Benefits of magnetic sensors [22].
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"}]},book:{item:{type:"book",id:"7252",leadTitle:null,fullTitle:"UWB Technology and its Applications",title:"UWB Technology and its Applications",subtitle:null,reviewType:"peer-reviewed",abstract:"Ultra-wideband (UWB) technology is a radio technology that uses electromagnetic waves with a very low power spectral density occupying a bandwidth of more than 25% of a centre frequency, or more than 0.5GHz, for short-range remote sensing, high-bandwidth communications or object positioning. The detailed analyses of state-of-the-art UWB technology has shown that this technology is very interesting and promising with a great application potential. Following these facts, our book attempts to present current and emerging trends in research and development of UWB systems. The book is focused on basic components of UWB systems such as antennas, filters, photonic approach for signal processing methods, as well as on some applications of UWB systems (human target analysis, cancer detection).",isbn:"978-1-78985-716-0",printIsbn:"978-1-78985-715-3",pdfIsbn:"978-1-83962-069-0",doi:"10.5772/intechopen.74349",price:119,priceEur:129,priceUsd:155,slug:"uwb-technology-and-its-applications",numberOfPages:102,isOpenForSubmission:!1,isInWos:null,hash:"145935db304168523e393b521af86b24",bookSignature:"Dusan Kocur",publishedDate:"March 6th 2019",coverURL:"https://cdn.intechopen.com/books/images_new/7252.jpg",numberOfDownloads:3367,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:1,hasAltmetrics:0,numberOfTotalCitations:1,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 2nd 2018",dateEndSecondStepPublish:"February 23rd 2018",dateEndThirdStepPublish:"April 24th 2018",dateEndFourthStepPublish:"July 13th 2018",dateEndFifthStepPublish:"September 11th 2018",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,editors:[{id:"83173",title:"Dr.",name:"Dusan",middleName:null,surname:"Kocur",slug:"dusan-kocur",fullName:"Dusan Kocur",profilePictureURL:"https://mts.intechopen.com/storage/users/83173/images/6687_n.jpg",biography:"Dušan Kocur was born in Kosice, Slovakia, in 1974. He received his M.Sc. and Ph.D. degree in Radioelectronics from the Faculty of Electrical Engineering, Technical University of Košice, in 1985 and 1990, respectively. Nowadays, he is the full professor at the Department of Electronics and Multimedia Communications of his Alma Mater. His main research interests include ultra-wideband (UWB) radar systems, real-time operating UWB localization systems, UWB sensor network, UWB radar with synthetic aperture and UWB impedance spectroscopy. He has dealt also with UWB radar signal processing focused on short-range localization and tracking of moving and static persons and on contactless monitoring of breathing frequency and heart rate of human beings. He has published more than 220 scientific papers in books, journals and conference proceedings.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Technical University of Košice",institutionURL:null,country:{name:"Slovakia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"762",title:"Wireless Communication System",slug:"electrical-and-electronic-engineering-wireless-communication-system"}],chapters:[{id:"62935",title:"Feasibility of the Detection of Breast Cancer Using Ultra-Wide Band (UWB) Technology in Comparison with Other Screening Techniques",doi:"10.5772/intechopen.79679",slug:"feasibility-of-the-detection-of-breast-cancer-using-ultra-wide-band-uwb-technology-in-comparison-wit",totalDownloads:493,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Ikram E Khuda",downloadPdfUrl:"/chapter/pdf-download/62935",previewPdfUrl:"/chapter/pdf-preview/62935",authors:[null],corrections:null},{id:"63444",title:"Ultra-Wideband FSS-Based Antennas",doi:"10.5772/intechopen.79888",slug:"ultra-wideband-fss-based-antennas",totalDownloads:903,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Rabia Yahya, Akira Nakamura and Makoto Itami",downloadPdfUrl:"/chapter/pdf-download/63444",previewPdfUrl:"/chapter/pdf-preview/63444",authors:[null],corrections:null},{id:"62923",title:"Slot-Line UWB Bandpass Filters and Band-Notched UWB Filters",doi:"10.5772/intechopen.80004",slug:"slot-line-uwb-bandpass-filters-and-band-notched-uwb-filters",totalDownloads:472,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Xuehui Guan",downloadPdfUrl:"/chapter/pdf-download/62923",previewPdfUrl:"/chapter/pdf-preview/62923",authors:[null],corrections:null},{id:"64366",title:"Toward Deep Learning-Based Human Target Analysis",doi:"10.5772/intechopen.81592",slug:"toward-deep-learning-based-human-target-analysis",totalDownloads:912,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Yuan He, Xinyu Li and Xiaojun Jing",downloadPdfUrl:"/chapter/pdf-download/64366",previewPdfUrl:"/chapter/pdf-preview/64366",authors:[null],corrections:null},{id:"63810",title:"UWB Signal Generation and Modulation Based on Photonic Approaches",doi:"10.5772/intechopen.81311",slug:"uwb-signal-generation-and-modulation-based-on-photonic-approaches",totalDownloads:588,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Ke Xu",downloadPdfUrl:"/chapter/pdf-download/63810",previewPdfUrl:"/chapter/pdf-preview/63810",authors:[null],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"77",title:"Microstrip Antennas",subtitle:null,isOpenForSubmission:!1,hash:"30737e416619b464551517345a275f6b",slug:"microstrip-antennas",bookSignature:"Nasimuddin Nasimuddin",coverURL:"https://cdn.intechopen.com/books/images_new/77.jpg",editedByType:"Edited by",editors:[{id:"21459",title:"Dr.",name:"N",surname:"Nasimuddin",slug:"n-nasimuddin",fullName:"N Nasimuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3084",title:"Advancement in Microstrip Antennas with Recent Applications",subtitle:null,isOpenForSubmission:!1,hash:"b7278f39509d0993fef32d67c6a0673c",slug:"advancement-in-microstrip-antennas-with-recent-applications",bookSignature:"Ahmed Kishk",coverURL:"https://cdn.intechopen.com/books/images_new/3084.jpg",editedByType:"Edited by",editors:[{id:"73920",title:"Prof.",name:"Ahmed",surname:"Kishk",slug:"ahmed-kishk",fullName:"Ahmed Kishk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2195",title:"Ultra Wideband",subtitle:"Current Status and Future Trends",isOpenForSubmission:!1,hash:"6ccb3923bb2bc9e1d96af0b5302fe071",slug:"ultra-wideband-current-status-and-future-trends",bookSignature:"Mohammad Abdul Matin",coverURL:"https://cdn.intechopen.com/books/images_new/2195.jpg",editedByType:"Edited by",editors:[{id:"12623",title:"Prof.",name:"Mohammad Abdul",surname:"Matin",slug:"mohammad-abdul-matin",fullName:"Mohammad Abdul Matin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3802",title:"Progress in Compact Antennas",subtitle:null,isOpenForSubmission:!1,hash:"254317cd12b273ebe31812e82d46815b",slug:"progress-in-compact-antennas",bookSignature:"Laure Huitema",coverURL:"https://cdn.intechopen.com/books/images_new/3802.jpg",editedByType:"Edited by",editors:[{id:"169144",title:"Dr.",name:"Laure",surname:"Huitema",slug:"laure-huitema",fullName:"Laure Huitema"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3339",title:"Radio Frequency Identification Fundamentals and Applications",subtitle:"Design Methods and Solutions",isOpenForSubmission:!1,hash:"7aca4c1d01b02aa7fb7c7db35c38e000",slug:"radio-frequency-identification-fundamentals-and-applications-design-methods-and-solutions",bookSignature:"Cristina Turcu",coverURL:"https://cdn.intechopen.com/books/images_new/3339.jpg",editedByType:"Edited by",editors:[{id:"9302",title:"Dr.",name:"Cristina",surname:"Turcu",slug:"cristina-turcu",fullName:"Cristina Turcu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3370",title:"Radio Frequency Identification",subtitle:"from System to Applications",isOpenForSubmission:!1,hash:"2d7aeb6d453d7f56ee45fd7fe20e8ebc",slug:"radio-frequency-identification-from-system-to-applications",bookSignature:"Mamun Bin Ibne Reaz",coverURL:"https://cdn.intechopen.com/books/images_new/3370.jpg",editedByType:"Edited by",editors:[{id:"129681",title:"Dr.",name:"Mamun Bin Ibne",surname:"Reaz",slug:"mamun-bin-ibne-reaz",fullName:"Mamun Bin Ibne Reaz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2260",title:"Ultra-Wideband Radio Technologies for Communications, Localization and Sensor Applications",subtitle:null,isOpenForSubmission:!1,hash:"3f6f43759f341174a531a4dd3280e7ef",slug:"ultra-wideband-radio-technologies-for-communications-localization-and-sensor-applications",bookSignature:"Reiner Thomä, Reinhard H. Knöchel, Jürgen Sachs, Ingolf Willms and Thomas Zwick",coverURL:"https://cdn.intechopen.com/books/images_new/2260.jpg",editedByType:"Edited by",editors:[{id:"14632",title:"Prof.",name:"Reiner",surname:"Thomä",slug:"reiner-thoma",fullName:"Reiner Thomä"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"592",title:"Foundation of Cognitive Radio Systems",subtitle:null,isOpenForSubmission:!1,hash:"c8c8b7745a9d6c9aaf2c3d963c077d43",slug:"foundation-of-cognitive-radio-systems",bookSignature:"Samuel Cheng",coverURL:"https://cdn.intechopen.com/books/images_new/592.jpg",editedByType:"Edited