Complications encountered with modified Bassini technique [6].
\r\n\t
",isbn:"978-1-83969-467-7",printIsbn:"978-1-83969-466-0",pdfIsbn:"978-1-83969-468-4",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"a6f32d3f2227df637fffd969a0cb5ed7",bookSignature:"Dr. Peter A. Clark",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10878.jpg",keywords:"Preimplantation Genetic Diagnosis, Medical Futility, Definition of Death, Extraordinary/Ordinary Means, Need for New Antibiotics, Role of Big Pharma, Uterine Transplants, Face Transplants, Confidentiality, Ethical Decision Making, Harm Reduction Theory, Safe Injection Sites",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 8th 2021",dateEndSecondStepPublish:"March 8th 2021",dateEndThirdStepPublish:"May 7th 2021",dateEndFourthStepPublish:"July 26th 2021",dateEndFifthStepPublish:"September 24th 2021",remainingDaysToSecondStep:"3 days",secondStepPassed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"A faculty member for medical residents, medical students, and undergraduate students and a researcher in issues that challenge the national and global arenas. He is also the Bioethicist for over 20 health care facilities in the United States and Palestine.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"58889",title:"Dr.",name:"Peter A.",middleName:null,surname:"Clark",slug:"peter-a.-clark",fullName:"Peter A. Clark",profilePictureURL:"https://mts.intechopen.com/storage/users/58889/images/system/58889.jpg",biography:"Peter A. Clark, S.J., Ph.D. is the John McShain Chair in Ethics and Director of the Institute of Clinical Bioethics at Saint Joseph’s University in Philadelphia, Pennsylvania. He is also the Bioethicist for over 20 health care facilities in the United States and Palestine. He is the author of To Treat or Not To Treat and Death With Dignity and has published numerous peer-reviewed articles in national and international medical and ethical journals.",institutionString:"Saint Joseph's University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Saint Joseph's University",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"346794",firstName:"Mia",lastName:"Miskulin",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/346794/images/15795_n.png",email:"mia@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1743",title:"Contemporary Issues in Bioethics",subtitle:null,isOpenForSubmission:!1,hash:"978cee44b901ff59a20a088f7dcfdbc5",slug:"contemporary-issues-in-bioethics",bookSignature:"Peter A. Clark",coverURL:"https://cdn.intechopen.com/books/images_new/1743.jpg",editedByType:"Edited by",editors:[{id:"58889",title:"Dr.",name:"Peter A.",surname:"Clark",slug:"peter-a.-clark",fullName:"Peter A. Clark"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5418",title:"Bioethics",subtitle:"Medical, Ethical and Legal Perspectives",isOpenForSubmission:!1,hash:"767abdeb559d66387ad2a75b5d26e078",slug:"bioethics-medical-ethical-and-legal-perspectives",bookSignature:"Peter A. Clark",coverURL:"https://cdn.intechopen.com/books/images_new/5418.jpg",editedByType:"Edited by",editors:[{id:"58889",title:"Dr.",name:"Peter A.",surname:"Clark",slug:"peter-a.-clark",fullName:"Peter A. Clark"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"68847",title:"The Tension-Free Repairs without Mesh: Desarda and Modified Bassini Techniques",doi:"10.5772/intechopen.88955",slug:"the-tension-free-repairs-without-mesh-desarda-and-modified-bassini-techniques",body:'Inguinal hernia is one of the common surgical pathologies. A better understanding of the anatomy of the inguinal canal improved the surgical techniques and the outcomes for the patients. Developed countries are well organized in scientific societies enhancing these improvements. Instead, the sub-Saharan countries do not have specialized centers which will help by improving the hernia surgery [1] and the general surgeon’s training. The problematic of hernia surgery here is double, the improvement of inexpensive safe techniques and training of the general surgeons. This chapter emphasizes on two tension-free repair techniques, Desarda and modified Bassini, which are currently used for their low cost and are easily learned by the surgeons [2].
Bassini developed his hernia repair in 1887, which was minutely described by his student Catterina in 1930. This technique is the one currently used by general surgeon in secondary and tertiary hospitals in sub-Saharan countries. A modified Bassini was introduced, described as an autologous patch. The intervention can be under general or locoregional anesthesia. The description below is a modified Bassini technique by Atah [3].
A semi-Pfannenstiel incision is done homolateral to the hernia, for an esthetic scar. The inguinal canal opening is performed parallel to the inguinal ligament and the conjoint tendon through the superficial fascia and deep fascia; the external oblique aponeurosis (EOA) is cut. The EOA cut is extended to the superficial inguinal ring. The spermatic cord is opened layer by layer, and the hernia sac is exposed, dissected, and resected.
Through the inguinal canal, the internal oblique tendon and the transverse tendon are united to form the joint tendon or separated. Those muscle fibers are parallel to the external oblique muscle, which is behind them. The conjoint tendon or the internal oblique tendon is easily used to strengthen the inguinal canal.
The herniorrhaphy is made with the inguinal ligament left in its normal position without being dissected and sutured to the conjoint tendon with number 1 or 0 Polyglactin 910 rounded overlock suture. The suture begins at the pubic tubercle to the deep inguinal ring. The free leaf of the conjoint tendon is sutured to the inferior part of the inguinal ligament, behind the spermatic cordon following the retro-funicular Bassini technique.
The diameter of the deep inguinal ring is reduced with a separate point, to admit only the tip of the little finger, enough caring not to strangulate the spermatic cordon in male or the round ligament in female. If the repair is under tension, a discharge incision is done, and the two borders are sutured to the EOA with number 1 or 0 Polyglactin 910 interrupted sutures. The skin closure is done.
