LALINET operational stations and their characteristics [7, 8, 9, 10, 11].
\r\n\t
",isbn:"978-1-83969-591-9",printIsbn:"978-1-83969-590-2",pdfIsbn:"978-1-83969-592-6",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"e39a567d9b6d2a45d0a1d927362c9005",bookSignature:"Dr. Umar Zakir Abdul Hamid and Dr. Ahmad 'Athif Mohd Faudzi",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10778.jpg",keywords:"Model-Based Control, Optimal Control, Industrial Automation, Linear Actuator, Nonlinear Actuator, System Identification, Soft Robotics, Service Robots, Unmanned Aerial Vehicle, Autonomous Vehicle, Process Engineering, Chemical Engineering",numberOfDownloads:204,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 25th 2021",dateEndSecondStepPublish:"March 25th 2021",dateEndThirdStepPublish:"May 24th 2021",dateEndFourthStepPublish:"August 12th 2021",dateEndFifthStepPublish:"October 11th 2021",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"a year",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:"Umar Zakir Abdul Hamid, Ph.D. is an autonomous vehicle expert, and with more than 30 scientific publications under his belt, Umar actively participates in global automotive standardization efforts and is a Secretary for a Society of Automotive Engineers (SAE) Committee.",coeditorOneBiosketch:"Associate Professor Dr. Ahmad 'Athif Mohd Faudzi has more than 100 scientific publications as of 2021 and is currently leading a team of 18 researchers in UTM doing research works on control, automation, and actuators.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"268173",title:"Dr.",name:"Umar Zakir Abdul",middleName:null,surname:"Hamid",slug:"umar-zakir-abdul-hamid",fullName:"Umar Zakir Abdul Hamid",profilePictureURL:"https://mts.intechopen.com/storage/users/268173/images/system/268173.png",biography:"Umar Zakir Abdul Hamid, Ph.D., has been working in the future mobility (connected and autonomous vehicle) field since 2014 with various teams in different countries, including Malaysia, Singapore, Japan, Finland, and Sweden. He has led, managed, and worked on more than thirty driverless technology, robotics, and automotive projects. Previously, he led a team of twelve engineers working in the Autonomous Vehicle Software Product Development with Sensible 4, Finland. Dr. Hamid is one of the recipients of the Finnish Engineering Award 2020 for his contributions to the development of all-weather autonomous driving solutions. He is an aspiring automotive thought leader and is often invited as a guest and keynote speaker at industrial and technical events. With more than thirty scientific publications as author and editor to his credit, Dr. Hamid actively participates in global automotive standardization efforts where he is a secretary for a Society Automotive Engineers (SAE) committee. Since the end of Summer 2021, he has been working as the Lead of Strategic Planning for CEVT AB in Sweden.",institutionString:"China Euro Vehicle Technology AB",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],coeditorOne:{id:"204176",title:"Dr.",name:"Ahmad 'Athif Mohd",middleName:null,surname:"Faudzi",slug:"ahmad-'athif-mohd-faudzi",fullName:"Ahmad 'Athif Mohd Faudzi",profilePictureURL:"https://mts.intechopen.com/storage/users/204176/images/system/204176.png",biography:"Prof. Ir. Ts. Dr. Ahmad `Athif Mohd Faudzi received a BEng in Computer Engineering and an MEng in Mechatronics and Automatic Control from Universiti Teknologi Malaysia, and a Dr.Eng. in System Integration from Okayama University, Japan, in 2004, 2006, and 2010, respectively. He was a visiting research fellow at the Tokyo Institute of Technology from 2015 to 2017. He was also a fellow in the Academia-Industry Talent Exchange Programme (AI-xChange): Ceo@Faculty Programme 2.0 \\'Coached by the Pro\\' under Todd Ashton, CEO of Ericsson Malaysia Sdn. Bhd. from 2018 to 2019. He is currently the director of the Centre for Artificial Intelligence and Robotics (CAIRO), Universiti Teknologi Malaysia. He is a Professional Engineer with Practicing Certificate (PEPC), a Charted Engineer (CEng), president for Persatuan Saintis Muslim Malaysia (PERINTIS), committee member of the Malaysia IEEE Robotics and Automation Society (RAS), and a member of ASM-YSN, Akademi Sains Malaysia Special Interest Group ASM-SIG Biodiversity, and ASM-SIG Robotics. He is the leader of the R&D subgroup Malaysia National Robotic Roadmap. In 2020, he received the Top Research Scientist Malaysia (TRSM) award in Robotics. He is mainly engaged in the research fields of actuators (pneumatic, soft mechanism, hydraulic, and motorized actuators) with a focus on robotics, bioinspired robotics, and biomedical applications.",institutionString:"University of Technology Malaysia",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Technology Malaysia",institutionURL:null,country:{name:"Malaysia"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"115",title:"Control Engineering",slug:"engineering-control-engineering"}],chapters:[{id:"77466",title:"Optimization of Model Predictive Control Weights for Control of Permanent Magnet Synchronous Motor by Using the Multi Objective Bees Algorithm",slug:"optimization-of-model-predictive-control-weights-for-control-of-permanent-magnet-synchronous-motor-b",totalDownloads:141,totalCrossrefCites:0,authors:[null]},{id:"78164",title:"Use of Discrete-Time Forecast Modeling to Enhance Feedback Control and Physically Unrealizable Feedforward Control with Applications",slug:"use-of-discrete-time-forecast-modeling-to-enhance-feedback-control-and-physically-unrealizable-feedf",totalDownloads:63,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"347259",firstName:"Karmen",lastName:"Daleta",middleName:null,title:"Ms.",imageUrl:"//cdnintech.com/web/frontend/www/assets/author.svg",email:"karmen@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"7779",title:"Path Planning for Autonomous Vehicle",subtitle:"Ensuring Reliable Driverless Navigation and Control Maneuver",isOpenForSubmission:!1,hash:"91196f0aadb70bd5cecac290401d614f",slug:"path-planning-for-autonomous-vehicles-ensuring-reliable-driverless-navigation-and-control-maneuver",bookSignature:"Umar Zakir Abdul Hamid, Volkan Sezer, Bin Li, Yanjun Huang and Muhammad Aizzat Zakaria",coverURL:"https://cdn.intechopen.com/books/images_new/7779.jpg",editedByType:"Edited by",editors:[{id:"268173",title:"Dr.",name:"Umar Zakir Abdul",surname:"Hamid",slug:"umar-zakir-abdul-hamid",fullName:"Umar Zakir Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10198",title:"Response Surface Methodology in Engineering Science",subtitle:null,isOpenForSubmission:!1,hash:"1942bec30d40572f519327ca7a6d7aae",slug:"response-surface-methodology-in-engineering-science",bookSignature:"Palanikumar Kayaroganam",coverURL:"https://cdn.intechopen.com/books/images_new/10198.jpg",editedByType:"Edited by",editors:[{id:"321730",title:"Prof.",name:"Palanikumar",surname:"Kayaroganam",slug:"palanikumar-kayaroganam",fullName:"Palanikumar Kayaroganam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"54966",title:"Green Intelligent Nanomaterials by Design (Using Nanoparticulate/2D-Materials Building Blocks) Current Developments and Future Trends",doi:"10.5772/intechopen.68434",slug:"green-intelligent-nanomaterials-by-design-using-nanoparticulate-2d-materials-building-blocks-current",body:'The study of crystalline materials, initiated since the beginning of the twentieth century, took almost 6–7 decades to mature in the form of microelectronics and microsystems technologies creating a wealth of information in form of industrial know‐how (FCM, 2009). Subsequently, the discovery of the nanomaterials followed by extensive R&D efforts put in during the last few decades resulting in simultaneous developments of production/application technologies enabled them to be integrated into the biological systems and is currently offering valuable supports to the activities in the area of nanobiotechnology —an interdisciplinary field [1].
Finding inorganic/organic molecules biocompatible in hybrid nanomaterials syntheses, it was natural to explore mimicking the features of some simple living organisms in the pursuit of developing ‘smart’ and ‘intelligent’ materials responding to the environmental stimuli to start with. Consequently, attempts were made to identify the basic requirements of the materials to qualify for being ‘smart’ or ‘intelligent.’ Despite using these terms interchangeably earlier, some clarity started emerging particularly after several comprehensive deliberations held on this issue in different forums in form of two distinct levels of interactions between materials and the external stimuli. For instance, the materials that respond to the external stimuli by showing appreciable changes in their properties are termed as ‘smart’ leading to fabricate a variety of sensors and actuators. However, the material becomes ‘intelligent’ once it is endowed with the capability of reorganizing itself internally to take care of the changes due to external stimuli adaptively, and in such cases, a number of in‐built features must be involved internally in a way similar to those in a conventional control system. For instance, the changes in material properties arising out of material‐stimuli interactions must be communicated to a decision‐making component of the material along with memory functions for taking decisions to initiate appropriate actions for countering the changes within a reasonable time period, which is an important parameter that may vary under different circumstances [2–5].
Coming back to the discussion of nanostructured materials, it may be noted that the modifications introduced into their physico‐chemico‐biological properties are considered as the result of the quantum confinement superimposed upon their bulk properties culminating into the morphology‐specific features with enhanced activity arising from the exposure of the surface residing atomic species with sufficient unsaturated chemical bonds. These nanomaterials are subjected to still further modifications via their chemical conjugations involving strong/weak interactions in preparing the 1/2/3‐dimensional nanobuilding blocks like nanowires, nanotubes, nanocoils, nanoropes, besides synthetic superlattices, and functional nanocomposites in addition to many other functional entities that are still being explored for their resultant structure‐activity relationships (SAR) for developing newer materials. Further, the macromolecular species involving fullerenes, nanowires, nanotubes, and dendrimers prepared using different constituent materials are also being considered for new material discoveries owing to their chemical conjugations with a whole host of inorganic, organic, and biomolecular species [6–9].
The established links between the inorganic nanoparticles (NPs) and the biomolecular species using the biopolymeric compounds in different configurations possessing biocompatible, biodegradable, and low immunogenic features are currently being used in fabricating nanobiocarriers in drug/gene deliveries involving the polysaccharides, proteins, and nucleic acids to name a few [6]. For such applications, it is indeed imperative to control their morphology, surface charges, and the release profiles of the loaded therapeutic species. Subsequently, numerous bioactive nanomaterials were developed using silk proteins, collagen, gelatin, casein, albumin, protein‐mimicking polypeptides, and polysaccharides like chitosan, alginate, pullulan, starch and heparin as typical examples. Protein engineered polymeric scaffolds, in addition, have been used in developing protein‐polymer hybrids, where polymerization induces multifunctional properties leading to improved performances. Various kinds of supramolecular hydrogels with physicochemical properties for drug and gene deliveries owing to their features like good water‐retention, better drug loading, biodegradability, biocompatibility, stability combined with multiple functionalities including optoelectronic properties, bioactivity, self‐healing, and shape‐memory effects were consequently explored and put to use. In addition, their stimuli responding gel/sol transitions (reversible) due to their noncovalent cross‐linkages–based interactions were considered as promising bioscaffolds in theranostics. Various SAR aspects of these hydrogels with particular reference to their applications in bioimaging/detection, therapeutic delivery, and tissue engineering were reviewed recently [6–8, 10–18].
The phenomenon of self‐assembly with special reference to the supramolecular assemblies using noncovalent intra‐/intermolecular interactions has been invoked in producing the micro‐/nanostructures including micelles, membranes, vesicles, and liquid crystals in the framework of crystal engineering. Molecular recognition‐based ‘host‐guest’ complexes are currently finding increasing applications in the development of molecular sensors and catalysis. It is important to note that the enhanced reactivity associated with the nanostructured materials has always been useful in molecular recognition‐based self‐assemblies providing environment for the ensuing chemical reactions. Noncovalent bonds between the reactants and ‘template’ holding the reactants close to the reactive sites provide the required environment for chemistry. Mechanically interlocked molecular architectures of topologically connected molecules involving noncovalent bonds in catenanes, rotaxanes, molecular knots, molecular rings and ravels are known to mimic the biological systems in form of photo‐electro‐chemical systems, catalytic systems, protein designs, and self‐replications. A template molecule surrounded by functional monomers starts attaching them via intergroup interactions that helps in forming an imprinted matrix after polymerization. Subsequent removal of the template forms complementary cavities offering selective binding sites for new material synthesis [19].
While developing these numerous types of nanomaterials, a new class of condensed state materials was discovered exhibiting properties that surpassed those of the bulk and conventional nanomaterials. The theoretical studies of these atomically thin two‐dimensional (2D) nanomaterials have, in the mean time, uncovered a number of novel features particularly arising out of the electron confinement in the third dimension without interlayer interactions (monolayer) resulting in extreme mechanical flexibility and optical transparency well suited for the fabrication of highly flexible and transparent electronic/optoelectronic devices, and the large surface to volume ratio making them appropriate for surface active applications. This fascinating field of graphene‐like 2D layered nanomaterials (GLNs) includes a number of already explored materials like graphene, hexagonal boron nitride (h‐BN), transition metal dichalcogenides (TMDCs), graphitic carbon nitride (g‐C3N4), layered metal oxides, layered double hydroxides (LDHs) besides materials belonging to metal‐organic frameworks (MOFs), covalent organic frameworks (COFs), polymers, metals, black phosphorus (BP), silicene, and MXenes. Driven by their extraordinary characteristic properties assessed theoretically and validated partly in some cases, a large number of synthetic methods including mechanical/chemical exfoliations, ion‐intercalation and exfoliation, anion‐exchange and exfoliation, chemical vapor deposition (CVD), and wet‐chemical syntheses have been developed for preparing them for numerous applications. These nanomaterials are showing high promises for a variety of applications in electronics, optoelectronics, catalysis, energy storage and conversion, biomedicine, sensors, and many more [20]. Their other physicochemical properties like strong mechanical strength, unparalleled thermal conductivity, remarkable biocompatibility, and ease of surface functionalization make them highly useful in biochemical/medicinal applications particularly in biosensors, and nanomedicine comprising of electrochemical biosensors, optical biosensors, bioimaging, drug delivery and cancer therapy [21].
In particular, after the discovery of graphene, these 2D layered materials were exfoliated in the form of solvent dispersed crystalline few‐/monolayers comprising the covalently bonded few atoms forming the crystalline stack, when bundled together with the van der Waals forces. For instance, heterostructures formed out of these monolayers of chalcogenides, graphene, and hBN are currently being examined as building blocks with tailored electronic band structures and associated physicochemical properties. Some of these predictions are yet to be realized experimentally as cited by many [22–38].
While studying the influence of structural features of these 2D material species, the characteristic features of the lamellar and 2D layered/nonlayered materials were found showing additional features worth use. It may particularly be noted that these 2D nanosheets not only exhibit novel optical and electronic properties due to the confinement of electron states along c‐axis but also help in forming a variety of layered nano‐/microsize entities involving differential stresses present in their bilayers to enforce numerous kinds of self‐assemblies that are being explored in targeted deliveries. Based on these special features of 2D layered and nonlayered thin films along with the synthesis of lamellar nanoassemblies, an attempt has been made here in this chapter to highlight their syntheses along with their some novel applications already studied.
In the context of examining the usability of biopolymeric species in nanomedicines, the self‐assembled liposomes were found offering special features that are quite useful in the targeted deliveries, where the hydrophilic/hydrophobic contents embedded in nano‐/microsize double‐layer enclosed spherical volumes with very effective protections from the enzymes, alkaline solutions, digestive juices, bile, and intestinal flora inside human body as well as free radicals. Accordingly, the liposomes are not only noted to check the oxidation and degradation of the embedded cores but also retain their double‐layer barrier intact until the contents are delivered to the desired site. Discovered in the 1960s, liposomes are known to possess versatile features owing to their compositional variability and structural properties leading to a number of pharmaceutical, nutraceutical, and cosmeceutical applications, wherein, even the herbal extracts like flavonoids, glycosides, and terpenoids have been enclosed and transported from the hydrophilic to the lipophilic part of the membrane showing better bioavailability/efficacy, as noted in case of ginkgo biloba, grape seed, green tea, milk thistle, ginseng, and many other herbal families already explored for their applications in therapeutic formulations and dietary supplements [6, 7, 11, 18]. Liposomes are currently used in the pharmaceutical applications showing promises as intracellular delivery systems for antisense molecules, ribosomes, proteins/peptides, and DNA. Liposomes with enhanced drug delivery and long circulation times are finally getting clinically accepted as the liposomal drugs exhibiting reduced toxicities while retaining enhanced efficacy compared to their free complements [39–41].
Before putting these synthetic materials species to use in the form of nanomedicines, their toxicity features must be rigorously evaluated following the recommended standard procedures. Somehow, the data available in this context are inadequate as the associated toxicity is a complex function of the surface modification causing highly variable solubility of the inorganic nanomaterials. Accordingly, the associated toxicity scare is so strong that the regulatory authorities permit no relaxation in allowing for their human trials. Because of the mostly unknown nanotoxicological properties of these newer kinds of synthetic nanomaterials, even their nonbiological applications are presumably not considered safe, which, to a certain extent, has been creating hurdles in developing their further applications [42].
A relatively safer approach of mitigating these toxicity issues could be to use the benign nanomaterials particularly derived from the plants as phytochemicals. Such nanobuilding blocks of natural origin, already studied extensively in the recent past, are not only found adequately safe but are also compatible with numerous biomolecular species ensuring more benign interactions in contrast to those derived from purely synthetic materials of inorganic/organic origins. This approach is certainly green in nature while meeting various requirements of hybrid nanostructured materials species put to use in form of novel applications. A large variety of biomimetic designs are thus becoming feasible to invoke once green phytosomal building blocks are put to use in synthesizing new kinds of materials [11].
The recent developments in the field of liposomal encapsulations involving single/multiple bilayer nanosize enclosures and graphene‐like few‐/monolayered nanosheets, introduced above in very brief, do indicate toward the suitability of using these nanosize thin films as building blocks capable of imparting novel features for their applications that will be appreciated with wider impacts in the times to come. Keeping in view the importance of this growing field of nanosize thin film materials, an effort has been made here in this review by assessing the current status before attempting to foresee the trends from the angle of developing intelligent materials in due course of time by employing them in new materials discoveries.
The phenomenon of quantum confinement involved in preparing 1‐, 2‐, and 3D nanomaterials has already been validated experimentally before using them in newer applications while considering the electrons and the photons together in the form of diverse material building blocks designs as highlighted in the following.
The plasmon resonance excited in metal NPs in the presence of a dielectric as a function of morphology and the metal used, and falling in the visible/IR region, have been exploited in electromagnetic enhancement resulting in Raman, fluorescence, and infrared absorption spectroscopies for single molecule detection; tip enhanced Raman spectroscopy, optical circuits, high efficiency LEDs, chemical/biochemical sensors, and efficient solar cells due to better light confinement in the photoactive material, or achieving resonant internal light scattering. In one of the highest efficiency organic solar cells, for instance (P3HT: PCBM bulk HJ), the efficiency limitations due to lower cutoff wavelength (∼650 nm/EG∼2.1 eV) was taken care of by enhancing optical absorption as reported [43–55].
Semiconducting NPs, also called quantum dots (QDs), behave like quasi‐atoms with electrons/holes possessing discrete energy levels, and exhibiting size‐specific absorption and luminescence spectra characterized by the material used. QDs are very efficient light emitters with photoluminescence quantum efficiency ∼80% and size‐dependent emission characteristics. For instance, varying the size of CdSe QDs from 3 to 6.5 nm changed the emission from 470 to 630 nm. A number of optoelectronic devices using QDs are reported including biological tags, white LEDs, OLEDs, and photovoltaic solar cells (PVSCs) with efficiencies exceeding Shockley‐Queisser limit [56–61].
A variety of polymeric NPs involving either dispersion of preformed polymers or the polymerization of monomers have been reported using techniques like solvent evaporation, salting‐out, dialysis, supercritical fluid technology, microemulsion, miniemulsion, surfactant‐free emulsion, and interfacial polymerization, where the actual choice depends on a number of factors like particle size, size distribution, and the area of applications as discussed in a recent review [62].
Investigations have already correlated the physicochemical properties of the polymeric NPs with their biological responses, in which the morphology and surface charges on biodegradable entities were explored in designing various formulations in a recent review highlighting the challenges involved with in vivo trials [63]. Polymeric NPs are known to offer not only protection from environmental stimuli but also providing site‐specific deliveries, particularly in case of charged NPs that are well protected. Parameters like uptake, bioavailability, and long‐term therapeutic efficacies are possible to optimize by controlling their electrostatic interactions as mentioned below [64].
The study of drug release characteristics of diazepam loaded PLGA NPs confirmed that the parameters like sonication time, polymer content, surfactant, ratio of organic to aqueous phase, and the amount of drug—all influenced their sustained release [65]. Similarly, surface modifications of poly (ethylene glycol)‐
Molecular self‐assembly is exploited in supramolecular formulations for preparing molecular assemblies through noncovalent intra‐/intermolecular interactions resulting in the formations of micelles, membranes, vesicles, and liquid crystals. Molecular recognition‐based host‐guest complexes are now being exploited in molecular sensors and catalysis. It is noteworthy that reactive species are found essential for participating in such molecular‐recognition–based self‐assemblies providing environment for chemical reactions. Noncovalent bonds between the reactants and template holding the reactants near the reactive sites provide the environment for chemistry. Mechanically interlocked molecular architectures are formed consisting of topologically linked molecules involving noncovalent bonds in molecular architectures like catenanes, rotaxanes, molecular knots, rings and ravels. There are a number of these systems that mimic the biological processes through photo‐electro‐chemical/catalytic systems, protein designs, and self‐replications. In another process of molecular imprinting, a host is constructed out of suitable molecules as a template that is subsequently removed leaving the guests stabilized through steric interactions besides incorporating hydrogen bonding and other interactions.
