Characteristics of sludge from previous research.
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"},{slug:"intechopen-s-chapter-awarded-the-guenther-von-pannewitz-preis-2020-20200715",title:"IntechOpen's Chapter Awarded the Günther-von-Pannewitz-Preis 2020"}]},book:{item:{type:"book",id:"6486",leadTitle:null,fullTitle:"Glutathione in Health and Disease",title:"Glutathione in Health and Disease",subtitle:null,reviewType:"peer-reviewed",abstract:"Reduced glutathione (GSH) is the most important thiol in living organisms. It is the key component of antioxidant system and serves as a free radical scavenger. There is a cycle of GSH in biological systems and this cycle provides higher intracellular levels of GSH. GSH depletion and apparent oxidative stress may cause toxicity and can affect the general well-being of the organism. GSH was shown to be preventive against aging, cancer, heart disease, infections and dementia. This book is mainly focused on GSH in health and disease. The readers will gain qualified scientific knowledge on the diverse functions of GSH, the importance of GSH status against oxidative stress and the interaction between GSH and nervous system-related infections from this book.",isbn:"978-1-78984-276-0",printIsbn:"978-1-78984-275-3",pdfIsbn:"978-1-83881-493-9",doi:"10.5772/intechopen.70965",price:100,priceEur:109,priceUsd:129,slug:"glutathione-in-health-and-disease",numberOfPages:92,isOpenForSubmission:!1,isInWos:null,hash:"23fb1f2e0cea5cf004d57bc8c0d46ce4",bookSignature:"Pinar Erkekoglu and Belma Kocer-Gumusel",publishedDate:"October 31st 2018",coverURL:"https://cdn.intechopen.com/books/images_new/6486.jpg",numberOfDownloads:3359,numberOfWosCitations:0,numberOfCrossrefCitations:3,numberOfDimensionsCitations:6,hasAltmetrics:1,numberOfTotalCitations:9,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 24th 2017",dateEndSecondStepPublish:"November 14th 2017",dateEndThirdStepPublish:"January 13th 2018",dateEndFourthStepPublish:"April 3rd 2018",dateEndFifthStepPublish:"June 2nd 2018",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,editors:[{id:"109978",title:"Prof.",name:"Pinar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pinar Erkekoglu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.JPG",biography:"Pınar Erkekoglu was born in Ankara, Turkey. She graduated with a BS from Hacettepe University Faculty of Pharmacy. Later, she received an MSci and Ph.D. in Toxicology. She completed a part of her Ph.D. studies in Grenoble, France, at Universite Joseph Fourier and CEA/INAC/LAN after receiving a full scholarship from both the Erasmus Scholarship Program and CEA. She worked as a post-doc and a visiting associate in the Biological Engineering Department at Massachusetts Institute of Technology. She is currently working as a full professor at Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology. Her main study interests are clinical and medical aspects of toxicology, endocrine-disrupting chemicals, and oxidative stress. She has published more than 150 papers in national and international journals. Dr. Erkekoglu has been a European Registered Toxicologist (ERT) since 2014.",institutionString:"Hacettepe University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"185037",title:"Dr.",name:"Belma",middleName:null,surname:"Kocer-Gumusel",slug:"belma-kocer-gumusel",fullName:"Belma Kocer-Gumusel",profilePictureURL:"https://mts.intechopen.com/storage/users/185037/images/system/185037.JPG",biography:"Belma Kocer-Gumusel graduated from Hacettepe University Faculty of Pharmacy (BS). She is currently working as a full-time professor and serves as the department head in Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology. She received her PhD degree in 1999. She worked as a postdoctoral fellow at the Department of Biochemistry, Laboratory of Oxidative Stress Biology in Grenoble Joseph Fourier University Faculty of Pharmacy and in CEA, the laboratory of Inorganic Chemistry and Nucleic Acid Lesions in 1999, 2000, and 2004. She gave lectures as invited speaker in many congresses. Her main interests are the reproductive disorders, endocrine diseases (particularly thyroid diseases), and oxidative stress induced by endocrine disrupting chemicals, particularly by phthalates, and the protective role of selenium against oxidative stress. Belma Kocer-Gumusel has published more than 100 papers in national and international peer-reviewed journals and has more than 700 citations. Dr. Kocer-Gumusel is a member of numerous national and international scientific societies including Turkish Society of Toxicology, EUROTOX, and IUTOX.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"380",title:"Molecular Biology",slug:"biochemistry-genetics-and-molecular-biology-biochemistry-molecular-biology"}],chapters:[{id:"63878",title:"Introductory Chapter: A General Overview of Glutathione, Glutathione Transport, and Glutathione Applications",doi:"10.5772/intechopen.81594",slug:"introductory-chapter-a-general-overview-of-glutathione-glutathione-transport-and-glutathione-applica",totalDownloads:655,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Pinar Erkekoglu",downloadPdfUrl:"/chapter/pdf-download/63878",previewPdfUrl:"/chapter/pdf-preview/63878",authors:[{id:"109978",title:"Prof.",name:"Pinar",surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pinar Erkekoglu"}],corrections:null},{id:"61099",title:"The Life Evolution on the Sulfur Cycle: From Ancient Elemental Sulfur Reduction and Sulfide Oxidation to the Contemporary Thiol-Redox Challenges",doi:"10.5772/intechopen.76749",slug:"the-life-evolution-on-the-sulfur-cycle-from-ancient-elemental-sulfur-reduction-and-sulfide-oxidation",totalDownloads:716,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Roberto C. Burini, Hugo T. Kano and Yong-Ming Yu",downloadPdfUrl:"/chapter/pdf-download/61099",previewPdfUrl:"/chapter/pdf-preview/61099",authors:[{id:"99685",title:"Dr.",name:"Roberto",surname:"Burini",slug:"roberto-burini",fullName:"Roberto Burini"},{id:"225967",title:"MSc.",name:"Hugo",surname:"Kano",slug:"hugo-kano",fullName:"Hugo Kano"},{id:"225971",title:"Dr.",name:"Yong-Ming",surname:"Yu",slug:"yong-ming-yu",fullName:"Yong-Ming Yu"}],corrections:null},{id:"61939",title:"The Important Functions of GSH-Dependent Enzyme Glutaredoxin 2 (Grx2)",doi:"10.5772/intechopen.78653",slug:"the-important-functions-of-gsh-dependent-enzyme-glutaredoxin-2-grx2-",totalDownloads:549,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Christy Xavier, Xiaobin Liu, Yang Liu and Hongli Wu",downloadPdfUrl:"/chapter/pdf-download/61939",previewPdfUrl:"/chapter/pdf-preview/61939",authors:[{id:"223199",title:"Dr.",name:"Hongli",surname:"Wu",slug:"hongli-wu",fullName:"Hongli Wu"},{id:"230037",title:"Ms.",name:"Christy",surname:"Xavier",slug:"christy-xavier",fullName:"Christy Xavier"},{id:"230038",title:"Dr.",name:"Xiaobin",surname:"Liu",slug:"xiaobin-liu",fullName:"Xiaobin