The Desarda hernia repair, eponym name to its author, described in 2001, is an autologous hernioplasty. The technique was developed as a tension-free hernia repair without mesh, to reduce the chronic groin pain, recovery time, and cost [4]. The intervention can be performed under general anesthesia or locoregional anesthesia.
The skin incision is a 6 cm oblique at the level of the inferior abdominal line or the Malgaigne’s line (Figure 1). The fascia is incised and the EOA exposed. The EOA is cut in line with the inguinal ligament and the upper crux of the superficial ring, with a medial leaf and lateral leaf (Figure 2).
Skin incision.
External oblique aponeurosis incision.
A direct or indirect hernia, with or without a sac, can be found. The cremaster muscle is resected, and the hernia sac dissected in the direction of the deep inguinal ring protecting the spermatic cord (Figure 3). The sac is ligatured with a resorbable thread USP 2/0 and excised in an indirect hernia and inverted in a direct hernia.
Hernia sac dissection.
The fascial plasty starts with the medial leaf of the EOA which is sutured with the inguinal ligament from the pubic tubercle to the abdominal ring using number 2/0 or 0 Monofilament Polydioxanone continuous sutures (Figure 4). The first two sutures were taken through the anterior rectus sheath, and the last suture is taken to narrow the abdominal ring sufficiently, caring not to strangulate the spermatic cord.
Suture of the medial leaf of the EOA to the inguinal ligament.
An incision is made on the sutured medial leaf to obtain an aponeurosis flap of 1–2 cm (Figure 5). This fascial flap is extended medially up to the pubic symphysis and 2 cm beyond the abdominal ring laterally.
Incision of the sutured medial leaf of the EOA.
The upper free border of the aponeurosis flap is sutured to the internal oblique muscle at the level of the conjoint tendon with a number 2/0 or 0 Monofilament Polydioxanone continuous suture (Figure 6). With these sutures of the EOA, a new posterior wall of the inguinal canal is formed behind the spermatic cord. After the suture of the EOA, the patient is asked to cough or strain if it is under locoregional anesthesia, and under general anesthesia the anesthetist is asked to give a deep breath to the patient; this is to verify the solidity of the new posterior wall.
Suture of the upper free border of the aponeurosis flap.
The spermatic cord is replaced in the inguinal canal; the lateral leaf of the EOA is sutured to the new medial leaf of the EOA with a number 2/0 Monofilament Polydioxanone continuous sutures (Figure 7).
Suture of the lateral leaf of the EOA to the new medial leaf of the EOA.
The EOA is sutured forward the spermatic cord (Figure 8), and a classic closure of the superficial fascia and the skin is done.
Closure of the EOA.
The recurrence rate after an inguinal hernia repair is difficult to determine because of the high percentage of loss to follow-up. But some studies have shown that the modified Bassini technique is the most commonly used or the inguinal hernia repair [5]. This could be explained by the fact that surgeons in most of the peripheral hospitals are using tissue repair, mainly due to the limited resources of the population [6].
However, some complications occur with the tissue repair. Complications encountered in patient follow-up after a modified Bassini hernia repair are multiple; a prospective study in a rural hospital including 300 male patients highlighted some of them (Table 1).
Complications | Incidence (%) |
---|---|
Urine retention | 5 (2.07) |
Hematoma (superficial) | 1 (0.41) |
Wound infection | 1 (0.41) |
Seroma | 2 (0.83) |
Postoperative neuralgia | 3 (1.24) |
Scrotal edema | 2 (0.83) |
Ischemic orchitis | 0 (0.00) |
Recurrence | 2 (0.83) |
Complications encountered with modified Bassini technique [6].
The same complications can be observed with the Desarda technique as shown in a prospective study of 2 years, with 100 patients (Table 2) [7].
Complications | Incidence (%) |
---|---|
Urine retention | 3 (0.03) |
Wound infection | 4 (0.04) |
Vomiting | 2 (0.02) |
Acute postoperative pain | 32 (0.32) |
Chronic postoperative pain after 3 months | 4 (0.01) |
Scrotal edema | 2 (0.02) |
Recurrence from 3 to 27 months | 0 (0.00) |
Complications encountered with Desarda technique.
The two techniques are cost inexpensive, with a low rate of recurrence of the hernia and postoperative pain.
The European Hernia Society (EHS) gold standard regarding open tension-free hernia repair is the Lichtenstein mesh repair. However complications associated with it includes an important rate of mesh-related infection as wound infection due in some cases to an allergic reaction, mesh migration, and nerve entrapment [8]. These complications can lead to a prolonged hospital stay and a long treatment with antibiotics. Using Desarda or modified Bassini techniques avoid the risk of mesh-related complications, which would be an extra cost for the patient.
Inguinal hernia treatment depends also on the surgeon training and experiences. There are several tension-free techniques describe with or without mesh. Another goal in the management of hernias is the training of surgeons, depending on the medical and socioeconomic context.
Inguinal hernia is one of the commonest surgical pathology. In sub-Saharan Africa, it should be considered as a public health disease, to improve its management. The socioeconomic context is important here to consider the choice of the hernia repair technique. The tension-free repairs without mesh, Desarda and modified Bassini, response well to the economic criteria, with the advantages of a low rate of recurrence, postoperative pain, and reduced hospital stay.
The author declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this manuscript.