by",editors:[{id:"84720",title:"Prof.",name:"Samuel",surname:"Cheng",slug:"samuel-cheng",fullName:"Samuel Cheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4473",title:"Contemporary Issues in Wireless Communications",subtitle:null,isOpenForSubmission:!1,hash:"91c724af279ed119184289a5e6cf691f",slug:"contemporary-issues-in-wireless-communications",bookSignature:"Mutamed Khatib",coverURL:"https://cdn.intechopen.com/books/images_new/4473.jpg",editedByType:"Edited by",editors:[{id:"22273",title:"Dr.",name:"Mutamed",surname:"Khatib",slug:"mutamed-khatib",fullName:"Mutamed Khatib"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"190",title:"Current Trends and Challenges in RFID",subtitle:null,isOpenForSubmission:!1,hash:"892bc591e112f141ff4bd9714e7b15aa",slug:"current-trends-and-challenges-in-rfid",bookSignature:"Cornel Turcu",coverURL:"https://cdn.intechopen.com/books/images_new/190.jpg",editedByType:"Edited by",editors:[{id:"52542",title:"Prof.",name:"Cornel",surname:"Turcu",slug:"cornel-turcu",fullName:"Cornel Turcu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"66065",slug:"corrigendum-to-eating-disorders-as-new-forms-of-addiction",title:"Corrigendum to: Eating Disorders as New Forms of Addiction",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66065.pdf",downloadPdfUrl:"/chapter/pdf-download/66065",previewPdfUrl:"/chapter/pdf-preview/66065",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66065",risUrl:"/chapter/ris/66065",chapter:{id:"52200",slug:"eating-disorders-as-new-forms-of-addiction",signatures:"Francisco J. Vaz-Leal, María I. Ramos-Fuentes, Laura Rodríguez-\nSantos and M. Cristina Álvarez-Mateos",dateSubmitted:"April 9th 2016",dateReviewed:"August 12th 2016",datePrePublished:null,datePublished:"February 1st 2017",book:{id:"5372",title:"Eating Disorders",subtitle:"A Paradigm of the Biopsychosocial Model of Illness",fullTitle:"Eating Disorders - A Paradigm of the Biopsychosocial Model of Illness",slug:"eating-disorders-a-paradigm-of-the-biopsychosocial-model-of-illness",publishedDate:"February 1st 2017",bookSignature:"Ignacio Jauregui-Lobera",coverURL:"https://cdn.intechopen.com/books/images_new/5372.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"55769",title:"Prof.",name:"Ignacio",middleName:null,surname:"Jáuregui Lobera",slug:"ignacio-jauregui-lobera",fullName:"Ignacio Jáuregui Lobera"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"188555",title:"Prof.",name:"Francisco J.",middleName:null,surname:"Vaz-Leal",fullName:"Francisco J. Vaz-Leal",slug:"francisco-j.-vaz-leal",email:"fjvazleal@gmail.com",position:null,institution:null},{id:"188719",title:"Dr.",name:"María Cristina",middleName:null,surname:"Álvarez Mateos",fullName:"María Cristina Álvarez Mateos",slug:"maria-cristina-alvarez-mateos",email:"cristinaalvarezmateos@gmail.com",position:null,institution:null},{id:"195142",title:"Dr.",name:"Laura",middleName:null,surname:"Rodríguez Santos",fullName:"Laura Rodríguez Santos",slug:"laura-rodriguez-santos",email:"laura@unex.es",position:null,institution:null},{id:"195143",title:"Dr.",name:"María I",middleName:null,surname:"Ramos Fuentes",fullName:"María I Ramos Fuentes",slug:"maria-i-ramos-fuentes",email:"miramos@unex.es",position:null,institution:null}]}},chapter:{id:"52200",slug:"eating-disorders-as-new-forms-of-addiction",signatures:"Francisco J. Vaz-Leal, María I. Ramos-Fuentes, Laura Rodríguez-\nSantos and M. Cristina Álvarez-Mateos",dateSubmitted:"April 9th 2016",dateReviewed:"August 12th 2016",datePrePublished:null,datePublished:"February 1st 2017",book:{id:"5372",title:"Eating Disorders",subtitle:"A Paradigm of the Biopsychosocial Model of Illness",fullTitle:"Eating Disorders - A Paradigm of the Biopsychosocial Model of Illness",slug:"eating-disorders-a-paradigm-of-the-biopsychosocial-model-of-illness",publishedDate:"February 1st 2017",bookSignature:"Ignacio Jauregui-Lobera",coverURL:"https://cdn.intechopen.com/books/images_new/5372.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"55769",title:"Prof.",name:"Ignacio",middleName:null,surname:"Jáuregui Lobera",slug:"ignacio-jauregui-lobera",fullName:"Ignacio Jáuregui Lobera"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"188555",title:"Prof.",name:"Francisco J.",middleName:null,surname:"Vaz-Leal",fullName:"Francisco J. Vaz-Leal",slug:"francisco-j.-vaz-leal",email:"fjvazleal@gmail.com",position:null,institution:null},{id:"188719",title:"Dr.",name:"María Cristina",middleName:null,surname:"Álvarez Mateos",fullName:"María Cristina Álvarez Mateos",slug:"maria-cristina-alvarez-mateos",email:"cristinaalvarezmateos@gmail.com",position:null,institution:null},{id:"195142",title:"Dr.",name:"Laura",middleName:null,surname:"Rodríguez Santos",fullName:"Laura Rodríguez Santos",slug:"laura-rodriguez-santos",email:"laura@unex.es",position:null,institution:null},{id:"195143",title:"Dr.",name:"María I",middleName:null,surname:"Ramos Fuentes",fullName:"María I Ramos Fuentes",slug:"maria-i-ramos-fuentes",email:"miramos@unex.es",position:null,institution:null}]},book:{id:"5372",title:"Eating Disorders",subtitle:"A Paradigm of the Biopsychosocial Model of Illness",fullTitle:"Eating Disorders - A Paradigm of the Biopsychosocial Model of Illness",slug:"eating-disorders-a-paradigm-of-the-biopsychosocial-model-of-illness",publishedDate:"February 1st 2017",bookSignature:"Ignacio Jauregui-Lobera",coverURL:"https://cdn.intechopen.com/books/images_new/5372.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"55769",title:"Prof.",name:"Ignacio",middleName:null,surname:"Jáuregui Lobera",slug:"ignacio-jauregui-lobera",fullName:"Ignacio Jáuregui Lobera"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10204",leadTitle:null,title:"Nanoribbons",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tNanoscience and the nanotechnology field will continue to grow due to the numerous benefits in our daily lives including human health, environmental safety, and device engineering. Over the past thirty years, low-dimensional structures such as wells, wires, and dots have been the focus of interest in materials science. In this material class, confinement of electrons, holes, and excitations in certain directions leads to dramatic changes in electronic, vibrational, optical, thermal, and chemical properties. Unique properties of low-dimensional crystals stem from quantum effects that emerge when at least one of the three dimensions of the crystal is reduced to a sufficiently small size, generally in the range from 1 to 100 nm.
\r\n\t
\r\n\tWhile two-dimensional (2D) thin crystals limit the physical phenomena into a plane, in a one-dimensional (1D) quantum structure (nanowires, nanotubes, and nanoribbons (NRs)), charge carriers and excitations have only one degree of freedom. These crystal structures have been the focus of interest due to their unique properties such as the very high electronic density of states, enhanced exciton binding energy, diameter-dependent bandgap, increased surface scattering for electrons and phonons, and chirality-dependent electronic band structure.
\r\n\tNanoribbons (NRs), made of single- or few-atom-thick lamellar crystals, are novel forms of 1D nanoscale materials and are ideal systems for investigation of the size and dimensionality dependence of the fundamental properties. After the successful synthesis of many 2D monolayer materials, their 1D NR form came into prominence due to their necessity in nanoscale applications. In this context, this book will cover the synthesis techniques, characterization methods, fundamental properties, and state-of-the-art applications on NRs of recent 1D/2D materials such as graphene, transition metal dichalcogenides (TMDs) (MoS2, WS2, ReS2, and TiSe2), mono-chalcogenides (GaS, GaSe, ZnSe, and SnSe), tri-chalcogenides (TiS3 and ZrS3), black phosphorus, group-IV, III–V binary compounds, superstructures and so on. The proposed book is intended for academia, professionals, scientists and Graduate & Undergraduate students without any geographical limitations.
\r\n\t
In recent years, many attempts were made to improve the reliability of the sensors and sensor systems and at the same time lower the cost of fabrication. This aims to make the price of the sensor become relatively cheap. The sensors and sensor systems have been developed for various applications such as in motor vehicles, housing (e.g., for security, regulation of air circulation, temperature regulation, setting humidity), delivery of food, or warehouse storage of food (e.g., temperature, humidity, gas concentration).
\nIn general, a sensor is defined as a device that converts physical, chemical, or biological quantities into electrical quantities. The capability of a sensor or sensor system is determined by the strong interaction of the three main constituent components, such as sensor structure, manufacturing technology, and signal processing algorithms. The development of sensor technology is also influenced by the development of these three areas as shown in Figure 1.
\nThe three main components forming the sensor technology (adapted from Ref. [2]).