Liu"},{id:"230039",title:"Mr.",name:"Duen-Shian",surname:"Wang",slug:"duen-shian-wang",fullName:"Duen-Shian Wang"},{id:"230040",title:"Dr.",name:"Yang",surname:"Liu",slug:"yang-liu",fullName:"Yang Liu"}],corrections:null},{id:"60640",title:"Impact of Oxidative Changes and Possible Effects of Genetics Polymorphisms of Glutathione S-Transferase in Diabetics Patients with Complications",doi:"10.5772/intechopen.76222",slug:"impact-of-oxidative-changes-and-possible-effects-of-genetics-polymorphisms-of-glutathione-s-transfer",totalDownloads:683,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Laura Raniere Borges dos Anjos, Ana Cristina Silva Rebelo, Gustavo\nRodrigues Pedrino, Rodrigo da Silva Santos and Angela Adamski da\nSilva Reis",downloadPdfUrl:"/chapter/pdf-download/60640",previewPdfUrl:"/chapter/pdf-preview/60640",authors:[{id:"68829",title:"Dr.",name:"Angela",surname:"Reis",slug:"angela-reis",fullName:"Angela Reis"},{id:"195000",title:"Dr.",name:"Rodrigo Da Silva",surname:"Santos",slug:"rodrigo-da-silva-santos",fullName:"Rodrigo Da Silva Santos"},{id:"195003",title:"Prof.",name:"Gustavo Rodrigues",surname:"Pedrino",slug:"gustavo-rodrigues-pedrino",fullName:"Gustavo Rodrigues Pedrino"},{id:"223453",title:"BSc.",name:"Laura Raniere Borges dos",surname:"Anjos",slug:"laura-raniere-borges-dos-anjos",fullName:"Laura Raniere Borges dos Anjos"},{id:"223454",title:"Dr.",name:"Ana Cristina Silva",surname:"Rebelo",slug:"ana-cristina-silva-rebelo",fullName:"Ana Cristina Silva Rebelo"}],corrections:null},{id:"61024",title:"The Role of Glutathione in Viral Diseases of the Central Nervous System",doi:"10.5772/intechopen.76579",slug:"the-role-of-glutathione-in-viral-diseases-of-the-central-nervous-system",totalDownloads:757,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Juliana Echevarria Lima",downloadPdfUrl:"/chapter/pdf-download/61024",previewPdfUrl:"/chapter/pdf-preview/61024",authors:[{id:"102001",title:"Prof.",name:"Juliana",surname:"Echevarria-Lima",slug:"juliana-echevarria-lima",fullName:"Juliana Echevarria-Lima"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"5176",title:"Nutritional Deficiency",subtitle:null,isOpenForSubmission:!1,hash:"a2e20dabc8ed6fbaef3686be8c6fce99",slug:"nutritional-deficiency",bookSignature:"Pınar Erkekoglu and Belma Kocer-Gumusel",coverURL:"https://cdn.intechopen.com/books/images_new/5176.jpg",editedByType:"Edited by",editors:[{id:"109978",title:"Prof.",name:"Pinar",surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pinar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5836",title:"Bisphenol A",subtitle:"Exposure and Health Risks",isOpenForSubmission:!1,hash:"446599b9e5cf929537d445edc546c449",slug:"bisphenol-a-exposure-and-health-risks",bookSignature:"Pinar Erkekoglu and Belma Kocer-Gumusel",coverURL:"https://cdn.intechopen.com/books/images_new/5836.jpg",editedByType:"Edited by",editors:[{id:"109978",title:"Prof.",name:"Pinar",surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pinar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7281",title:"Oncogenes and Carcinogenesis",subtitle:null,isOpenForSubmission:!1,hash:"728df4ace35f652725e5b94da45d0c4d",slug:"oncogenes-and-carcinogenesis",bookSignature:"Pinar Erkekoglu",coverURL:"https://cdn.intechopen.com/books/images_new/7281.jpg",editedByType:"Edited by",editors:[{id:"109978",title:"Prof.",name:"Pinar",surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pinar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3203",title:"Oxidative Stress and Chronic Degenerative Diseases",subtitle:"A Role for Antioxidants",isOpenForSubmission:!1,hash:"7014dbaa632114f7220802475ccd0402",slug:"oxidative-stress-and-chronic-degenerative-diseases-a-role-for-antioxidants",bookSignature:"José A. Morales-González",coverURL:"https://cdn.intechopen.com/books/images_new/3203.jpg",editedByType:"Edited by",editors:[{id:"109774",title:"Dr.",name:"Jose Antonio",surname:"Morales-Gonzalez",slug:"jose-antonio-morales-gonzalez",fullName:"Jose Antonio Morales-Gonzalez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5407",title:"The Transcription Factor Nrf2",subtitle:null,isOpenForSubmission:!1,hash:"0788a269796226b416cf12529a57ecbb",slug:"a-master-regulator-of-oxidative-stress-the-transcription-factor-nrf2",bookSignature:"Jose Antonio Morales-Gonzalez, Angel Morales-Gonzalez and Eduardo Osiris Madrigal-Santillan",coverURL:"https://cdn.intechopen.com/books/images_new/5407.jpg",editedByType:"Edited by",editors:[{id:"109774",title:"Dr.",name:"Jose Antonio",surname:"Morales-Gonzalez",slug:"jose-antonio-morales-gonzalez",fullName:"Jose Antonio Morales-Gonzalez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7346",title:"Biogenic Amines",subtitle:null,isOpenForSubmission:!1,hash:"0438601a19ebd4d9dd37f88692b4196a",slug:"biogenic-amines",bookSignature:"Charalampos Proestos",coverURL:"https://cdn.intechopen.com/books/images_new/7346.jpg",editedByType:"Edited by",editors:[{id:"198333",title:"Dr.",name:"Charalampos",surname:"Proestos",slug:"charalampos-proestos",fullName:"Charalampos Proestos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6365",title:"Molecular Docking",subtitle:null,isOpenForSubmission:!1,hash:"ca23ec77de0bb7a434608335e1d6a963",slug:"molecular-docking",bookSignature:"Dimitrios P. Vlachakis",coverURL:"https://cdn.intechopen.com/books/images_new/6365.jpg",editedByType:"Edited by",editors:[{id:"179110",title:"Dr.",name:"Dimitrios",surname:"Vlachakis",slug:"dimitrios-vlachakis",fullName:"Dimitrios Vlachakis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8095",title:"Liposomes",subtitle:"Advances and Perspectives",isOpenForSubmission:!1,hash:"02b0d76190d551561ad19af0c80f98f2",slug:"liposomes-advances-and-perspectives",bookSignature:"Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/8095.jpg",editedByType:"Edited by",editors:[{id:"196544",title:"Prof.",name:"Angel",surname:"Catala",slug:"angel-catala",fullName:"Angel Catala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7036",title:"Advances in Lipid Metabolism",subtitle:null,isOpenForSubmission:!1,hash:"f6c8e0623ad7d860b95d3e2eda4b904c",slug:"advances-in-lipid-metabolism",bookSignature:"Rodrigo Valenzuela Baez",coverURL:"https://cdn.intechopen.com/books/images_new/7036.jpg",editedByType:"Edited by",editors:[{id:"72355",title:"Prof.",name:"Rodrigo",surname:"Valenzuela Baez",slug:"rodrigo-valenzuela-baez",fullName:"Rodrigo Valenzuela Baez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7588",title:"Chemistry and Biological Activity of Steroids",subtitle:null,isOpenForSubmission:!1,hash:"6c31f480909cfd6937f756ee0b982b07",slug:"chemistry-and-biological-activity-of-steroids",bookSignature:"Jorge António Ribeiro Salvador and Maria Manuel Cruz Silva",coverURL:"https://cdn.intechopen.com/books/images_new/7588.jpg",editedByType:"Edited by",editors:[{id:"69976",title:"Prof.",name:"Jorge António Ribeiro",surname:"Salvador",slug:"jorge-antonio-ribeiro-salvador",fullName:"Jorge António Ribeiro