Physiopathological mechanisms responsible for myocardial cell death (necrosis, apoptosis, autophagy, etc.) caused by coronary artery disease have been abundantly discussed over the past several decades. Acute myocardial infarction is a leading cause of sudden cardiac death among urban dwellers in North America and Europe. Clinical treatment of patients with coronary artery disease is focused on limiting the deleterious consequences that follow coronary artery occlusion; however, to do so it is fundamental to understand the mechanisms, at the molecular and cellular level, that are involved in cell death and survival. Existing knowledge has progressed massively over the years and useful clinical interventions, both pharmacologic and non-pharmacologic, are currently available to limit, but not abrogate, effects of ischemia. An important question that remains concerns the existence of “reperfusion-induced injury”; many adhere to the notion that significant cellular death can occur once blood flow is restored to an infarct-related artery. While definitive proof is lacking myocardial stunning, vascular no-reflow (perfusion deficit) and ventricular arrhythmias are often attributed to this form of cardiomyocyte loss after ischemia. The objective of the present chapter is to update current thinking on the question of lethal reperfusion injury and to summarize current treatments used to limit overall effects.
\nMyocardial ischemia is defined as the condition where coronary blood flow across the ventricular wall is insufficient to conserve steady-state metabolism. Acute disruption of the blood supply to any region of the heart causes cardiomyocyte injury and eventually cellular death depending on the duration of perfusion deficit. Cardiac cell injury is characterized to be either reversible (if reperfusion of the infarct-related artery can be instituted rapidly, ≤15 minutes), or irreversible (poor, or no, cellular survival even if blood flow is restored). Cardiomyocyte necrosis progresses as a transmural gradient across the ventricular wall, from endocardium to epicardium, in most animal models studied [1, 2]. Early development of necrosis in the subendocardium is probably related to higher oxygen requirements (due to greater contribution to myocardial contraction) of that layer compared to the subepicardium [3, 4, 5]; myocardial perfusion is coupled to myocardial oxygen consumption. Although we agree that progression of coronary heart disease and symptom phenotypes may differ in relation to sex this subject is beyond the scope of this review.
\nMyocardial ischemia initiates multiple changes in cardiomyocyte structure including marked swelling, development of contraction bands, mitochondrial calcification and membrane disruption; the pathobiology of cellular changes produced by ischemia have been characterized in earlier studies [6, 7, 8]. Different modes (apoptosis, autophagy, oncosis, and necrosis) of cellular injury have been described [9] and are discussed elsewhere [10]. The cardiomyocyte cytoskeleton (i.e. structure needed to maintain cellular morphology and physiology) is markedly altered by biochemical changes caused by disruption of oxygen and nutrient supply [11]. Cardiomyocyte death occurs with disruption of the cellular membrane and subsequent leakage of intracellular components into the extracellular fluid [12, 13, 14]. Irreversibly injured cardiomyocytes display small breaks in the plasmalemma along with cellular swelling and sarcolemmal blebbing [1]. Necrosis in non-cardiac cells is not well described but it is clear that other cell types within the myocardium (i.e. vascular endothelial and smooth muscle cells, nervous system cells, etc.) are affected by ischemia.
\nRestoration of blood flow to the perfusion bed of the infarct-related artery can limit damage to cardiomyocyte as long as reperfusion is instituted within a reasonable period. Indeed, this is the basis for widespread use of percutaneous coronary interventions for relief of symptoms in patients with coronary artery disease and is responsible for manifest reduction in mortality. Thousands of studies have examined the physiopathology of ischemia-reperfusion injury over the past half-century with the aim to elucidate pathways leading to cellular necrosis; increased knowledge gained from these studies has led to the realization that this is a complex and multi-faceted scenario.
\nIt is clear that restoration of blood flow to ischemic myocardium is the most effective treatment against myocyte necrosis [15, 16]. Timely opening of an infarct-related artery is essential as the amount of myocardium salvaged rapidly decreases when reperfusion interventions are delayed. Furthermore, reperfusion may itself cause further cellular damage; thus it is often viewed in the context of being a “double-edged sword” [17]. Studies have confirmed that reperfusion triggers abrupt metabolic, electrophysiologic, morphologic and functional changes. The term “lethal reperfusion injury” designates damage to viable cardiomyocytes caused after successful restoration of blood flow to the ischemic perfusion bed. Several possible forms of reperfusion injury such as coronary artery no-reflow, myocardial hibernation, myocardial stunning, ventricular arrhythmias, etc. have been advanced [18, 19]; however, definitive proof that reperfusion injury exists remains to be established. With that in mind, we believe that reperfusion might accelerate expression of injury produced by ischemia but does not itself cause de novo cardiomyocyte injury.
\nPhysiopathological mechanisms that produce reperfusion injury are complex and multifactorial; no specific mechanism has been shown to take precedence over others. In experimental animal models, the release of an acute coronary occlusion produces a prolonged hyperemic response particularly in the deeper myocardial layers (subendocardium > subepicardium); hyperemic responses vary depending on the duration of ischemia [20, 21, 22]. Reperfusion of the ischemic myocardium depends on arterial driving pressure and extravascular compressive forces; this is particularly important for the function of coronary collateral vessels that supply much needed oxygen and nutrients to surviving cardiomyocytes post-ischemia. As such, restoration of coronary blood flow in the infarct-related artery does not guarantee homogeneous perfusion of blood across the ventricular wall. Indeed, areas where blood flow is less than normal (i.e. no-reflow) are mostly associated with myocardial regions where injury is irreversible.
\nNo-reflow is caused by injury at the structural level (i.e. cell swelling, membrane gaps, etc.) [23, 24]; microvessels might be more resistant to short periods of ischemia compared to cardiomyocytes because their endothelial oxygen requirements are modest and they are in close proximity to oxygen supply. No-reflow does not precede tissue damage but follows it; furthermore, it does not expand myocardial infarct size (role in pathogenesis of tissue damage is considered to be minor) [25, 26]. However, it has been suggested to contribute to infarct expansion, ventricular dilatation and remodeling by limiting access of inflammatory cells to the ischemic zone to initiate cardiac repair [27, 28]. Microvessel damage is also manifest as hemorrhage due to abnormalities in vessel permeability [29].