Numerous molecular systems that have been studied recently include mechanically interlocked systems employing
Knowing well about the advantages associated with quantum confinement in 1/2/3 dimensions in nanostructured material species during their preliminary investigations, it became imperative to explore the possibility of synthesizing them in quantity with controlled properties in stable form. Some of these aspects of nanostructured material species are examined here from the point of view of their industrial applications.
The basic scheme of chemical synthesis of metal NPs employs a suitable stabilizing agent added to a mixture of metal salt precursor and reducing agent chosen out of several including sodium citrate, sodium borohydride, and alcohols to convert metal ions into metal atoms that ultimately form NPs [81–83]. Silver colloidal solution prepared using citrate reduction reported in 1982 did contain 20–600 nm NPs, in which pH affected the morphology by changing from triangular to spherical/cylindrical shapes after changing the pH from 5.7 to 11.1 [84–87]. Similarly, polyol‐based synthesis of Ag NPs was reported producing a wide range of NPs using precursor along with capping agent [88–91]. Using propylene, and 1,2‐propylene glycols or 1,5‐pentanediol as reducing agents and controlling temperature and precursor concentration was also found to influence the morphology of the final product [92].
Alternately, in a different route of photochemical synthesis, light irradiations helped in synthesizing metal NPs as seen in laser irradiated aqueous solution of metal salt + surfactant producing metal NPs besides using laser melting of metal nanospheres to produce nanoplates [93–100]. In contrast, green syntheses of metal NPs were reported from metallic electrodes and spray pyrolysis‐based synthesis of 10 and 100 nm (average PS) Ag NPs, respectively [101, 102].
Seed crystals‐mediated synthesis reported lately in 2010 produced Ag nanocubes from spherical/cubic single crystal seeds with the edges ranging from 30 to 200 nm [92, 103–105]. In another, very old process of silver mirror reaction, discovered way back in 1835 for depositing Ag metal on solid surfaces using Ag(NH3)2OH reduction by sugar or any aldehyde containing compound, has been used for Ag NP synthesis [106].
Precisely controlled morphologies of metal NPs have been realized successfully using template‐assisted synthesis already known to depend to follow the template features, in which the surfactant molecules behaved as soft templates in contrast to porous anodic aluminum oxide (AAO) membranes as hard templates [107, 108]. Soft template‐assisted synthesis has been found producing metal nanowires, nanorods, hollow spheres, and nanoplates by exploiting a variety of surfactant compounds including ionic surfactants like cetyltrimethyl ammonium bromide, octadecyltrimethylammonium chloride, disodium (2‐ethylhexyl) sulfosuccinate, and sodium dodecylsulfate; non ionic surfactants like oleic acid, oleylamine, trioctylphosphine and trioctylphosphine oxide; and polymer surfactants involving poly (vinyl pyrrolidone), poly(vinyl alcohol), and poly(ethylene oxide) as reported extensively [109–141]. Template‐assisted synthesis is known to produce well‐dispersed forms due to reduced particle aggregation along with mild reaction conditions [142–144].
Unlike above‐mentioned chemical syntheses, lithographic patterning and deposition‐based nanofabrication processes involving optical, e‐beam, scanning probe, and multiphoton lithographies are known to produce precisely controlled nanostructured materials not limited to metal species alone [145–147].
Nanoparticulate material species are well‐known building blocks to assist self‐assembly processes forming micron size nanosheets and other structures. DNA‐assisted self‐assembly of metal NPs is another route explored for synthesizing plasmonic NPs into chain, triangular shape, 3D lattices, and Janus nanoclusters, in which the interaction of NPs in solutions involving attractive and repulsive forces comprising of hydrophobic, electrostatic, hydrogen bonding and biospecific interactions impacts the self‐assembly to a large extent [148–161].
High‐temperature hydrothermal synthesis of triangular shaped Ru nanoplates (~3 nm thick) was reported using RuCl3·H2O + HCHO + PVP @ 160°C, which changed to irregular shaped but with reduced thickness of 1.5nm subsequently by changing the concentration of Ru salt and PVP. In case of silver salt, it produced triangular Ag nanoplates with sharp and curved corners [162–164].
Recently, the potentials of living microorganisms including bacteria, fungi and plants have been examined for the synthesis of NPs like CdS, Ti/Ni, titanate, zirconia, Au, and Ag [165–171]. It is very important to note that using microorganisms is environmental friendly and benign synthesis route providing good control over size distribution of nanostructures. For example, Ag nanoparticulates were synthesized using bacteria with size less than 200 nm.
The physical/chemical methods of preparing NPs include lithography, laser ablation, high‐energy irradiation, chemical reduction, electrochemistry, and photochemical reduction [172–179].
A number of process parameters that are important to consider in NP synthesis include temperature, concentrations, process kinetics describing interactions between metal ion precursors and the reducing agent, and adsorption kinetics involving the stabilizing agent and the NPs. Consequently, the current emphasis is on designing processes capable of ensuring adequately precise control of the size, shape, stability, and physicochemical properties of the NPs [180–183].
The conventional methods of NP syntheses, however, are known to involve chemical/physical processes that often use toxic materials like organic solvents, reducing agents, and stabilizers causing ultimately substantial environmental pollutions, cytotoxicity, and carcinogenicity in addition to the toxicity of some of the NPs due to their compositions, size, shape, and surface chemistry [184]. However, all these hazardous factors associated with NP syntheses are possible to mitigate using biologically mediated production schedules. There is a strong emerging interest in developing clean, reliable, biologically compatible, benign, and environment‐friendly green processes to synthesize NPs for their numerous applications [185].
Green synthesis of NPs involving microorganisms and plants is noted to be safe, inexpensive, and environment‐friendly as they absorb and accumulate inorganic metal ions from their surroundings leading to an unexplored field of useful research [186–189]. A number of biotechnological applications including bioremediation and bioleaching are possible to implement by exploiting the efficacy of the microorganisms to interact with the environment via their lipid‐based amphipathic membranes enabling a variety of oxidation‐reduction mechanisms occurring and promoting these biochemical conversions [190–194]. It has been shown that unicellular/multicellular organisms are capable of synthesizing (extra/intracellular) inorganic micro‐/nano‐sized particulate materials in particular environment of their culture promoting coupled oxidation and reduction reactions that needs further investigations to understand the processes of nucleation, and subsequent NP growth kinetics and the interaction of these processes with metabolic processes of the microorganisms involved [192, 193, 195–198].
A similar situation is met in case of plants based synthesis of NPs with the advantage of plants over other eco‐friendly biologically based systems such as bacteria and fungi that avoid using culture preparations and isolation techniques that are involved and expensive. Conversely, biosynthesis of NPs using plants/plant‐based extracts is safe with relatively short production times, and having a lower cultivation cost compared to other biological systems [199].
Various methods explored in biologically synthesizing metal NPs include actinomycetes, algae, bacteria, fungus, plants, viruses, and yeast, where each entity has varying degrees of biochemical processing capabilities for preparing metallic or metal oxide NPs. Generally, biological entities with a potential to accumulate heavy metals offer better chance of synthesizing metal NPs [200]. In case of microorganisms, optimization of parameters like nutrients, light, pH, temperature, mixing speed, and buffer strength used in their culture could significantly enhance the enzyme activity [188, 201, 202].
The most popular approach of synthesizing NPs from microemulsions uses a mix of two or more separate microemulsions of the required constituents that participate in nucleations on the micellar edges due to supersaturation of the reactants inside causing growth around the nucleation sites with the arrival of more reactants from intermicellar exchange. Examination of the process details clarified the NP growth starts at the interface, and subsequently moves on to the micellar cores with a intermicellar exchange specific rate limiting phenomenon occurring over a time duration longer than the times involved in reagents diffusions inside the polar domains causing large variation in reaction completion times compared to those observed in native aqueous solutions. Controlling this process by modifying the interfacial characteristics of the surfactant membrane was exploited subsequently as noted in case of BaTiO3 using three separate microemulsions [10, 203–206]. NPs were also prepared from single microemulsion with stabilized reactant inside the reverse micelles after adding the reducing agent to produce the metal NPs. Recently, silver halide and cuprous oxide NPs were synthesized using direct reaction of solubilized silver metal with dioctyldimethylammonium halide counter‐ion in reverse micelles, and gamma irradiation of copper nitrate micellar solution, respectively, using faster rate of reaction with morphological control in a single microemulsion. Despite its versatile nature, limitations were pointed out, for example, during synthesizing either ZnTe or incorporating Mn into either ZnTe or CdTe [207–210]. The parameters that influence the size and polydispersion of the synthesized NPs include—type of the solvent employed, surfactant/cosurfactants used, electrolyte, concentration of reagents and, molar ratio of water and surfactant as discussed in detail elsewhere [211].
A simple surfactant/water/oil system was found producing many types of self‐assembled structures—by changing composition, one could have spheres (reverse micelles or micelles), cylinders, interconnected cylinders, and planes called lamellar phases, which could reorganize into onion‐type structures [212, 213]. Numerous studies were conducted involving a variety of surfactants and system compositions (surfactant/water concentrations) in connection with investigating the growth of different NC structures [214]. However, the idea that different shapes of synthesized NCs could be due to template effect was found invalid as different shapes could be synthesized without changing the template shape, and even no template was involved in some cases at all [215, 216]. Most recently, a method was proposed for controlling the NP shapes by considering the influence of stacking faults in certain plane as observed during the synthesis of silver nanodisks with varying size characterized by HRTEM/SAED showing the presence of forbidden 1/3{422} reflections that were proposed to be promoted by the stacking faults in [110] plane [217]. From these observations, it could be concluded that defect engineering could possibly be used in influencing the shape of NPs as confirmed in case of copper system, yielding similar results [129].
Stabilized microemulsions are possible in a supercritical fluid (SCF) by using appropriate surfactant leading to smooth transition in solvent quality by pressure and temperature control required in nanoparticulate material syntheses [218, 219]. Relevantly, the advantage of using SCF‐CO2 process was demonstrated after having stabilized the microemulsion (water/P104/xylene) at higher pressure causing formations of Au NPs via KBH4‐based reduction of HAuCl4, which was not feasible at ambient pressure due to inadequacy of xylene as solvent. These gold NPs were recovered by reducing the pressure to release the solvent by precipitation. In another variant, known as RESOLV (rapid expansion of a supercritical solution into a liquid solvent), a stable microemulsion of silver cations was expanded through a nozzle into solvent containing reducing agent to produce controlled morphology silver NPs [220]. Finally, water‐in‐SCF microemulsions were successfully used in water‐in‐oil microemulsions in synthesizing compounds for industrial applications.
The process involves preparing a stable dispersion using appropriate surfactant. In case of water‐in‐oil (w/o) microemulsions, the surfactant AOT supplemented with fluorinated cosurfactants like PFPE‐PO4 (perfluoropolyether‐phosphate), PFPE‐NH4 (ammonium perfluoropolyether) and F‐pentanol are employed in stabilizing the dispersions in most of the liquid/supercritical alkanes applied [129, 218, 221–230].
While searching for hydrocarbon‐based surfactants or polymers capable of stabilizing w/sc‐CO2 microemulsions primarily due to economic and environmental benefits, iso‐steric acid was found useful in a SCF‐CO2 with <10 V/V% hexane solubilizing the reactants inside reverse micelles [231]. These microemulsions are formulated in a pressure cell to which the second reactant is added using a high‐pressure syringe pump. Hence, the NP reactions that take place are similar to those occurring in normal liquid w/o microemulsions as noted in microemulsions‐based synthesis of Ag NPs where NP recovery by CO2 venting and rapid expansion method is possible [220, 227, 229, 230, 232].
Besides regular inorganic/ organic NPs, there is another class of nanostructured materials involving biomolecules that have been explored well for drug/gene delivery applications, and termed as pharmacosomes derived from two terms namely—‘pharmakon = drug’ and ‘soma = carrier’ representing vesicles (drugs and carrier attached together). These are neutral particles with positive and negative charges imparting hydrophilic and hydrophobic features (involving polyphenol and phospholipids), in which the drugs are dispersed via lipid interactions (i.e., electron pair sharing, electrostatic forces, and hydrogen bonds) forming colloids, nanomicelles, vesicles and hydrogen bonded hexagonal assemblies. The carboxylic group or functional hydrogen atoms in the amino, and hydroxyl radicals of the drug molecules are converted into esters with the help of the hydroxyl moiety of the lipid forming prodrugs causing reduction in interfacial tension with larger area contacts, and improving bioavailability in addition to helping transport across the cell membrane, wall, and tissues. These prodrugs assemble into single/multiple layers, when in contact with water, forming pharmacosomes [233, 234].
The liposomes are formed by dispersing phospholipids in aqueous media followed by exposure to high shear rates using microfluidization or colloid mill in addition to mechanical dispersion involving sonication, pressure cell or membrane extrusions, freeze thawing, film hydration, microemulsion, and dried reconstituted vesicles—all initiating hydrophilic‐hydrophobic interactions between phospholipids and water molecules. Liposomes are characterized by their mean particle size, zeta potential, lamellarity, encapsulation efficiency, in vitro drug release, and vesicle stability. Spherical bilayer membranes are the manifestations of the favored self‐assembly features of phospholipids, which is although not limited to bilayer formations alone but also produce colloidal particles from self‐aggregation of the polar lipids. Liposomes efficiently entrap even highly unstable compounds including antimicrobials, antioxidants, flavors and bioactive elements by shielding their functionality [235]. Liposomes are the latest additions to the targeted deliveries carrying hydrophilic/hydrophobic contents in nano/microsize double‐layer covered spherical volumes providing effective protection from the enzymes, alkaline solutions, digestive juices, bile, and intestinal flora inside human body as well as free radicals. Liposomes not only check oxidation and degradation but also retain the double‐layer barrier undamaged until the contents are delivered to the desired site.
Liposomes, discovered in the 1960s, are versatile nanocarriers owing to their compositional variability and structural properties leading to numerous applications in pharmaceutical, nutraceutical, and cosmetics sectors, wherein the herbal extracts like flavonoids, glycosides, and terpenoids are enclosed and transported from the hydrophilic to the lipophilic part of the membrane showing better bioavailability/efficacy, as noted in case of ginkgo biloba, grape seed, green tea, milk thistle, ginseng, and many other herbs already explored in therapeutic applications and dietary supplements. Liposomes are currently being used in a broad range of pharmaceutical applications showing better promises as intracellular delivery systems for antisense molecules, ribosomes, proteins/peptides, and DNA. Liposomes with enhanced drug delivery and long circulation times are currently getting clinically accepted. Liposomal drugs are known to exhibit reduced toxicities while retaining enhanced efficacy compared to the free complements [39–41]. The phospholipid liposomes were reported mimicking red blood cells by optimizing concentrations of phosphatidylserine, di‐stearylphosphatidylcholine, and dipalmitoylphosphatidylcholine for a fixed concentration of lecithin and Tween® 80 using response surface methodology resulting in 112–196 nm particle size with lower efficiency encapsulation at lower levels of insulin but increasing at higher levels fulfilling the requirement for intravenous drug delivery having biodegradable and biocompatible features [236].
Phytosomes contain herbal drugs and the lipids in stoichiometric ratio in a solvent, wherein, the polar functional groups of the substrate and phosphate and ammonium groups of the polar heads of the phospholipids form the hydrogen bonds while getting attached to the phospholipid polar head and merging with the membrane. For instance, in a phosphatidylcholine and catechin complex, hydrogen bonds are established between hydroxyl groups in the phenols of the flavones and phosphate groups of the phosphatidylcholines without any change in their fatty acid chains suggesting the protected enclosure of the active components into the long aliphatic chains. These interactions form lipophilic envelope shielding the polar phospholipid as well as the constituent. The pharmacokinetic studies and the animal/human trials have confirmed the enhanced bioavailability and absorption of the lipophilic herbal extracts forming micellar constructs in water [237, 238]. Some typical examples are taken here to highlight their applications in nanomedicines.
Optimized icaritin phytosomes, prepared by solvent evaporation of icaritin in ethanol (icaritin: phospholipid = 1:3, reaction time ~1 h @50°C) showed enhanced solubility by 1.6 and 5.9 times in
The phytosomes with bioactive plant‐based molecular species are poorly soluble in flavanones and terpenes. Features like biocompatibility, nontoxicity, easy to administer, reduced dosage and enhanced retention time of the liposomes and the phytosomes make potent vehicles for drug delivery as discussed [247].
Different flavones like naringin, neoeriocitrin and neohesperidin known for their antioxidant activity and phenolic content were encapsulated in phospholipid vesicles (glycerosomes, hyalurosomes and glycerol containing hyalurosomes) using a high ratio of extract/phospholipid counteracting the oxidative stress in skin cells. The glycerol containing hyalurosomes prevented the oxidative damages and death of both keratinocytes and fibroblasts by promoting their viability [248]. Berberine (BER)—a natural alternative to synthetic antidiabetic drugs, has poor gastrointestinal absorption, and low oral bioavailability limiting its clinical applications was loaded in phytosomes as berberine‐phospholipid complex (P‐BER) by solvent evaporation method followed by a self‐assembly showing nanosize particles with negative surface charge, and excellent drug entrapment efficiency (<85%) and threefold enhanced bioavailability causing significant reductions in fasting glucose levels and improving the ability of systematic hyperlipidemia metabolism of diabetic mice [249]. The solubility and permeability study of Standardized Bacopa Extract (SBE) were reported showing improved aqueous solubility compared to the pure SBE (20‐fold), or the physical mixture of SBE and the phospholipid (13‐fold). Similarly, in vitro dissolution studies confirmed higher SBE release efficiency (>97%) in comparison with the pure SCE (∼42%), or the physical mixture (∼47%). The ex vivo studies confirmed improved permeation of SBE (>90%), compared to the pure SBE (∼21%), or the physical mixture (∼24%). This kind of drug‐phospholipid complexation could be used for solubility enhancement of bioactive phytoconstituents [250].
Besides exploring the novel features of 2D layered materials as mentioned earlier, a number of nonlayered 2D nanomaterials were also reported recently using 2D nanomaterial templates. Some of these include the examples of 2.4‐nm‐thick square hexagonal‐close packed (hcp) gold nanosheets (hcp AuSSs) onto GO template followed by secondary growth for even thicker layers, Ag onto hcp AuSSs resulting in (100) f‐oriented fcc core‐shell or (110) h/(101) f‐oriented hcp/fcc square nanosheets (Au@Ag); and Pt/Pd onto AuSSs inducing transformation from hcp to fcc forming core‐shell Au@Pt or Au@Pd nanoplates, to name a few cases already explored. Coatings of Pt or Pd onto hcp AuSSs led to fcc Au@Pt or Au@Pd rhombic nanoplates, in which the large lattice mismatch between Pt or Pd and Au compared with Ag was believed responsible for the (101) f‐oriented core‐shell nanoplates. In phase transformations from hcp to fcc, the role of ligand exchange was found responsible as noted in case of transformation into (100) f‐oriented fcc AuSSs by replacing oleylamine capping with thiol molecules. In another study, 0.55–0.59 nm thick and ∼1 mm square freestanding a‐Fe2O3 nanosheets were synthesized using CuO nanoplate‐templates. Further, a number of 2D nanostructures including ternary/quaternary chalcogenides like CuInS2, CuInxGa1‐xS2, Cu2ZnSnS4, Cu2‐xSe and Cu1.97S were prepared via the cation exchange on CuSe/CuS templates or phase transformations resulting in uniform size, shape and thickness. In addition, NiO nanosheets were reported from layered a‐Ni(OH)2 nanosheets through a simple annealing treatment as discussed in cited references [251–260].
Hydro/solvo‐thermal syntheses were found useful in preparing a number of nonlayered 2D materials as briefly summarized here. A facile solvothermal synthesis of poly (vinylpyrrolidone) (PVP)‐supported single‐layer rhodium (Rh) nanosheets (0.4 nm thick with 500–600 nm edge length) was reported recently followed by a generalized method of synthesizing a number of metal oxide nanosheets, including TiO2, ZnO, Co3O4, WO3, Fe3O4 and MnO2. In addition, hydro/solvothermal methods were found useful in synthesizing several nonlayer 2D nanosheets including ZnSe, ZnS, CeO2, In2O3, SnO2, Co9Se8 and Co9S8‐oleylamine hybrid. The synthesis of ZnSe and ZnS nanosheets was reported by preparing lamellar organic‐inorganic intermediates [(Zn2Se2)(n‐propylamine) and (Zn2S2)(n‐propylamine)], followed by their sonicated exfoliation to have freestanding 0.9 and ∼500 nm lateral dimensions of ultrathin nanosheets followed by synthesis of CdS nanosheets (300–800 nm lateral dimension and ∼4 nm thick) using diethylenetriamine (DETA) as the surfactant. In another study, atomically thin CeO2 sheets with surface pits and ultrathin In2O3 porous sheets with rich oxygen vacancies were reported using hydrothermal methods followed by subsequent thermal annealing as reported in many publications [260–268].