IC Insights 2017 [1] has reported that all sensor categories such as pressure sensors, acceleration sensors, and magnetic sensors and most actuators have double-digit sales in 2016. The market for sensors and actuators in 2017 is predicted to increase by 7.8% and hit a record high of $12.8 billion. Sales of sensors/actuators estimated over the next 5 years will be driven by the deployment of automated control functions that are integrated with the vehicle (including autonomous driving capability), unmanned aircraft, systems of industrial and robotics, everyday electronics, and measurement unit related to Internet of Things (IoT).
\nThe need for new sensors and electronic interfaces, particularly in portable applications, which show small dimensions and the ability to reduce both the supply voltage and power consumption, is in continuous growth. In particular, multiple sensors and electronic circuits for interfacing developed in an integrated technology can be combined into just one chip, and enabling it to produce “smart sensor.”
\nThe phenomenon of giant magnetoresistance (GMR) has been providing cutting-edge sensor technology, especially for affordable and sensitively detect and quantify of micro-particles and nano-magnetic in very weak magnetic fields. In recent decades, sensors based on GMR effect have been researched and developed intensively [3]. The discovery of GMR has opened opportunities in many fields of applications. GMR material has been developed into various applications of sensor based on magnetic field sensing, such as magnetic field sensor, a current sensor, linear and rotary position sensor, data storage, head recording, and nonvolatile magnetic random access memory. The GMR material has many attractive features, for example, its electric and magnetic properties can be varied in a very wide range, low power consumption, and small size. Meanwhile, ferrite is one of the candidates of magnetic oxide material that could potentially be used as a constituent layer of GMR [4].
\nThis chapter is organized as follows: the magnetic sensor, the GMR sensor based on ferrite material, and the GMR sensor design. Finally, the recent and the future trends of this exciting GMR sensor for various applications are discussed.
\nResearch in the magnetic sensor has been carried out by researchers in recent decades. Magnetic sensors have a significant impact over the past five decades in a variety of different fields of technology. Magnetic sensor has great potential to be developed for various applications such as magnetic storage, automotive sensors, navigation systems, nondestructive material testing, security system, structural stability, medical sensors, and military instruments [5].
\nBased on the measurement range of the magnetic field, approximate sensitivity ranges of different magnetic field sensors are low field (smaller than 0.1 nT), medium field (0.1–1 nT), and high field (above 1 nT), as shown in Figure 2.
\nApproximate sensitivity range of magnetic sensor (adopted from Ref. [6]).
Figure 2 shows measurement range of the magnetic field of some magnetic sensors. The GMR sensor can detect magnetic fields in the range of 10–108 nT and has a die size close to 1 mm. The dependence on temperature of the offset and sensitivity of the GMR sensor is higher than the AMR (anisotropic magnetoresistance) sensor. In addition, GMR sensors can operate at temperatures above 225°C [6].
\nThe term “magnetic sensor” is widely used to express a sensor that works on the magnetic principles. Magnetic sensors usually work without contact with the object to be sensed and also reliable. The most important field in the application of magnetic sensors includes security, health care, information technology, geomagnetic exploration, and nanotechnology. Magnetic field sensor technology has been driven by the need to increase the sensitivity, small size, low power, low cost, and compatibility with electronic systems. To achieve these requirements, the magnetic sensors are usually created by micrometer sized or sub-micrometer with a multilayer structure.
\nThe resistance of the material depends on the state of magnetization, called the magnetoresistance effect. Magnetization in the material can be changed by applying an external magnetic field. Therefore, the material which has a magnetoresistance effect can be used as magnetic field sensor.
\nThe basic effect of normal magnetoresistance emerged from the Lorentz force on the electrons due to the presence of a magnetic field applied to it. Normal magnetoresistance occurs in all metals, including nonmagnetic metals as a consequence of Lorentz forces. For example, in metal thick film, cobalt (Co) with a thickness of 100 nm was observed to be positive and varies with B2 above magnetoresistance saturation, where B is applied in a magnetic field. However, Co thin films with a thickness of 3 nm show negative normal magnetoresistance over saturated magnetoresistance. Normal magnetoresistance emerged from semiclassical arguments via the Lorentz force on electrons that are defined as
\nand the current density
\nwhere \n
The components of the electric field along the direction of \n
Electronic devices in the future will turn on a new field called spintronics. Spintronics is a new field that explores the influence of spin on electronic transport in magnetic nanostructures. Spintronic births are marked by the discovery of giant magnetoresistance effects (GMR) on magnetic multilayer Fe/Cr more than two decades ago. Accordingly, spintronics is a technology that exploits the quantum property of electrons called spin. Ordinarily, electron spins have both “up” and “down” directions and can be described as clockwise or counterclockwise around their axes. The spin gives magnetic properties on electrons that can be affected by external magnetic fields. More recently, research on spintronic devices developed very rapidly [7–9].
\nThe GMR-based magnetic sensor is a sensor that works based on effect of a very large change in the resistance of metal or device when an external magnetic field is applied. The magnetoresistance (MR) ratio value is written in Eq. (3):
\nwhere R(H) is the resistance when the device is influenced by an external magnetic field, R(H = 0) is the resistance of the device without the applied external magnetic field, and H is the magnetic field intensity.
\nGMR material could have several structures where each structure will produce different GMR ratios. This structure consists of a sandwich, spin valve (pinned sandwich), multilayer, and granular (Figure 3). The sandwich structure is also called pseudo spin valve, which consists of three layers with the arrangement of materials (ferrimagnetic or ferromagnetic)/nonmagnetic/(ferrimagnetic or ferromagnetic). Accordingly, in spin valves, an additional antiferromagnetic (pinning) layer is added to the top or bottom part of the sandwich structure. Meanwhile, a multilayer structure is a structure with repetition of the sandwich layer. Similarly, the granular structure consists of granules of magnetic materials of nanometer scale scattered in nonmagnetic material as the host material.
\nVarious types of GMR structures: (a) multilayer, (b) spin valve, and (c) granular films.
The benefit of the GMR phenomenon is on the development of nanometer-sized technologies and possibly in the atomic scale of magnetic structures. This very thin structure has physical, chemistry, and biology properties which change dramatically, therefore, superior when compared to the bulk materials. A very thin layer can be made as an epitaxial layer (where the layer has a certain crystal arrangement with excellent monocrystalline quality) by molecular beam epitaxy (MBE) method or polycrystalline film by sputtering method [10].
\nMeanwhile, measurement of GMR effects has two main geometries, i.e., current In plane (CIP) and current perpendicular to plane (CPP). These two geometric shapes are shown in Figure 4.
\nGeometry of GMR measurement (a) CIP and (b) CPP.
Until now, researchers have continued to conduct research on GMR thin film, regarding on growth methods, constituent materials, as well as the GMR structure. Particularly for GMR constituents, ferrite is a transition metal oxide and one of the potential candidates used as the constituent material of the GMR thin film [11, 12]. Transition metal oxides are an important functional material for new electronic devices due to their unique properties such as perfect spin polarization, large metal insulator transitions, ferroelectric, multiferroic and resistive switching effects [13]. In addition, ferrite has ferrimagnetic properties and Curie temperature above room temperature. For temperatures below the Curie temperature, ferrimagnetic materials exhibit the same behavior as ferromagnetic materials. The behavior is having a spontaneous magnetization at room temperature, consisting of saturated magnetic domains, and shows hysteresis phenomena [14]. Among the ferrite materials that have been used as GMR constituent layers are Fe3O4 and CoFe2O4.
\nThe phenomenon of magnetoresistance has been observed among others the nanowires Fe3O4 single crystal [15], Fe3O4 thin film [16, 17], Fe3O4/GaAs/Fe3O4 junction [18], and Fe3O4 nanoparticles [19]. Recently, we report the results of studies relating to the synthesis of a novel ternary CoFe2O4/CuO/CoFe2O4 thin film as a GMR sensor [20]. The CoFe2O4/CuO/CoFe2O4 thin film has been prepared onto silicon substrate via dc magnetron sputtering technique with targets facing each other. The GMR ratio maximum at room temperature obtained has reached 70% for the thickness of each layer of CoFe2O4 and CuO, which are 62.5 nm and 14.4 nm, respectively. These findings provide the impact on GMR sensor technology based on ferrite material.
\nThe performance of the GMR sensor is influenced by various parameters. Among them is the composition of GMR constituent material, layer thickness, and GMR structure. The GMR structure is concerned with applications on applied technology. For example, the condition of the technology affects the performance of the spin-valve structure, so it is quite a concern because this structure is a very promising candidate for sensors and reading heads.
\nThe following features are used to determine a good quality GMR sensor, that is [21], a large magnetoresistance ratio, large sensitivity, narrow hysteresis characterized by a low coercive field (Hc), low anisotropy field (Hk) (Hk influences sensitivity), large exchange bias field (Hex), minor changes of parameters with temperature, and have great reliability and repeatability.
\nThe advantages of GMR sensor have a larger output than AMR sensor or Hall effect sensor and can be operated on the field above the AMR sensor field range. Some advantages of the GMR sensor compared with the AMR sensor or Hall effect sensor are listed in Table 1.
\nAdvantages | \nGMR | \nAMR | \nHall | \n
---|---|---|---|
Physical size | \nSmall | \nLarge | \nSmall | \n
Signal level | \nLarge | \nMedium | \nSmall | \n
Sensitivity | \nHigh | \nHigh | \nLow | \n
Temperature stability | \nHigh | \nMedium | \nLow | \n
Power consumption | \nLow | \nHigh | \nLow | \n
Cost | \nLow | \nHigh | \nLow | \n
Benefits of magnetic sensors [22].