\nNo-reflow occurs in patients with cardiovascular disease [30, 31]; pharmacotherapy appears to normalize ischemic zone perfusion and reduce mortality.
\nReperfusion injury is associated with depletion of high-energy phosphate stores, cellular swelling, increases in capillary permeability and reduced microvessel reactivity [32, 33, 34]. Restoration of blood flow to the ischemic myocardium mitigates myocardial injury; however, restoration of contractile function is not necessarily immediate. When blood supply to the heart is limited, myocardial contraction is restricted as described for the “smart heart theory” [35]. In normal myocardium, increases in metabolic demand due to intensification of myocardial work are met by regional increases in blood flow as well as increases in oxygen extraction [36]. Post-ischemic myocardial stunning and myocardial hibernation have been described in animals [37, 38] and patients [35, 39] and designate viable but chronically dysfunctional states [40]. Myocardial stunning refers to persistent (but reversible) contractile dysfunction [41, 42] produced by a relatively brief ischemic period [43]. Myocardial hibernation, on the other hand, refers to viable but chronically dysfunctional myocardium that may be related to poor resting perfusion [35], or general absence of perfusion abnormalities [44, 45] but the latter has not been clearly established [46, 47]. Recent findings suggest that repetitive ischemia, chronic stunning and hibernation are linked as a continuum [40]; in other words, stunned myocardium can progressively transform into hibernating myocardium. For both dysfunctional myocardial states, downregulation of contractile function might be a cellular adaptive mechanism to facilitate preservation of myocardial integrity and viability [35]. Perfusion-contraction matching may be key to myocardial hibernation but this may not be so for myocardial stunning; a number of review articles on this subject are available [48, 49, 50]. Whether contractile dysfunction can be reversed by improved revascularization in stunned or hibernating myocardium is moot after the formation of scar [40].
\nDevelopment of life threatening ventricular arrhythmias, which range from ventricular premature beats with long coupling intervals to ventricular fibrillation early after onset of reperfusion, also represent a form of reperfusion injury [51, 52]. Although the physiopathology causing ventricular arrhythmias during reperfusion is ill understood they are known to be initiated by complex cellular changes with regard to electrophysiological, metabolic and structural properties [53]; potential chemical mediators of arrhythmogenesis have been presented [54, 55]. In rat hearts subject to brief coronary artery occlusion (~5 minutes) followed by reperfusion severe ventricular arrhythmias occur [56]. However, in larger animal species, incidence of lethal ventricular arrhythmias increases when reperfusion is instituted within 30 minutes after coronary occlusion [57]. The overall incidence of ventricular arrhythmias decreases significantly when reperfusion follows longer durations of ischemia [58, 59].
\nStrategies designed to protect against myocardial injury caused by ischemia, or reperfusion have been extensively studied. In animal models reduction of infarct size is reported with the use of single, or multiple pharmacologicals; however, translation of cardioprotection to patients remains disappointing. Efficacy of interventions is dependent on a host of factors that include time of administration of treatment (i.e. during ischemia, at reperfusion, late reperfusion), duration of occlusion, reperfusion status, species, cell types and end targets (i.e. molecular, biochemical, etc.). In patients, cellular protection is more difficult; however, multi-target studies continue to attempt to limit cardiomyocyte injury. The presence of comorbidities also affects the cardioprotective capability of different treatments. Development of reliable interventions (i.e. pharmacologic, non-pharmacologic) remains an ongoing challenge; findings from basic science and clinical studies on understanding of mechanisms involved in cellular injury and death have been significant but more work is necessary.
\nFor more than 50 years a host of pharmacologic interventions have been employed to limit the extent of myocardial necrosis in animal models and clinical studies. Some cardioprotection has been reported for different manifestations of ischemic injury but no long-lasting protection has yet been afforded by any drug. Many different exogenously administered compounds, which act at different levels (i.e. cell membrane receptors, intracellular signaling pathways, platelet aggregation pathways, inflammation, etc.), have been tested, but results are highly variable. In patients with coronary artery disease/acute myocardial infarction, a “golden window of opportunity” may exist after onset of symptoms to attenuate ischemic injury [60]; however, to date most pharmacologic strategies to delay progression of ischemic injury have not shown great promise with regard to clinical outcomes. Potential reasons include problems regarding timing of drug administration and drug dosage as well as the heterogeneity of comorbidities within patient populations [61]. Recent studies have focused on use of pharmaceuticals that target molecular mechanisms and signal transduction at different cellular levels (i.e. cell membrane, mitochondria, etc.); however, translation of protection with pharmaceuticals that act by stimulating intracellular signaling pathways remains a challenge [62, 63]. While numerous pharmacologic compounds have been tested in animal models and humans to date, none offers protection greater than that afforded by ischemic conditioning (cf. below).
\nCurrent pharmacologic interventions targeting ischemia-reperfusion injury include use of beta-blockers; these drugs were among the first reported to delay progression of ischemic injury more than 40 years ago [64, 65, 66, 67]. Infarct limiting properties were mostly attributed to reductions in myocardial energy and oxygen consumption. More recently, the selective β1-adrenergic receptor antagonist, metoprolol, administered before reperfusion has been shown to inhibit neutrophil-platelet interactions and protect ischemic myocardium in patients [68]; other elements (i.e. neutrophil trafficking, formation of neutrophil-platelet co-aggregates, etc.) associated with neutrophil dynamics might also be involved [69, 70]. The role of neutrophils in ischemia-reperfusion injury is well established. Protection by metoprolol could be due to reduced microvessel plugging, or microvascular obstruction, by neutrophil-platelet plugs, or other inflammatory cell aggregates. Additionally, metoprolol could directly affect platelet aggregation but this remains to be proven.