The novel features of 2D layered/nonlayered materials already explored in micron size samples during their preliminary studies are certainly expected to be translated into production processes with better yield, reproducibility, and process reliability once the process details are fully understood and steps optimized accordingly. The progress made in this context is possible to assess as highlighted below.
While examining the basic science of the nanomaterials, efforts have been made in parallel to develop the related technologies as well to support the needs of the growing industries led by innovative exploitations. In this context, it is imperative to have an idea about the market size, growth trends and support extended by the State Agencies.
With the growing trend
The emerging demands of nanoparticulate materials (NPMs) in growing industrial applications is further evidenced by the initiatives taken by the European Commission in allocating funds for the private‐public partnership programs in manufacturing to meet the industrial requirements from various sectors (e.g., FP6/FP7 Projects—€240,000,000; HORIZON 2020 Program—over €1 billion) that are expected to provide scaled‐up production of nanostructured materials (∼100 kg/day) at lower costs [270].
A brief description of various methods that are already explored for volume production of NPMs is included here in brief to highlight the limitations that are faced in the industry despite fast rising demands from different sectors in general. Those emerging processes that have shown potentials for production after further developments of their technologies in near future are also included in the discussion.
NPMs (i.e., molecular sizes to 100 µm in diameter) have been produced by flame involving precursors that are sprayed either onto a heated surface or in a hot environment. Oxford University developed an electrospray process for semiconductor/metal NPs, and spray gun deposited catalysts for CNT growth that are simple and economical examples [271–275].
Alternate technique of producing metal vapors through arc discharge has been exploited equally effectively for producing metal, metal‐oxides, and other compounds based NPMs in inert/oxygen/reactive gas environment. For taking care of the process reproducibility issues arising from the high temperature arcs generating high evaporation rates leading to the formation of larger size particles from vaporized metal rich carrier gas, the European project (BUONAPART‐E) funded a program of upscaling and optimization of NPMs manufacture by flame pyrolysis showing preliminary achievement in form of a versatile and reliable unit capable of producing 0.1–10 g/h throughput in this context [276–278].
Another production process of metallic NPMs involving gas‐phase condensation, reported way back in 1930, uses a vacuum evaporation unit attached to a separate collection chamber filled with inert/reactive gas for powder collection ensuring particle formation during rapid cooling of the arriving stream of metal atoms initiating nucleation and particle formation resulting in broad distribution of PSs as their agglomeration is quite random [275].
In a combination of ultrasonic irradiation‐assisted chemical reactions followed by precipitation known as sonochemical synthesis, the molecular species are subjected to chemical reactions via energetic acoustic cavitation including formation, growth and collapse of microbubbles inside the irradiated liquid medium. This method efficiently produces the NPMs facilitating preparation of smaller PSs of different shapes at lower costs [279–281].
Milling‐based production of NPMs is known since 1970 with many variants developed for preparing nanopowders of crystalline/crystalline or crystalline/amorphous, and atomic bonding‐based metal/metal, metal/semiconductor, metal/ceramic, and their combinations with the advantage of low temperature working. There are two different routes of mechanical milling namely—single‐phase powder milling by controlling the competing processes of fracturing and cold‐welding, where particles larger than 100 nm are not cold welded, and consequently, a reduction in the average PS from 50–100 µm up to 2–20 nm is feasible. A severe plastic deformation caused by mechanical attrition at elevated temperature of 100–200°C gives rise to refinements in internal structures of the particles to produce nm size particles. The environmental sensitivity of the milling process is put to use by controlling the ambient conditions accordingly for chemical reactions to occur between the environment and the milled powders leading to a novel, cost‐effective method of producing a variety of nanopowders. Mechanochemical processing (MCP) is another variant of milling used as a low temperature chemical reactor, wherein the ball mill accelerates the reaction kinetics in the powder mixture as a result of the intimate mixing and refinement of the grain structure to nm scale. For this reason, it is useful to employ a proper reactive gas environment of O2, N2, atmospheric air, or precursor. Oxide and nitride of Ti, Fe, V, Zr, W, Hf, Ta and Mo could, thus, be converted into NPMs in reactive milling. Similarly, in wet milling, an organic fluid is used for transforming the metal powders into nanocrystalline metal‐ceramic composites comprising of individual single nanometer sized grains dispersed in a matrix. Of course, it is necessary to go for further heat treatment for ascertaining that the reaction is complete. The reduction of the process cost and the industrialization of products are achieved by using a variety of precursors for producing a large variety of NPMs in the form of oxides, carbonates, sulfates, chlorides, fluorides, hydroxides, and others. Different kinds of ball mills including tumbler mills, attrition, shaker mills, vibratory mills, planetary mills, and other variants are commercially available for mechanical attrition. A common method in all these mills is to place the material powder in a sealed container with the balls of hardened steel or tungsten carbide, while mass ratio for the ball to the powder is kept around 5:10 in case of a typical 50µm powder. Kinetic energy of balls is a function of their mass and velocity, and as a result, steel and tungsten that are high‐density materials are preferred as means of milling [282–286].
Recently developed room temperature ionic liquids (RTILs) are being used as reaction media for inorganic NPMs mainly by using their preorganized structures to template porous inorganic nanomaterials and their intrinsic high charges and polarizability in affecting electrostatic and steric stabilization. For example, IL templates are used for fabricating mesoporous/supermicroporous silica, and in synthesizing transition metal NPs including Ir, Au, Ag, Pt, and Pd, where the IL acts as a solvent, template, reducing agent and stabilizer. TiO2‐based NCs and microspheres, and Te‐ and CoPt‐based nanorods, have also been fabricated using ILs [287–295].
Nanolithographic techniques involving e‐beam/focused ion‐beam writing, proximal probe patterning, X‐ray lithography, along with dry/wet etching are found useful in fabricating a variety of nanostructured materials. By nanolithography, nanostructures and their arrays are possible to fabricate by a directed or constrained growth from one to few nm with the advantage of producing large quantities of 1D nanostructures using a wide variety of the available materials [296–300].
One of the most popular and maybe the most economical methods of nanolithography is template fabrication based suitable for growing nanowires (NWs) using electrodeposition, sol‐gel or by vapor‐phase followed by independently controlled NWs after removing from the templates. In this process, the ordered nanopore templates are made before filling them with the chosen materials, using one of the methods referred before. Electrodeposition of metals inside the nanopores is performed in acidic or basic baths that contain metal salts, and the metal is deposited on the cathode (working electrode), and for this reason, one end of the porous membrane is metallized with Ti and Au or Ag by sputtering or evaporation, and the anode is normally graphite or Pt with calomel or Ag/AgCl as reference electrode. The deposition conditions (DC or pulsed) affect the polycrystallinity of the nanowires.
High‐temperature anneal (500–600°C) of low temperature sol‐gel processed complex oxide NWs was found necessary for the required stoichiometric phase. For instance, taking out the alumina template after dipping into sol for some time, it was necessary to dry before anneal to produce the proper phase. CVD/PVD methods were also explored for growing semiconducting nanotubes, including ordered arrays of CNTs. Plasma‐assisted CVD has shown adequate promises to grow aligned nanotubes of complex semiconductor or oxides in alumina templates, and in future, this technique will certainly find more applications [301].
Scanning probe microscopy (SPM)‐based lithography has already been established for creating nm size patterns on metallic and semiconducting surfaces using lithography masks either via chemical route called dip‐pen lithography (DPN) or SPM route based on anodic oxidation where water meniscus formation from the atmospheric moisture capillary condensation between the substrate and the tip plays an important role.
The presence of water meniscus enables the molecules to interact with the substrate for forming chemical bonds via controlled molecular transport across the region between the tip and the substrate. Another variant employs the meniscus as an electrochemical cell where the applied bias produces the metal/semiconductor nanostructures promoting nanostructures on the surface for directed assembly of nanoparticles [302–304]. Likewise, in anodic oxidation, the water meniscus forms an electrochemical cell, where moisture provides ‘nanoreaction vessel’ like environment for anodic oxidation after applying a negative bias to the tip with respect to the substrate, wherein the applied electric field helps in accelerating the OH‐ ions to the substrate causing a self‐limiting type oxidation that terminates automatically at fields below 107 V/cm. The geometrical features of the oxidized pattern depend on the applied bias and the radius of curvature of the tip that is micromachined for reproducible sizes, shapes and aspect ratios. By controlling all these parameters, reproducible lithography of known resolutions is performed as an advantage of this technique [305].
With the emerging applications of graphene possessing novel features, systematic efforts were made in developing production methods with higher yield and improved quality of graphene and other 2D materials nanosheets. For example, the exfoliation efficiency of graphene nanosheets was improved (e.g., yield >85%; ≤3 layers; lateral size ∼44 μm) using aqueous solutions of (NH4)2SO4, Na2SO4, and K2SO4 and exhibiting hole mobility ∼310 cm2/Vs. Highly conducting films were brush coated on paper from a graphene ink for fabricating all‐solid‐state flexible supercapacitors delivering a high area capacitance of 11.3 mF/cm2 [306]. A green production of graphene was reported using saccharin in aqueous solution showing that the number of graphene layers decreased with increase in the intercalation potential, while yield improved with increase in the exfoliation potential. The defect density in the exfoliated graphene layer was sensitive to the exfoliation potential as it initially increased with exfoliation potential and then eventually decreased [307]. Improved performance of exfoliation arising out melamine additive during graphite electroexfoliation was assigned to the hydrophilic force from the basal plane promoting exfoliation besides providing protection against further oxidation, leading to high‐yield production of graphene of larger crystallite size. This process exhibited better performance in terms of higher uniformity (>80% in <3 layered graphene), lower oxidation density (C/O ratio of 26.17), lower defect level (ID/IG <0.45), and low sheet resistance of 13.5 kΩ/Υ (95% transmittance). A graphene nanocomposite with polyvinyl butyral (PVB) exhibited an electrical conductivity of 3.3 × 10−3 S/m for the graphene‐loading fraction of 0.46vol%. The continuous process for producing graphene was demonstrated, with a yield rate of 1.5 g/h [308]. The influence of a number of reducing agents (such as 2,2,6,6‐tetramethylpiperidin‐1‐yl)oxyl (TEMPO), ascorbic acid, and sodium borohydride) was investigated to eliminate HO• radical generated out of water electrolysis responsible for defect formation on graphene during electroexfoliation in aqueous ammonium sulfate. TEMPO‐assisted exfoliation could produce large graphene sheets (∼5–10 μm average), exhibiting hole mobilities <405 cm2/Vs, very low Raman ID/IG ratios (<0.1), and extremely high carbon to oxygen (C/O) ratios (<25.3). High concentration graphene ink in dimethylformamide exhibited (6 mg/mL) was found useful in transparent conductive films and flexible supercapacitors [21]. Low defect concentration few‐layer graphene (FLG) sheets were fabricated by a two‐step electrochemical intercalation exfoliation, including a graphite foil pretreatment in sodium hydroxide solution and a subsequent further exfoliation in sulfuric acid solution. During this process, the pretreatment resulted in the expansion of the graphite foil and in turn facilitated the final exfoliation in sulfuric acid solution showing
In a more recent study, graphene production was reported using HNO3, NaNO3, H2SO4 and H2O2‐based exfoliation in sodium dodecylbenzene sulfonate as a surfactant [311]. Studying the influence of varying parameters like anodic bias (1–10 V), and shear field (400–74,400/s) concluded that thicker and more fragmented graphene sheets were formed at higher biases, while at potentials as low as 1 V, shear force could cause pronounced exfoliation. This process under optimum condition could produce large graphene flakes (∼10 μm) with a high proportion of single, bilayer, and trilayer graphene and small
Graphene quantum dots (GQDs) were examined in terms of their size‐dependent energy storage efficiency and optical behavior while functioning as an active material in rechargeable lithium ion batteries (LIBs). Considering three different SOC’s (<05, <50 and <95%), reversible changes were noticed in the UV‐VIS absorption spectra that could be explained by the mechanism of charging‐discharging involving the influx/out flux of Li‐ions. Some of these results could be used for understanding the energetics of Li‐ion intercalation and deintercalation in multilayer graphene and related composites [314]. Single‐step synthesis of halogen‐functionalized graphenes (HGs) was reported using electroexfoliation of graphite in aqueous potassium halide solutions confirming the variation in the degree of halogenation between 2.32 and 0.26 atom% in fluorinated graphene (FG) and iodinated graphene (IG), respectively, which were attributed to the difference in reactivity of the halogen species generated during the exfoliation process. Among all HGs, FG has shown the superior electrocatalytic behavior for 2Br−/Br2 redox reaction. The anodic (11.2 mA/cm2) and cathodic (10.7 mA/cm2) peak current densities were higher for FG than that of other halogenated graphenes. ZBB flow cell fabricated with FG as bromine electrode exhibited enhanced electrochemical performance in terms of efficiency (81% of voltaic efficiency and 72% energy efficiency) and durability up to 350 cycles [315].
Comparison of the two routes of liquid phase exfoliation (LPE) and electrochemical exfoliation (ECE) made it clear the LPE took about 13 days against 3 min for ECE process [316]. A simple and fast method of electroexfoliating graphite into graphene oxide (GO) and then its rapid reduction to graphene nanosheets (GNs) was reported using microwaves. This electroexfoliation combined with microwaves reduction offered a low‐cost and efficient route to produce high‐quality graphene with high yield [317].
A rapid electroexfoliation of natural Bi2Se3 and Bi2Te3 crystals in aqueous media was reported to prepare single‐/few‐layer nanosheets representing a simple, reagent‐free, and scalable method for the fabrication of single‐/few‐layer nanosheets of these materials [318]. 2D TMDCs with relatively lower toxicity, higher stability in aqueous environments, and adhering well to the biological materials such as proteins are currently being considered promising for biosensing, cell imaging, diagnostics, and therapeutics. Preparation and exfoliation of 2D TMDCs showing heavily dependent features on the number of layers and lateral size were described using their liquid exfoliation from their bulk materials along with the protocols for functionalizing or modifying them [319]. Group‐VI TMDCs including MoS2 and WSe2 being semiconductors with sizable energy band gaps offer themselves as building blocks for new generation optoelectronics particularly involving their specificity and tunability of their band gaps based on strong light‐matter interactions between TMDC crystal and specific photons triggering complex phenomena like photoscattering, photoexcitation, photodestruction, photophysical modification, photochemical reaction, and photooxidation. Subsequently, photoelectric conversion devices enabled by laser excitation and the functionality extension and performance improvement in the TMDs materials via laser modification were comprehensively reviewed [320]. A green and cost‐effective production process of 2D MoS2 was reported using sonication milling (CUM) to exfoliate natural molybdenite powders to achieve few‐layer MoS2 (FL‐MoS2) nanosheets in
From the exceptionally faster developments taking place in the domain of 2D nanomaterials, one can easily assess about the future R&D activities in synthesizing and using still more varied combinations of ultrathin 2D nanomaterials in times to come as highlighted below.
For example, noble metals/alloys that are known as robust industrial catalyst are expected to perform better once converted into single‐/few‐layer forms. Similarly, the metal organic frameworks (MOFs) materials, currently found useful in gas storage, separations, and catalysis due to their tunable structures/functions, larger surface areas, and highly ordered pores, are, though, not used in electronic devices owing to their poor electrical conductivity and difficult film‐forming ability, but once these shortcomings are taken care of, their device integration would open newer avenues [20].
2D TMDCs including ternary and quaternary compounds besides already known binaries like MoS2, WS2, MoSe2, and WSe2 are expected to offer novel applications in electronics, optoelectronics, electrocatalysis, and energy storage, even though, some of them are yet to be synthesized.
Reversible conversion from one crystal phase into the other in 2D materials is another area of potential uses offered by the phase‐engineered nanomaterials. For instance, some TMDCs including MoS2, and WS2 exist in either of the two main crystal phases namely—2H and 1T. It is interesting to note that MoS2 is semiconducting and metallic in 2H and 1T phase, respectively, with phase reversal caused by butyl lithium intercalation. The metallic phases of MoS2 and WS2 have better conductivity, whereas 2H phases exhibit enhanced electrocatalytic actions in hydrogen evolution and supercapacitors [322–325]. Similar features are anticipated in case of noble metals prepared in different crystal phases. For example, Au crystallizing in face‐centered cubic (fcc) phase was also synthesized in hexagonal 2H and 4H‐phases that were transformed back to fcc and thus could be used for tuning its optical, catalytic, and plasmonic properties accordingly [341].
Practical implementations of H‐termination along with van der Waals epitaxy in adjusting not only the band gaps, and stability, but also other properties of germanane are currently being considered as additional scope in future. For instance, germanane is converted into germoxanene after replacing H by OH‐group and attaching different ligands to polysiloxene shifting the photoluminescence features along with band gap positions. Germanane is possible to restack with other materials using different intercalation techniques like electrochemical (alkali metals insertions between few layers), organic, and similar other zero‐valent metal intercalation resulting in novel properties. Highly anisotropic properties caused due to electron‐hole localization in transverse direction of germanane monolayer combined with their direct band gaps make them usable in a number of electronic applications including transistors, solar cells, and cooling layers. Additionally, combined use of topotactic deintercalation with exfoliations has been found better options of synthesis, though implemented only in limited number of Zintl phase compounds. Such layered materials include polygermanane, polysilanes, siloxenes, and spinels along with others like CaSi2, CaGaSi, CaZn2Sb2, and Ca11GaSb9 that are expected to exhibit new and better material features in the form of 2D‐hydrogenated/oxygenated semiconductors with precisely tuned electronic properties. These newer families of 2D materials, when used in heterostacks comprising of layers with different physical characteristics and further modified by restacking, are expected to offer newer engineered architectures for specific applications. The process of synthesizing flat materials endowed with exceptionally high charge carrier mobility transport established at molecular scales is expected to introduce significant changes in the electron device designs employing ‘atom by atom’ or ‘group by group’ substitutional alterations in realizing p‐n junctions at the desired locations in near future providing better options of touch screens, supercapacitors, batteries, fuel cells, sensors, high frequency circuits, and flexible electronics [26, 326–332].
Using 2D exfoliated nanosheets appears better suited for realizing the five types of heterointerfaces for their device applications. For instance, layer‐after‐layer deposition of two different nanomaterials in a vertical heterostructure is an example of type I heterointerface already demonstrated in TMDCs, h‐BN, or topological insulators on graphene or in situ epitaxial growth of vertical CuS/TiS2 type heterostructures [260, 333–336]. Similarly, type II heterointerface was reported in case of combinations of WSe2/WS2, MoSe2/MoS2, and MoSe2/WSe2, wherein the growth of one type of nanosheet was made to start from the edge of the other forming an in‐plane 2D heterojunction [268, 337–339]. Type III is similarly realized using a vertical growth of aligned ultrathin 2D nanosheet arrays on another ultrathin 2D nanomaterial substrate to form hierarchical heterostructures. Unlike these three afore‐mentioned heterointerfaces, it is also feasible using the crystal‐phase concept of heterointerfaces representing another kind using the same chemical compound but with different crystal phases. Type IV heterointerface may thus be prepared using a partially converted crystal phase in a MoS2 nanosheet by changing a part of it from its 2H phase into 1T phase resulting in an in‐plane 2H‐1T heterointerface. Further, type V heterointerface involving superlattices is also conceivable using binary, ternary, or multiple phase patterns in ultrathin 2D noble metal nanostructures. The phase engineered Au‐nanosheets in fcc, 2H, and 4H phases, already synthesized using wet‐chemical methods and validated, are good candidates for crystal‐phase superlattices with the help of self‐assembly or lithography. Besides binary phase heterostructures, ternary phase comprising of 2H‐fcc‐4H might also be explored for similar applications using ultrathin 2D Au nanostructures having promising applications in catalysis, waveguide, surface enhanced Raman spectroscopy, and many others [256–259, 340, 341].
Adding 2D materials species with the nanoparticulate inorganic, organic, and biomolecular species and invoking different aspects of molecular recognition‐based self‐assemblies and self‐organized formations of supramolecular hierarchical complexes seems to be a feasible way of improving the smart features of a large variety of nanomaterials in addition to paving the way for introducing the intelligent features in them in due course of time. Appropriate combinations of biomolecular species endowed already with the intelligent features are going to make this transition from ‘smart’ to ‘intelligent’ materials faster and easier as they possess the basic traits required for their participation in the functioning of living organisms. Other inorganic and organic building blocks once conjugated appropriately would certainly help in accelerating various components of intelligence discussed earlier. Further, the phytosomal building blocks when combined with 2D materials would certainly provide more insight into controlling the physico‐chemico‐biological properties of the resultant nanomaterial species with additional assurance of their green nature as compared to other species especially in the domain of applications involving human health care.
The authors are extremely thankful for availing the opportunities of having very useful discussions with colleagues from different disciplines, graduate students, and particularly the reviewers of the research papers authored for their critical but extremely useful comments and suggestions from time to time. Kind support of the Editor extended to the authors is duly acknowledged during preparation of the manuscript.
Currently, the world’s leading authority on global warming issues is the Intergovernmental Panel on Climate Change (IPCC). The IPCC is a scientific-political organization, created in 1988 by the United Nations (UN), and received the Nobel Peace Prize in 2007 [1, 2]. Since its foundation, the IPCC has issued five reports (Assessment Reports), the first in 1990, the next ones in 1995, 2001, 2007, and 2014. The next report of IPCC is expected for the year 2022. The IPCC reports have reinforced, with growing evidence, that human influence on Earth’s climate is incontestable and that the terrestrial climate system’s warming is evident [2].