Salvador"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"65668",slug:"corrigendum-to-clinical-applications-of-mesenchymal-stromal-cells-mscs-in-orthopedic-diseases",title:"Corrigendum to: Clinical Applications of Mesenchymal Stromal Cells (MSCs) in Orthopedic Diseases",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/65668.pdf",downloadPdfUrl:"/chapter/pdf-download/65668",previewPdfUrl:"/chapter/pdf-preview/65668",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/65668",risUrl:"/chapter/ris/65668",chapter:{id:"61187",slug:"clinical-applications-of-mesenchymal-stromal-cells-mscs-in-orthopedic-diseases",signatures:"Jiazhao Yang, Shiyuan Fang, Lei Xu, Li Li, Kai Xie, Jinsen Lu, Hao\nWang, Xujin Wang and Lixin Kan",dateSubmitted:"December 5th 2017",dateReviewed:"March 29th 2018",datePrePublished:"November 5th 2018",datePublished:"January 23rd 2019",book:{id:"6658",title:"Stromal Cells",subtitle:"Structure, Function, and Therapeutic Implications",fullTitle:"Stromal Cells - Structure, Function, and Therapeutic Implications",slug:"stromal-cells-structure-function-and-therapeutic-implications",publishedDate:"January 23rd 2019",bookSignature:"Mani T. Valarmathi",coverURL:"https://cdn.intechopen.com/books/images_new/6658.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",slug:"mani-t.-valarmathi",fullName:"Mani T. Valarmathi"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null}},chapter:{id:"61187",slug:"clinical-applications-of-mesenchymal-stromal-cells-mscs-in-orthopedic-diseases",signatures:"Jiazhao Yang, Shiyuan Fang, Lei Xu, Li Li, Kai Xie, Jinsen Lu, Hao\nWang, Xujin Wang and Lixin Kan",dateSubmitted:"December 5th 2017",dateReviewed:"March 29th 2018",datePrePublished:"November 5th 2018",datePublished:"January 23rd 2019",book:{id:"6658",title:"Stromal Cells",subtitle:"Structure, Function, and Therapeutic Implications",fullTitle:"Stromal Cells - Structure, Function, and Therapeutic Implications",slug:"stromal-cells-structure-function-and-therapeutic-implications",publishedDate:"January 23rd 2019",bookSignature:"Mani T. Valarmathi",coverURL:"https://cdn.intechopen.com/books/images_new/6658.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",slug:"mani-t.-valarmathi",fullName:"Mani T. Valarmathi"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null},book:{id:"6658",title:"Stromal Cells",subtitle:"Structure, Function, and Therapeutic Implications",fullTitle:"Stromal Cells - Structure, Function, and Therapeutic Implications",slug:"stromal-cells-structure-function-and-therapeutic-implications",publishedDate:"January 23rd 2019",bookSignature:"Mani T. Valarmathi",coverURL:"https://cdn.intechopen.com/books/images_new/6658.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",slug:"mani-t.-valarmathi",fullName:"Mani T. Valarmathi"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10654",leadTitle:null,title:"Brain-Computer Interface",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tBrain-Computer Interfacing (BCI) is a rapidly growing field of bioengineering that allows the human brain to directly control the computer system and order commands. The aerospace systems, automotive industry, medical and healthcare system, security, lie detection, alertness monitoring, telepresence, gaming, education, art and other fields and industries are potential beneficiaries of the research in this field.
\r\n\r\n\tThis book will cover recent progress in the field of BCI and the challenges for extraction of the human decisions out of brain signals. The presented topics will include neuroscience, recording BCI Signals, signal processing, artifact reduction, machine learning, invasive and noninvasive methods and applications of BCI and ethics.
\r\n\r\n\tThe book will be designed as a reference for senior undergraduate and graduate students in neural engineering or brain-computer interfacing from a wide range of disciplines. It will also be useful for self-study and as a reference for neuroscientists, computer scientists, bioengineers, and medical practitioners.
",isbn:"978-1-83962-529-9",printIsbn:"978-1-83962-522-0",pdfIsbn:"978-1-83962-530-5",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"a5308884068cc53ed31c6baba756857f",bookSignature:"Dr. Vahid Asadpour",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",keywords:"Connections Adapting, Synaptic Plasticity, Non-Invasive Techniques, Signal Processing, Simultaneous Recording and Stimulation, Spike Sorting, Discrete Fourier Transform, Machine Learning, Neural Networks, Non-Invasive BCIs, Medical Applications, Sensory Restoration",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"January 11th 2021",dateEndSecondStepPublish:"February 8th 2021",dateEndThirdStepPublish:"April 9th 2021",dateEndFourthStepPublish:"June 28th 2021",dateEndFifthStepPublish:"August 27th 2021",remainingDaysToSecondStep:"17 days",secondStepPassed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"Dr. Asadpour is a researcher in the field of artificial intelligence for medical and bioengineering applications, and an investigator in multiple projects funded by the National Institute of Health (NIH).",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour",profilePictureURL:"https://mts.intechopen.com/storage/users/165328/images/system/165328.jpg",biography:"Vahid Asadpour is currently with Photonic Laboratory of University of California Los Angeles (UCLA). He graduated from Polytechnic University of Tehran achieving M.S. and PH.D. degree in biomedical engineering. He was a visiting professor and researcher at University of North Dakota (UND). He is working in the field of artificial intelligence and machine learning and their applications in digital signal processing. In addition, he is using digital signal processing in medical imaging and speech processing. He developed brain computer interfacing algorithms and published one book chapter and several journal and conference papers in this field and other areas of intelligent signal processing. Adding to his professional experimental skills, he also designed medical devices including a laser Doppler monitoring system and therapeutic drug estimation algorithm. He is also affiliated with Polytechnic University of Sadjad.",institutionString:"University of California Los Angeles",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of California Los Angeles",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"194667",firstName:"Marijana",lastName:"Francetic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/194667/images/4752_n.jpg",email:"marijana@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"51634",title:"Fermentation and Redox Potential",doi:"10.5772/64640",slug:"fermentation-and-redox-potential",body:'\nThe fermentation industry has a long history since human ancestor occasionally produced alcohol, yogurt, and pickled food. Most of these fermentation products are related to the pathways of glycolysis and TCA cycle, which required microaerobic or anaerobic conditions to avoid the desired products being oxidized by oxygen.