\nPlatelet aggregation is a crucial factor for post-ischemic vessel re-occlusion in patients with coronary artery disease even after successful percutaneous coronary interventions. Activated platelets release potent chemotactic factors that stimulate formation of thrombus and microaggregates, which can cause microvascular obstruction underperfusion of the ischemic myocardium [71, 72, 73]. Anti-platelet and anti-thrombotic interventions provide significant protection against ischemic injury; though poorly understood, protection is probably mediated through pathways that are similar to those activated by ischemic conditioning [74, 75]. In animal studies, platelet aggregation inhibitors such as ticagrelor (P2Y12 receptor blocker) markedly reduce myocardial infarct size that effectively translates to improved cardiac contractile function [76, 77, 78]. However, this is not necessarily true for drugs such as clopidogrel (thienopyridine—class of platelet aggregation blockers) which efficiently limits platelet aggregation but does not influence ischemic myocardial injury [75, 79]. Protection probably occurs through adenosine-related mechanisms more than anti-platelet aggregation actions [80, 81]. Other classes of platelet activation blockers (i.e. glycoprotein 2b/3a blockers, etc.) have also reported significant anti-necrosis and anti-arrhythmic effects [82, 83]; however, cardioprotective efficacy of these agents may be limited with extended ischemic durations [84].
\nMitochondria are considered an important target for reduction of ischemia-reperfusion injury [85]; mitochondria are responsible for generation of high-energy phosphates and contribute to ion homeostasis, formation of reactive oxygen species and Ca2+ handling. Myocardial ischemia-reperfusion markedly alters mitochondrial function that can ultimately lead to cell death. Recent studies have focused on a large conductance pore of the mitochondrial membrane—mitochondrial transition pore (mPTP) located in the inner mitochondrial membrane, which opens at onset of reperfusion leading to osmotic swelling and a decrease in oxidative phosphorylation. In the heart, mPTP inhibitors have been studied in animal models of ischemia-reperfusion injury; several have been reported to be cardioprotective [86, 87, 88]. In clinical studies, pharmacologicals that target mitochondrial function have not had positive results with respect to limiting ischemic injury [89, 90, 91, 92].
\nTo date, no single pharmacologic compound has achieved a level of cardioprotection greater than that obtained by ischemic conditioning. In an attempt to enhance protection, new initiatives have begun to examine the efficacy of combined treatments (i.e. drug plus ischemic conditioning) that target different cellular mechanisms (i.e. insulin signaling, energy metabolism, etc.) affected by ischemia and reperfusion. For instance, combined glucose-insulin-potassium-exenatide with remote conditioning reduced infarct size in a large animal model [93]. In a combined basic science and clinical study from Hauerslev’s laboratory, it was shown that treatment with glyceryl trinitrate (nitric oxide donor) in combination with remote conditioning abolished the individual protective effects obtained with either intervention alone [94]. Similar results have been reported in patients [95] but not all data are consistent [96]. In a canine study from our laboratory, we reported that ischemic conditioning (classic and delayed) significantly reduced ischemic injury; however, combined treatment with EMD 87580 (NHE1 blocker) and ischemic conditioning did not affect the level of cardioprotection [97]. These findings suggest that the level of protection possible with any intervention is limited (i.e. not additive). Underlying explanations for these controversial findings need to be resolved with further investigation.
\nIn the clinical setting, percutaneous coronary interventions (PCI) remain the benchmark to restore perfusion in the infarct related artery; however, efficacy of these interventions is variable. An unfortunate aspect of PCI that is often underestimated is the release of micro particulate debris and platelet micro-aggregates that can cause additional myocardial injury downstream at the level of the microvasculature [98, 99, 100]. As a result, mechanical thrombectomy (i.e. passive aspiration, active mechanical catheters, etc.) is being developed to limit untoward effects of distal embolization by atherothrombotic debris [101, 102, 103].
\nKeeping in mind that “time is muscle” it is clear that any delay in onset of treatment considerably influences overall success. Combined pharmacotherapy with mechanical reperfusion (i.e. facilitated PCI) is being tested to improve clinical outcomes [104, 105].
\nCardiac regeneration therapies (i.e. cardiomyocyte transplantation, biocompatible matrices, etc.) to repair damaged myocardium is another promising intervention to restore post-ischemic cardiac dysfunction (cf. recent review from Kingma [106]). Basic studies designed to better understand underlying mechanisms are ongoing; however, many limitations (i.e. rejection of transplanted cells, presence of scar, poor vascularization, tumor formation, myocardial location, etc.) underscore initial optimism afforded to these interventions for improvement of ventricular function.
\nCardiac conditioning (also organ conditioning) is a promising intervention that may eventually prove to be useful for protection of ischemic myocardium (or other organs) in patients; this intervention was first described as ischemic preconditioning more than 30 years ago [107]. Since then, more than 8000 studies have consistently reported protection against necrosis, ventricular dysrhythmias and myocardial contractile dysfunction in experimental animal and in clinical studies [108, 109, 110, 111]. At the moment, the clinical usefulness of ischemic conditioning as a preventive strategy for tissue protection remains controversial; the presence of multiple comorbidities may be important [112, 113] but their effect may be overcome depending on the scale of stimulus that is used to trigger cytoprotective pathways [114].