Aerosols, in particular, can alter the most diverse atmospheric processes, significantly affecting weather and climate. For example, they can absorb or scatter specific solar radiation wavelengths and radiation reflected by the Earth’s surface [3]. They can also modify the albedo (ability to reflect solar radiation on a given surface) and the lifetime of clouds [4]. A decrease in the albedo of clouds, for example, can lead to less reflection of radiation from the Sun, contributing to possible global warming effects. In this context, it is expected that the aerosol climatological behavior in the Earth’s atmosphere and its influence on climate change processes are of paramount importance.
The World Meteorological Organization (WMO) has encouraged the creation and expansion of networks aimed at atmospheric observations, and ground-based lidar networks have acquired great importance, both for atmospheric monitoring and research. Thus, regional lidar networks’ development to research the most diverse atmospheric configurations is strategic. The main fields where ground-based lidar measurements can be applied include [5, 6] atmospheric aerosol optical properties, urban aerosols and pollution, dust and biomass burning transportation, and cloud impacts on climate, planetary boundary layer dynamics, and processes of satellite data validation.
In terms of atmospheric structure, ground base lidars cover from the mesosphere down to the troposphere, through the stratosphere, and inspect each atmospheric layer in question. Under this perspective, laser radars’ operation began in the early ‘70s by observing stratospheric aerosols in Brazil and continued with sodium atoms (Na) concentration in the mesosphere. The stratospheric aerosols and ozone studies followed some years later in Argentina [7] and the late ‘80s in Cuba. By the late ‘90s and early 2000, the introduction of the lidar for tropospheric studies began.
We intend to summarize the most significant scientific achievements and developments related to ground-based Lidar remote sensing in South America in the next sections. LALINET’s most recent efforts in establishing standard protocols of system configurations, quality assurance, measurements, and data processing also will be approached [7, 8, 9, 10, 11]. The chapter organization should first follow the studies performed in the mesosphere, followed by the work devoted to the stratosphere, and then we should show the studies related to the troposphere. These sections will be distributed over many specific studies regarding the scientific drives and methodologies employed.
The South American continent, encompassing 42% of the Americas, is a region that shelters the most remarkable ecosystems. Among these, we can cite the Amazon Rainforest, which is the largest tropical forest in the world, the Pantanal (or Chaco), one of the UNESCO World Heritage Sites [12], and the Andes, the most extensive mountain chain in the world, and which hold a plethora of active and inactive volcanoes, extending from Venezuela to Patagonia, crossing all the continent from north to south. Patagonia, the continent’s southern region, presents many plants and wildlife, mostly endemic. It also houses another UNESCO World Heritage Site: The National Park Los Glaciares, in Santa Cruz, Argentina [12].
Developing a regional ground-based lidar network in Latin and South America is of strategic importance: The knowledge rendered by the high-resolution profiles allows the knowledge of a wide variety of atmospheric phenomena to complement satellite observations and other retrievals by diverse ground-based instruments. Unfortunately, the available infrastructure of lidar stations in Latin America is limited in certain aspects. For example, only a few stations operate regularly (contrasted to Europe and North America), stations have different instrument designs, radiosonde launchings are not occurring nearby all stations, and only a reduced number of sun photometers is distributed across the continent [7, 11]. To get around such limitations and consolidate standard protocols of measurements, data acquisition, quality control, and assurance routines, and data analysis, the Latin America Lidar Network, LALINET, was established in 2001, during the First Workshop on Lidar Measurements in Latin America, held in Camagüey, Cuba, in March 2001 [7, 11, 13]. It was recognized as being part of the GAW (Global Atmospheric Watch) Aerosol Lidar Observation Network (GALION) in 2013 [7, 11, 13]. Figure 1 shows the location of the LALINET stations [14].
Schematic representation for the location of the LALINET stations in South America. Argentina (AR): 1-) SMN Headquarters (Buenos Aires), 2-) CEILAP Headquarters (Buenos Aires), 3-) Comodoro Rivadavia (Chubut), 4-) Neuquén (Neuquén), 5-) Pilar (Cordoba), 6-) Río Gallegos airport (Santa Cruz), 7-) OAPA Río Gallegos (Santa Cruz), 8-) San Carlos de Bariloche (Río Negro), 9-) San Miguel de Tucumán (Tucumán). Bolivia (BO): 10-) La Paz (La Paz). Brazil (BR): 11-) Manaus (Amazonas), 12-) São Paulo (São Paulo), 13-) Cubatão (São Paulo), 14-) Natal (Rio Grande do Norte). Chile (CH): 15-) Punta Arenas (Magallanes), 16-) Temuco (Cautín). Colombia (CO): 17-) UNAL Medellín (Antioquia), 18-) SIATA Medellín (Antioquia), 19-) Cali (Valle del Cauca). Edited using Google my maps [
The next sections of this chapter will present information about mesospheric, stratospheric, and tropospheric monitoring by LALINET stations and teams around South America and Cuba, plus some significant results. Table 1 below shows the operational stations and their characteristics. A detailed description of LALINET origin and its evolution is given in Ref. [7]. The Letter of Agreement between LALINET and GAW can be found in Ref. [15].
Country, City, Location Coordinates, Altitude (a.s.l.) | System configuration | ||
---|---|---|---|
Instrument | Emits (nm) | Detects (nm) | |
AR, Buenos Aires, SMN 34.5641 S, 58.4171 W, 10 m | Elastic Polarized | 1064, 532, 355 | 1064, 532 (∥, ⊥), 355 (∥, ⊥) |
AR, Buenos Aires, CEILAP 34.5553 S, 58.5062 W, 26 m | HSRL | 1064, 532, 355 | 1064, 607, (HSRL, ∥, ⊥), 408, 387, 355 (∥, ⊥) |
AR, Rivadavia, CRD Airport 45.7922 S, 67.4629 W, 48 m | Elastic Polarized | 1064, 532, 355 | 1064, 532 (∥, ⊥), 355 (∥, ⊥) |
AR, Neuquén, NQN Airport 38.9521 S, 68.1368 W, 266 m | Elastic Polarized | 1064, 532, 355 | 1064, 532 (∥, ⊥), 355 (∥, ⊥) |
AR, Pilar, OMGP 31.6755 S, 63.8730 W, 332 m | HSRL | 1064, 532, 355 | 1064, 607, 532 (HSRL, ∥, ⊥), 408, 387, 355 (∥, ⊥) |
AR, R. Gallegos, RGL Airport 51.6117 S, 69.3072 W, 17 m | Elastic Polarized | 1064, 532, 355 | 1064, 532 (∥, ⊥), 355 (∥, ⊥) |
AR, Río Gallegos, OAPA 51.6004 S, 69.3194 W, 19 m | DIAL | 355 (Nd:YAG), 308 (Xe:Cl) | 387, 355, 347, 332, 308 |
AR, Bariloche, BRC Airport 41.1473 S, 71.1640 W, 837 m | Raman | 1064, 532, 355 | 1064, 532, 408, 387, 355 |
AR, S. M. de Tuc., TMO 26.7871 S, 65.2068 W, 485 m | Elastic Polarized | 1064, 532, 355 | 1064, 532 (∥, ⊥), 355 (∥, ⊥) |
BO, La Paz, UMSA 16.5381 S, 68.0686 W, 3420 m | Scanning Elastic | 532 | 532 |
BR, Manaus, Embrapa 2.8906 S, 59.9698 W, 80 m | Raman | 355 | 408, 387 |
BR, São Paulo, IPEN 23.5607 S, 46.7398 W, 764 m | Raman | 1064, 532, 355 | 1064, 532, 530, 408, 387, 355 |
BR, Cubatão, CEPEMA 23.8865 S, 46.4370 W, 8 m | Mobile Raman | 532 | 532, 607 |
BR, Natal, UFRN 5.8431 S, 35.2043 W, 20 m | Elastic Polarized | 1064, 532, 355 | 1064, 532 (∥, ⊥), 355 |
CH, Punta Arenas, UMAG 53.1344 S, 70.8802 W, 10 m | Raman Polarized | 1064, 532, 355 | 1064, 607, 532 (∥, ⊥), 408, 387, 355 (∥, ⊥) |
CH, Temuco, UFRO 38.7459 S, 72.6156 W, 108 m | Elastic | 532 | 532 |
CO, Medellín, UNAL 6.2619 N, 75.5760 W, 1538 m | Elastic | 1064, 532 | 1064, 532 |
CO, Medellín, SIATA 6.2017 N, 75.5784 W, 1502 m | Elastic Polarized | 355 | 355 (∥, ⊥) |
CO, Cali, CIBioFi-UniValle 3.3770 N 76.5337 W, 982 m | Elastic Polarized | 1064, 532, 355 | 1064 (∥, ⊥), 532 (∥, ⊥), 355 (∥, ⊥) |
Details about the contributing teams, measurement protocols, reports, and equipment can be found on the web page http://www.lalinet.org. Detection of polarized light in the parallel (∥) and perpendicular (⊥) directions are indicated.
Meteors enter in the upper atmosphere at very high velocities (15–70 km s−1), and the collisions with the atmospheric constituents cause flash heating until the particles melt and their chemical elements vaporize. This ablation process is responsible for the layers of metal atoms as Na, K, Fe, Mg, Ca, Si, among others, which occur globally in the mesosphere and lower thermosphere (MLT). This cosmic dust’s primary sources are the sublimation of comets as they approach the Sun on their orbits through the solar system and the collisions between asteroids.
Lidar use for the upper stratosphere, mesosphere, and lower thermosphere investigations started in São José dos Campos, Brazil, in 1969 with a ruby laser operated at 694.3 nm. Clemesha and Rodrigues obtained the first aerosol profile using lidar in South America in 1971 [16]. The height range of measurement was 5 to 35 km due to the use of an 8 x 10″ receiver mirror. Later were obtained profiles up to 90 km in height using a 48″ mirror. In this work, high concentrations of aerosols were observed in the troposphere, a minimum just below the tropopause, around 15 km height, and higher concentrations in the lower stratosphere.
In 1972, when a new “handmade” dye laser became operational (see a Photo of this equipment in Figure 2), it was possible to start measurements of the Na layer in the MLT region, using Fabry-Perot interferometers and tuning the laser in the Na D2 line, 5890 Å, with a precision of 0.02 Å [17]. This system enabled the measurement of the mesospheric Na from 75 to 105 km of height [18]. The system continued to be operated regularly for long years obtaining the Na concentration at MLT region with different time and height resolutions, the stratospheric aerosol by Mie Scattering, and the atmospheric density and temperature from 30 to 65 km by Rayleigh scattering. In April 1975, 6 months after the eruption of Volcán de Fuego in Guatemala, a massive increase in aerosol loads was observed in São José dos Campos, which remained in the atmosphere for almost two years [19].
The handmade dye laser for Na probing (it operates from 1972 to 1992). See also in the picture Dr. Barclay R. Clemesha (in memoriam), the project’s head.
Through Na profiles between 82 and 99 km obtained with the laser beam directed alternately in three positions in the sky, it was possible to estimate the wind’s speed in the mesosphere [20, 21]. The velocities vary with height in an oscillatory manner, with the amplitude increasing with height. These wave-like formations vary slowly with time and might be produced by propagating tides in the atmosphere. These structures’ common feature is their downward motion with time, consistent with the upward propagation of gravity wave energy. The more extended periods of oscillations are attributed to tides [22, 23]. Lidar measurements of the stratospheric aerosols enabled the observation of the eruption of El Chichón in México, eight months after in São José dos Campos, Brazil [24]. The transport of aerosols of the Pinatubo eruption was much more rapid and could be seen just 45 days after the eruption [25].
Research involving Na has included the first detection of the so-called Sporadic Sodium Layers [26]. The events occurred more frequently through periods of more significant meteor showers, especially in August. It is common to have sporadic E layers coincident with Na enhancement, which suggests that enhanced layers are generated by the wind shear distortion of Na clouds originated from meteor ablation. A significant result was that the long-lived sporadic layers appear to have a different nature from the short-lived ones. The difference is manifested in the more extensive duration and broader thickness and how the events are correlated with sporadic E layers [27].
In 1992, analyses of the vertical distribution of atmospheric Na layer with lidar showed a long-term trend of the centroid height, which decayed by approximately 700 meters between 1972 and 1987 [28]. However, from 1972 to 2001, the trend was 93 meters per decade. This new result appears dramatically diminishes the possibility of long-term cooling of the upper atmosphere [29].
In 1997 a new technique was developed to measure the Doppler temperature of the atmospheric Na layer by using a two-element birefringent filter together with a 0.2 nm free spectral range Fabry-Perot interferometer to produce a linewidth of about 20 pm. It produced a multi-line signal of the laser, with the lines spacing precisely equal to the separation of D2a and D2b transition of Na. With this assembly, it was possible to obtain the mesosphere’s temperature with a 5 K precision, a height resolution of 1 km, and a time resolution of 6 minutes [30, 31]. Lately, in 2004 the lidar was equipped with a new laser, which permitted more precise measurements of the mesopause temperature (see the assembly in Figure 3) [32, 33]. Gravity wave’s effects on the temperature in the mesopause were also studied [34, 35].
Photo presenting the continuum narrowband tunable laser for Na concentration and Mesopause temperatures. It operated at São José dos Campos measuring mesopause temperature from 2007 to 2009 and Na concentration from 2006 to 2016. This photo was taken by Barclay R. Clemesha (in memoriam).
Several mesospheric dynamics studies involving other instruments like photometers, meteor radar, and onboard rocket instruments have been made [23, 36, 37, 38, 39]. A mobile lidar has been developed to measure the Na concentration simultaneously with the volume emission profile for the NaD line of airglow in rocket campaigns in the Brazilian equatorial region of Alcântara (2.3728 S, 44.3965 W). An illustrative photo of this system is shown in Figure 4. This experiment allowed calculating the branching ratio of the reaction involved in the Na airglow [40].
Photo illustrating the INPE mobile lidar used during rocket campaigns in the Brazilian equatorial region of Alcântara, on 31 may 1992.
Along the time, the São José dos Campos lidar underwent many modifications and upgrades. In 1993, the transmitter laser was upgraded with a commercial laser (see its illustration in Figure 5). With this upgrade, it was possible to use the Rayleigh signal from the clean atmosphere from 30 to 75 km (below the resonant Na signal) to measure the relative atmospheric density and the absolute temperature. These measurements have been used to study mesospheric temperature general behavior and the effects of atmospheric waves [41]. The long series of measurements have enabled long-term studies of the mesospheric Na, aerosols, and temperatures associated with global change [29, 42, 43]. A dual-beam Na/K lidar was assembled in São José dos Campos, Brazil, to extend the Na layer studies and improve the knowledge about metal layers in the MLT region. This system was installed owing to a cooperative agreement between the National Space Science Center (China) and the National Institute for Space Research (Brazil) in November of 2016.
Photos showing the candela laser system assembled at INPE São José dos Campos in 1993. This system operated between 1993 and 2006—Photos taken by B. R. Clemesha (in memoriam).
The lidar uses two laser beams of 589 nm and 770 nm to simultaneously measure Na and K concentrations by the resonant scattering at MLT. The signal-to-noise ratio response allows 3 min time resolution and 96 m of height resolution in the profiles [44]. Figure 6 shows the Na/K lidar during operation.
Picture showing the dual-beam Na/K lidar located at São José dos Campos, Brazil. The vertical orange beam is at 589 nm for Na scattering and the infrared one at 770 nm for K scattering. This last is not visible in the photo, but the red star indicates the beam position. Liu Zhengkuan took the original photo.
It is essential to point out that, up to the present time, this is the unique K lidar system operating in the Southern Hemisphere (SH). For the first time, it was presented the nocturnal and seasonal behavior of K and Na concentrations measured simultaneously at SH [44]. The seasonal variation of these two metals was determined, and it is interesting to note their different behavior even though both are alkali metals and come from meteor ablation. Semiannual variation is observed in both metal concentrations with different maxima: K shows its maxima around the solstices more pronounced around June, and Na concentration shows a maximum around May and a broad one centered in September [44]. A plausible interpretation of the different seasonal changes between Na and K concentrations is presented in Ref. [45]. This analysis is based on two points: 1) the neutralization of K+ ions is particularly favored at low temperatures through summer (North Hemisphere), and 2) cycling between K and its primary neutral reservoir KHCO3 is substantially temperature independent [44]. Unfortunately, the first argument is not significant for this latitude, where the mesopause temperature has not a great summer to winter variation [33].
The first lidar measurements concerning stratospheric aerosols in Latin America were performed in Kingston, Jamaica, between 1964 and 1979 [46]. The lidar system held for these measurements was managed by the University of the West Indies and supported by the US Air Force [47]. Its primary purpose was to investigate the atmospheric profile, measuring molecular scattering. Moreover, the system proved valuable for measurements of stratospheric aerosol layers at wavelength 694 nm [48]. These lidar measurements from Jamaica represented a pioneering role, concomitantly with different research teams, developing lidars’ capacities to measure aerosols in the lower stratosphere [49]. Those measurements were also an essential contribution to the stratosphere’s early studies in the tropics [50].
In 1969, a new lidar instrument was designed and developed at INPE by Prof. Barclay Clemesha (see Section 3 for details). This equipment’s primary objective was to investigate the mesosphere dynamics; besides, stratospheric aerosol measurements were also performed. The first measurements were carried in 1970 at wavelength 694 nm [16], and regular measurements began in 1972 [51]. This project was responsible for collecting the longest stratospheric aerosol profile measurements in Latin America and the Southern Hemisphere’s tropical zone, extending from 1971 to 2016. It includes stratospheric aerosols profiles from the two more significant volcanic eruptions of the XX century second half: the first happened in Mexico on 04 April 1982 (El Chichón), and the second in the Philippines on 14 June 1991 (Mount Pinatubo) [51, 52]. Measurements conducted at INPE between 1972 and 2016 proved the value and the importance of the stratospheric aerosols’ long-term monitoring. They have rendered information to understand the stratospheric aerosols layer evolution in the Southern Hemisphere’s tropics since the ‘50s [53].
A Cuban-Soviet scientific cooperation agreement supported the deployment in 1988 of a lidar system designed for stratospheric aerosols measurements at the Camagüey Meteorologic Center in Cuba [54]. The instrument operated intermittently between 1988 and 1997, providing stratospheric aerosols measurements from the Mount Pinatubo eruption in 1991. The 1988–1990 lidar aerosol profiles, at 532 nm, combined with satellite measurements, have been used to study background stratospheric aerosols in the Caribbean [55]. Camagüey Lidar Station (CLS) stratospheric aerosols profiles from Mount Pinatubo also contributed to the study of the radiative impacts of the eruption at regional [56] and global [57] scales. Moreover, the Camagüey lidar database was also used to validate the stratospheric aerosol SAGE II satellite measurements from Mount Pinatubo eruption [58, 59]. Furthermore, it was used to generate an extinction climatology in the UV for correcting Brewer ozone measurements [60].
By 1994 the Laser and Applications Research Center (CEILAP - UNIDEF) in Buenos Aires, Argentina, developed various lidar systems for atmospheric research [7]. One of these devices was designed to measure the atmospheric boundary layer, cirrus clouds, and tropospheric aerosols, operating at wavelength 532 nm [61]. A collaborative study between CEILAP and CLS evaluated how this lidar system could also be used for the higher troposphere and lower stratospheric aerosols research. Upon analyzing two tropospheric aerosols profiles extending into the lower stratosphere, encouraging results were found [62]. In June 2005, another lidar system was designed and installed by CEILAP in Río Gallegos, Patagonia. This instrument’s primary goal was performing measurements of stratospheric ozone, tropospheric and stratospheric aerosols, and water vapor. In particular, stratospheric aerosol profiles are used to correct the stratospheric ozone [63].
Western South America is bordered by the Andes, which divides the continent into two distinct regions. In South America, the vast majority of active volcanoes are located in the eastern part of the continent, and ash eruptions are routinely reported throughout the region. The volcanic activity includes periods of ash eruptions and cycling eruptions that spread out over months or even years [64, 65]. Great active volcanoes in South America are Nevado del Ruíz, in Colombia; Cotopaxi, Tungurahua, and Reventador, in Ecuador; Villarrica, Llaima, Nilahue, Lascar, Chaitén, and Calbuco, in Chile; El Misti, Ubinas and Sabancaya, in Peru; Aracar, Copahue, and Planchón-Peteroa in Argentina. There are no reported active volcanoes in Paraguay, Uruguay, Venezuela, Guyana, Suriname, and Brazil [64, 65].
On 22 April 2015, in Chile, the Calbuco volcano erupted and injected a significant amount of ashes and aerosols into the atmosphere [66].
The volcanic aerosol profiles in both the upper troposphere and the lower stratosphere, which originated from the Calbuco volcano eruption in Chile on 22 April 2015, were measured by different lidar stations in South America [7]. It was the first time that LALINET lidar stations, distributed across the continent, could analyze aerosol profiles together during an event. Lidar stations located in Buenos Aires, Comodoro Rivadavia, San Carlos de Bariloche, Neuquén, and Rio Gallegos (all five in Argentina), Concepción (Chile), and São Paulo (Brazil) observed the aerosols profiles [7, 67]. LALINET stations’ capabilities to operate in a coordinated way in case of a volcanic eruption were challenged, highlighting the coordination among LALINET teams.