\nPrecisely controlling microaerobic or anaerobic states is a challenge when using a general dissolved oxygen electrode because of the detection limit of the probe. Therefore, the measurement of redox potential (aka oxidoreduction potential, ORP) is considered as an ideal alternative approach because of its rapid response and high sensitivity to oxidation reaction.
\nWhat’s more, redox potential also correlates to metabolic network, involving the genes, proteins, and metabolites. Since maintaining intracellular redox potential balance is a basic demand of cells, either intracellular or intercellular redox potential control could be the effective methods to redistribute metabolic flux toward targeted products. This idea has been applied to make a broad range of fermented products.
\nIn this chapter, the basic principle of redox potential and its intracellular influence on genes, proteins, and metabolites are reviewed. Furthermore, redox potential control by metabolic modification and process engineering on the various metabolite fermentations are illustrated, specifically for ethanol production as an example.
\nChemically, the oxidation–reduction potential (aka ORP or redox potential) is defined as the tendency for a molecule to acquire electrons. It involves two components known as redox pair during the electron transfer process, of which the oxidizing one (Ox) attracts electrons and then becomes the reducing one (Red). This relationship is illustrated below:
Electrons are exchanged during a redox reaction, in which a pair of oxidation reaction and reduction reaction must be involved. As an illustration, when oxidizing iodide by ferric iron to form iodine, the iodine ion loses two electrons to from iodine (known as oxidation), concurrently ferric ion receives the same amount electrons to form ferrous ion (known as reduction). As a result, a complete redox reaction is established.
\nOxidation: 2I− = I2 + 2e−
\nReduction: 2Fe3+ + 2e− = 2Fe2+
\nRedox reaction: 2Fe3+ + 2I− = 2Fe2+ + I2
\nIn an aqueous system, the redox potential is related to the capacity of releasing or accepting electrons from all redox reactions. Similar to pH where it indicates the availability of hydrogen ions, the overall redox potential portrays a relative state of gaining or losing electrons. However, the net changes of redox potential are caused by all oxidizing and reducing agents in the aqueous system, not just alkalis and acids that determine pH values.
\nIn 1889, Walter Hermann Nernst (1864–1941; Nobel Prize: 1920) developed an equation to interpret the theory of galvanic cells by taking the changes of Gibbs free energy (ΔG) and the mass ratio into account. The Gibbs free energy is a thermodynamic potential, a reduction of G is a necessary condition for the spontaneity of processes at constant pressure and temperature. The chemical reaction can occur only if the ΔG is negative.
E0 is the standard redox potential of a system obtained at standard state. Every chemical pair has its own intrinsic redox potential. The greater affinity for electrons, the higher standard redox potential could be. Generally, NAD+/NADH, NADP+/NADPH, GSSG/2GSH, ubiquinone (ox/red), and oxygen/water are some of the most common chemical pairs in cells, whose E0 were −320, −315, −240, +100, and +820 mV, respectively.
\nR is the universal gas constant; T is the absolute temperature; F, Faraday constant (96,485 C/mol), is the number of coulombs per mole of electrons, and n is the number of transferred electrons. The equation implies the concentration of species and temperature plays the key roles for redox potential change.
\nFor instance, the reaction of NADH oxidized by oxygen is the final step of electron transport chain during aerobic respiration in mitochondrion. Usually, the reaction involves two redox pairs, just like oxygen/water (+820 mV) and NAD+/NADH (320 mV), thus ΔEh = 820 mV – (−320 mV) = 1140 mV, ΔG = −125 kJ/mol, which indicates that this process occurs spontaneously due to the negative value of ΔG.
\nAlthough the Nernst equation has been broadly used in biological systems because of the involvement of electron transfer chain, one fact should be noticed that the redox potential measured by a platinum electrode is not a thermodynamically calculated value. It measures the redox state in an aqueous system as voltages. Although a living biosystem centers on cell growth and metabolism, it is an open system where the intracellular equilibrium state is not always established. Nevertheless, the significance of redox potential on functioning biological systems was predicted nearly one century ago by two prestigious British scientists at the University of Cambridge [1]. Many scientists, since then, have successfully explored various correlations between extracellular redox potential measured by an electrode and intracellular biological properties.
\nThe extracellular redox potential is different from intracellular redox state due to cytomembrane separation and cell redox homeostasis. Environmental factors are critical to indirectly shift the cellular redox potential. Based on Nernst Equation, the redox potential is simply determined by the ratio of oxidative state to reductive state at a fixed temperature, which is always a constant parameter in most biological processes. Figure 1 illustrates three general approaches to control extracellular redox potential in biological devices.
\nApproaches to control extracellular redox potential. (A) energy input, (B) redox reagents, and (C) gas sparging.
Bioelectrical reactors (BERs), equipped with anodic and cathodic electrodes, were developed to regulate extracellular redox state in the medium through an external power source. It was used to replace chemical electron donor and acceptor in biosystem. BERs control redox potential at a certain level as easy as tuning a radio. It has been applied to microorganism cultivation and metabolites production [2]. Nevertheless, BERs have been implemented in a laboratory setting or for the production of high-value products in order to compensate for its complicated equipment requirement and extra electrical energy consumption.
\nNumerous chemicals with higher or lower standard redox potential than common metabolic components are supplemented into fermentation broth in order to alter environmental redox potential. Some commonly used reductants and oxidants to control extracellular redox potential include FeCl3, Na2S, potassium ferricyanide, dithiothreitol, cysteine, methyl viologen, neutral red, H2O2, and even directly NADH and NAD+ as additives. Unlike BERs requiring the design of a specific reactor, supplementing redox reagents can be employed in any type of bioreactor. However, the disadvantages are obvious: (a) extra chemicals added in media potentially interfere with intended bioprocessing and (b) some chemicals are too costly for industrial fermentation.
\nThose problems could be solved using substrates with different reducing degree. Girbal and Soucaille [3] used mixed substrates (glucose, glycerol, and pyruvate) to interfere with the intracellular NADH/NAD+ ratio in Clostridium acetobutylicum. Snoep et al. [4] chose some energy source substrates, such as mannitol, glucose, and pyruvate, to govern cellular redox potential in Enterococcus faecalis.
\nOxygen and nitrogen are commonly used in aerobic and anaerobic fermentation, respectively. Thus, sparging pure or mixed gases into fermentation broth is one of the desired approaches to avoid unwanted reactions caused by redox salts. Generally speaking, oxygen elevates redox potential and hydrogen depresses it, whereas nitrogen and helium as inert gases remove dissolved oxygen or hydrogen from the medium. Furthermore, by adjusting the ratio of mixed gases, a different redox potential level can be maintained. Carbon monoxide and SO2 were also utilized to reduce the redox potential sometimes [5]. However, aerating a fermenter during fermentation is considered cost-effective only when air is used. As a mix of nitrogen, hydrogen and helium were applied to regulate redox potential in the above settings, these methods become too luxurious for industrial applications.
\nControlling the level of dissolved oxygen in a fermenter is essential for microorganisms to propagate under optimum physiological condition, not only because oxygen is involved in maintaining cell membrane integrity and function by synthesizing unsaturated fatty acid and sterol, but also for keeping metabolic flux channeling toward the production of desired products.