The design and development of GMR sensors are based on assessments derived from the various areas to obtain functional devices. In addition, the special design will always be associated with specific applications. The sensor design will have an impact on the device performance. For example, both linear and thermal sensor characteristics affect the characteristics of the sensing structure and the final encapsulation. A more detailed knowledge of the sensor parameters is necessary before embarking on the development of sensors.
\nAs a sensing element, the Wheatstone bridge circuit has been highly recommended in the design of resistive sensors. In this case, the Wheatstone bridge circuit provides a differential output as a function of the resistance variation. Depending on cases deemed or specific requirements, we can use multiple bridge configuration.
\nThe GMR sensor made using the Wheatstone bridge principle aims to reduce the effect of hysteresis and to improve the output linearity. Ordinarily, the GMR sensor structure consists of four resistors. Two resistors are protected from exposure to the magnetic field, and two other active resistors are between two flux concentrators. The sensitivity of the GMR sensor can be changed by changing the length and distance between two flux concentrators.
\nFigure 5 displays a summary of the possibility of the Wheatstone bridge configuration that has been furnished by calculating the output voltage. As shown in Figure 5, a full bridge configuration is the best choice in terms of the signal level and linearity (Figure 5, right). Due to the stage dependence on the fabrication process of GMR structure, a half bridge configuration with two active resistors and two shielded resistors is often obtained when using a single-stage deposition. However, full bridge configuration is obtained if using two-step deposition.
\nWheatstone bridge configuration (a) special elements, (b) half bridge, (c) full bridge [23].
In the design of GMR thin-film structures, it is useful to operate at the resistivity determined for the condition w = L (w and L are width and length of GMR thin film, respectively):
\nwhere Rsq = resistance “ohms per square,” ρ = resistivity, and t = thickness of the film. One important factor in GMR sensor application is the resolution associated with the ratio of signals to noise. According to Ref. [24], the signal-to-noise ratio (SNR) is estimated to be proportional to the square root of the device area, following Eq. (5):
\nwhere c is a constant.
\nNordling et al. [25] have used the Wheatstone bridge to develop integrated GMR sensors. This system consists of four GMRs that are integrated into serpentine, as shown in Figure 6. Two GMRs are formed interlocked as folded fingers act as sensing resistors (RS1 and RS2), whereas two GMRs are spatially separated as reference resistors (RR1 and RR2). The width of each strip is 2 μm, the separation distance is 2 μm, and the total length is more than 11 mm. Accordingly, the edges of the sensing and reference GMRs are separated by 30 μm to each other, to isolate the inbred magnetic field of each resistor, which is a function of current from leads. Hereafter, the GMR sensing elements are coated with a silicon nitride thin film to form an active surface and protect it from being in contact with the sample.
\n(a) Wheatstone bridge circuit. (b) A micrograph image of GMR sensing showing the reference GMR traces (top and bottom) and the GMR sense pad (center). (c) The schematic of the Wheatstone bridge at (b) in a circuit also shows the direction of the external field and the relative motion of GMR to the sample (adapted from Ref. [25]).
This type of resistive sensor interface of the Wheatstone bridge shows a low sensitivity value and cannot be recovered. This weakness can be corrected by using a differential input OpAmp-based voltage amplifier, to increase the sensitivity as shown in Figure 7.
\nDifferential-to-single ended Wheatstone bridge output by using a voltage differential amplifier (adopted from Ref. [26]).
Furthermore, the Wheatstone bridge configuration can be made “automatic” (so the circuit does not require initial calibration) through the development of a topology as shown in Figure 8. This circuit using a tunable resistor implemented through a voltage-controlled resistance based on the use of an analog quadrant multiplier. The variations follow those of the resistive sensor and a suitable feedback loop.
\nBlock schemes of bridge-based interfaces (adopted from Ref. [26]).
More specifically, the circuit in Figure 8 represents a suitable configuration for ground resistive sensors placed in the lower positions of the left branch of the bridge. The output of the differential bridge is connected to an OpAmp-based differential amplifier with a voltage gain of A. Consequently, the single-ended output is sent to a voltage-inverting integrator whose goal is to create a stable negative feedback loop and provide a correct control voltage value (VCTRL) for tunable resistors (RVCR). If the measuring variation occurs to a specified range, the unbalanced output voltage is amplified, and the integrator produces a path that tracks the RVCR elements until a new equilibrium condition is reached (i.e., automatic range).
\nSeveral studies have been conducted by researchers to improve the measurement accuracy of GMR sensor. Recently, Li and Dixon [27] have proposed the use of the closed-loop circuit to improve the measurement accuracy of GMR sensor. By using the biasing coil and feedback circuit, the current flowing in the biasing coil is controlled by the GMR output voltage to make the GMR output constant. Hysteresis and nonlinearity of the GMR sensor have greatly minimized. Therefore, linearity and accuracy of magnetic field measurements have improved significantly.
\nVarious efforts have been made to improve the performance of GMR sensors. An increase of 4 dB in the signal-to-noise ratio of CPP GMR sensors has been reported by Mihajlovic et al. [28]. They use Heusler alloy magnetic layers and insert an In─Zn─O electrically conductive oxide into an Ag-based metallic spacer layer.
\nRecently, Choi et al. [29] have shown an effective method for the enhancement of MR ratio of CPP-GMR spin-valve sensor by improving order in the B2 polycrystalline Heusler alloy films by inserting a CoFeBTa or CoBTi amorphous ferromagnetic underlayer.
\nGMR sensors have been widely used in power systems, aerospace, modern transport systems, and the biomedical field due to the high sensitivity and wide range of magnetic field frequency response. The first application is a read head in a magnetic disk drive with the spin-valve structures. A spin-valve sensor is made of a magnetic layer exhibiting a strong coercivity (hard layer) separated by a magnetic layer with a very low coercivity (soft layer) by a thin metallic spacer.
\nA basic understanding of GMR device is traveling electrons from ferromagnetic layer to the other ferromagnetic layer through the conductive metal layer. If the magnetic moment in the two ferromagnetic metals is parallel then the device has a low resistance (state “0”) and if the anti-parallel has high resistance (state “1”). The main attraction in the GMR technology is its ability to detect the low magnetic field. Information is stored in magnetic bits, whereas the magnetization is stored as “0” in one direction and as “1” in the other direction. This is a magnetic field detected by the GMR head. If the GMR head passes through the magnetic bits, the direction of the free layer magnetization of the head will respond with the field of each bit either spin up or down. Consequently, the magnetic moment of the free layer becomes parallel or antiparallel. This results in a change of resistance in the layers. This resistance change is detected by the GMR sensor and produces a voltage across the GMR head (while the fixed current passes through the GMR element).
\nThe reading/writing head-integrated devices consist of a top ferromagnetic layer that is referred to as the sensing layer, and the lower ferromagnetic layer is referred to as the storage layer. The thickness of each of ferromagnetic layers is different in order to make a difference in their coercive field. The principle of reading and writing process is almost the same. However, the writing process requires a high magnetic field to rotate the moment in the storage layer.
\nInformation is read and written by the pulse current (external magnetic field) that can detect the magnetic direction of each bit. Definition of writing is to change the magnetic moment of the storage layer (requiring high current pulses or high magnetic fields). Meanwhile, reading information on bits is changing the magnetic moment in the sensing layer (it takes a lower current pulse). The steady current passing through the GMR element is called the current sense, while the current that generates the magnetic field to rotate the magnetic moment called the word current.
\nThe GMR sensors have been applied to measure the position of machine components as linear position detectors and transducers. A small movement of machine components (such as metal rods, gears, and other components) can produce magnetic fields. The movement along the y-axis, for example, can be determined from this magnetic field variation detected by the GMR sensor, Bx (with sensitive areas along the x-axis).
\nAlmost all metal materials, including Fe, can be magnetized by an external magnetic field. Without an external magnetic field, the magnetic moment of the material has an irregular orientation. The magnetic moment of the material will align following the direction of the external magnetic field when the external magnetic field is applied.
\nThe GMR sensor has been used to detect magnetic fluids containing Fe2+ [30] and obtain the output voltage of the GMR sensor that is proportional to the molar concentration for concentrations between 0.01 M and 0.4 M. For further experiments, it is suggested that the experiment should be conducted in a Faraday room so that the earth magnetic field cannot affect the sensor output.
\nMore recently, GMR sensor has successfully to detect porphyrin concentration [31]. To confirm the effectiveness of this method in detecting porphyrin, we varied the flow rate and concentration of Fe3+-modified porphyrin solution. Figure 9 shows the effects of solution concentration and flow rate of the solution on the GMR output voltage. Turbidity decreases with decreasing concentration as shown in the inset image.
\nEffects of solution concentration and flow rate on the GMR sensor sensitivity [31].
The result showed that the GMR sensitivity increases gradually with the increase in concentration and decrease the flow rate. Since this developed method is simple but effective for detecting porphyrin concentration, we believe that further development of this method will be a benefit for many applications, specifically relating to the medical uses.
\nCurrently, we are approaching a new era of the Age of Data. Consequently, the situation changes the way we live, work, and play. That change has been initiated from the autonomous car to humanoid robots and intelligent personal assistant to the smart home devices. All of them require data storage media with very large capacity. According to a report from the International Data Corporation sponsored by Seagate, it recently states that the amount of data created worldwide will increase tenfold in 2025 [32].