On 23 April 2015 (one day after the eruption), the lidar system at the University of Concepción measured the aerosols profiles between 5 and 9 km, showing a multilayer structure. Both layers merged at around 7 km, decreasing its intensity and narrowing. The following day 24 April 2015, the two layers registered in the day before at Concepción were detected in the nighttime by the lidar system placed in Buenos Aires, Argentina, in heights varying between 5 and 7 km showing a drowning leaning. The aerosol’s multilayer formation was present at both lidar sites when identified for the first time. Lidar measurements conducted at IPEN in São Paulo on 27 April 2015 (five days after the eruption) exhibited aerosols found at an altitude of about 19 km in the stratosphere (Figure 7) [66]. Those lidar extinction profiles were confronted with those measured by the Ozone Mapping and Profiler Suite Limb Profiler (OMPS/LP) instrument, revealing promising results [7].
Quick-look of the RCS at 532 nm measured at SPU Lidar Station on 27 April 2015. The SPU Lidar Station is installed at the Center for Lasers and Applications of the nuclear and energy research institute (CELAP/IPEN) in São Paulo. The signal between 18 km and 20 km shows aerosols originating from the Calbuco volcano eruption on 22 April 2015, in Chile.
The behavior of trace constituents in the Earth’s upper atmosphere, dictated by diverse physical processes, is of particular interest for the balance of stratosphere and mesosphere. Expressly, ozone has a principal function by absorbing the short-wavelength UV radiation (which might damage life) and keep the radiative budget stable [68]. For those reasons, ozone has been at the focus of the middle atmosphere research effort [69, 70].
Researchers’ interest in performing lidar measurements from the southern region of the southern hemisphere dates back to 1995. Researchers from CEILAP, together with Prof. Gérard Mégie (who was then head of the
The instrument became operational in 1997 in Villa Martelli, Buenos Aires, where the headquarters of CEILAP is located. The initial version had only one telescope, which was 50 cm in diameter. It operated successfully until 2002. Later, the number of telescopes was increased to four, and a spectrometer was added. The apparatus was fine-tuned at the Villa Martelli headquarters.
The
The campaign’s feasibility study was conducted, considering the nocturnal cloud cover over four towns in Argentine Patagonia. The data were compared with those corresponding to days when the Antarctic polar vortex crosses over these towns.
Different tracers were also considered, such as the total ozone column values measured by total ozone mapping spectrometry, the equivalent latitude method, and the potential vorticity maps calculated for the mid-stratosphere, according to studies carried out in collaboration with the Service d’Aeronomie in France and the National Institute for Environmental Studies in Japan.
The city of Río Gallegos region met the necessary conditions for the measurements. It is located at 2612 km from Buenos Aires, on the River Gallegos estuary banks, and has 140,000 inhabitants. Like other cities in southern Argentina and Chile, Río Gallegos is reached by the ozone hole’s edge during the austral spring. However, compared with its counterparts, it has a more significant number of clear nights or nights with less than one-eighth cloud cover, which means more opportunities for making measurements with the ozone DIAL. Río Gallegos also hosts the National University of Southern Patagonia, whose staff could participate in the campaign, and is near to Punta Arenas, Chile, where another research group has used a Brewer instrument to make ozone measurements, in cooperation with Brazilian researchers. On 10 June 2005, the team set off overland for Río Gallegos in two trucks that traveled 2612 km from Buenos Aires to the Military Air Base in Río Gallegos, where a mobile laboratory was set up. The base is located 18 km from the center of the town [72, 73].
A Xe:Cl excimer laser emission at 308 nm is employed for the absorbed wavelength in the DIAL technique, and an Nd:YAG laser at 355 nm third harmonic line is employed as the reference wavelength. Six channels are used for signal acquisition [72]. Four of them detect the emitted wavelengths’ elastically backscattered signal (high energy mode for the higher altitude ranges, attenuated energy for the lower ranges), and two correspond to the Raman wavelengths [72]. The CEILAP’s DIAL instrument setup is shown in Figure 8, and its full description can be found in Ref. [10].
Experimental setup of differential absorption lidar (DIAL) developed at CEILAP.
The CEILAP Lidar Division, in cooperation with other national and international institutions, has organized the SOLAR (Stratospheric Ozone Lidar of ARgentina) Campaign as a part of environmental investigations in the Southern Hemisphere [72]. This campaign’s objective was to monitor different atmospheric constituents using remote sensing techniques, mainly related to lidar, in Argentina’s southern part. The most critical and complex instrument involved in this campaign is a differential absorption lidar capable of producing precise and accurate stratospheric ozone profiles [72, 73].
The most substantial decrease of the ozone column over Río Gallegos through the 2005 spring was observed on 8 October, with a total ozone column of 196 DU estimated from integrating an ozone profile based on the lidar measurement and the US Standard 1976. This value expresses a decrease of 45% in the total ozone column concerning the mean total ozone value outside the ozone hole for this month (about 350 DU). Figure 9 shows the measured lidar profile on this day (dashed line), together with the ozone profile measured on 17 October (dotted line), which corresponds to standard ozone conditions outside the ozone hole (about 357 DU). The figure also shows the climatologic profile (black line) from the SAGE II measurements, which corresponds to the mean of the ozone measurements outside the ozone hole for the 1995–2004 period.
Lidar ozone profile inside (dashed line) and outside (gray dotted line) ozone hole in Río Gallegos. Climatologic profile for October from SAGE II data (black line) [
From the full set of lidar measurements, were selected 37 lidar profiles that match the HRLS profiles. The monthly mean lidar profiles were confronted with similar profiles measured by the High-Resolution Dynamics Limb Sounder (HIRDLS) device onboard the NASA-Aura satellite. The collocation criteria for selecting satellite data were set using a distance of up to 500 km from site measurement and a temporal selection of about twelve hours for the measurement time. The mean stratospheric ozone lidar profile for October in Río Gallegos is shown in Figure 10. For comparison, the same quantity from satellite data is included.
Mean lidar profile (black line - error bar corresponds to ±1 std) and mean HIRDLS (white line) ±1 std. (shadow area) for October.
In general, good agreement between lidar and satellite data was found (inside the statistical error bar, with a relative difference of around 10%). The maximum disagreement between lidar and satellite data was observed in August mean profiles around 30 km. For October, the agreement was better than 10% above the ozone peak concentration. In general, it was observed that the variability of lidar profile concentrations is higher around the ozone peak, decreasing with height.
Differential Absorption lidar techniques have been demonstrated to be a reliable remote sensing technique to retrieve the stratosphere’s ozone profile [73]. Argentina has used DIAL techniques since 1999. In 2005, with French and Japanese researchers’ collaboration, the Lidar Division of CEILAP established a new site in Southern Patagonia, the South Patagonia Atmospheric Observatory (OAPA). This device has been part of Network Data for Atmospheric Composition Change (NDACC) since 2008, and the research using its measurements allows the study of ozone hole overpass from South America [75] and the satellite validation in the South Hemisphere. After the SOLAR Campaign, several initiatives were carried out related to stratospheric ozone monitoring in Argentina. For example, the UVO3-Patagonia (2008–2010) and SAVER-Net projects (2013–2018) were the research activities made in collaboration with JICA, and Japanese and Chilean Researchers went more in-depth the observation of ozone in vertical profiles and total ozone column [76].
Part I of this chapter offered the opportunity to give a scientific overview of current and past lidar observation activities conducted in South America, with Cuba’s participation. This overview spans over almost 50 years of activities and grants how this part of the world is concerned with laser remote sensing of the atmosphere in almost its whole structure: Mesosphere and Stratosphere. This top-down approach also followed a chronological delivery of results, with the first results coming from the region in the highest portion of the atmosphere (mesosphere), and going downwards to stratospheric, and finally at the tropospheric studies. If, in the first years, these activities started as individual initiatives at different countries and research groups levels, the creation of a federative lidar network, namely LALINET, helped somehow to have more coordinated measurements. Moreover, the implementation of SAVERNET in Argentina and Chile improved how these joint measurements are conducted. The studies conducted in the mesosphere account for one of the most extended time series of lidar data, being of great importance in the Southern Hemisphere. Also, significant results about Na and K concentrations and their variability over almost three decades are available. The studies of ozone concentration in the stratosphere also provided relevant results, unprecedented for this portion of the globe. Part II of this chapter will be dedicated to tropospheric lidar observations.
The authors are thankful to the Brazilian Agencies National Council for Scientific and Technological Development (CNPq), Coordination for the Improvement of Higher Education Personnel (CAPES), São Paulo Research Foundation (FAPESP), Brazilian Agricultural Research Corporation (EMBRAPA), and National Institute of Amazonian Research (INPA) LBA Central Office in Manaus. The authors also thank the NASA/AERONET teams, Japan International Cooperation Agency (JICA), the Argentine Agencies National Scientific and Technical Research Council (CONICET), National Agency for the Promotion of Research, Technological Development and Innovation (ANPCyT), the Argentine National Defense University (UNDEF), UNDEFI and PID-UTN Projects, the Ministry of Defense of Argentina, and the French National Centre for Scientific Research (CNRS). Also, to all NASA’s technical personnel, the Argentine Institute of Scientific and Technical Research for Defense (CITEDEF), and the Argentine National Meteorological Service (SMN), who have kept the solar photometers in operation, and especially to Raúl D’Elia. The authors wish to acknowledge the entire NASA CALIPSO and MODIS (AQUA/TERRA) teams, the NOAA Air Resources Laboratory, for providing the HYSPLIT transport and dispersion model and the READY website, ESA/EOM projects teams, the Suomi NPP (National Polar-orbiting Partnership) Mission teams, and the Sentinel 5-P TROPOMI team. The authors also acknowledge the financial support from CIBioFi, the Colombian Science, Technology, and Innovation Fund-General Royalties System (Fondo CTeI-Sistema General de Regalías), and Gobernación del Valle del Cauca. The authors acknowledge the China-Brazil Joint Laboratory for Space Weather (CBJLSW) for Supporting this Book Chapter. Vania F. Andrioli would like to thank the CBJLSW and the National Space Science Center (NSSC) of the Chinese Academy of Sciences (CAS) for supporting her postdoctoral fellowship. The authors from the Universidad de Magallanes would like to acknowledge the financial support of the Japan Science and Technology Agency (JST) / Japan International Cooperation Agency (JICA), the Science and Technology Research Association for Sustainable Development (SATREPS) through the SAVERNet project; and the Program FONDECYT of the Chilean National Agency for Research and Development (ANID) through Project FONDECYT 11181335.
The authors declare no conflict of interest.
All publications on this website are published under the Open Access model, without any subscription, registration, or access fees required from the user or his/her institution. In accordance with the Budapest Open Access Initiative's (BOAI) definition of Open Access, users are allowed to read, download, copy, distribute, print, search, and link to the full text versions of all Chapters. To read more about our Open Access Statement click here.
\n\nFor Editorial Policies for journals please consult individual journal pages.
',metaTitle:"Editorial policies",metaDescription:"Editorial policies",metaKeywords:null,canonicalURL:"/page/editorial-policies",contentRaw:'[{"type":"htmlEditorComponent","content":"All published Book Chapters are licensed under a Creative Commons Attribution 3.0 Unported License. Monographs are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license granted to all others. Our Copyright Policy aims to guarantee that original material is published while at the same time giving significant freedom to our Authors. IntechOpen upholds a flexible Copyright Policy meaning that there is no copyright transfer to the publisher and Authors hold exclusive copyright to their work.
\\n\\n\\n\\nWith the purpose of protecting our Authors' copyright and the transparent reuse of Open Access content, IntechOpen has developed an Attribution Policy for works published under Creative Commons licenses.
\\n\\n\\n\\nIntechOpen is committed to disseminating high-quality scientific research in a manner that exemplifies the best practice in scholarly publishing. IntechOpen is an official member of the Committee on Publication Ethics (COPE), which advocates the maintenance of the highest ethical standards for all parties involved in the act of publishing, including Authors, Academic Editors of the book, Peer Reviewers, the publisher and Societies, where applicable.
\\n\\nIn line with publication ethics practices recommended by COPE, ICMJE, and other similar organizations, IntechOpen's contributing Authors, Academic Editors, and Peer Reviewers are required to declare fully all possible conflicts of interest.
\\n\\n\\n\\nIntechOpen's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, the following requirements must be met:
\\n\\nAll scientific works are subject to Peer Review prior to publishing. IntechOpen is a member of the Committee on Publication Ethics (COPE) and all participating referees and Academic Editors are expected to review submitted scientific works in line with the COPE Ethical Guidelines for Peer Reviewers where applicable.
\\n\\n\\n\\nThe Internet has changed the dynamics of scholarly communication and publishing which is why we find it necessary to clearly indicate our stance on what we consider to be a published scientific work. A significant number of working papers, early drafts, and similar works in progress are shared openly online between members of the scientific community. It has become common practice for researchers to announce their work on a personal website or a blog in order to gather comments and suggestions from other researchers. Such works and online postings are ‘published’ in the sense that they are made publicly available, but this does not mean that if submitted for publication by IntechOpen they are not original works. We differentiate between reviewed and non-reviewed works when determining whether a work is original and has been published in a scholarly sense or not.
\\n\\n\\n\\nTo identify instances of fraud and misconduct during the publishing process, IntechOpen implements a robust policy governing such occurrences. In line with our general commitment to openness, and in order to maintain the highest scientific standards, we are committed to transparency about our editorial policy regarding retractions and corrections.
\\n\\n\\n\\nWhen faced with potential misconduct, IntechOpen accepts its responsibility to maintain the integrity of the academic record. For particularly complex cases, IntechOpen might ask for the assistance of formal industry bodies or seek advice from an appropriate team of advisors.
\\n\\nIntechOpen's advisors are professionals and scholars with broad knowledge and understanding of different aspects of the scientific publishing process: editorial, authorship, and reviewing roles; publication ethics, copyright, and general legal issues; as well as bibliographic and technical standards.
\\n\\nIn order to provide us with unbiased insights, without compromising the privacy of third parties, IntechOpen presents problematic cases to its advisors in an anonymized format.
\\n\\nIntechOpen publishes books in the English language. If you are interested in the translation of Book Chapters, please check IntechOpen's Translation Policy.
\\n\\n\\n\\nIn line with the Principles of Transparency and Best Practice in Scholarly Publishing, you can access a more detailed description of IntechOpen's Advertising Policy.
\\n\\n\\n\\nAt IntechOpen we realize that exceptional circumstances can occur, resulting in a request for a refund. We will honor all justified requests in the specific instances outlined in our Refund Policy.
\\n\\n\\n\\nAll chapters will be published via IntechOpen's 'Online First' service meaning chapters will be published individually, immediately after review and before the entire book is ready for publication, allowing content to be shared, searched and cited straightaway, thereby generating early stage interest and momentum for your research
\\n\\nOnline First Chapters are considered published on the day they are posted and are citable from that date.
\\n\\nChapters will remain listed as Online First until the final versions of the books are published online. Following publication of the full monograph, Chapters will be redirected from the Online First version and will be available only through the final link of the official published page.
\\n\\nYou are invited to download, use, reproduce, make derivative works of, display, distribute and cite the Online First works. You can find "How to Cite and Reference" by following the link at the end of each online book chapter. Please be aware that it is possible that further editing and changes might be made before the final release of the book.
\\n\\nIf there are supplemental materials to the chapter, these will be published at the time the final book is published online.
\\n\\nReaders and Authors can notify us if they find any errors in the works published under Online First. All major errors will be accompanied by a separate correction notice, erratum or corrigendum (Retraction and Correction Policy.)
\\n\\nIntechOpen books are available online by accessing all published content on a chapter level.
\\n\\n\\n\\nIntechOpen publishes different types of publications.
\\n\\n\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:'
All published Book Chapters are licensed under a Creative Commons Attribution 3.0 Unported License. Monographs are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license granted to all others. Our Copyright Policy aims to guarantee that original material is published while at the same time giving significant freedom to our Authors. IntechOpen upholds a flexible Copyright Policy meaning that there is no copyright transfer to the publisher and Authors hold exclusive copyright to their work.
\n\n\n\nWith the purpose of protecting our Authors' copyright and the transparent reuse of Open Access content, IntechOpen has developed an Attribution Policy for works published under Creative Commons licenses.
\n\n\n\nIntechOpen is committed to disseminating high-quality scientific research in a manner that exemplifies the best practice in scholarly publishing. IntechOpen is an official member of the Committee on Publication Ethics (COPE), which advocates the maintenance of the highest ethical standards for all parties involved in the act of publishing, including Authors, Academic Editors of the book, Peer Reviewers, the publisher and Societies, where applicable.
\n\nIn line with publication ethics practices recommended by COPE, ICMJE, and other similar organizations, IntechOpen's contributing Authors, Academic Editors, and Peer Reviewers are required to declare fully all possible conflicts of interest.
\n\n\n\nIntechOpen's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, the following requirements must be met:
\n\nAll scientific works are subject to Peer Review prior to publishing. IntechOpen is a member of the Committee on Publication Ethics (COPE) and all participating referees and Academic Editors are expected to review submitted scientific works in line with the COPE Ethical Guidelines for Peer Reviewers where applicable.
\n\n\n\nThe Internet has changed the dynamics of scholarly communication and publishing which is why we find it necessary to clearly indicate our stance on what we consider to be a published scientific work. A significant number of working papers, early drafts, and similar works in progress are shared openly online between members of the scientific community. It has become common practice for researchers to announce their work on a personal website or a blog in order to gather comments and suggestions from other researchers. Such works and online postings are ‘published’ in the sense that they are made publicly available, but this does not mean that if submitted for publication by IntechOpen they are not original works. We differentiate between reviewed and non-reviewed works when determining whether a work is original and has been published in a scholarly sense or not.
\n\n\n\nTo identify instances of fraud and misconduct during the publishing process, IntechOpen implements a robust policy governing such occurrences. In line with our general commitment to openness, and in order to maintain the highest scientific standards, we are committed to transparency about our editorial policy regarding retractions and corrections.
\n\n\n\nWhen faced with potential misconduct, IntechOpen accepts its responsibility to maintain the integrity of the academic record. For particularly complex cases, IntechOpen might ask for the assistance of formal industry bodies or seek advice from an appropriate team of advisors.
\n\nIntechOpen's advisors are professionals and scholars with broad knowledge and understanding of different aspects of the scientific publishing process: editorial, authorship, and reviewing roles; publication ethics, copyright, and general legal issues; as well as bibliographic and technical standards.
\n\nIn order to provide us with unbiased insights, without compromising the privacy of third parties, IntechOpen presents problematic cases to its advisors in an anonymized format.
\n\nIntechOpen publishes books in the English language. If you are interested in the translation of Book Chapters, please check IntechOpen's Translation Policy.
\n\n\n\nIn line with the Principles of Transparency and Best Practice in Scholarly Publishing, you can access a more detailed description of IntechOpen's Advertising Policy.
\n\n\n\nAt IntechOpen we realize that exceptional circumstances can occur, resulting in a request for a refund. We will honor all justified requests in the specific instances outlined in our Refund Policy.
\n\n\n\nAll chapters will be published via IntechOpen's 'Online First' service meaning chapters will be published individually, immediately after review and before the entire book is ready for publication, allowing content to be shared, searched and cited straightaway, thereby generating early stage interest and momentum for your research
\n\nOnline First Chapters are considered published on the day they are posted and are citable from that date.
\n\nChapters will remain listed as Online First until the final versions of the books are published online. Following publication of the full monograph, Chapters will be redirected from the Online First version and will be available only through the final link of the official published page.
\n\nYou are invited to download, use, reproduce, make derivative works of, display, distribute and cite the Online First works. You can find "How to Cite and Reference" by following the link at the end of each online book chapter. Please be aware that it is possible that further editing and changes might be made before the final release of the book.
\n\nIf there are supplemental materials to the chapter, these will be published at the time the final book is published online.
\n\nReaders and Authors can notify us if they find any errors in the works published under Online First. All major errors will be accompanied by a separate correction notice, erratum or corrigendum (Retraction and Correction Policy.)
\n\nIntechOpen books are available online by accessing all published content on a chapter level.
\n\n\n\nIntechOpen publishes different types of publications.