\nIn the original ischemic preconditioning study by Murry and colleagues, dog hearts were exposed in situ to brief, repetitive non-lethal cycles of ischemia-reperfusion prior to a prolonged ischemic event [107]. Development of myocardial necrosis was initially delayed and protection was transient depending on the duration of coronary occlusion. An essential requirement for protection against ischemic injury by this intervention is reperfusion of the ischemic region [18]. Publication of this landmark paper paved the way for numerous studies not only with respect to the heart on potential contributory endogenous cellular protection pathways. To date, anesthetic drugs, other pharmacologic or remote interventions, have all demonstrated ischemic conditioning (pre-, per-, post-conditioning) mediated protection. A cross-tolerance phenomenon could also be involved since many triggers for intracellular signaling pathway-mediated protection are similar [115, 116, 117]. Prospective contributory mechanisms to conditioning mediated protection have been reviewed elsewhere [109, 118, 119, 120].
\nThe principal difficulty with ischemic conditioning strategies is the inability to translate success in animal models to the clinical setting to improve overall outcomes. A major liability is the requirement to physically apply an ischemic conditioning intervention prior to onset of acute ischemia (incapacity to determine its occurrence). The observation that remote ischemic conditioning could provide robust protection against ischemic injury is promising [121]. In their initial canine cardiac ischemia-reperfusion injury study, Przyklenk and coworkers pretreated a region of the heart with brief non-lethal cycles of repetitive ischemia and reperfusion and showed marked protection (i.e. reduced infarct size) of a distant adjacent region in the same heart. Since the publication of this study, others have reported significant limitation of different manifestations of ischemic injury in various experimental models [122]. A crucial question concerns the mechanism(s) by which cytoprotective signals are transported from conditioned tissue to the distant target tissue. Blood or perfusate-borne humoral factors, neuronal stimulation and transmission as well as systemic alteration of circulating immune cells have all been proposed [123, 124, 125]. Findings, in animal models, from our laboratory tend to favor the humoral hypothesis; in dogs subject to acute ischemia-reperfusion injury, protection was not reversed after either pharmacologic or surgical decentralization of the intrinsic cardiac nervous system [126]. On this basis we hypothesized that inter-organ crosstalk did not require an intact autonomic nervous system. Stimulation of the nervous system, either locally or within cardiac ganglia could potentially stimulate release of cardioprotective substances (chemokines, leukotrienes, microRNA, etc.) into the bloodstream to initiate downstream effects [109, 127, 128, 129]. Interestingly, activation of the sympathetic nervous system is not required for classical ischemic conditioning, however, it is essential for second-window, or delayed, conditioning [130, 131].
\nA key element for protection by remote conditioning is restoration of blood flow to affected tissues [111, 132]; without it transfer of triggering mediators would be constrained. In humans, it is not clear that conditioning strategies afford significant protection (against endothelial dysfunction, increased permeability, structural alterations, etc.) at the level of the microcirculation in the deeper myocardial tissue layers [115, 133, 134]. Nonetheless, improved myocardial perfusion with remote conditioning may occur based on findings of higher TIMI (thrombosis in myocardial infarction) scores, myocardial blush grade and coronary reserve in cardiac patients. Restoration of blood flow to the deeper layers of the myocardial wall is a crucial risk factor for ventricular remodeling and major adverse cardiac events [135, 136, 137].
\nIn the clinical setting, results with this intervention (i.e. repeated arm or leg ischemia-reperfusion) are mixed; studies report either manifest cardioprotection [138, 139], no benefit [18, 140, 141] or exacerbation of injury [112, 142]. Failure to provide protection by remote conditioning in patients may be associated with the use of anesthetics such as propofol that abrogates protection [18]; volatile anesthetics are mostly recommended for at-risk cardiac patients [143, 144]. In proof-of-concept studies, other forms of remote conditioning, such as remote ischemic perconditioning (intervention performed during evolving myocardial infarction) have reported protection against tissue injury, ST-segment resolution and biomarker release in animal models and patients [145, 146, 147].
\nPathogenesis of lethal reperfusion injury remains to be established; the principle that reperfusion injury contributes to post-ischemic myocardial dysfunction is generally accepted but definitive evidence for its existence is lacking. While evaluation of the nature of cellular changes produced by ischemia and subsequent reperfusion has produced significant novel insights it is unclear that cardiomyocytes are the only cell types (within the myocardium) that are at risk of further injury. Of principle importance is that interventions to limit myocardial injury be instituted at the time of, or in conjunction with other reperfusion strategies. Pharmacologic compounds currently being used in the clinical setting delay, at best, short-term progression of cellular injury; long-term effects of these treatments in large animal ischemia-reperfusion injury models have not been properly investigated. The concept of a “magic bullet” intervention remains utopic, at present, considering the complexity of physiopathological mechanisms involved in cell death and myocardial remodeling. Utilization of exogenous interventions such as ischemic conditioning in combination with pharmacologic treatments remains a significant challenge. Further investigations into combination therapy, particularly in longer-term studies should be envisaged; consideration should also be paid to the existence of comorbidities within the patient population since overall efficacy of any treatment option will be affected.
\nIf you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links.