\nIn the field of digital data storage, hard disk drive (HDD) maintained its leading position among other data storage devices. In the HDD-based magnetic recording such as GMR sensors, the information is stored in the area that has been magnetized in a thin film. Transitions between similar areas are named a “bit” to be detected by a “read head” on the HDD. The number of bits per unit area is called the “areal density.” Since the 1990s areal density is increased dramatically, with a compound growth rate (CGR) increased to 100%, as shown in Figure 10. Accordingly, the need of magnetic storage media with a large capacity and small size requires a serious development of magnetic field sensors based on GMR material.
\nTrend of the increase of areal density of HDD and flash disk to the year of production [33].
The GMR head is an analog device that detects magnetic marks with magnitude above high-resolution disks, rather than directly detecting the binary magnetization of stored bits. GMR head development trends are intended to achieve large-scale data storage densities. A simple diagram of the GMR head is shown in Figure 11. The sensing layer in the GMR head consists of a free and a reference layer, which is separated by a nonmagnetic layer.
\nA simple diagram of the GMR head (adopted from Ref. [35]).
Another phenomenon related to GMR is spin torque. Nowadays, a high-sensitivity spin-torque oscillator (STO) for ultrasmall field sensors has been used for storage devices. STO usually appears in one of two very different architectures: (i) nano-pillars approximately 100 nm in diameter and (ii) nano-contact, where the current enters a long magnetic structure through constriction [34].
\nThe increase of the capacity of data storage devices raises the gap between processor speed and off-chip memory speed, resulting in increased demand for on-chip memory, more recently. The way to limit power consumption and to save memory gaps is by modifying the memory hierarchy by integrating instability at different levels, which will cause static power and also pave the way to normal-off/instant-on computation [34].
\nSince the late 1990s, magnetoelectronics has emerged as one of several new platform technologies for biosensor and biochip development [36]. This technology is based on the detection of biologically functionalized micrometer- or nanometer-sized magnetic labels, using high-sensitivity microfabricated magnetic field sensors.
\nThe development of a biosensing platform that is powerful, flexible, and high throughput is expected to have broad implications in medicine, nursing clinical diagnostics, pharmaceutical drug development, genomics, and proteomics research. It is enabled by nanotechnologies, which is emerging rapidly (i.e nanoparticles, nanotubes, and nanowires) and micro manufacturing technology (i.e MEMS- micro electro mechanical systems, microfluidics, and CMOS- complementary metal-oxide-semiconductor). Some platforms new sensing has been proposed and tested for biomedical applications, one of which is a GMR biosensor [37].
\nBiomolecular detection using GMR sensors is based on the principle that the resistance of the GMR sensor changed when an external magnetic field is applied. When a magnetically labeled biomolecule is brought close to the sensor, a signal will be transmitted and read by the GMR sensor. Today, GMR-based biosensors are very sensitive to detect magnetic information so that it has become a dominant player in the field of biosensors.
\nThe use of GMR sensors for magnetic marker detection was first developed by Tondra et al. [38]. They concluded that all sizes of a single magnetic marker can be detected by the GMR sensor provided the sensor size is almost identical to the size of the marker as well as a thin isolated protective layer. Millen et al. [39] has proposed the incorporation of GMR structures on bacterial sensing as shown in Figure 12. Surface sensing regions of GMR need to be modified to allow for binding of antibody capture. If a sample solution containing a target antigen concerns the GMR sensor, then a complex bond exists between the target antigen and the antibody. Furthermore, it is followed by the addition of magnetic-coated antibody particles and labeled the antigen target to form a sandwich-like structure.
\nBacterial detection scheme with GMR biosensor (adapted from Ref. [39]).
Currently, one of the topics of biomedical research interest is the detection of biological species. Basic research in this field will result in many immediate applications, such as food-borne pathogen detection, biological war defense, or bio-diagnosis. In this scenario, it is necessary to develop an easy, inexpensive, and quick method to detect this agent. Manteca et al. [40] combined superparamagnetic particles with GMR sensors to detect target species. Recently, Elaine et al. [41] have shown examples of sensitive and specific multiplexed detection of major peanut allergens and wheat allergens gliadin using an array of GMR sensors. They found that the multiplexing capability of GMR sensor arrays provides higher levels of information that is unavailable with current commercialized enzyme-linked immunosorbent assay (ELISA) detection kits.
\nKrishna et al. [42] have developed a simple and sensitive method for detecting influenza A viruses using GMR biosensors. This test uses monoclonal antibodies against viral nucleoproteins (NP) in combination with magnetic nanoparticles (MNPs). The presence of influenza viruses allows the binding of MNPs to GMR sensors; consequently, their binding is proportional to viral concentrations. The binding of MNP to the GMR sensor causes a change in the sensor resistance, as measured in real-time electrical readings. Illustration of GMR biosensor for detecting influenza A virus is shown in Figure 13.
\nSchematic representation of GMR biosensor. (a) Schematic diagram of GMR biosensor surface functionalization. (b) Schematic drawing of a typical sandwich structure (biotinylated detection antibody/target antigen/capture antibody). (c) Schematic illustration of influenza A virus detection (adopted from Ref. [42]).
The GMR sensor has been used in heart rate monitoring. Kalyan et al. [43] have developed a simple cardiac rate monitoring system using GMR sensor. The GMR sensor is placed on the human wrist and provides a magneto-plethysmographic signal. This signal is processed by a simple analog and digital instrumentation stage to give an indication of heart rate. The prototype of this system is shown in Figure 14.
\nSimplified diagram of the proposed GMR heart rate monitor. It uses a GMR sensor and magnet in the sensor unit to get the plethysmograph (vGMR) and heart rate (adopted from Ref. [43]).
The GMR sensors have advantages of low power consumption, low cost, high detection capability, linearity, and three-dimensional (3D) measurement capabilities, thus matching the need for a magnetometer. Luong et al. [44] have proposed a three-dimensional GMR sensor design with a single bridge and one flux guide for the three-dimensional magnetometer. This design helps to reduce the sensor size, power consumption, and fabrication cost.
\nRecently, Xiao [45] has reported the use of GMR sensors for steering wheel angle sensors with high accuracy, wide measurement range, and simple structure. It used two GMR chips to detect magnetic fields. The GMR chip measures the rotation angle of the multipole magnetic ring with 120 couples of a magnetic pole, whereas each magnetic pole of which outputs an angle signal of 0–360.
\nIn nondestructive test (NDT), GMR sensor as a magnetometer has implemented to detect the material defect profile. The sensing axis of the GMR sensor is set perpendicular to the direction of the excitation magnetic field; consequently, the information collected primarily reflects changes in the eddy current caused by the defect. Moreover, application of the GMR sensor as a signal receiver has increased the sensitivity of this technique in the detection of small defects [46]. The implementation of the GMR sensor on NDT eddy current techniques is still new, and many issues related to hybrid systems (coils-GMR) will continue to be explored by researchers.
\nRecently, Gao et al. [47] have designed a 4-GMR probe with a rectangular coil as the excitation coil and an eddy current detection system to detect weld defect (Figure 15). The experiments conducted by Gao et al. [47] showed that through the method of the proposed detection system, the recognition rate was 92% for flawless welding and 90% for welding with defects, with an overall recognition rate of 90.9%. This shows that the method can detect weld defects effectively.
\nSchematic graph of eddy current testing system and weld inspection based on GMR sensor (adopted from Ref. [47]).
The use of GMR material for sensor applications is increasing rapidly, as a result of its small size, high signal level, high sensitivity, high-temperature stability, low power consumption, low cost, and compatibility with CMOS electronics. Some sensor applications have been developed using GMR material, e.g., magnetic sensors, read head sensors, biosensors, and many others. In the future, the development of GMR-based sensors will increase continuously, especially for health application, data storage, and daily needs.
\nThis work was partially supported by Research Incentive on National Innovation System (SINas), Ministry of Research, Technology, and Higher Education of the Republic of Indonesia, Research Code: RD-2015-0352.
\nBenefit by the Moor’s law, the von Neumann computing architecture, respectively storing and processing data instructions in the memory unit and the central processing unit (CPU), was served as the major computing model in past several decades [1]. However, physical limitations of the complementary metal-oxide-semiconductor (CMOS) technology and the storage capacity hinder the performance development of classic computers; such classic computers can no longer double its performance every 18 months, indicating the end of Moore’s prediction [2].
\nRecently, the computing efficiency of extracting valuable information in data-intensive applications through the von Neumann computing architecture has become computationally expensive, even with super-computers [3]. The accumulated amount of energy required for the data processing through super-computers poses a query on whether the augmented performance is sustainable.
\nAs human beings, our brains are capable to analyze and memorize sophisticated information with only \n
General architecture of (a) von Neumann computing system and (b) neuromorphic computing system.
Most recent hardware implementations on neuromorphic computing systems focus on the digital computation because of its advantages in noise immunity [16]. However, real-time data information is often recorded in the analog format; thereby, power-hungry operations, such as analog-to-digital (A/D) and digital-to-analog (D/A) conversions, are needed to facilitate the digital computation. It can be observed that the digital computation results in high power consumption with a large design area.
\nIn this chapter, an overview of ANNs will be discussed in Section 2. Section 3 introduces the spiking information processing technique through the temporal code with the leaky integrate-and-fire neuron. Our fabricated spiking neural network chip along with its measurement results on the chaotic behavior will be demonstrated in Section 4, followed by the investigation on 3D-IC implementation technique with memristive synapses in Section 5. Applications on the chaotic time series predication and the image recognition are illustrated in Section 6.