\n\n\n\n\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{mdrv:"www.intechopen.com"},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6675},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2458},{group:"region",caption:"Asia",value:4,count:12717},{group:"region",caption:"Australia and Oceania",value:5,count:1017},{group:"region",caption:"Europe",value:6,count:17720}],offset:12,limit:12,total:134177},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"5,6,12,13,18"},books:[{type:"book",id:"11369",title:"RNA Viruses",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11610",title:"New Insights in Herbicide Science",subtitle:null,isOpenForSubmission:!0,hash:"eb3830b8176caf3d1fd52c32313c5168",slug:null,bookSignature:"Ph.D. Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/11610.jpg",editedByType:null,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11800",title:"Cyanobacteria - Recent Advances and New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"645b037b086ec8c36af614326dce9804",slug:null,bookSignature:"Dr. Archana Tiwari",coverURL:"https://cdn.intechopen.com/books/images_new/11800.jpg",editedByType:null,editors:[{id:"186791",title:"Dr.",name:"Archana",surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11669",title:"Fatty Acids - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"9117bd12dc904ced43404e3383b6591a",slug:null,bookSignature:"Assistant Prof. Erik Froyen",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",editedByType:null,editors:[{id:"415310",title:"Assistant Prof.",name:"Erik",surname:"Froyen",slug:"erik-froyen",fullName:"Erik Froyen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11664",title:"Recent Advances in Sensing Technologies for Environmental Control and Monitoring",subtitle:null,isOpenForSubmission:!0,hash:"cf1ee76443e393bc7597723c3ee3e26f",slug:null,bookSignature:"Dr. Toonika Rinken and Dr. Kairi Kivirand",coverURL:"https://cdn.intechopen.com/books/images_new/11664.jpg",editedByType:null,editors:[{id:"24687",title:"Dr.",name:"Toonika",surname:"Rinken",slug:"toonika-rinken",fullName:"Toonika Rinken"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11636",title:"Neuroplasticity - Visual Cortex Reorganization From Neurons to Maps",subtitle:null,isOpenForSubmission:!0,hash:"b306ce94998737c764d08736e76d60e1",slug:null,bookSignature:"Dr. Alyssa A Brewer and Dr. Brian Barton",coverURL:"https://cdn.intechopen.com/books/images_new/11636.jpg",editedByType:null,editors:[{id:"115304",title:"Dr.",name:"Alyssa",surname:"Brewer",slug:"alyssa-brewer",fullName:"Alyssa Brewer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11607",title:"Aquatic Plants - Biology and Environmental Impacts",subtitle:null,isOpenForSubmission:!0,hash:"9103c1501af58e2c24202646f15f0940",slug:null,bookSignature:"Dr. Abd El-Fatah Abomohra, Dr. Mei Li and Dr. Adel W. Almutairi",coverURL:"https://cdn.intechopen.com/books/images_new/11607.jpg",editedByType:null,editors:[{id:"186114",title:"Dr.",name:"Abdelfatah",surname:"Abomohra",slug:"abdelfatah-abomohra",fullName:"Abdelfatah Abomohra"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11475",title:"Food Security Challenges and Approaches",subtitle:null,isOpenForSubmission:!0,hash:"090302a30e461cee643ec49675c811ec",slug:null,bookSignature:"Dr. Muhammad Haseeb Ahmad, Dr. Muhammad Imran and Dr. Muhammad Kamran Khan",coverURL:"https://cdn.intechopen.com/books/images_new/11475.jpg",editedByType:null,editors:[{id:"292145",title:"Dr.",name:"Muhammad",surname:"Haseeb Ahmad",slug:"muhammad-haseeb-ahmad",fullName:"Muhammad Haseeb Ahmad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11635",title:"Towards New Perspectives on Toxoplasma gondii",subtitle:null,isOpenForSubmission:!0,hash:"2d409a285bea682efb34a817b0651aba",slug:null,bookSignature:"Dr. Saeed El-Ashram, Dr. Guillermo Téllez and Dr. Firas Alali",coverURL:"https://cdn.intechopen.com/books/images_new/11635.jpg",editedByType:null,editors:[{id:"209746",title:"Dr.",name:"Saeed",surname:"El-Ashram",slug:"saeed-el-ashram",fullName:"Saeed El-Ashram"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11672",title:"Chemokines Updates",subtitle:null,isOpenForSubmission:!0,hash:"c00855833476a514d37abf7c846e16e9",slug:null,bookSignature:"Prof. Murat Şentürk",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",editedByType:null,editors:[{id:"14794",title:"Prof.",name:"Murat",surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11674",title:"Updates on Endoplasmic Reticulum",subtitle:null,isOpenForSubmission:!0,hash:"5d7d49bd80f53dad3761f78de4a862c6",slug:null,bookSignature:"Dr. Gaia Favero",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",editedByType:null,editors:[{id:"238047",title:"Dr.",name:"Gaia",surname:"Favero",slug:"gaia-favero",fullName:"Gaia Favero"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11450",title:"Environmental Impacts of COVID-19 Pandemic on the World",subtitle:null,isOpenForSubmission:!0,hash:"a58c7b02d07903004be70f744f2e1835",slug:null,bookSignature:"Prof. Mohamed Nageeb Rashed and Prof. Wafaa M. Abd El-Rahim",coverURL:"https://cdn.intechopen.com/books/images_new/11450.jpg",editedByType:null,editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:25},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:116},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:81},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4428},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1318",title:"Virtual Learning",slug:"virtual-learning",parent:{id:"265",title:"Education",slug:"social-sciences-education"},numberOfBooks:7,numberOfSeries:0,numberOfAuthorsAndEditors:189,numberOfWosCitations:51,numberOfCrossrefCitations:94,numberOfDimensionsCitations:148,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1318",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editedByType:"Edited by",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editedByType:"Edited by",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7601",title:"Game Design and Intelligent Interaction",subtitle:null,isOpenForSubmission:!1,hash:"aef7c5d14fb716604538b9f7e1a3f2ef",slug:"game-design-and-intelligent-interaction",bookSignature:"Ioannis Deliyannis",coverURL:"https://cdn.intechopen.com/books/images_new/7601.jpg",editedByType:"Edited by",editors:[{id:"103622",title:"Dr.",name:"Ioannis",middleName:null,surname:"Deliyannis",slug:"ioannis-deliyannis",fullName:"Ioannis Deliyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6220",title:"Open and Equal Access for Learning in School Management",subtitle:null,isOpenForSubmission:!1,hash:"a1e919de72d78288c473f399c12ee984",slug:"open-and-equal-access-for-learning-in-school-management",bookSignature:"Fahriye Altınay",coverURL:"https://cdn.intechopen.com/books/images_new/6220.jpg",editedByType:"Edited by",editors:[{id:"189778",title:"Dr.",name:"Fahriye",middleName:null,surname:"Altınay",slug:"fahriye-altinay",fullName:"Fahriye Altınay"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6543",title:"State of the Art Virtual Reality and Augmented Reality Knowhow",subtitle:null,isOpenForSubmission:!1,hash:"287d44bcf4ef446e6e077ec9f1ec501e",slug:"state-of-the-art-virtual-reality-and-augmented-reality-knowhow",bookSignature:"Nawaz Mohamudally",coverURL:"https://cdn.intechopen.com/books/images_new/6543.jpg",editedByType:"Edited by",editors:[{id:"119486",title:"Dr.",name:"Nawaz",middleName:null,surname:"Mohamudally",slug:"nawaz-mohamudally",fullName:"Nawaz Mohamudally"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:7,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"59705",doi:"10.5772/intechopen.74943",title:"Augmented Reality Trends in Education between 2016 and 2017 Years",slug:"augmented-reality-trends-in-education-between-2016-and-2017-years",totalDownloads:2464,totalCrossrefCites:19,totalDimensionsCites:27,abstract:"The aim of this chapter is to review literature regarding using augmented reality (AR) in education articles published in between 2016 and 2017 years. The literature source was Web of Science and SSCI, SCI-EXPANDED, A&HCI, CPCI-S, CPCI-SSH, and ESCI indexes. Fifty-two articles were reviewed; however, 14 of them were not been included in the study. As a result, 38 articles were examined. Level of education, field of education, and material types of AR used in education and reported educational advantages of AR have been investigated. All articles are categorized according to target groups, which are early childhood education, primary education, secondary education, high school education, graduate education, and others. AR technology has been mostly carried out in primary and graduate education. “Science education” is the most explored field of education. Mobile applications and marker-based materials on paper have been mostly preferred. The major advantages indicated in the articles are “Learning/Academic Achievement,” “Motivation,” and “Attitude”.",book:{id:"6543",slug:"state-of-the-art-virtual-reality-and-augmented-reality-knowhow",title:"State of the Art Virtual Reality and Augmented Reality Knowhow",fullTitle:"State of the Art Virtual Reality and Augmented Reality Knowhow"},signatures:"Rabia M. Yilmaz",authors:[{id:"225838",title:"Dr.",name:"Rabia",middleName:null,surname:"Yilmaz",slug:"rabia-yilmaz",fullName:"Rabia Yilmaz"}]},{id:"59468",doi:"10.5772/intechopen.74344",title:"Virtual and Augmented Reality: New Frontiers for Clinical Psychology",slug:"virtual-and-augmented-reality-new-frontiers-for-clinical-psychology",totalDownloads:2337,totalCrossrefCites:13,totalDimensionsCites:21,abstract:"In the last decades, the applied approach for the use of virtual reality (VR) and augmented reality (AR) on clinical and health psychology has grown exponentially. These technologies have been used to treat several mental disorders, for example, phobias, stress-related disorders, depression, eating disorders, and chronic pain. The importance of VR/AR for the mental health field comes from three main concepts: (1) VR/AR as an imaginal technology, people can feel “as if they are” in a reality that does not exist in external world; (2) VR/AR as an embodied technology, the experience to feel user’s body inside the virtual environment; and (3) VR/AR as connectivity technology, the “end of geography’. In this chapter, we explore the opportunities provided by VR/AR as technologies to improve people’s quality of life and to discuss new frontiers for their application in mental health and psychological well-being promotion.",book:{id:"6543",slug:"state-of-the-art-virtual-reality-and-augmented-reality-knowhow",title:"State of the Art Virtual Reality and Augmented Reality Knowhow",fullTitle:"State of the Art Virtual Reality and Augmented Reality Knowhow"},signatures:"Sara Ventura, Rosa M. Baños and Cristina Botella",authors:[{id:"106036",title:"Dr.",name:"Rosa Maria",middleName:null,surname:"Baños",slug:"rosa-maria-banos",fullName:"Rosa Maria Baños"},{id:"227763",title:"Ph.D.",name:"Sara",middleName:null,surname:"Ventura",slug:"sara-ventura",fullName:"Sara Ventura"},{id:"229056",title:"Dr.",name:"Cristina",middleName:null,surname:"Botella",slug:"cristina-botella",fullName:"Cristina Botella"}]},{id:"59408",doi:"10.5772/intechopen.74070",title:"Enhancing BIM Methodology with VR Technology",slug:"enhancing-bim-methodology-with-vr-technology",totalDownloads:3702,totalCrossrefCites:7,totalDimensionsCites:14,abstract:"Building information modeling (BIM) is defined as the process of generating, storing, managing, exchanging, and sharing building information. In the construction industry, the processes and technologies that support BIM are constantly evolving, making the BIM even more attractive. A current topic that requires attention is the integration of BIM with virtual reality (VR) where the user visualizes a virtual world and can interact with it. By adding VR, the BIM solution can address retrieving and presenting information and increasing efficiency on communication and problem solving in an interactive and collaborative project. The objective of this chapter is to report the improvement of BIM uses with the addition of interactive capacities allowed by VR technology. A bibliographic and software research was made to support the study.",book:{id:"6543",slug:"state-of-the-art-virtual-reality-and-augmented-reality-knowhow",title:"State of the Art Virtual Reality and Augmented Reality Knowhow",fullTitle:"State of the Art Virtual Reality and Augmented Reality Knowhow"},signatures:"Alcínia Zita Sampaio",authors:[{id:"13640",title:"Prof.",name:"Alcínia Zita",middleName:"Almeida",surname:"Sampaio",slug:"alcinia-zita-sampaio",fullName:"Alcínia Zita Sampaio"}]},{id:"60066",doi:"10.5772/intechopen.75172",title:"Waveguide-Type Head-Mounted Display System for AR Application",slug:"waveguide-type-head-mounted-display-system-for-ar-application",totalDownloads:2220,totalCrossrefCites:7,totalDimensionsCites:14,abstract:"Currently, a lot of institutes and industries are working on the development of the virtual reality and augmented reality techniques, and these techniques have been recognized as the determination for the direction of the three-dimensional display development in the near future. In this chapter, we mainly discussed the design and application of several wearable head-mounted display (HMD) systems with the waveguide structure using the in- and out-couplers which are fabricated by the diffractive optical elements or holographic volume gratings. Although the structure is simple, the waveguide-type HMDs are very efficient, especially in the practical applications, especially in the augmented reality applications, which make the device light-weighted. In addition, we reviewed the existing major head-mounted display and augmented reality systems.",book:{id:"6543",slug:"state-of-the-art-virtual-reality-and-augmented-reality-knowhow",title:"State of the Art Virtual Reality and Augmented Reality Knowhow",fullTitle:"State of the Art Virtual Reality and Augmented Reality Knowhow"},signatures:"Munkh-Uchral Erdenebat, Young-Tae Lim, Ki-Chul Kwon,\nNyamsuren Darkhanbaatar and Nam Kim",authors:[{id:"36088",title:"Prof.",name:"Nam",middleName:null,surname:"Kim",slug:"nam-kim",fullName:"Nam Kim"},{id:"231071",title:"Dr.",name:"Munkh-Uchral",middleName:null,surname:"Erdenebat",slug:"munkh-uchral-erdenebat",fullName:"Munkh-Uchral Erdenebat"},{id:"231073",title:"Dr.",name:"Young-Tae",middleName:null,surname:"Lim",slug:"young-tae-lim",fullName:"Young-Tae Lim"},{id:"231075",title:"Dr.",name:"Ki-Chul",middleName:null,surname:"Kwon",slug:"ki-chul-kwon",fullName:"Ki-Chul Kwon"},{id:"249440",title:"Ms.",name:"Nyamsuren",middleName:null,surname:"Darkhanbaatar",slug:"nyamsuren-darkhanbaatar",fullName:"Nyamsuren Darkhanbaatar"}]},{id:"61026",doi:"10.5772/intechopen.76476",title:"How to Create Suitable Augmented Reality Application to Teach Social Skills for Children with ASD",slug:"how-to-create-suitable-augmented-reality-application-to-teach-social-skills-for-children-with-asd",totalDownloads:1394,totalCrossrefCites:7,totalDimensionsCites:10,abstract:"Autism spectrum disorders (ASDs) are characterized by a reduced ability to appropriately express social greetings. Studies have indicated that individuals with ASD might not recognize the crucial nonverbal cues that usually aid social interaction. This study applied augmented reality (AR) with tabletop role-playing game (AR-RPG) to focus on the standard nonverbal social cues to teach children with ASD, how to appropriately reciprocate when they socially interact with others. The results showed that intervention system provides an AR combined with physical manipulatives and presents corresponding specific elements in an AR 3D animation with dialogue; thus, it can be used to help them increase their social interaction skills and drive their attention toward the meaning and social value of greeting behavior in specific social situations. We conclude that AR-RPG of social situations helped children with ASD recognize and better understand these situations and moderately effective in teaching the target greeting responses.",book:{id:"6543",slug:"state-of-the-art-virtual-reality-and-augmented-reality-knowhow",title:"State of the Art Virtual Reality and Augmented Reality Knowhow",fullTitle:"State of the Art Virtual Reality and Augmented Reality Knowhow"},signatures:"I-Jui Lee, Ling-Yi Lin, Chien-Hsu Chen and Chi-Hsuan Chung",authors:[{id:"229636",title:"Dr.",name:"I-Jui",middleName:null,surname:"Lee",slug:"i-jui-lee",fullName:"I-Jui Lee"},{id:"250696",title:"Prof.",name:"Chien-Hsu",middleName:null,surname:"Chen",slug:"chien-hsu-chen",fullName:"Chien-Hsu Chen"}]}],mostDownloadedChaptersLast30Days:[{id:"59408",title:"Enhancing BIM Methodology with VR Technology",slug:"enhancing-bim-methodology-with-vr-technology",totalDownloads:3703,totalCrossrefCites:7,totalDimensionsCites:14,abstract:"Building information modeling (BIM) is defined as the process of generating, storing, managing, exchanging, and sharing building information. In the construction industry, the processes and technologies that support BIM are constantly evolving, making the BIM even more attractive. A current topic that requires attention is the integration of BIM with virtual reality (VR) where the user visualizes a virtual world and can interact with it. By adding VR, the BIM solution can address retrieving and presenting information and increasing efficiency on communication and problem solving in an interactive and collaborative project. The objective of this chapter is to report the improvement of BIM uses with the addition of interactive capacities allowed by VR technology. A bibliographic and software research was made to support the study.",book:{id:"6543",slug:"state-of-the-art-virtual-reality-and-augmented-reality-knowhow",title:"State of the Art Virtual Reality and Augmented Reality Knowhow",fullTitle:"State of the Art Virtual Reality and Augmented Reality Knowhow"},signatures:"Alcínia Zita Sampaio",authors:[{id:"13640",title:"Prof.",name:"Alcínia Zita",middleName:"Almeida",surname:"Sampaio",slug:"alcinia-zita-sampaio",fullName:"Alcínia Zita Sampaio"}]},{id:"59705",title:"Augmented Reality Trends in Education between 2016 and 2017 Years",slug:"augmented-reality-trends-in-education-between-2016-and-2017-years",totalDownloads:2465,totalCrossrefCites:19,totalDimensionsCites:27,abstract:"The aim of this chapter is to review literature regarding using augmented reality (AR) in education articles published in between 2016 and 2017 years. The literature source was Web of Science and SSCI, SCI-EXPANDED, A&HCI, CPCI-S, CPCI-SSH, and ESCI indexes. Fifty-two articles were reviewed; however, 14 of them were not been included in the study. As a result, 38 articles were examined. Level of education, field of education, and material types of AR used in education and reported educational advantages of AR have been investigated. All articles are categorized according to target groups, which are early childhood education, primary education, secondary education, high school education, graduate education, and others. AR technology has been mostly carried out in primary and graduate education. “Science education” is the most explored field of education. Mobile applications and marker-based materials on paper have been mostly preferred. The major advantages indicated in the articles are “Learning/Academic Achievement,” “Motivation,” and “Attitude”.",book:{id:"6543",slug:"state-of-the-art-virtual-reality-and-augmented-reality-knowhow",title:"State of the Art Virtual Reality and Augmented Reality Knowhow",fullTitle:"State of the Art Virtual Reality and Augmented Reality Knowhow"},signatures:"Rabia M. Yilmaz",authors:[{id:"225838",title:"Dr.",name:"Rabia",middleName:null,surname:"Yilmaz",slug:"rabia-yilmaz",fullName:"Rabia Yilmaz"}]},{id:"71276",title:"Use of Cloud Gaming in Education",slug:"use-of-cloud-gaming-in-education",totalDownloads:830,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"The use of digital games in education has been the subject of research for many years and their usefulness has been confirmed by many studies and research projects. Standardized tests, such as PISA test, show that respondents achieved better reading, math and physics results if they used the computer more for gaming-related activities. It has been proven that the application of video games in education increases student motivation, improves several types of key skills—social and intellectual skills, reflexes and concentration. Nevertheless, there are several challenges associated with the application of video games in schools and they can be categorized as technical (network and end device limitations), competency (teachers’ knowledge in the area), qualitative (lack of educational games of high quality), and financial (high cost of purchasing games and equipment). The novel architecture for delivery of gaming content commonly referred to as “cloud gaming” has the potential to solve most of the present challenges of using games in education. A well-designed cloud gaming platform would enable seamless and simple usage for both students and teachers. While solving most of the present problems, cloud gaming introduces a set of new research challenges which will be discussed in this section.",book:{id:"7601",slug:"game-design-and-intelligent-interaction",title:"Game Design and Intelligent Interaction",fullTitle:"Game Design and Intelligent Interaction"},signatures:"Mirko Sužnjević and Maja Homen",authors:[{id:"303557",title:"Associate Prof.",name:"Mirko",middleName:null,surname:"Sužnjević",slug:"mirko-suznjevic",fullName:"Mirko Sužnjević"},{id:"316947",title:"Dr.",name:"Maja",middleName:null,surname:"Homen",slug:"maja-homen",fullName:"Maja Homen"}]},{id:"70106",title:"Categorizing Game Design Elements into Educational Game Design Fundamentals",slug:"categorizing-game-design-elements-into-educational-game-design-fundamentals",totalDownloads:1252,totalCrossrefCites:6,totalDimensionsCites:8,abstract:"Educational games have become a highly prominent tool in schools to deliver an exciting learning experience. Large amount of literature discusses the importance of how educational games are designed has been highlighted that delivering learning through educational games design and how the game designers require crucial skills to design. Educational game design requires elements which are considered during the designing process. Looking at the projection of “Game designing or the process of game design is a complex task, and it is still being investigated”. Therefore, this chapter intends to discuss recent and prominent proposed game design elements that demonstrate their important characteristics in designing educational games. Consequently, two highly significant game design theorists with established fundamental elements of games are discussed. With critically understanding the elements, this chapter provides categorizing various existing game elements into established fundamental elements. Henceforth, it demonstrates a clearer overview of how game design elements can be categorized and applied. Future recommendations are also discussed.",book:{id:"7601",slug:"game-design-and-intelligent-interaction",title:"Game Design and Intelligent Interaction",fullTitle:"Game Design and Intelligent Interaction"},signatures:"Mifrah Ahmad",authors:[{id:"303651",title:"Ph.D.",name:"Mifrah",middleName:null,surname:"Ahmad",slug:"mifrah-ahmad",fullName:"Mifrah Ahmad"}]},{id:"60066",title:"Waveguide-Type Head-Mounted Display System for AR Application",slug:"waveguide-type-head-mounted-display-system-for-ar-application",totalDownloads:2220,totalCrossrefCites:7,totalDimensionsCites:14,abstract:"Currently, a lot of institutes and industries are working on the development of the virtual reality and augmented reality techniques, and these techniques have been recognized as the determination for the direction of the three-dimensional display development in the near future. In this chapter, we mainly discussed the design and application of several wearable head-mounted display (HMD) systems with the waveguide structure using the in- and out-couplers which are fabricated by the diffractive optical elements or holographic volume gratings. Although the structure is simple, the waveguide-type HMDs are very efficient, especially in the practical applications, especially in the augmented reality applications, which make the device light-weighted. In addition, we reviewed the existing major head-mounted display and augmented reality systems.",book:{id:"6543",slug:"state-of-the-art-virtual-reality-and-augmented-reality-knowhow",title:"State of the Art Virtual Reality and Augmented Reality Knowhow",fullTitle:"State of the Art Virtual Reality and Augmented Reality Knowhow"},signatures:"Munkh-Uchral Erdenebat, Young-Tae Lim, Ki-Chul Kwon,\nNyamsuren Darkhanbaatar and Nam Kim",authors:[{id:"36088",title:"Prof.",name:"Nam",middleName:null,surname:"Kim",slug:"nam-kim",fullName:"Nam Kim"},{id:"231071",title:"Dr.",name:"Munkh-Uchral",middleName:null,surname:"Erdenebat",slug:"munkh-uchral-erdenebat",fullName:"Munkh-Uchral Erdenebat"},{id:"231073",title:"Dr.",name:"Young-Tae",middleName:null,surname:"Lim",slug:"young-tae-lim",fullName:"Young-Tae Lim"},{id:"231075",title:"Dr.",name:"Ki-Chul",middleName:null,surname:"Kwon",slug:"ki-chul-kwon",fullName:"Ki-Chul Kwon"},{id:"249440",title:"Ms.",name:"Nyamsuren",middleName:null,surname:"Darkhanbaatar",slug:"nyamsuren-darkhanbaatar",fullName:"Nyamsuren Darkhanbaatar"}]}],onlineFirstChaptersFilter:{topicId:"1318",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"23",title:"Education and Human Development",doi:"10.5772/intechopen.100360",issn:null,scope:"
\r\n\tEducation and Human Development is an interdisciplinary research area that aims to shed light on topics related to both learning and development. This Series is intended for researchers, practitioners, and students who are interested in understanding more about these fields and their applications.