",metaTitle:"List of Institutions by Country",metaDescription:"If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links. However, if your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).",metaKeywords:null,canonicalURL:"open-access-funding-institutions-list",contentRaw:'[{"type":"htmlEditorComponent","content":"Book Chapters and Monographs
\\n\\nBook Chapters
\\n\\nMonographs Only
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\nMonographs Only
\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nCSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\n\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nThe Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nThe University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nThe University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nMonographs Only
\\n\\n\\n\\nImportant: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Book Chapters and Monographs
\n\n\n\nBook Chapters
\n\nMonographs Only
\n\n\n\nBook Chapters and Monographs
\n\nMonographs Only
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nCSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\n\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\nThe Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nThe University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nThe University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nMonographs Only
\n\n\n\nImportant: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5775},{group:"region",caption:"Middle and South America",value:2,count:5238},{group:"region",caption:"Africa",value:3,count:1721},{group:"region",caption:"Asia",value:4,count:10409},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15805}],offset:12,limit:12,total:118374},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"25"},books:[{type:"book",id:"10665",title:"Updates on Veterinary Anatomy and Physiology",subtitle:null,isOpenForSubmission:!0,hash:"639a0b9be32348e863437a425cf18a4a",slug:null,bookSignature:"Dr. Catrin Rutland and Prof. Samir El-Gendy",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",editedByType:null,editors:[{id:"202192",title:"Dr.",name:"Catrin",surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:18},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:5},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:5},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:19},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:1},popularBooks:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5247},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1288",title:"Mobile Robot",slug:"kinematics-mobile-robot",parent:{title:"Kinematics",slug:"kinematics"},numberOfBooks:2,numberOfAuthorsAndEditors:45,numberOfWosCitations:68,numberOfCrossrefCitations:66,numberOfDimensionsCitations:115,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"kinematics-mobile-robot",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"1880",title:"Mobile Robots",subtitle:"Control Architectures, Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training",isOpenForSubmission:!1,hash:"5c978b99bcfc519f4f27256ae5b2e212",slug:"mobile-robots-control-architectures-bio-interfacing-navigation-multi-robot-motion-planning-and-operator-training",bookSignature:"Janusz Będkowski",coverURL:"https://cdn.intechopen.com/books/images_new/1880.jpg",editedByType:"Edited by",editors:[{id:"63695",title:"Dr.",name:"Janusz",middleName:null,surname:"Bȩdkowski",slug:"janusz-bdkowski",fullName:"Janusz Bȩdkowski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3637",title:"Cutting Edge Robotics 2010",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"cutting-edge-robotics-2010",bookSignature:"Vedran Kordic",coverURL:"https://cdn.intechopen.com/books/images_new/3637.jpg",editedByType:"Edited by",editors:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,mostCitedChapters:[{id:"12200",doi:"10.5772/10312",title:"Emotion Recognition through Physiological Signals for Human-Machine Communication",slug:"emotion-recognition-through-physiological-signals-for-human-machine-communication",totalDownloads:4698,totalCrossrefCites:25,totalDimensionsCites:53,book:{slug:"cutting-edge-robotics-2010",title:"Cutting Edge Robotics 2010",fullTitle:"Cutting Edge Robotics 2010"},signatures:"Choubeila Maaoui and Alain Pruski",authors:null},{id:"24651",doi:"10.5772/26906",title:"Model-Driven Development of Intelligent Mobile Robot Using Systems Modeling Language (SysML)",slug:"model-driven-development-of-intelligent-mobile-robot-using-systems-modeling-language-sysml-",totalDownloads:3445,totalCrossrefCites:5,totalDimensionsCites:8,book:{slug:"mobile-robots-control-architectures-bio-interfacing-navigation-multi-robot-motion-planning-and-operator-training",title:"Mobile Robots",fullTitle:"Mobile Robots - Control Architectures, Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training"},signatures:"Mohd Azizi Abdul Rahman, Katsuhiro Mayama, Takahiro Takasu, Akira Yasuda and Makoto Mizukawa",authors:[{id:"68233",title:"Dr.",name:"Mohd Azizi",middleName:"Bin",surname:"Abdul Rahman",slug:"mohd-azizi-abdul-rahman",fullName:"Mohd Azizi Abdul Rahman"},{id:"69102",title:"Mr.",name:"Takasu",middleName:null,surname:"Takahiro",slug:"takasu-takahiro",fullName:"Takasu Takahiro"},{id:"69104",title:"Mr.",name:"Yasuda",middleName:null,surname:"Akira",slug:"yasuda-akira",fullName:"Yasuda Akira"},{id:"69105",title:"Dr.",name:"Makoto",middleName:null,surname:"Mizukawa",slug:"makoto-mizukawa",fullName:"Makoto Mizukawa"},{id:"119833",title:"Mr.",name:"Katsuhiro",middleName:null,surname:"Mayama",slug:"katsuhiro-mayama",fullName:"Katsuhiro Mayama"}]},{id:"12211",doi:"10.5772/10323",title:"Onboard Mission Management for a VTOL UAV Using Sequence and Supervisory Control",slug:"onboard-mission-management-for-a-vtol-uav-using-sequence-and-supervisory-control",totalDownloads:2832,totalCrossrefCites:5,totalDimensionsCites:7,book:{slug:"cutting-edge-robotics-2010",title:"Cutting Edge Robotics 2010",fullTitle:"Cutting Edge Robotics 2010"},signatures:"Florian Adolf and Franz