\nA number of bioreactions toward the syntheses of intended metabolites requires maintaining dissolved oxygen at a proper level. For most microaerobic and anaerobic fermentations, conventional oxygen probe has trouble in distinguishing trace level dissolved oxygen from background noise, and its response time is not sufficient for the purpose of regulating dissolved oxygen level. Even for aerobic fermentation, redox potential still offers much more details about gaseous conditions than that collected from dissolved oxygen measurement [6]. The standard redox potential for the O2/H2O pair has the highest value among typical metabolites related to microbial metabolism during fermentation. If electrons were transferred to acceptors, oxygen must be the preferable choice even though its concentration is lower than other metabolites. Therefore, redox potential is much more sensitive in monitoring the presence of a trace amount of dissolved oxygen under microaerobic and anaerobic conditions.
\nCurrently, advanced technologies, such as a nanosensor that can embed into individual cells, have been developed to measure intracellular redox potential directly for in-depth understanding on intracellular redox balance and its impact on cell physiology and metabolism. However, the indirect approaches, such as the measurement of NAD(P)H pools, NAD(P)+/NAD(P)H, GSH/GSSG, and the total oxidization power, are still commonly adopted to monitor the distribution of intracellular redox potential.
\nA conjugate pair that constitutes a complete redox reaction is the fundamental of metabolic network in a cell. Many metabolic functions are realized through keeping intracellular redox balance with the main redox pairs, such as glutathione (GSH)/glutathione disulfide (GSSG), thioredoxin (TrxSS/Trx(SH)2), nicotinamide adenine dinucleotide (NAD), and nicotinamide adenine dinucleotide phosphatase (NADP). These redox systems, such as NADP+/NADPH, GSSG/2GSH, and TrxSS/Trx(SH)2, are not isolated systems. Both the Trx and GSH systems use NADPH as a source of reducing equivalents; thus, they are thermodynamically connected to each other. The role of NAD(P)+/NAD(P)H in redox reaction is illustrated in Figure 2.
\nThe structure (A) and function (B) of NAD(P)H.
Both glutathione (GSH) and thioredoxin are important reducing agents in all organisms, involved in cell oxidative stress response where they play an antioxidant role. Glutathione is a tripeptide (glutamine, cysteine, and glycine) that prevents damage to cellular components caused by reactive oxygen species such as free radicals and peroxides, lipid peroxides, and heavy metals. Thioredoxin is another class of small redox proteins with thiol system in the cell, which appears in many crucial biological processes, including redox signaling.
\nThe coenzymes are essential electron carriers in cellular redox reactions with the oxidized form NAD(P)+ and the reduced form NAD(P)H. The reduction reaction requires an input of energy and the oxidation reaction is exergonic. During carbohydrate metabolism, NADH plays as a notable reducing substance in catabolism, whereas NADPH, the other reducing component connected to anabolism, favors formation of amino acids, fatty acids, and nucleic acids. There are 129 enzymes that need NAD+ as cofactor in order to serve 931 redox reaction and 108 enzymes that require the involvement of NADP+ as cofactor in order to catalyze 1099 redox reaction (KEGG, 2016-3).
\nCytosol is isolated from the extracellular environment by a selectively permeable cytomembrane, which not only prevents the main redox pair escaping from the plasma freely but also conditionally allows the external redox chemicals to enter into the cytoplasm. As shown in Figure 3, chemicals with different reduction degrees, such as dithiothreitol (DDT), diamine, hydrogen peroxide, and oxygen, can unrestrictedly cross the membrane bilayer, causing the changes to the intracellular redox potential. However, most of these chemicals are prohibited to across the membrane. In another scenario, membrane proteins, such as oxidoreductase, involved in electron transport will respond and change the extracellular redox potential. For example, ferric reductase assists ferrous iron transport across the cell membrane [7]. Hydrogenase facilitates electron flow through the membrane with the conversion of NADH and NAD+ [8]. A low redox potential level results in the changes of thiol and disulfide balance on membrane proteins, making the membrane more permeable to protons [9]. A thiol-rich membrane protein transduces external GSH reducing power across the erythrocyte membrane, which can be explained as a thiol/disulfide exchange mechanism [10].
\nIntracellular redox response to extracellular redox potential and effects of redox potential on cellular metabolism and stress response.
The influences of redox potential on enzymes activity have also been reported. Almost all enzymes related to oxidation–reduction reaction are redox potential sensitive, such as alcohol dehydrogenase, D-glyceraldehyde-3-phosphate dehydrogenase, quinone reductase (involved in quinone detoxification), NADH diphosphatase (involved in peroxisomal function), ubiquinone oxidoreductase (catalyzing the oxidation of NADH in the respiratory chain or in cytoplasm), mitochondrial NADH kinase (response to oxidative stress), and so on. The above-mentioned proteins have been investigated in Saccharomyces cerevisiae in the past decades. Numerous proteins contain sulfhydryl groups (PSH) due to their cysteine content. In fact, the concentration of PSH groups in cells and tissues is much greater than that of GSH. These groups can be present as thiols (-SH), disulfides (PS-SP), or mixed disulfides; Hsp33 as a possible chaperone and cysteine protease in heat shock protein families is regulated by redox potential, whose conformation changes from reduced state to oxidized state with the exposure of hydrophobic surface [11]. Being a key regulator of glutathione and, in turn, of redox potential, the identification of GSTp as, a JNK regulator, provides an important link between cellular redox potential and the regulation of stress kinase activities [12].
\nGene expression is controlled by redox states as well. It has been reported that overexpressing genes related to redox process in Escherichia coli resulted in the decrease of NADH/NAD+ ratio, which improve the cell growth profiles, because sufficient NAD+ is required to oxidize carbohydrate substrate during cell growth [13]. GPD2 encodes NAD-dependent glycerol 3-phosphate dehydrogenase, the key enzyme of glycerol synthesis, and is essential for cell survival under osmotic and low redox potential conditions. Unlike its homologous gene GPD1 controlled by high osmolality glycerol response pathway, GPD2 is regulated under anoxic conditions or, more accurately, oxygen-independent reducing environment [14]. YAP1, a transcription factor for sensing the high redox state (e.g. H2O2), usually exists in the cytoplasm but is transferred into nucleus to activate the transcription of antioxidant genes SOD1, TWF, TRX2, GLR1, and GSH1, when Yap1p C-terminal region with three conserved cysteine residues is oxidized in response to oxidative stress [15]. A redox sensing protein (RSP) binds transcriptional regulation regions located upstream from adhA, adhB, and adhE as a transcriptional repressor. The structure of RSP was changed from α-helix to β-sheet rich conformation when redox potential declined by adding NADH. Meanwhile, the repression of an alcohol dehydrogenase transcription caused by RSP was reversed [16]. Thioredoxin reduces cysteine moieties in the DNA-binding sites of several transcription factors and is therefore important in gene expression [17].