",coverUrl:"https://cdn.intechopen.com/series/covers/23.jpg",latestPublicationDate:"June 25th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:0,editor:{id:"280770",title:"Dr.",name:"Katherine K.M.",middleName:null,surname:"Stavropoulos",slug:"katherine-k.m.-stavropoulos",fullName:"Katherine K.M. Stavropoulos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRdFuQAK/Profile_Picture_2022-05-24T09:03:48.jpg",biography:"Katherine Stavropoulos received her BA in Psychology from Trinity College, in Connecticut, USA. Dr. Stavropoulos received her Ph.D. in Experimental Psychology from the University of California, San Diego. She completed her postdoctoral work at the Yale Child Study Center with Dr. James McPartland. Dr. Stavropoulos’ doctoral dissertation explored neural correlates of reward anticipation to social versus nonsocial stimuli in children with and without autism spectrum disorders (ASD). She has been a faculty member at the University of California, Riverside in the School of Education since 2016. Her research focuses on translational studies to explore the reward system in ASD, as well as how anxiety contributes to social challenges in ASD. She also investigates how behavioral interventions affect neural activity, behavior, and school performance in children with ASD. She is also involved in the diagnosis of children with ASD and is a licensed clinical psychologist in California. She is the Assistant Director of the SEARCH Center at UCR and is a Faculty member in the Graduate Program in Neuroscience.",institutionString:null,institution:{name:"University of California, Riverside",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:2,paginationItems:[{id:"89",title:"Education",coverUrl:"https://cdn.intechopen.com/series_topics/covers/89.jpg",isOpenForSubmission:!1,editor:{id:"260066",title:"Associate Prof.",name:"Michail",middleName:null,surname:"Kalogiannakis",slug:"michail-kalogiannakis",fullName:"Michail Kalogiannakis",profilePictureURL:"https://mts.intechopen.com/storage/users/260066/images/system/260066.jpg",biography:"Michail Kalogiannakis is an Associate Professor of the Department of Preschool Education, University of Crete, and an Associate Tutor at School of Humanities at the Hellenic Open University. He graduated from the Physics Department of the University of Crete and continued his post-graduate studies at the University Paris 7-Denis Diderot (D.E.A. in Didactic of Physics), University Paris 5-René Descartes-Sorbonne (D.E.A. in Science Education) and received his Ph.D. degree at the University Paris 5-René Descartes-Sorbonne (PhD in Science Education). His research interests include science education in early childhood, science teaching and learning, e-learning, the use of ICT in science education, games simulations, and mobile learning. He has published over 120 articles in international conferences and journals and has served on the program committees of numerous international conferences.",institutionString:"University of Crete",institution:{name:"University of Crete",institutionURL:null,country:{name:"Greece"}}},editorTwo:{id:"422488",title:"Dr.",name:"Maria",middleName:null,surname:"Ampartzaki",slug:"maria-ampartzaki",fullName:"Maria Ampartzaki",profilePictureURL:"https://mts.intechopen.com/storage/users/422488/images/system/422488.jpg",biography:"Dr Maria Ampartzaki is an Assistant Professor in Early Childhood Education in the Department of Preschool Education at the University of Crete. Her research interests include ICT in education, science education in the early years, inquiry-based and art-based learning, teachers’ professional development, action research, and the Pedagogy of Multiliteracies, among others. She has run and participated in several funded and non-funded projects on the teaching of Science, Social Sciences, and ICT in education. She also has the experience of participating in five Erasmus+ projects.",institutionString:"University of Crete",institution:{name:"University of Crete",institutionURL:null,country:{name:"Greece"}}},editorThree:null},{id:"90",title:"Human Development",coverUrl:"https://cdn.intechopen.com/series_topics/covers/90.jpg",isOpenForSubmission:!0,editor:{id:"191040",title:"Dr.",name:"Tal",middleName:null,surname:"Dotan Ben-Soussan",slug:"tal-dotan-ben-soussan",fullName:"Tal Dotan Ben-Soussan",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBf1QAG/Profile_Picture_2022-03-18T07:56:11.jpg",biography:"Tal Dotan Ben-Soussan, Ph.D., is the director of the Research Institute for Neuroscience, Education and Didactics (RINED) – Paoletti Foundation. Ben-Soussan leads international studies on training and neuroplasticity from neurophysiological and psychobiological perspectives. As a neuroscientist and bio-psychologist, she has published numerous articles on neuroplasticity, movement and meditation. She acts as an editor and reviewer in several renowned journals and coordinates international conferences integrating theoretical, methodological and practical approaches on various topics, such as silence, logics and neuro-education. She lives in Assisi, Italy.",institutionString:"Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation",institution:null},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:5,paginationItems:[{id:"82394",title:"Learning by Doing Active Social Learning",doi:"10.5772/intechopen.105523",signatures:"Anat Raviv",slug:"learning-by-doing-active-social-learning",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82310",title:"Knowledge of Intergenerational Contact to Combat Ageism towards Older People",doi:"10.5772/intechopen.105592",signatures:"Alice Nga Lai Kwong",slug:"knowledge-of-intergenerational-contact-to-combat-ageism-towards-older-people",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Social Aspects of Ageing - Selected Challenges, Analyses, and Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11479.jpg",subseries:{id:"90",title:"Human Development"}}},{id:"81993",title:"Emergent Chemistry: Using Visualizations to Develop Abstract Thinking and a Sense of Scale Within the Preschool Setting",doi:"10.5772/intechopen.105216",signatures:"Karina Adbo",slug:"emergent-chemistry-using-visualizations-to-develop-abstract-thinking-and-a-sense-of-scale-within-the",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82252",title:"Early Childhood: Enriched Environments and Roles of Caring Adults",doi:"10.5772/intechopen.105157",signatures:"Analía Mignaton",slug:"early-childhood-enriched-environments-and-roles-of-caring-adults",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}}]},overviewPagePublishedBooks:{paginationCount:0,paginationItems:[]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11570",title:"Influenza - New Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11570.jpg",hash:"157b379b9d7a4bf5e2cc7a742f155a44",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"139889",title:"Dr.",name:"Seyyed Shamsadin",surname:"Athari",slug:"seyyed-shamsadin-athari",fullName:"Seyyed Shamsadin Athari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11569",title:"Bacterial Sexually Transmitted Infections - New Findings, Diagnosis, Treatment, and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/11569.jpg",hash:"069d6142ecb0d46d14920102d48c0e9d",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 31st 2022",isOpenForSubmission:!0,editors:[{id:"189561",title:"Dr.",name:"Mihaela Laura",surname:"Vica",slug:"mihaela-laura-vica",fullName:"Mihaela Laura Vica"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11568",title:"Staphylococcal Infections - Recent Advances and Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11568.jpg",hash:"92c881664d1921c7f2d0fee34b78cd08",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 8th 2022",isOpenForSubmission:!0,editors:[{id:"59719",title:"Dr.",name:"Jaime",surname:"Bustos-Martínez",slug:"jaime-bustos-martinez",fullName:"Jaime Bustos-Martínez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:15,paginationItems:[{id:"82427",title:"Our Globalization Era among Success, Obstacles and Doubts",doi:"10.5772/intechopen.105545",signatures:"Arnaldo Canziani, Annalisa Baldissera and Ahmad Kahwaji",slug:"our-globalization-era-among-success-obstacles-and-doubts",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"82248",title:"Sustainability and Excellence: Pillars for Business Survival",doi:"10.5772/intechopen.105420",signatures:"Irina Severin, Maria Cristina Dijmarescu and Mihai Caramihai",slug:"sustainability-and-excellence-pillars-for-business-survival",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"82124",title:"Assessment of Diversity, Growth Characteristics and Aboveground Biomass of Tree Species in Selected Urban Green Areas of Osogbo, Osun State",doi:"10.5772/intechopen.104982",signatures:"Omolara Aremu, Olusola O. Adetoro and Olusegun Awotoye",slug:"assessment-of-diversity-growth-characteristics-and-aboveground-biomass-of-tree-species-in-selected-u",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",subseries:{id:"94",title:"Climate Change and Environmental Sustainability"}}},{id:"81975",title:"Self-Sustained Communities: Food Security in Times of Crisis",doi:"10.5772/intechopen.104425",signatures:"Kriengsak Chareonwongsak",slug:"self-sustained-communities-food-security-in-times-of-crisis",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"81920",title:"Rethinking an Approach for Sustainable Globalization",doi:"10.5772/intechopen.105141",signatures:"Parakram Pyakurel",slug:"rethinking-an-approach-for-sustainable-globalization",totalDownloads:22,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"81297",title:"Legumes Cropping and Nitrogen Fixation under Mediterranean Climate: The Case of Montado/Dehesa System",doi:"10.5772/intechopen.104473",signatures:"Fernando Teixeira",slug:"legumes-cropping-and-nitrogen-fixation-under-mediterranean-climate-the-case-of-montado-dehesa-system",totalDownloads:24,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"81493",title:"Rust Disease Classification Using Deep Learning Based Algorithm: The Case of Wheat",doi:"10.5772/intechopen.104426",signatures:"Shivani Sood, Harjeet Singh and Suruchi Jindal",slug:"rust-disease-classification-using-deep-learning-based-algorithm-the-case-of-wheat",totalDownloads:75,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"81428",title:"Observatory of Sustainable Development in Postgraduate Study Programs in Baja California",doi:"10.5772/intechopen.104641",signatures:"Rodolfo Martinez-Gutierrez, Maria Marcela Solis-Quinteros, Maria Esther Ibarra-Estrada and Angel Ernesto Jimenez-Bernardino",slug:"observatory-of-sustainable-development-in-postgraduate-study-programs-in-baja-california",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"81235",title:"Global Food System Transformation for Resilience",doi:"10.5772/intechopen.102749",signatures:"Jasper Okoro Godwin Elechi, Ikechukwu U. Nwiyi and Cornelius Smah Adamu",slug:"global-food-system-transformation-for-resilience",totalDownloads:65,totalCrossrefCites:1,totalDimensionsCites:0,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"80749",title:"Analysis of the Nexus between Coping Strategies and Resilience to Food Insecurity Shocks: The Case of Rural Households in Boricha Woreda, Sidama National Regional State, Ethiopia",doi:"10.5772/intechopen.102613",signatures:"Adane Atara Debessa, Degefa Tolossa and Berhanu Denu",slug:"analysis-of-the-nexus-between-coping-strategies-and-resilience-to-food-insecurity-shocks-the-case-of",totalDownloads:67,totalCrossrefCites:0,totalDimensionsCites:1,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}}]},subseriesFiltersForOFChapters:[{caption:"Climate Change and Environmental Sustainability",value:94,count:1,group:"subseries"},{caption:"Sustainable Economy and Fair Society",value:91,count:14,group:"subseries"}],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{paginationCount:148,paginationItems:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/165328/images/system/165328.jpg",biography:"Vahid Asadpour, MS, Ph.D., is currently with the Department of Research and Evaluation, Kaiser Permanente Southern California. He has both an MS and Ph.D. in Biomedical Engineering. He was previously a research scientist at the University of California Los Angeles (UCLA) and visiting professor and researcher at the University of North Dakota. He is currently working in artificial intelligence and its applications in medical signal processing. In addition, he is using digital signal processing in medical imaging and speech processing. Dr. Asadpour has developed brain-computer interfacing algorithms and has published books, book chapters, and several journal and conference papers in this field and other areas of intelligent signal processing. He has also designed medical devices, including a laser Doppler monitoring system.",institutionString:"Kaiser Permanente Southern California",institution:null},{id:"169608",title:"Prof.",name:"Marian",middleName:null,surname:"Găiceanu",slug:"marian-gaiceanu",fullName:"Marian Găiceanu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/169608/images/system/169608.png",biography:"Prof. Dr. Marian Gaiceanu graduated from the Naval and Electrical Engineering Faculty, Dunarea de Jos University of Galati, Romania, in 1997. He received a Ph.D. (Magna Cum Laude) in Electrical Engineering in 2002. Since 2017, Dr. Gaiceanu has been a Ph.D. supervisor for students in Electrical Engineering. He has been employed at Dunarea de Jos University of Galati since 1996, where he is currently a professor. Dr. Gaiceanu is a member of the National Council for Attesting Titles, Diplomas and Certificates, an expert of the Executive Agency for Higher Education, Research Funding, and a member of the Senate of the Dunarea de Jos University of Galati. He has been the head of the Integrated Energy Conversion Systems and Advanced Control of Complex Processes Research Center, Romania, since 2016. He has conducted several projects in power converter systems for electrical drives, power quality, PEM and SOFC fuel cell power converters for utilities, electric vehicles, and marine applications with the Department of Regulation and Control, SIEI S.pA. (2002–2004) and the Polytechnic University of Turin, Italy (2002–2004, 2006–2007). He is a member of the Institute of Electrical and Electronics Engineers (IEEE) and cofounder-member of the IEEE Power Electronics Romanian Chapter. He is a guest editor at Energies and an academic book editor for IntechOpen. He is also a member of the editorial boards of the Journal of Electrical Engineering, Electronics, Control and Computer Science and Sustainability. Dr. Gaiceanu has been General Chairman of the IEEE International Symposium on Electrical and Electronics Engineering in the last six editions.",institutionString:'"Dunarea de Jos" University of Galati',institution:{name:'"Dunarea de Jos" University of Galati',country:{name:"Romania"}}},{id:"4519",title:"Prof.",name:"Jaydip",middleName:null,surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4519/images/system/4519.jpeg",biography:"Jaydip Sen is associated with Praxis Business School, Kolkata, India, as a professor in the Department of Data Science. His research areas include security and privacy issues in computing and communication, intrusion detection systems, machine learning, deep learning, and artificial intelligence in the financial domain. He has more than 200 publications in reputed international journals, refereed conference proceedings, and 20 book chapters in books published by internationally renowned publishing houses, such as Springer, CRC press, IGI Global, etc. Currently, he is serving on the editorial board of the prestigious journal Frontiers in Communications and Networks and in the technical program committees of a number of high-ranked international conferences organized by the IEEE, USA, and the ACM, USA. He has been listed among the top 2% of scientists in the world for the last three consecutive years, 2019 to 2021 as per studies conducted by the Stanford University, USA.",institutionString:"Praxis Business School",institution:null},{id:"320071",title:"Dr.",name:"Sidra",middleName:null,surname:"Mehtab",slug:"sidra-mehtab",fullName:"Sidra Mehtab",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002v6KHoQAM/Profile_Picture_1584512086360",biography:"Sidra Mehtab has completed her BS with honors in Physics from Calcutta University, India in 2018. She has done MS in Data Science and Analytics from Maulana Abul Kalam Azad University of Technology (MAKAUT), Kolkata, India in 2020. Her research areas include Econometrics, Time Series Analysis, Machine Learning, Deep Learning, Artificial Intelligence, and Computer and Network Security with a particular focus on Cyber Security Analytics. Ms. Mehtab has published seven papers in international conferences and one of her papers has been accepted for publication in a reputable international journal. She has won the best paper awards in two prestigious international conferences – BAICONF 2019, and ICADCML 2021, organized in the Indian Institute of Management, Bangalore, India in December 2019, and SOA University, Bhubaneswar, India in January 2021. Besides, Ms. Mehtab has also published two book chapters in two books. Seven of her book chapters will be published in a volume shortly in 2021 by Cambridge Scholars’ Press, UK. Currently, she is working as the joint editor of two edited volumes on Time Series Analysis and Forecasting to be published in the first half of 2021 by an international house. Currently, she is working as a Data Scientist with an MNC in Delhi, India.",institutionString:"NSHM College of Management and Technology",institution:null},{id:"226240",title:"Dr.",name:"Andri Irfan",middleName:null,surname:"Rifai",slug:"andri-irfan-rifai",fullName:"Andri Irfan Rifai",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/226240/images/7412_n.jpg",biography:"Andri IRFAN is a Senior Lecturer of Civil Engineering and Planning. He completed the PhD at the Universitas Indonesia & Universidade do Minho with Sandwich Program Scholarship from the Directorate General of Higher Education and LPDP scholarship. He has been teaching for more than 19 years and much active to applied his knowledge in the project construction in Indonesia. His research interest ranges from pavement management system to advanced data mining techniques for transportation engineering. He has published more than 50 papers in journals and 2 books.",institutionString:null,institution:{name:"Universitas Internasional Batam",country:{name:"Indonesia"}}},{id:"314576",title:"Dr.",name:"Ibai",middleName:null,surname:"Laña",slug:"ibai-lana",fullName:"Ibai Laña",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314576/images/system/314576.jpg",biography:"Dr. Ibai Laña works at TECNALIA as a data analyst. He received his Ph.D. in Artificial Intelligence from the University of the Basque Country (UPV/EHU), Spain, in 2018. He is currently a senior researcher at TECNALIA. His research interests fall within the intersection of intelligent transportation systems, machine learning, traffic data analysis, and data science. He has dealt with urban traffic forecasting problems, applying machine learning models and evolutionary algorithms. He has experience in origin-destination matrix estimation or point of interest and trajectory detection. Working with large volumes of data has given him a good command of big data processing tools and NoSQL databases. He has also been a visiting scholar at the Knowledge Engineering and Discovery Research Institute, Auckland University of Technology.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"314575",title:"Dr.",name:"Jesus",middleName:null,surname:"L. Lobo",slug:"jesus-l.-lobo",fullName:"Jesus L. Lobo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314575/images/system/314575.png",biography:"Dr. Jesús López is currently based in Bilbao (Spain) working at TECNALIA as Artificial Intelligence Research Scientist. In most cases, a project idea or a new research line needs to be investigated to see if it is good enough to take into production or to focus on it. That is exactly what he does, diving into Machine Learning algorithms and technologies to help TECNALIA to decide whether something is great in theory or will actually impact on the product or processes of its projects. So, he is expert at framing experiments, developing hypotheses, and proving whether they’re true or not, in order to investigate fundamental problems with a longer time horizon. He is also able to design and develop PoCs and system prototypes in simulation. He has participated in several national and internacional R&D projects.\n\nAs another relevant part of his everyday research work, he usually publishes his findings in reputed scientific refereed journals and international conferences, occasionally acting as reviewer and Programme Commitee member. Concretely, since 2018 he has published 9 JCR (8 Q1) journal papers, 9 conference papers (e.g. ECML PKDD 2021), and he has co-edited a book. He is also active in popular science writing data science stories for reputed blogs (KDNuggets, TowardsDataScience, Naukas). Besides, he has recently embarked on mentoring programmes as mentor, and has also worked as data science trainer.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"103779",title:"Prof.",name:"Yalcin",middleName:null,surname:"Isler",slug:"yalcin-isler",fullName:"Yalcin Isler",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRyQ8QAK/Profile_Picture_1628834958734",biography:"Yalcin Isler (1971 - Burdur / Turkey) received the B.Sc. degree in the Department of Electrical and Electronics Engineering from Anadolu University, Eskisehir, Turkey, in 1993, the M.Sc. degree from the Department of Electronics and Communication Engineering, Suleyman Demirel University, Isparta, Turkey, in 1996, the Ph.D. degree from the Department of Electrical and Electronics Engineering, Dokuz Eylul University, Izmir, Turkey, in 2009, and the Competence of Associate Professorship from the Turkish Interuniversity Council in 2019.\n\nHe was Lecturer at Burdur Vocational School in Suleyman Demirel University (1993-2000, Burdur / Turkey), Software Engineer (2000-2002, Izmir / Turkey), Research Assistant in Bulent Ecevit University (2002-2003, Zonguldak / Turkey), Research Assistant in Dokuz Eylul University (2003-2010, Izmir / Turkey), Assistant Professor at the Department of Electrical and Electronics Engineering in Bulent Ecevit University (2010-2012, Zonguldak / Turkey), Assistant Professor at the Department of Biomedical Engineering in Izmir Katip Celebi University (2012-2019, Izmir / Turkey). He is an Associate Professor at the Department of Biomedical Engineering at Izmir Katip Celebi University, Izmir / Turkey, since 2019. In addition to academics, he has also founded Islerya Medical and Information Technologies Company, Izmir / Turkey, since 2017.