Andert",authors:null}],mostDownloadedChaptersLast30Days:[{id:"12199",title:"Minimally Invasive Force Sensing for Tendon-driven Robots",slug:"minimally-invasive-force-sensing-for-tendon-driven-robots",totalDownloads:2020,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"cutting-edge-robotics-2010",title:"Cutting Edge Robotics 2010",fullTitle:"Cutting Edge Robotics 2010"},signatures:"Alberto Cavallo, Guiseppe De Maria, Ciro Natale and Salvatore Pirozzi",authors:null},{id:"24661",title:"Cooperative Path Planning for Multi-Robot Systems in Dynamic Domains",slug:"cooperative-path-planning-for-multi-robot-systems-in-dynamic-domains",totalDownloads:3154,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"mobile-robots-control-architectures-bio-interfacing-navigation-multi-robot-motion-planning-and-operator-training",title:"Mobile Robots",fullTitle:"Mobile Robots - Control Architectures, Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training"},signatures:"Stephan Opfer, Hendrik Skubch and Kurt Geihs",authors:[{id:"66622",title:"BSc.",name:"Stephan",middleName:null,surname:"Opfer",slug:"stephan-opfer",fullName:"Stephan Opfer"},{id:"66635",title:"MSc",name:"Hendrik",middleName:null,surname:"Skubch",slug:"hendrik-skubch",fullName:"Hendrik Skubch"},{id:"122517",title:"Prof.",name:"Kurt",middleName:null,surname:"Geihs",slug:"kurt-geihs",fullName:"Kurt Geihs"}]},{id:"12202",title:"Passivity Based Control of Hydraulic Linear Arms Using Natural Casimir Functions",slug:"passivity-based-control-of-hydraulic-linear-arms-using-natural-casimir-functions",totalDownloads:2515,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"cutting-edge-robotics-2010",title:"Cutting Edge Robotics 2010",fullTitle:"Cutting Edge Robotics 2010"},signatures:"Satoru Sakai",authors:null},{id:"12209",title:"Reactive Robot Control with Hybrid Operational Techniques in a Seaport Container Terminal Considering the Reliability",slug:"reactive-robot-control-with-hybrid-operational-techniques-in-a-seaport-container-terminal-considerin",totalDownloads:2565,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"cutting-edge-robotics-2010",title:"Cutting Edge Robotics 2010",fullTitle:"Cutting Edge Robotics 2010"},signatures:"Satoshi Hoshino and Jun Ota",authors:null},{id:"12207",title:"Estimation of Users Request for Attentive Deskwork Support System",slug:"estimation-of-users-request-for-attentive-deskwork-support-system",totalDownloads:1650,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"cutting-edge-robotics-2010",title:"Cutting Edge Robotics 2010",fullTitle:"Cutting Edge Robotics 2010"},signatures:"Yusuke Tamura, Masao Sugi, Tamio Arai and Jun Ota",authors:null},{id:"12208",title:"Adaptive Swarm Formation Control for Hybrid Ground and Aerial Assets",slug:"adaptive-swarm-formation-control-for-hybrid-ground-and-aerial-assets",totalDownloads:2364,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"cutting-edge-robotics-2010",title:"Cutting Edge Robotics 2010",fullTitle:"Cutting Edge Robotics 2010"},signatures:"Laura Barnes, Richard Garcia, Mary Anne Fields and Kimon Valavanis",authors:null},{id:"12194",title:"Motion Control of Robots Based on Sensings of Human Forces and Movements",slug:"motion-control-of-robots-based-on-sensings-of-human-forces-and-movements",totalDownloads:2448,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"cutting-edge-robotics-2010",title:"Cutting Edge Robotics 2010",fullTitle:"Cutting Edge Robotics 2010"},signatures:"Tao Liu, Chunguang Li, Kyoko Shibata and Yoshio Inoue",authors:null},{id:"12216",title:"Robot Assisted Smile Recovery",slug:"robot-assisted-smile-recovery",totalDownloads:2141,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"cutting-edge-robotics-2010",title:"Cutting Edge Robotics 2010",fullTitle:"Cutting Edge Robotics 2010"},signatures:"Dushyantha Jayatilake, Anna Gruebler and Kenji Suzuki",authors:null},{id:"24656",title:"EEG Based Brain-Machine Interfacing: Navigation of Mobile Robotic Device",slug:"eeg-based-brain-machine-interfacing-navigation-of-mobile-robotic-device",totalDownloads:5015,totalCrossrefCites:4,totalDimensionsCites:5,book:{slug:"mobile-robots-control-architectures-bio-interfacing-navigation-multi-robot-motion-planning-and-operator-training",title:"Mobile Robots",fullTitle:"Mobile Robots - Control Architectures, Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training"},signatures:"Mufti Mahmud, Alessandra Bertoldo and Stefano Vassanelli",authors:[{id:"64321",title:"Dr.",name:"Mufti",middleName:null,surname:"Mahmud",slug:"mufti-mahmud",fullName:"Mufti Mahmud"},{id:"64333",title:"Prof.",name:"Alessandra",middleName:null,surname:"Bertoldo",slug:"alessandra-bertoldo",fullName:"Alessandra Bertoldo"},{id:"119150",title:"Prof.",name:"Stefano",middleName:null,surname:"Vassanelli",slug:"stefano-vassanelli",fullName:"Stefano Vassanelli"}]},{id:"24666",title:"Distance Measurement for Indoor Robotic Collectives",slug:"distance-measurement-for-indoor-robotic-collectives",totalDownloads:3631,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"mobile-robots-control-architectures-bio-interfacing-navigation-multi-robot-motion-planning-and-operator-training",title:"Mobile Robots",fullTitle:"Mobile Robots - Control Architectures, Bio-Interfacing, Navigation, Multi Robot Motion Planning and Operator Training"},signatures:"Mihai V. Micea, Andrei Stancovici and Sînziana Indreica",authors:[{id:"64622",title:"Dr.",name:"Mihai",middleName:null,surname:"Micea",slug:"mihai-micea",fullName:"Mihai Micea"},{id:"72210",title:"Mr.",name:"Andrei",middleName:null,surname:"Stancovici",slug:"andrei-stancovici",fullName:"Andrei Stancovici"},{id:"119880",title:"Ms.",name:"Sinziana",middleName:null,surname:"Indreica",slug:"sinziana-indreica",fullName:"Sinziana Indreica"}]}],onlineFirstChaptersFilter:{topicSlug:"kinematics-mobile-robot",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/66358/vlad-alexandrescu",hash:"",query:{},params:{id:"66358",slug:"vlad-alexandrescu"},fullPath:"/profiles/66358/vlad-alexandrescu",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()