\nIn the endeavor to imitate the nervous system within mammalian brains, ANNs are built by employing electronic circuits to imitate biological neural networks [17]. In general, ANN methodologies adopt the biological behavior of neurons and synapses, so-call the hidden layer, in their architecture. The hidden layer is constituted by multiple “neurons” and “synapses”, which carries activation functions that control the propagation of neuron signals. Based on the connection pattern and the learning algorithm, ANN methodologies can be classified into various categories, as depicted in Figure 2.
\nOverview of artificial neural networks.
The multilayer perceptron (MLP), a representation of feedforward neural networks (FNNs), is composed by unidirectional connections between hidden layers. MLP has become the quintessential ANN model due to its advantages in ease of implementation [18]. However, the major design challenge in the MLP is that the runtime as well as the training and learning accuracy of the system are strongly affected by the number of neurons and hidden layers. As the neural information evolved into a much more sophisticated mixed-signal evaluation, disadvantages of MLP are exposed when such a neural network is deployed for temporal-spatial information processing tasks [19]. Recurrent neural networks (RNNs), successfully adopt the temporal-spatial characteristics within their hidden layer, closely mimic the working mechanism of biological neurons and synapses. However, the major design challenge is that all weights within the network need to be trained, which dramatically increases its computational complexity. In earlier 2000s, the reservoir computing, an emerging computing paradigm, exploits the dynamic behavior of conventional RNNs and computationally evolved its training mechanism [20]. Within the reservoir layer, synaptic connections are constructed by a layer of nonlinear neurons with fixed and untrained weights. In the reservoir computing, the complexity of the training process is significantly reduced, since only output weights are needed to be trained, thereby, higher computational efficiency can be achieved.
\nThe conventional reservoir computing has been fully developed in the past decade to simplify the training operation of RNNs and proven its benefits across multifaceted applications [21, 22, 23, 24]; however, the computational accuracy of the system is still highly proportional to the number of neurons within the reservoir layer. It can be observed that these enormous numbers of neurons significantly hinder the hardware development on the reservoir computing. In [25], it has been proven that the computing architecture is capable to exhibit rich dynamic behaviors during operations when the delay is employed into the system. Benefit from the embedded delay property, the training mechanism and the computing architecture of conventional reservoir computing have conceptually evolved, namely the time delay reservoir (TDR) computing [26]. In the TDR computing, the reservoir layer is built by only one nonlinear neuron with a feedback loop. In this context, time-series input data can be processed through the TDR computing by taking advantages of the feedback signal to form a short-term memory, thereby, higher computational efficiency and accuracy can be achieved.
\nIn many brain-inspired neuromorphic computing systems, the interface between modules is often influenced by the signal propagation. The major design challenge in neuromorphic computing is the difficulty in adapting raw analog signals into a suitable data pattern, which can be used in the neuronal activities. Before digging deep into the architecture of our fabricated spiking neural network chip, in this section, a temporal encoding scheme through the analog IC design technique will be discussed.
\nIn past few decades, researches on biological neurons have been fully investigated in the field of neuroscience [27, 28, 29, 30, 31, 32]. In general, the dendrite, the soma, the axon and the synapse are four major elements of a biological neuron [33]. Within a nervous system, dendrites collect and transmit neural signal to the soma, while the soma plays an important role as the CPU to carry out the operation of the nonlinear transformation. Moreover, signals are processed and transmitted in form of a nerve impulse, also known as the spike [34]. During the operation, an output spike is formed when the input stimulus surpasses the threshold level, indicating as the firing process. Figure 3 demonstrates a typical firing and resting operation in a biological neuron. Synapses along with the axon are then transmitted the spike data patterns to other neurons.
\nAction potential of biological impulses.
The leaky integrate-and-fire (LIF) neuron model plays an important role in the neuron design to convert raw analog signals into spikes [35]. Figure 4 depicts the analog electronic circuit model of a LIF neuron. The input excitation, \n
where \n
Analog electronic circuit model of a LIF neuron.
From Eq. (1), it can be observed that the integration time over the membrane capacitor can be regulated by excitation and leakage currents. Such relation can be depicted by a simple resistor model, which can be rewritten as
where \n
Neural code is used to characterize raw analog signals into neural responses. In general, there are two distinct classes to represent neural codes. One class converts analog signals into a spike train where only the number of spikes matters, knowing as the rate code. Another class converts analog signals into the temporal response structure [36] where time intervals matters, knowing as the temporal code.
\nFigure 5 demonstrates major differences between the rate code and the temporal code. In the rate code, analog signals are encoded into the firing rate within a sampling period, as shown in Figure 5a. Considering the implementation complexity, the rate encoding scheme is easier to implement through electronic circuits compared to the temporal encoding scheme; however, small variation of an analog signal in the temporal response structure are neglected, which makes the rate code inherency ambiguous in the real-time computation [36]. In [37], researches discover that neural information does not only depend on the spatial, but also the temporal structure. Time-to-first-spike (TTFS) latency code [38, 39, 40] is one of the simplest temporal encoding schemes. As demonstrated in Figure 5b, in a TTFS latency code, analog signals are encoded into a time interval between the starting point of the sampling period and the generated spike. However, the encoding error would be large if the system performs abnormally.
\nNeural codes in (a) rate code, (b) time-to-first-spike latency code, and (c) inter-spike-interval temporal code.
The inter-spike-interval (ISI) code is another branch of the temporal code, where encoded analog signals depends on the internal time correlation between spikes [41, 42], as illustrated in Figure 5c. In general, the ISI temporal encoder converts all analog signals into several inter-spike-intervals, allowing each spike to be the reference frame to others. Obviously, the ISI code is capable of carrying more information within a sampling period compared to the TTFS latency code.
\nFigure 6a demonstrates the simplified function diagram of ISI temporal encoder. The ISI temporal encoder employs an iteration architecture such that each LIF neuron operates in separate clock periods. The signal regulation layer is built by a current mirror array to duplicate the input excitation current for each LIF neuron; the neuron pool along with the signal integration layer achieve the iterative characteristic. Our ISI temporal encoder chip was fabricated through the standard GlobalFoundries (GF) \n
(a) Simplified function diagram of ISI temporal encoder and (b) die photo of our fabricated ISI temporal encoder chip [32].
The number of spikes in an ISI code as discussed in [32] is directly proportional to the number of neurons. Even though this linear proportional correlation is desirable, its hardware implementation is still far more challenging. On the other hand, it can be observed that the exponential relation would increase the number of spikes, thus, containing more information even with the same number of neurons. Through the iterative structured ISI temporal encoder, the number of generated spikes, \n
where \n
From Eq. (4), it can be observed that even with the same number of neurons, the ISI temporal encoder is capable to produce more spikes compared to [35]; thereby, the ISI temporal encoder has capability to carry more information. The iterative structure greatly reduces the power consumption, since a smaller number of neurons are needed to produce the equal number of spikes.
\nIn this iterative structured design, the ISI temporal encoder samples the original analog signal without using A/D and D/A conversions, and converts analog signals into several inter-spike-intervals. The expression of the inter-spike-interval can be simplified as
where \n
where \n
The general expression of each inter-spike-interval, as demonstrated in Figure 7, can be written as
ISI temporal spike train with \n\nN\n\n LIF neurons.
With the respect to the analog design of neural code, our spiking neural network chip adapts the ISI temporal encoding scheme as it pre-signal processing module, as well as the reservoir computing module with delay topology as the processing element. Our spiking neural network, named as the analog delayed feedback reservoir (DFR) system is considered as the simplification of conventional reservoir computing. By employing the delayed feedback structure within the system, our analog DFR system processes the functionality of high dimensional projection and short-term dynamic memory, whereby the behavior of biological neuron is achieved.
\nFigure 8 demonstrates the architecture of our analog DFR system, as published in [43, 44]. During the operation, the high dimensional projection within the reservoir layer, as illustrated in Figure 9, is the key module to separate input patterns into different categories [26]. For instance, with low dimensional spaces, two different objects cannot be linearly separated by a single cut-off line, as shown in Figure 9a. However, by projecting input patterns onto higher dimensional spaces, from two-dimensional to three-dimensional, the separability of the system changes accordingly. As demonstrated in Figure 9b, the same objects are linearly separated by a single cut-off plane without changing their original \n
Architecture of our analog DFR system.
(a) Nonlinear classification with low dimensional spaces and (b) linear classification with high dimensional spaces.
Die photo of our fabricated analog DFR chip.
In our analog DFR system, the dynamic behavior can be controlled by changing the total delay time within the feedback loop. Along the feedback loop, the total delay time, \n
In the conventional reservoir computing system, represented by the echo state network (ESN), the memory within the reservoir layer fades in time due to the way that neurons are sparsely connected; such fading memory limits the performance of computation [20]. With the delay-feedback topology embedded, our analog DFR system not only reduces the implementation complexity but also overcomes the drawback of fading memory limitation. Such functionality enables the knowledge transfer processing technique, allowing new incoming input data to carry information from its previous states, as depicted in Figure 11. The expression of \n
where the function, \n
Illustration of short-term dynamic memory.
Along the feedback loop, the delay time constant, \n
In general, the mathematical model of the delay time constant is represented by the values of resistance and capacitance. In the LIF delay neuron, the input impedance, \n
The feedback loop, which is constructed by multiple LIF neurons, as illustrated in Figure 12. To enable the spiking signal propagation, the output spike train from the previous neuron is utilized as the clock signal to trigger its following neuron.
\nDynamic delayed feedback loop.