\n\nHis main research interests cover biomedical signal processing, pattern recognition, medical device design, programming, and embedded systems. He has many scientific papers and participated in several projects in these study fields. He was an IEEE Student Member (2009-2011) and IEEE Member (2011-2014) and has been IEEE Senior Member since 2014.",institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",country:{name:"Turkey"}}},{id:"339677",title:"Dr.",name:"Mrinmoy",middleName:null,surname:"Roy",slug:"mrinmoy-roy",fullName:"Mrinmoy Roy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/339677/images/16768_n.jpg",biography:"An accomplished Sales & Marketing professional with 12 years of cross-functional experience in well-known organisations such as CIPLA, LUPIN, GLENMARK, ASTRAZENECA across different segment of Sales & Marketing, International Business, Institutional Business, Product Management, Strategic Marketing of HIV, Oncology, Derma, Respiratory, Anti-Diabetic, Nutraceutical & Stomatological Product Portfolio and Generic as well as Chronic Critical Care Portfolio. A First Class MBA in International Business & Strategic Marketing, B.Pharm, D.Pharm, Google Certified Digital Marketing Professional. Qualified PhD Candidate in Operations and Management with special focus on Artificial Intelligence and Machine Learning adoption, analysis and use in Healthcare, Hospital & Pharma Domain. Seasoned with diverse therapy area of Pharmaceutical Sales & Marketing ranging from generating revenue through generating prescriptions, launching new products, and making them big brands with continuous strategy execution at the Physician and Patients level. Moved from Sales to Marketing and Business Development for 3.5 years in South East Asian Market operating from Manila, Philippines. Came back to India and handled and developed Brands such as Gluconorm, Lupisulin, Supracal, Absolut Woman, Hemozink, Fabiflu (For COVID 19), and many more. In my previous assignment I used to develop and execute strategies on Sales & Marketing, Commercialization & Business Development for Institution and Corporate Hospital Business portfolio of Oncology Therapy Area for AstraZeneca Pharma India Ltd. Being a Research Scholar and Student of ‘Operations Research & Management: Artificial Intelligence’ I published several pioneer research papers and book chapters on the same in Internationally reputed journals and Books indexed in Scopus, Springer and Ei Compendex, Google Scholar etc. Currently, I am launching PGDM Pharmaceutical Management Program in IIHMR Bangalore and spearheading the course curriculum and structure of the same. I am interested in Collaboration for Healthcare Innovation, Pharma AI Innovation, Future trend in Marketing and Management with incubation on Healthcare, Healthcare IT startups, AI-ML Modelling and Healthcare Algorithm based training module development. I am also an affiliated member of the Institute of Management Consultant of India, looking forward to Healthcare, Healthcare IT and Innovation, Pharma and Hospital Management Consulting works.",institutionString:null,institution:{name:"Lovely Professional University",country:{name:"India"}}},{id:"310576",title:"Prof.",name:"Erick Giovani",middleName:null,surname:"Sperandio Nascimento",slug:"erick-giovani-sperandio-nascimento",fullName:"Erick Giovani Sperandio Nascimento",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0033Y00002pDKxDQAW/ProfilePicture%202022-06-20%2019%3A57%3A24.788",biography:"Prof. Erick Sperandio is the Lead Researcher and professor of Artificial Intelligence (AI) at SENAI CIMATEC, Bahia, Brazil, also working with Computational Modeling (CM) and HPC. He holds a PhD in Environmental Engineering in the area of Atmospheric Computational Modeling, a Master in Informatics in the field of Computational Intelligence and Graduated in Computer Science from UFES. He currently coordinates, leads and participates in R&D projects in the areas of AI, computational modeling and supercomputing applied to different areas such as Oil and Gas, Health, Advanced Manufacturing, Renewable Energies and Atmospheric Sciences, advising undergraduate, master's and doctoral students. He is the Lead Researcher at SENAI CIMATEC's Reference Center on Artificial Intelligence. In addition, he is a Certified Instructor and University Ambassador of the NVIDIA Deep Learning Institute (DLI) in the areas of Deep Learning, Computer Vision, Natural Language Processing and Recommender Systems, and Principal Investigator of the NVIDIA/CIMATEC AI Joint Lab, the first in Latin America within the NVIDIA AI Technology Center (NVAITC) worldwide program. He also works as a researcher at the Supercomputing Center for Industrial Innovation (CS2i) and at the SENAI Institute of Innovation for Automation (ISI Automação), both from SENAI CIMATEC. He is a member and vice-coordinator of the Basic Board of Scientific-Technological Advice and Evaluation, in the area of Innovation, of the Foundation for Research Support of the State of Bahia (FAPESB). He serves as Technology Transfer Coordinator and one of the Principal Investigators at the National Applied Research Center in Artificial Intelligence (CPA-IA) of SENAI CIMATEC, focusing on Industry, being one of the six CPA-IA in Brazil approved by MCTI / FAPESP / CGI.br. He also participates as one of the representatives of Brazil in the BRICS Innovation Collaboration Working Group on HPC, ICT and AI. He is the coordinator of the Work Group of the Axis 5 - Workforce and Training - of the Brazilian Strategy for Artificial Intelligence (EBIA), and member of the MCTI/EMBRAPII AI Innovation Network Training Committee. He is the coordinator, by SENAI CIMATEC, of the Artificial Intelligence Reference Network of the State of Bahia (REDE BAH.IA). He leads the working group of experts representing Brazil in the Global Partnership on Artificial Intelligence (GPAI), on the theme \"AI and the Pandemic Response\".",institutionString:"Manufacturing and Technology Integrated Campus – SENAI CIMATEC",institution:null},{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",country:{name:"Romania"}}},{id:"221364",title:"Dr.",name:"Eneko",middleName:null,surname:"Osaba",slug:"eneko-osaba",fullName:"Eneko Osaba",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/221364/images/system/221364.jpg",biography:"Dr. Eneko Osaba works at TECNALIA as a senior researcher. He obtained his Ph.D. in Artificial Intelligence in 2015. He has participated in more than twenty-five local and European research projects, and in the publication of more than 130 papers. He has performed several stays at universities in the United Kingdom, Italy, and Malta. Dr. Osaba has served as a program committee member in more than forty international conferences and participated in organizing activities in more than ten international conferences. He is a member of the editorial board of the International Journal of Artificial Intelligence, Data in Brief, and Journal of Advanced Transportation. He is also a guest editor for the Journal of Computational Science, Neurocomputing, Swarm, and Evolutionary Computation and IEEE ITS Magazine.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"275829",title:"Dr.",name:"Esther",middleName:null,surname:"Villar-Rodriguez",slug:"esther-villar-rodriguez",fullName:"Esther Villar-Rodriguez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/275829/images/system/275829.jpg",biography:"Dr. Esther Villar obtained a Ph.D. in Information and Communication Technologies from the University of Alcalá, Spain, in 2015. She obtained a degree in Computer Science from the University of Deusto, Spain, in 2010, and an MSc in Computer Languages and Systems from the National University of Distance Education, Spain, in 2012. Her areas of interest and knowledge include natural language processing (NLP), detection of impersonation in social networks, semantic web, and machine learning. Dr. Esther Villar made several contributions at conferences and publishing in various journals in those fields. Currently, she is working within the OPTIMA (Optimization Modeling & Analytics) business of TECNALIA’s ICT Division as a data scientist in projects related to the prediction and optimization of management and industrial processes (resource planning, energy efficiency, etc).",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null},{id:"278948",title:"Dr.",name:"Carlos Pedro",middleName:null,surname:"Gonçalves",slug:"carlos-pedro-goncalves",fullName:"Carlos Pedro Gonçalves",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRcmyQAC/Profile_Picture_1564224512145",biography:'Carlos Pedro Gonçalves (PhD) is an Associate Professor at Lusophone University of Humanities and Technologies and a researcher on Complexity Sciences, Quantum Technologies, Artificial Intelligence, Strategic Studies, Studies in Intelligence and Security, FinTech and Financial Risk Modeling. He is also a progammer with programming experience in:\n\nA) Quantum Computing using Qiskit Python module and IBM Quantum Experience Platform, with software developed on the simulation of Quantum Artificial Neural Networks and Quantum Cybersecurity;\n\nB) Artificial Intelligence and Machine learning programming in Python;\n\nC) Artificial Intelligence, Multiagent Systems Modeling and System Dynamics Modeling in Netlogo, with models developed in the areas of Chaos Theory, Econophysics, Artificial Intelligence, Classical and Quantum Complex Systems Science, with the Econophysics models having been cited worldwide and incorporated in PhD programs by different Universities.\n\nReceived an Arctic Code Vault Contributor status by GitHub, due to having developed open source software preserved in the \\"Arctic Code Vault\\" for future generations (https://archiveprogram.github.com/arctic-vault/), with the Strategy Analyzer A.I. module for decision making support (based on his PhD thesis, used in his Classes on Decision Making and in Strategic Intelligence Consulting Activities) and QNeural Python Quantum Neural Network simulator also preserved in the \\"Arctic Code Vault\\", for access to these software modules see: https://github.com/cpgoncalves. He is also a peer reviewer with outsanding review status from Elsevier journals, including Physica A, Neurocomputing and Engineering Applications of Artificial Intelligence. Science CV available at: https://www.cienciavitae.pt//pt/8E1C-A8B3-78C5 and ORCID: https://orcid.org/0000-0002-0298-3974',institutionString:"University of Lisbon",institution:{name:"Universidade Lusófona",country:{name:"Portugal"}}},{id:"241400",title:"Prof.",name:"Mohammed",middleName:null,surname:"Bsiss",slug:"mohammed-bsiss",fullName:"Mohammed Bsiss",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241400/images/8062_n.jpg",biography:null,institutionString:null,institution:null},{id:"276128",title:"Dr.",name:"Hira",middleName:null,surname:"Fatima",slug:"hira-fatima",fullName:"Hira Fatima",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/276128/images/14420_n.jpg",biography:"Dr. Hira Fatima\nAssistant Professor\nDepartment of Mathematics\nInstitute of Applied Science\nMangalayatan University, Aligarh\nMobile: no : 8532041179\nhirafatima2014@gmal.com\n\nDr. Hira Fatima has received his Ph.D. degree in pure Mathematics from Aligarh Muslim University, Aligarh India. Currently working as an Assistant Professor in the Department of Mathematics, Institute of Applied Science, Mangalayatan University, Aligarh. She taught so many courses of Mathematics of UG and PG level. Her research Area of Expertise is Functional Analysis & Sequence Spaces. She has been working on Ideal Convergence of double sequence. She has published 17 research papers in National and International Journals including Cogent Mathematics, Filomat, Journal of Intelligent and Fuzzy Systems, Advances in Difference Equations, Journal of Mathematical Analysis, Journal of Mathematical & Computer Science etc. She has also reviewed few research papers for the and international journals. She is a member of Indian Mathematical Society.",institutionString:null,institution:null},{id:"414880",title:"Dr.",name:"Maryam",middleName:null,surname:"Vatankhah",slug:"maryam-vatankhah",fullName:"Maryam Vatankhah",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Borough of Manhattan Community College",country:{name:"United States of America"}}},{id:"414879",title:"Prof.",name:"Mohammad-Reza",middleName:null,surname:"Akbarzadeh-Totonchi",slug:"mohammad-reza-akbarzadeh-totonchi",fullName:"Mohammad-Reza Akbarzadeh-Totonchi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Ferdowsi University of Mashhad",country:{name:"Iran"}}},{id:"414878",title:"Prof.",name:"Reza",middleName:null,surname:"Fazel-Rezai",slug:"reza-fazel-rezai",fullName:"Reza Fazel-Rezai",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"American Public University System",country:{name:"United States of America"}}},{id:"302698",title:"Dr.",name:"Yao",middleName:null,surname:"Shan",slug:"yao-shan",fullName:"Yao Shan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Dalian University of Technology",country:{name:"China"}}},{id:"125911",title:"Prof.",name:"Jia-Ching",middleName:null,surname:"Wang",slug:"jia-ching-wang",fullName:"Jia-Ching Wang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Central University",country:{name:"Taiwan"}}},{id:"357085",title:"Mr.",name:"P. Mohan",middleName:null,surname:"Anand",slug:"p.-mohan-anand",fullName:"P. Mohan Anand",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"356696",title:"Ph.D. Student",name:"P.V.",middleName:null,surname:"Sai Charan",slug:"p.v.-sai-charan",fullName:"P.V. Sai Charan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"357086",title:"Prof.",name:"Sandeep K.",middleName:null,surname:"Shukla",slug:"sandeep-k.-shukla",fullName:"Sandeep K. Shukla",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"356823",title:"MSc.",name:"Seonghee",middleName:null,surname:"Min",slug:"seonghee-min",fullName:"Seonghee Min",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Daegu University",country:{name:"Korea, South"}}},{id:"353307",title:"Prof.",name:"Yoosoo",middleName:null,surname:"Oh",slug:"yoosoo-oh",fullName:"Yoosoo Oh",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:"Yoosoo Oh received his Bachelor's degree in the Department of Electronics and Engineering from Kyungpook National University in 2002. He obtained his Master’s degree in the Department of Information and Communications from Gwangju Institute of Science and Technology (GIST) in 2003. In 2010, he received his Ph.D. degree in the School of Information and Mechatronics from GIST. In the meantime, he was an executed team leader at Culture Technology Institute, GIST, 2010-2012. In 2011, he worked at Lancaster University, the UK as a visiting scholar. In September 2012, he joined Daegu University, where he is currently an associate professor in the School of ICT Conver, Daegu University. Also, he served as the Board of Directors of KSIIS since 2019, and HCI Korea since 2016. From 2017~2019, he worked as a center director of the Mixed Reality Convergence Research Center at Daegu University. From 2015-2017, He worked as a director in the Enterprise Supporting Office of LINC Project Group, Daegu University. His research interests include Activity Fusion & Reasoning, Machine Learning, Context-aware Middleware, Human-Computer Interaction, etc.",institutionString:null,institution:{name:"Daegu Gyeongbuk Institute of Science and Technology",country:{name:"Korea, South"}}},{id:"262719",title:"Dr.",name:"Esma",middleName:null,surname:"Ergüner Özkoç",slug:"esma-erguner-ozkoc",fullName:"Esma Ergüner Özkoç",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Başkent University",country:{name:"Turkey"}}},{id:"346530",title:"Dr.",name:"Ibrahim",middleName:null,surname:"Kaya",slug:"ibrahim-kaya",fullName:"Ibrahim Kaya",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",country:{name:"Turkey"}}},{id:"419199",title:"Dr.",name:"Qun",middleName:null,surname:"Yang",slug:"qun-yang",fullName:"Qun Yang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Auckland",country:{name:"New Zealand"}}}]}},subseries:{item:{id:"10",type:"subseries",title:"Animal Physiology",keywords:"Physiology, Comparative, Evolution, Biomolecules, Organ, Homeostasis, Anatomy, Pathology, Medical, Cell Division, Cell Signaling, Cell Growth, Cell Metabolism, Endocrine, Neuroscience, Cardiovascular, Development, Aging, Development",scope:"Physiology, the scientific study of functions and mechanisms of living systems, is an essential area of research in its own right, but also in relation to medicine and health sciences. The scope of this topic will range from molecular, biochemical, cellular, and physiological processes in all animal species. Work pertaining to the whole organism, organ systems, individual organs and tissues, cells, and biomolecules will be included. Medical, animal, cell, and comparative physiology and allied fields such as anatomy, histology, and pathology with physiology links will be covered in this topic. Physiology research may be linked to development, aging, environment, regular and pathological processes, adaptation and evolution, exercise, or several other factors affecting, or involved with, animal physiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/10.jpg",hasOnlineFirst:!1,hasPublishedBooks:!1,annualVolume:11406,editor:{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null,series:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261"},editorialBoard:[{id:"306970",title:"Mr.",name:"Amin",middleName:null,surname:"Tamadon",slug:"amin-tamadon",fullName:"Amin Tamadon",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002oHR5wQAG/Profile_Picture_1623910304139",institutionString:null,institution:{name:"Bushehr University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}},{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null},{id:"245306",title:"Dr.",name:"María Luz",middleName:null,surname:"Garcia Pardo",slug:"maria-luz-garcia-pardo",fullName:"María Luz Garcia Pardo",profilePictureURL:"https://mts.intechopen.com/storage/users/245306/images/system/245306.png",institutionString:null,institution:{name:"Miguel Hernandez University",institutionURL:null,country:{name:"Spain"}}},{id:"283315",title:"Prof.",name:"Samir",middleName:null,surname:"El-Gendy",slug:"samir-el-gendy",fullName:"Samir El-Gendy",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRduYQAS/Profile_Picture_1606215849748",institutionString:null,institution:{name:"Alexandria University",institutionURL:null,country:{name:"Egypt"}}},{id:"178366",title:"Dr.",name:"Volkan",middleName:null,surname:"Gelen",slug:"volkan-gelen",fullName:"Volkan Gelen",profilePictureURL:"https://mts.intechopen.com/storage/users/178366/images/system/178366.jpg",institutionString:"Kafkas University",institution:{name:"Kafkas University",institutionURL:null,country:{name:"Turkey"}}}]},onlineFirstChapters:{paginationCount:2,paginationItems:[{id:"82392",title:"Nanomaterials as Novel Biomarkers for Cancer Nanotheranostics: State of the Art",doi:"10.5772/intechopen.105700",signatures:"Hao Yu, Zhihai Han, Cunrong Chen and Leisheng Zhang",slug:"nanomaterials-as-novel-biomarkers-for-cancer-nanotheranostics-state-of-the-art",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}},{id:"81778",title:"Influence of Mechanical Properties of Biomaterials on the Reconstruction of Biomedical Parts via Additive Manufacturing Techniques: An Overview",doi:"10.5772/intechopen.104465",signatures:"Babatunde Olamide Omiyale, Akeem Abiodun Rasheed, Robinson Omoboyode Akinnusi and Temitope Olumide Olugbade",slug:"influence-of-mechanical-properties-of-biomaterials-on-the-reconstruction-of-biomedical-parts-via-add",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}}]},publishedBooks:{paginationCount:7,paginationItems:[{type:"book",id:"7102",title:"Pneumonia",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",slug:"pneumonia",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Nima Rezaei",hash:"9fd70142814192dcec58a176749f1b60",volumeInSeries:13,fullTitle:"Pneumonia",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9615",title:"Chikungunya Virus",subtitle:"A Growing Global Public Health Threat",coverURL:"https://cdn.intechopen.com/books/images_new/9615.jpg",slug:"chikungunya-virus-a-growing-global-public-health-threat",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Jean Engohang-Ndong",hash:"c960d94a63867dd12a8ab15176a3ff06",volumeInSeries:12,fullTitle:"Chikungunya Virus - A Growing Global Public Health Threat",editors:[{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",institutionString:"Kent State University",institution:{name:"Kent State University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9619",title:"Epstein-Barr Virus",subtitle:"New Trends",coverURL:"https://cdn.intechopen.com/books/images_new/9619.jpg",slug:"epstein-barr-virus-new-trends",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Emmanuel Drouet",hash:"a2128c53becb6064589570cbe8d976f8",volumeInSeries:11,fullTitle:"Epstein-Barr Virus - New Trends",editors:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9613",title:"Dengue Fever in a One Health Perspective",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9613.jpg",slug:"dengue-fever-in-a-one-health-perspective",publishedDate:"October 28th 2020",editedByType:"Edited by",bookSignature:"Márcia Aparecida Sperança",hash:"77ecce8195c11092230b4156df6d83ff",volumeInSeries:7,fullTitle:"Dengue Fever in a One Health Perspective",editors:[{id:"176579",title:"Dr.",name:"Márcia Aparecida",middleName:null,surname:"Sperança",slug:"marcia-aparecida-speranca",fullName:"Márcia Aparecida Sperança",profilePictureURL:"https://mts.intechopen.com/storage/users/176579/images/system/176579.jpg",institutionString:null,institution:{name:"Universidade Federal do ABC",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7887",title:"Hepatitis B and C",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7887.jpg",slug:"hepatitis-b-and-c",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Luis Rodrigo",hash:"8dd6dab483cf505d83caddaeaf497f2c",volumeInSeries:5,fullTitle:"Hepatitis B and C",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo",profilePictureURL:"https://mts.intechopen.com/storage/users/73208/images/system/73208.jpg",institutionString:"University of Oviedo",institution:{name:"University of Oviedo",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",slug:"influenza-therapeutics-and-challenges",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"105e347b2d5dbbe6b593aceffa051efa",volumeInSeries:1,fullTitle:"Influenza - Therapeutics and Challenges",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/61709",hash:"",query:{},params:{id:"61709"},fullPath:"/profiles/61709",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()