\nExternal redox potential correlates the net balance of intracellular reducing equivalents and the changes in the cellular redox environment can alter signal transduction, DNA and RNA synthesis, protein synthesis, enzyme activation, and even regulation of the cell cycle. Thus, monitoring and controlling environmental redox potential helps to elucidate cellular physiology and intracellular metabolic interaction.
\nStrategies to control intracellular redox potential can be developed by altering intracellular redox potential pools, consequently resulting in redistribution of metabolic profiles. However, cells have a series of built-in mechanisms to adjust their own intercellular redox balance by cofactor regeneration through the oxidoreductase-harboring genes, including mitochondrial alternative oxidase (AOX), formate dehydrogenase (FDH), cytoplasmic H2O-forming NADH oxidase (NOX), and mitochondrial NADH kinase (POS5). Therefore, modification of these genes is a promising strategy to “design” a robust strain subjected to redox regulation through extracellular manipulation, although such an alternation may result in unexpected outcomes.
\nThe alternative oxidase (AOX, EC: 1.10.3.11), also named ubiquinol oxidase, forms a part of the electron transport chain in mitochondria. The function of this oxidase is believed to dissipate excess reducing power. The reaction catalyzed by AOX oxidase (ubiquinol oxidase) is shown in Reaction (4).
When a cell subjected to increasing glycolytic fluxes under aerobic conditions, a decrease in respiratory capacity is caused by the presence of excess glucose that repressed respiratory pathways. Introducing a heterologous alternative oxidase into S. cerevisiae, increased metabolic flux toward respiration and reduced aerobic ethanol formation [18]. In other investigation, the introduction of AOX pathway improved reactive oxygen species and pyruvate levels simultaneously under stressful conditions, such as suboptimal temperature and hyperosmotic pressure [19].
\nFormate dehydrogenases (FDH, EC: 1.2.1.2) are a set of enzymes that catalyze the oxidation of formate to carbon dioxide (see Reaction 6), donating electrons to a second substrate, such as NAD+ or cytochrome. NAD+-dependent formate dehydrogenases are important in methylotrophic yeast and bacteria and are vital in the catabolism of C1 compounds, such as methanol.
As the FDH gene from Candida boidinii was introduced into Paenibacillus polymyxa, highly expressed exogenous FDH increased NADH/NAD+ and the titers of NADH-dependent products such as lactic acid and ethanol, while resulting in significantly decreased acetoin and formic acid [20]. In addition, the increased capacity of a FDH gene in Bacillus subtilis efficiently enhanced the production of 2,3-butanediol and decreased the formation of acetoin through increasing the availability of NADH [21]. In another case, an engineered strain for the conversion of
NADH oxidase (NOX, EC: 1.6.3.4) is a membrane-associated enzyme that catalyzes the production of superoxide, a reactive free radical, by transferring one electron from NADH to oxygen as the electron acceptor (see Reaction 7). It is considered one of the major sources of producing superoxide anions in humans as well as bacteria, subsequently used in oxygen-dependent killing mechanisms for invading pathogens.
Glycerol is a main by-product in the 2,3-butanediol metabolic pathways. To minimize glycerol accumulation by an engineered S. cerevisiae, the Lactococcus lactis NOX gene was inserted and expressed, resulting in substantial decreases in intracellular NADH/NAD+ ratio. As a result, the carbon flux was redistributed from glycerol to 2,3-butanediol [23]. NADH oxidase was also expressed with
NADH kinase (like POS5, EC: 2.7.1.86) catalyzes the replacement reaction with two substrates ATP and NADH and two products ADP and NADPH (see Reaction 8). It provides a key source of the important cellular antioxidant NADPH.
NADPH is a key cofactor for carotenoid biosynthesis. Corynebacterium glutamicum was always used for the production of amino acids, such as L-isoleucine. By implementing NADPH-supplying strategies based on NAD kinase (PpnK), NADH kinase, glucose-6-phosphate dehydrogenase (Zwf), and PpnK coupling with Zwf, the expression of all genes increased both the intracellular NADPH concentration and the L-isoleucine production [25]. Researchers constructed the NADPH regenerators of heterologous NADH kinase to increase the availability of NADPH and resulted in a superior S-adenosylmethionine production in E. coli without requiring L-methionine addition [26]. When a S. cerevisiae strain-producing carotenoid was constructed by overexpressing glucose-6-phosphate dehydrogenase and NADH kinase individually, the final product β-carotene yield increased by 18.8% and 65.6%, respectively. Thus, NADPH supply improved by overexpression of NADH kinase is more important than glucose-6-phosphate dehydrogenase [27].
\nControlling redox potential at a desired level alters the intracellular metabolic flow in order to favor the formation of desired product(s). Many researches have been conducted in this regard with a large number of examples for enhanced production of metabolites under redox potential–controlled conditions. Most studied metabolites using redox potential–controlled approaches are hydrogen, pyruvate, 1,3-propanediol, butanol, and 2,3-butanediol, and the following metabolites are reviewed but provided with references: acetoin [28], succinic acid [29], xylitol [30], and so on.
\nHydrogen, as a clean and high-combustion energy in widespread areas, can be generated by fermentative anaerobes. Hydrogen production from anaerobic fermentation by bacteria demands reducing level because the standard redox potential of H2/H+ is low. Zhang et al. [8] showed that the addition of NAD+ during hydrogen fermentation by Enterobacter aerogenes resulted in the increase of overall hydrogen. Nakashimada et al. [31] investigated E. aerogenes for its hydrogen production under different intracellular redox state through the utilization of different substrates bearing various reduction degrees. Low redox potential accelerated the NAD(P)H-dependent hydrogenase activity in membrane and favors high H2 evolution capability. Ren et al. [32] assessed H2 production during butyric acid fermentation, propionic acid fermentation, and ethanol fermentation by controlling redox potential and pH simultaneously. Besides, the NAD+ synthetase encoded by nadE gene was homologously overexpressed in E. aerogenes to decrease the NADH/NAD+ ratio and thus enhanced hydrogen yield [33].
\nPyruvate, a product of glycolysis, serves as an effective starting material for the synthesis of many drugs and agrochemicals and is presently used in the food industry. By combining adaptive evolution and cofactor engineering, a series of engineered yeasts that can produce pyruvate using glucose as the sole carbon source was obtained. Consequently, the constructed strains were able to produce 75.1 g/L pyruvate, increased by 21% compared with the wild strain. The production yield of this strain reached 0.63 g pyruvate/g glucose [34].
\n1,3-propanediol, made from glycerol under anaerobic condition, is a monomer for producing various industrial polymers. Du et al. [35] demonstrated that controlling redox potential at −190 mV was preferable for Klebsiella pneumoniae to ferment glycerol into 1,3-propanediol. They further developed a redox potential–based strategy for screening high productivity strain using the correlation between redox potential level and growth rate [36]. Zheng et al. [37] regulated redox potential under low levels (−200 and −400 mV) during 1,3-propanediol fermentation in order to avoid the accumulation of by-product. Wu et al. [38] engineered the pathways of 2,3-butanediol and formic acid in a recombinant K. pneumonia to improve 1,3-propanediol production. The intracellular metabolic flux was redistributed pronouncedly by shrinking all nonvolatile by-products and supplying the availability of NADH. Jain et al. [39] established novel metabolic pathways for 1,2-propanediol in E. coli by disrupting the major competing pathways for acetate production as well as the ubiquinone biosynthesis pathway that conserved more NADH.