In general, the phase portrait is used to visualize how solutions of a delay system would behave. In this experiment, measured phase portraits are plotted through two signals from the feedback loop where one of them is recorded with the time delay, as shown in Figure 13. As the total delay time within the feedback loop increases, the dynamic behavior of the system changes accordingly. As plotted in Figure 13b, the delayed signal repeatedly traces its initial path when the total delay time within the feedback loop maintains around \n
Measured phase portrait of dynamic system in (a) \n\nT\n=\n0.64\n\nμs\n\n; (b) \n\nT\n=\n1\n\nμs\n\n; (c) \n\nT\n=\n1.2\n\nμs\n\n; (d) \n\nT\n=\n1.4\n\nμs\n\n.
To closely mimic functionalities of mammalian brains, electronic neurons and synapses in neural network designs need to be constructed in a network configuration, which demands extremely high data communication bandwidth between neurons and high connectivity neural network degree [45, 46]. However, these requirements are not achievable through the traditional von Neumann architecture or the two-dimensional (2D) IC design methodology. Recently, a novel 3D neuromorphic computing system that stacks the neuron and synapse vertically has been proposed as a promising solution with lower power consumption, higher data transferring rate, high network degree, and smaller design area [47, 48]. There are two 3D integration techniques that can be used in the hardware implementation of neuromorphic computing: (1) through-silicon via (TSV) 3D-IC and (2) monolithic 3D-IC. A well-known 3D integration technique is to use the TSV as vertical connection to bond two wafers. In this structure, a large capacitance that is formed by TSVs can be used to build the membrane capacitor, which is required in neuron firing behavior [49, 50, 51]. Unlike the TSV 3D-IC technique that uses separately fabrication processes, the monolithic 3D-IC technique is capable to integrate multiple layers of devices at a single wafer, thus, the monolithic 3D-IC technique is capable to provide a smaller design area with lower power consumption [52, 53].
\nIn neural network designs, the electronic circuit model of synapses can be implemented by an emerging non-volatile device, namely the memristor, which is a class of the resistive random-access memory (RRAM). In general, the memristor device is constructed in a metal-insulator-metal (MIM) structure, as illustrated in Figure 14a. The resistance of a memristor device can be gradually changed between its low resistance state and high resistance state as the voltage across the memristor device changes.
\n(a) Switching process of memristor device; (b) transmission electron microscopy images of dynamic evolution of conductive filaments; (c) horizontal RRAM structure; and (d) vertical RRAM structure.
Memristors are typically fabricated in a 2D crossbar structure [54], which can be further extended to 3D space, as illustrated in Figure 14c and d, respectively.
\nIn the field of ANN designs, a novel 3D neural network architecture, which combines memristors and the monolithic 3D-IC technique, has been proposed [55]. In this structure, neurons and memristor-based synaptic array are stacked vertically, as demonstrated in Figure 15 [48]. As a non-volatile device, RRAM is capable save static power consumption with small implementation area while maintaining its weighted value. With the monolithic 3D-IC technique, the memristor-based 3D neuromorphic computing can potentially reduce the length of critical path by 3X [56], increase the scalability [52], decrease the power consumption by \n
(a) Typical ANN; (b) 2D structured crossbar array; (c) 3D structured crossbar array; (d) 3D neuromorphic computing architecture by stacking synapses vertically; and (e) deploy monolithic 3D neuromorphic computing on a silicon chip.
To evaluate the precision of our analog DFR system, a chaotic time series prediction benchmark, the tenth-order nonlinear autoregressive moving average system (NARMA10), is carried out, which can be governed by the following equation
where \n
In the training phase, output weights were trained by minimizing the deviation between target and predicted outputs. Both training and testing errors were achieved by the NRMSE, which can be defined as
where \n
Target signals versus predicted signals for NARMA10 benchmark.
In this task, the application of video frame recognition is chosen to examine the performance of our analog DFR system. In this experiment, 48 images, which comprise three different persons with various face angles, were drawn from the Head Pose Image dataset [58], as demonstrated in Figure 17a. Twenty images were used for the training, while another 24 images were used for the testing. In the training phase, the face angle changes from 0 to 75° horizontally. In the testing phase, the rotational angle of face follows the training phase but with additional 15° applied vertically.
\n(a) Training database with three subjects and (b) testing dataset with various salt-and-pepper noise levels.
As illustrated in Section 4.3, our fabricated analog DFR chip is capable to operate at the edge-of-chaos region as the delay changes. To demonstrate the importance of delay, our model was evaluated through several delayed time constants. As depicted in Figure 18, it can be observed that the recognition rate changes with regard to the delay time. For instance, the recognition rate maintains above 98% when the system operates at the edge-of-chaos regime (\n
Recognition rate with respect to various dynamic behavior.
In this chapter, the design aspect of our analog DFR system with the analogue electronic circuit model of biological neuron is discussed. By mimicking how human beings process information, our analog DFR system adapts the spiking temporal information processing technique and a nonlinear activation function to project input patterns onto higher dimensional spaces. From measurement results, our analog DFR system demonstrates richness in dynamic behaviors, closely mimicking the biological neurons with delay property. By naturally perform these neuron-like operations, our analog DFR system is capable to nonlinearly project input patterns onto higher dimensional spaces for the classification while operating at the edge-of-chaos region with merely \n
General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed.
',metaTitle:"Horizon 2020 Compliance",metaDescription:"General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed. ",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\\n\\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\\n\\nIn other words, publishing with IntechOpen guarantees compliance.
\\n\\nRead more about Open Access in Horizon 2020 here.
\\n\\nWhich scientific publication to choose?
\\n\\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\\n\\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\\n\\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\n\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\n\nIn other words, publishing with IntechOpen guarantees compliance.
\n\nRead more about Open Access in Horizon 2020 here.
\n\nWhich scientific publication to choose?
\n\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\n\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\n\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5703},{group:"region",caption:"Middle and South America",value:2,count:5174},{group:"region",caption:"Africa",value:3,count:1690},{group:"region",caption:"Asia",value:4,count:10246},{group:"region",caption:"Australia and Oceania",value:5,count:889},{group:"region",caption:"Europe",value:6,count:15653}],offset:12,limit:12,total:117316},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"10231",title:"Proton Therapy",subtitle:null,isOpenForSubmission:!0,hash:"f4a9009287953c8d1d89f0fa9b7597b0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10231.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10651",title:"Machine Learning",subtitle:null,isOpenForSubmission:!0,hash:"5806b4efae3bd91c3f56e64e0442df35",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10651.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10652",title:"Visual Object Tracking",subtitle:null,isOpenForSubmission:!0,hash:"96f3ee634a7ba49fa195e50475412af4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10653",title:"Optimization Algorithms",subtitle:null,isOpenForSubmission:!0,hash:"753812dbb9a6f6b57645431063114f6c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10653.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10655",title:"Motion Planning",subtitle:null,isOpenForSubmission:!0,hash:"809b5e290cf2dade9e7e0a5ae0ef3df0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10655.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10657",title:"Service Robots",subtitle:null,isOpenForSubmission:!0,hash:"5f81b9eea6eb3f9af984031b7af35588",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10657.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10660",title:"Heritage",subtitle:null,isOpenForSubmission:!0,hash:"14096773aa1e3635ec6ceec6dd5b47a4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10660.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10662",title:"Pedagogy",subtitle:null,isOpenForSubmission:!0,hash:"c858e1c6fb878d3b895acbacec624576",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10662.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10673",title:"The Psychology of Trust",subtitle:null,isOpenForSubmission:!0,hash:"1f6cac41fd145f718ac0866264499cc8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10673.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10675",title:"Hydrostatics",subtitle:null,isOpenForSubmission:!0,hash:"c86c2fa9f835d4ad5e7efd8b01921866",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10675.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Topology",subtitle:null,isOpenForSubmission:!0,hash:"85eac84b173d785f989522397616124e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10678",title:"Biostatistics",subtitle:null,isOpenForSubmission:!0,hash:"f63db439474a574454a66894db8b394c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10678.