"mohd-omar-ab-kadir",fullName:"Mohd Omar Ab Kadir"},{id:"201647",title:"Mr.",name:"Mohd Talha",middleName:null,surname:"Anees",slug:"mohd-talha-anees",fullName:"Mohd Talha Anees"},{id:"203217",title:"Prof.",name:"Mohd Nawawi",middleName:null,surname:"Mohd Nordin",slug:"mohd-nawawi-mohd-nordin",fullName:"Mohd Nawawi Mohd Nordin"},{id:"203218",title:"Dr.",name:"Muhammad Izzuddin",middleName:null,surname:"Syakir Ishak",slug:"muhammad-izzuddin-syakir-ishak",fullName:"Muhammad Izzuddin Syakir Ishak"}]},{id:"55645",title:"Strategies for Testing the Impact of Natural Flood Risk Management Measures",slug:"strategies-for-testing-the-impact-of-natural-flood-risk-management-measures",totalDownloads:1278,totalCrossrefCites:1,totalDimensionsCites:8,book:{slug:"flood-risk-management",title:"Flood Risk Management",fullTitle:"Flood Risk Management"},signatures:"Barry Hankin, Peter Metcalfe, David Johnson, Nick A. Chappell,\nTrevor Page, Iain Craigen, Rob Lamb and Keith Beven",authors:[{id:"203276",title:"Dr.",name:"Barry",middleName:null,surname:"Hankin",slug:"barry-hankin",fullName:"Barry Hankin"}]},{id:"31814",title:"Landslide Inventory and Susceptibility Assessment for the Ntchenachena Area, Northern Malawi (East Africa)",slug:"landslide-inventory-and-susceptibility-assessment-for-the-ntchenachena-area-northern-malawi-east-afr",totalDownloads:3594,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"approaches-to-managing-disaster-assessing-hazards-emergencies-and-disaster-impacts",title:"Approaches to Managing Disaster",fullTitle:"Approaches to Managing Disaster - Assessing Hazards, Emergencies and Disaster Impacts"},signatures:"Golden Msilimba",authors:[{id:"72722",title:"Prof.",name:"Golden",middleName:null,surname:"Msilimba",slug:"golden-msilimba",fullName:"Golden Msilimba"}]},{id:"55139",title:"Estimating Flood Quantiles on the Basis of Multi-Event Rainfall Simulation",slug:"estimating-flood-quantiles-on-the-basis-of-multi-event-rainfall-simulation",totalDownloads:764,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"flood-risk-management",title:"Flood Risk Management",fullTitle:"Flood Risk Management"},signatures:"Elżbieta Jarosińska and Katarzyna Pierzga",authors:[{id:"202772",title:"Ph.D.",name:"Elżbieta",middleName:null,surname:"Jarosińska",slug:"elzbieta-jarosinska",fullName:"Elżbieta Jarosińska"},{id:"202833",title:"MSc.",name:"Katarzyna",middleName:null,surname:"Pierzga",slug:"katarzyna-pierzga",fullName:"Katarzyna Pierzga"}]},{id:"71247",title:"Dealing with Local Tsunami on Pakistan Coast",slug:"dealing-with-local-tsunami-on-pakistan-coast",totalDownloads:121,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"tsunami-damage-assessment-and-medical-triage",title:"Tsunami",fullTitle:"Tsunami - Damage Assessment and Medical Triage"},signatures:"Ghazala Naeem",authors:[{id:"193736",title:"Ms.",name:"Ghazala",middleName:null,surname:"Naeem",slug:"ghazala-naeem",fullName:"Ghazala Naeem"}]},{id:"56346",title:"An Additive Statistical Modeling Approach to the Analysis of Transport Infrastructure Flood Risk-Based Resilience",slug:"an-additive-statistical-modeling-approach-to-the-analysis-of-transport-infrastructure-flood-risk-bas",totalDownloads:856,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"flood-risk-management",title:"Flood Risk Management",fullTitle:"Flood Risk Management"},signatures:"Mohammad Mojtahedi, Sidney Newton and Faham Tahmasebinia",authors:[{id:"193947",title:"Dr.",name:"Mohammad",middleName:null,surname:"Mojtahedi",slug:"mohammad-mojtahedi",fullName:"Mohammad Mojtahedi"},{id:"200222",title:"Dr.",name:"Sidney",middleName:null,surname:"Newton",slug:"sidney-newton",fullName:"Sidney Newton"},{id:"200223",title:"Dr.",name:"Faham",middleName:null,surname:"Tahmasebinia",slug:"faham-tahmasebinia",fullName:"Faham Tahmasebinia"}]},{id:"56590",title:"Geodesign a Tool for Redefining Flood Risk Disaster in Developing Countries: A Case Study of Southern Catchment of Ankobra Basin, Ghana",slug:"geodesign-a-tool-for-redefining-flood-risk-disaster-in-developing-countries-a-case-study-of-southern",totalDownloads:728,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"flood-risk-management",title:"Flood Risk Management",fullTitle:"Flood Risk Management"},signatures:"Adams Osman and Benjamin Nyarko",authors:[{id:"179927",title:"Dr.",name:"Benjamin Kofi",middleName:"Kofi",surname:"Nyarko",slug:"benjamin-kofi-nyarko",fullName:"Benjamin Kofi Nyarko"},{id:"206149",title:"Mr.",name:"Adams",middleName:null,surname:"Osman",slug:"adams-osman",fullName:"Adams Osman"}]},{id:"52524",title:"Earthquakes and Structural Damages",slug:"earthquakes-and-structural-damages",totalDownloads:2164,totalCrossrefCites:5,totalDimensionsCites:7,book:{slug:"earthquakes-tectonics-hazard-and-risk-mitigation",title:"Earthquakes",fullTitle:"Earthquakes - Tectonics, Hazard and Risk Mitigation"},signatures:"Burak Yön, Erkut Sayın and Onur Onat",authors:[{id:"192483",title:"Dr.",name:"Burak",middleName:null,surname:"Yön",slug:"burak-yon",fullName:"Burak Yön"},{id:"192486",title:"Dr.",name:"Erkut",middleName:null,surname:"Sayın",slug:"erkut-sayin",fullName:"Erkut Sayın"},{id:"192487",title:"Dr.",name:"Onur",middleName:null,surname:"Onat",slug:"onur-onat",fullName:"Onur Onat"}]}],onlineFirstChaptersFilter:{topicSlug:"natural-disaster",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/70172/hiroshi-aoyama",hash:"",query:{},params:{id:"70172",slug:"hiroshi-aoyama"},fullPath:"/profiles/70172/hiroshi-aoyama",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()