\nButanol attracts public attentions due to its favorable physicochemical properties for blending with or for directly substituting for gasoline. Fermentation of butanol by C. acetobutylicum is generally a biphasic process consisting of acidogenesis and solventogenesis. It has been reported that an earlier initiation of solvent genesis under redox potential control at −290 mV could increase solvent production by 35% [40]. Li et al. [41] supplemented nicotinic acid, the precursor of NADH and NADPH, into the growth medium, and led to a significant increase of NADH and NADPH levels for a wild-type Clostridium sporogenes strain. As a result, the metabolic pattern was shifted toward the production of more reduced metabolites, in which butanol production was then enhanced. Bui et al. [42] constructed the recombinant K. pneumoniae by overexpressing the genes kivD, leuABCD, and adhE1, with several NADH regeneration strategies to overcome redox imbalance, including the introduction of NAD+-dependent enzymes or elimination of the NADH competition pathway (1,3-propanediol synthesis). The NADH/NAD+ ratio was increased resulting in butanol titer increase [42].
\n2,3-butanediol (2,3-BD) is a promising bulk chemical with extensive industry applications. In order to enhance the production of 2,3-BD, various strategies for increasing the NADH availability were developed through regulation of low dissolved oxygen, supplement of reducing substrates and gene modification. An udhA encoding transhydrogenase was introduced and more NADH from NADPH was provided to allow the enhancement of production [43]. For the same reason, two NADH regeneration enzymes, glucose dehydrogenase and formate dehydrogenase, were introduced into E. coli with 2,3-butanediol dehydrogenase, respectively [44]. In other case, an engineered S. cerevisiae harboring NADH oxidase gene (noxE) from L. lactis minimized glycerol accumulation, because intracellular NADH/NAD+ ratio was decreased substantially and carbon flux was redirected to 2,3-BD from glycerol [23].
\nFuel ethanol, the most successful renewable energy so far, is produced worldwide and applied in transportation as alternative to fossil fuel. However, the high cost associated with bioethanol production urges researchers to innovate new fermentation technologies like redox potential–controlled ethanol fermentation. In this section, the role of redox potential in S. cerevisiae pathways, the correlation between yeast growth and redox potential, and the application of redox potential to very high gravity fermentation will be reviewed.
\n\nS. cerevisiae has been considered as a model microorganism, whose genome, proteome, and relevant pathway information are almost unveiled. As illustrated in Figure 4, glucose is converted into small molecules through the coupling of redox reactions, in which NADH plays an essential role in key metabolites production such as ethanol, glycerol, and lactate. In this process, glucose is oxidized by NAD+ to make pyruvate and NADH. The surplus of reducing power is then balanced by the formation of glycerol and ethanol, where NAD+ is restored. When the growth environment favors the production of acetic acid, the implementation of redox potential control can alter the trend, leading to a more reduced state toward ethanol production.
\nCompared with other control parameters, such as temperature, pH, and the ingredients of medium, redox potential has less influence on improving fermentation results. Hence, the implementation of redox potential control in ethanol fermentation was not popular until the new concept of “very high gravity (VHG)” was proposed. VHG is generally regarded as the final ethanol concentration is greater than 15% (v/v) or initial glucose concentration is greater than 250 g/L. VHG is a promising technology to reduce energy consumption and labor cost, as well as elevate the efficiency of the fermenter. However, high sugar concentration depresses cell growth and bioconversion. Redox potential control helps cells survive from osmotic pressure and ethanol toxicity by constructing healthier membranes or other potential mechanisms. Yeast grown under VHG condition without redox potential control requires much longer fermentation times in order to completely utilize substrate [45]; therefore, the improvement of ethanol production by redox potential control would be expected.
\nMetabolic pathway of glucose degradation in Saccharomyces cerevisiae.
Lin et al. [45] controlled redox potential under −150 mV, −100 mV, and no control conditions and demonstrated that VHG ethanol fermentation under −150 mV resulted in the highest final ethanol concentration and the highest ethanol-to-glucose yield. Compared with the case of 200g glucose/L, the effect of redox potential control becomes significant under VHG conditions [45]. Jeon and Park [46] cultivated Zymomonas mobilis and S. cerevisiae to produce ethanol in two separate compartments of an electrochemical bioreactor. The results showed that Z. mobilis favors the reducing environment, but S. cerevisiae produced more ethanol under higher redox potential conditions [46]. Na et al. [47] observed that ethanol production was enhanced in the anode compartment than in the cathode one, although the reduced environment would be better for fermentation process.
\nDuring ethanol fermentation, changes of redox potential are caused by two major substances, electron donor NAD(P)H resulting from dissimilatory processes (e.g. glycolysis) and assimilatory processes (e.g. biomass formation), and electron acceptor oxygen dissolved from sparging and/or agitation. The redox potential profiles are thus correlated to cellular activities and oxygen tension.
\nA typical redox potential profile resembles a bathtub curve. In the beginning, yeast was inoculated into the autoclaved medium where redox potential is as high as normal oxygen tension. Yeast consumes oxygen as the final electron acceptor during respiration process for rapid propagation, causing a steep fall of redox potential (Stage I, Figure 5). When dissolved oxygen is nearly depleted, yeast modulates the respiratory requirement from aerobic to anaerobic stages where a short transition is seen in order to alter relevant gene expression and pathways (between Stage I and II, Figure 5). After adjustment, yeast cells accelerate their growth rate in the exponential phase with rapid glucose utilization. Although ethanol production is a redox neutral process in theory, the use of reducing substrate like sugar tends to lower fermentation redox potential. The trend of decline in redox potential continues as fermentation proceeds and could drop as low as to −300 mV if there is no other oxidizing reagent present in the fermentation broth (Stage II–III, Figure 5). Due to the substrate depletion and the decline of cell viability attributed to ethanol toxicity, the lowest trough in redox potential level is observed (Stage III, Figure 5). Near the end of fermentation, an abrupt increase in redox potential is attributed to constant aeration or well agitation. Technically, an uprising curve appearing reveals that the fermentation is about to finish (Stage IV, Figure 5).
\nProfiles of redox potential, biomass, and dissolved oxygen.
The performance of VHG ethanol fermentation can be further improved by (1) searching for the optimal redox potential setting and (2) extending redox potential control period to prolong the exponential growth phase. Three redox potential control schemes are collected [48]. The simple aeration-controlled scheme (ACS) has a short redox potential–controlled period. For glucose-controlled feeding scheme (GCFS), glucose was supplemented along with dissolved oxygen presented in the feed stream. For combined chemostat and aeration-controlled scheme (CCACS), a constant glucose was fed along with air supply determined by redox potential–controlled device. The GCFS extends the redox potential–controlled period by offering enough glucose for yeast propagation and maintaining the low residual glucose. As a result, the ethanol yield is increased noticeably. The operation of GCFS as a fed batch, as such the buildup of ethanol causes yeast cessation, resulting in incomplete fermentation. The CCACS is a set of continuous equipment that feeds the fresh medium into a fermenter and discharge spent broth into aging vessels at a constant dilution rate. Sterilized air was used to adjust the fermentation redox potential at a predetermined level. In the chemostat fermenter, both intracellular and extracellular factors should reach their respective steady states. Thus, constant growth rate and yeast viability are sustained under a preset redox potential level, which is helpful to prolong the redox potential–controlled duration and to maximize the benefits from redox potential control. The CCACS achieved the longest controlled period and the highest ethanol yield among all three schemes. However, a chemostat device alone could not result in zero glucose discharge. The incorporation of aging vessel design into fermentation operation thus was developed [49].