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:10},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:14},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:6},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:4},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:55},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:5},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:280},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5150},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"871",title:"Urban Ecology",slug:"urban-ecology",parent:{title:"Environmental Sustainability",slug:"environmental-sciences-environmental-sustainability"},numberOfBooks:3,numberOfAuthorsAndEditors:95,numberOfWosCitations:13,numberOfCrossrefCitations:21,numberOfDimensionsCitations:57,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"urban-ecology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editedByType:"Edited by",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8260",title:"Urban and Architectural Heritage Conservation within Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"6594cc0ad7cb888bfdc4ac97c9a281f7",slug:"urban-and-architectural-heritage-conservation-within-sustainability",bookSignature:"Kabila Hmood",coverURL:"https://cdn.intechopen.com/books/images_new/8260.jpg",editedByType:"Edited by",editors:[{id:"214741",title:"Prof.",name:"Dr. Kabila",middleName:"Faris",surname:"Hmood",slug:"dr.-kabila-hmood",fullName:"Dr. Kabila Hmood"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5235",title:"Sustainable Urbanization",subtitle:null,isOpenForSubmission:!1,hash:"76200e89c8c93b3c0b22062aa09a84ff",slug:"sustainable-urbanization",bookSignature:"Mustafa Ergen",coverURL:"https://cdn.intechopen.com/books/images_new/5235.jpg",editedByType:"Edited by",editors:[{id:"166961",title:"Dr.Ing.",name:"Mustafa",middleName:null,surname:"Ergen",slug:"mustafa-ergen",fullName:"Mustafa Ergen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:3,mostCitedChapters:[{id:"51000",doi:"10.5772/63726",title:"Towards Sustainable Sanitation in an Urbanising World",slug:"towards-sustainable-sanitation-in-an-urbanising-world",totalDownloads:2437,totalCrossrefCites:7,totalDimensionsCites:14,book:{slug:"sustainable-urbanization",title:"Sustainable Urbanization",fullTitle:"Sustainable Urbanization"},signatures:"Philippe Reymond, Samuel Renggli and Christoph Lüthi",authors:[{id:"181079",title:"Dr.",name:"Christoph",middleName:null,surname:"Lüthi",slug:"christoph-luthi",fullName:"Christoph Lüthi"},{id:"182136",title:"Mr.",name:"Philippe",middleName:null,surname:"Reymond",slug:"philippe-reymond",fullName:"Philippe Reymond"},{id:"182137",title:"Mr.",name:"Samuel",middleName:null,surname:"Renggli",slug:"samuel-renggli",fullName:"Samuel Renggli"}]},{id:"64381",doi:"10.5772/intechopen.82025",title:"Sustainability and Vernacular Architecture: Rethinking What Identity Is",slug:"sustainability-and-vernacular-architecture-rethinking-what-identity-is",totalDownloads:2810,totalCrossrefCites:3,totalDimensionsCites:9,book:{slug:"urban-and-architectural-heritage-conservation-within-sustainability",title:"Urban and Architectural Heritage Conservation within Sustainability",fullTitle:"Urban and Architectural Heritage Conservation within Sustainability"},signatures:"Maha Salman",authors:[{id:"258226",title:"Dr.",name:"Maha",middleName:null,surname:"Salman",slug:"maha-salman",fullName:"Maha Salman"}]},{id:"50306",doi:"10.5772/62784",title:"Landscape Ecology Practices in Planning: Landscape Connectivity and Urban Networks",slug:"landscape-ecology-practices-in-planning-landscape-connectivity-and-urban-networks",totalDownloads:1607,totalCrossrefCites:2,totalDimensionsCites:5,book:{slug:"sustainable-urbanization",title:"Sustainable Urbanization",fullTitle:"Sustainable Urbanization"},signatures:"Ebru Ersoy",authors:[{id:"182298",title:"Dr.",name:"Ebru",middleName:null,surname:"Ersoy",slug:"ebru-ersoy",fullName:"Ebru Ersoy"}]}],mostDownloadedChaptersLast30Days:[{id:"70224",title:"Assessing the Urban Design Quality of Turkish Cities",slug:"assessing-the-urban-design-quality-of-turkish-cities",totalDownloads:245,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"sustainability-in-urban-planning-and-design",title:"Sustainability in Urban Planning and Design",fullTitle:"Sustainability in Urban Planning and Design"},signatures:"Umut Doğan",authors:[{id:"283474",title:"Associate Prof.",name:"Umut",middleName:null,surname:"Doğan",slug:"umut-dogan",fullName:"Umut Doğan"}]},{id:"67907",title:"Approaching Urban Design through the Analysis of Structural Differences within Three Neighborhood Typologies in Basra City",slug:"approaching-urban-design-through-the-analysis-of-structural-differences-within-three-neighborhood-ty",totalDownloads:157,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"sustainability-in-urban-planning-and-design",title:"Sustainability in Urban Planning and Design",fullTitle:"Sustainability in Urban Planning and Design"},signatures:"Qaaid Al-Saraify and David Grierson",authors:[{id:"302327",title:"Dr.",name:"Qaaid",middleName:null,surname:"Al-Saraify",slug:"qaaid-al-saraify",fullName:"Qaaid Al-Saraify"},{id:"302328",title:"Dr.",name:"David",middleName:null,surname:"Grierson",slug:"david-grierson",fullName:"David Grierson"}]},{id:"64381",title:"Sustainability and Vernacular Architecture: Rethinking What Identity Is",slug:"sustainability-and-vernacular-architecture-rethinking-what-identity-is",totalDownloads:2796,totalCrossrefCites:3,totalDimensionsCites:9,book:{slug:"urban-and-architectural-heritage-conservation-within-sustainability",title:"Urban and Architectural Heritage Conservation within Sustainability",fullTitle:"Urban and Architectural Heritage Conservation within Sustainability"},signatures:"Maha Salman",authors:[{id:"258226",title:"Dr.",name:"Maha",middleName:null,surname:"Salman",slug:"maha-salman",fullName:"Maha Salman"}]},{id:"70567",title:"City Phenomenon between Urban Structure and Composition",slug:"city-phenomenon-between-urban-structure-and-composition",totalDownloads:564,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"sustainability-in-urban-planning-and-design",title:"Sustainability in Urban Planning and Design",fullTitle:"Sustainability in Urban Planning and Design"},signatures:"Amjad Almusaed and Asaad Almssad",authors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"},{id:"194040",title:"Associate Prof.",name:"Asaad",middleName:null,surname:"Almssad",slug:"asaad-almssad",fullName:"Asaad Almssad"}]},{id:"72059",title:"Digital Urban Administration Model for a Traditional City (Case Study of Ibadan, Nigeria)",slug:"digital-urban-administration-model-for-a-traditional-city-case-study-of-ibadan-nigeria-",totalDownloads:126,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"sustainability-in-urban-planning-and-design",title:"Sustainability in Urban Planning and Design",fullTitle:"Sustainability in Urban Planning and Design"},signatures:"Oluseyi O. Fabiyi",authors:[{id:"312883",title:"Prof.",name:"Oluseyi",middleName:null,surname:"Fabiyi",slug:"oluseyi-fabiyi",fullName:"Oluseyi Fabiyi"}]},{id:"51000",title:"Towards Sustainable Sanitation in an Urbanising World",slug:"towards-sustainable-sanitation-in-an-urbanising-world",totalDownloads:2428,totalCrossrefCites:7,totalDimensionsCites:14,book:{slug:"sustainable-urbanization",title:"Sustainable Urbanization",fullTitle:"Sustainable Urbanization"},signatures:"Philippe Reymond, Samuel Renggli and Christoph Lüthi",authors:[{id:"181079",title:"Dr.",name:"Christoph",middleName:null,surname:"Lüthi",slug:"christoph-luthi",fullName:"Christoph Lüthi"},{id:"182136",title:"Mr.",name:"Philippe",middleName:null,surname:"Reymond",slug:"philippe-reymond",fullName:"Philippe Reymond"},{id:"182137",title:"Mr.",name:"Samuel",middleName:null,surname:"Renggli",slug:"samuel-renggli",fullName:"Samuel Renggli"}]},{id:"68452",title:"Lessons from Baghdad City Conformation and Essence",slug:"lessons-from-baghdad-city-conformation-and-essence",totalDownloads:400,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"sustainability-in-urban-planning-and-design",title:"Sustainability in Urban Planning and Design",fullTitle:"Sustainability in Urban Planning and Design"},signatures:"Haider J.E. Al-Saaidy",authors:[{id:"304091",title:"Dr.",name:"Haider",middleName:"Jasim Essa",surname:"Al-Saaidy",slug:"haider-al-saaidy",fullName:"Haider Al-Saaidy"}]},{id:"67342",title:"Introductory Chapter: Heritage Conservation - Rehabilitation of Architectural and Urban Heritage",slug:"introductory-chapter-heritage-conservation-rehabilitation-of-architectural-and-urban-heritage",totalDownloads:1331,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"urban-and-architectural-heritage-conservation-within-sustainability",title:"Urban and Architectural Heritage Conservation within Sustainability",fullTitle:"Urban and Architectural Heritage Conservation within Sustainability"},signatures:"Kabila Faris Hmood",authors:[{id:"214741",title:"Prof.",name:"Dr. Kabila",middleName:"Faris",surname:"Hmood",slug:"dr.-kabila-hmood",fullName:"Dr. Kabila Hmood"}]},{id:"71196",title:"Integrated Approach towards Participatory Development of Urban Neighborhood Spaces: Chennai, India",slug:"integrated-approach-towards-participatory-development-of-urban-neighborhood-spaces-chennai-india",totalDownloads:210,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"sustainability-in-urban-planning-and-design",title:"Sustainability in Urban Planning and Design",fullTitle:"Sustainability in Urban Planning and Design"},signatures:"Abdul Razak Mohamed",authors:[{id:"306597",title:"Ph.D.",name:"Abdul Razak",middleName:null,surname:"Mohamed",slug:"abdul-razak-mohamed",fullName:"Abdul Razak Mohamed"}]},{id:"72713",title:"Urban Social Sustainability - Case Study; Gellerupparken–Denmark",slug:"urban-social-sustainability-case-study-gellerupparken-denmark",totalDownloads:176,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"sustainability-in-urban-planning-and-design",title:"Sustainability in Urban Planning and Design",fullTitle:"Sustainability in Urban Planning and Design"},signatures:"Amjad Almusaed and Asaad Almssad",authors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"},{id:"194040",title:"Associate Prof.",name:"Asaad",middleName:null,surname:"Almssad",slug:"asaad-almssad",fullName:"Asaad Almssad"}]}],onlineFirstChaptersFilter:{topicSlug:"urban-ecology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/60972/paulo-rodriguez",hash:"",query:{},params:{id:"60972",slug:"paulo-rodriguez"},fullPath:"/profiles/60972/paulo-rodriguez",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()