\nAlthough many fermentation processes have been well developed with long-term operability, cost saving is an endless effort, particularly for the production of biofuels and bio-based chemicals at bulk quantity. Every penny in cost savings is destined to bring huge economic returns. Since redox reactions and homeostasis are the basis for intracellular metabolism, monitoring and controlling redox potential status inside a cell could potentially re-route metabolic material and energy flow. Numerous works have been done and confirmed that proper redox potential control could alter cellular metabolism, thereby enhancing the conversion of targeted metabolites.
\nResearch and prospect in redox potential–controlled fermentation.
With the availability of technologies that can detect intracellular redox potential levels, an integrated approach, including gene expression, protein biosynthesis, and biomolecular interacting network, should be employed to identify effects of redox potential control on the multiple hierarchy (Figure 6). The underlying mechanism of this phenomenon can then be elucidated at molecular and bioprocess engineering levels. The more details obtained, the better applications of redox potential control can be exploited. Consequently, robust strains and optimized processes can be developed toward high-yield production.
\n\nFuture perspective of redox potential control is attractive. Fermentation will be carried out using gene-modified strains featuring tailor-made redox potential balance. The strain will be subjected to tight regulation through precise redox potential level. Metabolic flux profiles obtained at different redox potential levels will be quantified to achieve the maximum production of various desired metabolites or used to locate potential bottleneck for strain improvement. Benefits from the development of new redox potential–controlled fermentation technology are thus anticipated.
\nThe need for energy source is one of the important things in human life. Fossil fuel, geothermal, water potential, and nuclear energy are some energy sources that have been commonly used. In addition to some of these energy sources, wind energy, solar radiation, ocean waves, biomass, and other renewable energy sources have also been widely researched and developed as an alternative energy source. Nevertheless, until now fossil fuels are still one of the primary energy sources that cannot yet be completely replaced by other types of energy sources. The decrease in availability of fossil fuels as non-renewable energy sources is inversely proportional to the increasing population of the world. Raising awareness of the limited reserves of fossil fuel and of the need for another energy source as alternative energy source is needed. One alternative energy source that can be considered is the biomass content of sludge produced from biological wastewater treatment. Carbon compounds contained in biological sludge (bio-sludge) can be converted into energy through thermal process, bio-digestion, lipid/oil extraction, or other methods that are in accordance with its characteristics [1, 2, 12, 15, 25, 34]. Therefore, the main objective of this research is to identify the prospect of several technologies to treat organic sludge in terms of mass reduction and energy recovery as a basis for feasibility study and further development. The thermal process of converting biomass to energy is also accompanied by a decomposition process of complex carbon into a simpler form of carbon compounds. So that, in this case, not only the conversion of biomass into energy, but also the mass reduction of sludge should be processed and managed to minimize the negative impacts that can be generated from the sludge generated by the wastewater treatment process [11].
Before discussing further the next section, it is necessary to clarify in advance some terms in this paper. What is meant by sewage is liquid waste (in this case, it is wastewater) that flows in the sewer [31]; so, the terms sewage and wastewater will be used interchangeably according to the context of the sentence. Sewage sludge is mud that originated from a sewer, whereas treated sewage sludge means sludge that is produced from the treatment process in wastewater treatment facilities.
The list of hazardous waste from non-specific sources found in Annex 1 of the Republic of Indonesia government regulation No. 101/2014 concerning the management of hazardous and toxic waste stated that sludge produced from integrated wastewater treatment facilities in industrial estate was classified as hazardous waste category 2 [10]. In this category, the waste in question is declared as toxic waste which is harmful to the environment and living things.
In a centralized wastewater treatment facility, especially in an industrial estate, wastewater from each factory located within the industrial area will be drained through sewerage. Wastewater generated from the production process should be treated in advance so that it is in accordance with the wastewater quality standards determined by the industrial estate manager. In addition to its characteristics, the volume of wastewater discharge through the sewer should also follow the regulations determined by the industrial estate manager. It is required to ensure that the wastewater that flows to the treatment facility has characteristics that are in accordance with the processing capability and capacity of the existing treatment facilities. The treatment process is generally divided into several stages, among others primary treatment, secondary treatment, tertiary treatment, and other treatment options according to the wastewater characteristics to be treated.
Referring to the regulation of Republic Indonesia environment minister No. 5 year 2014 concerning wastewater quality standards, stated that each type of industry that produces wastewater from the results of its activities and conducts types of treatment activities, it is a mandatory to comply with the applicable quality standards [23]. Likewise, with centralized wastewater treatment facilities located in industrial estates, it is mandatory to comply with the applicable quality standards. One of the centralized wastewater treatment facilities in the industrial estate in Indonesia is the Jababeka’s wastewater treatment facility located in Bekasi Regency, West Java. The main process in this treatment facility is a biological treatment process equipped with other treatment process units.
As can be seen in Figure 1, there are several treatment stages at the Jababeka’s wastewater treatment facilities. Among them are the removal stages of sand, gravel, and rough mud on the grit chamber unit. Furthermore, wastewater will flow due to gravity toward the primary settling tank unit. In this unit, suspended solids will settle, while floating material will be separated with the scum collector and then flow to the sludge treatment unit. The primary settling tank effluent is flowed to the oxidation ditch which utilizes biological process (activated sludge) to decompose pollutants contained in wastewater. This process will produce biological floc which is then deposited in the secondary settling tank unit. A part of the sludge produced in this process is recirculated to maintain the continuity of the process, while other parts are channeled to the sludge treatment unit.
Schematic flow diagram of Jababeka’s wastewater treatment facilities.
Referring to the process description, it can be identified that there are two types of sludge produced from this treatment facility. Sludge produced from primary settling process mainly is inorganic material (about 55–65%) that comes from heavy suspended solid settled by physical gravity process. The total sludge production from primary treatment was about 500 kg/day for a flow rate of 13,300 m3/day of wastewater.
The second type of sludge is produced by secondary settling process that mainly contains 60–70% of organic material from organic floc formed in the aeration tank. The quantity of organic sludge is much bigger than inorganic sludge due its relation with biological process control. The management of activated sludge concentration in aeration tank and sludge concentration in recirculation flow by distribution box unit is very significant for maintaining wastewater treatment process properly. In this case, the production of large amounts of organic sludge cannot be avoided. The organic sludge production is about 3200 kg/day (55% dry solid) for a flow rate of 13,300 m3/day of wastewater with its calorie about 2000–2500 kcal/kg of 100% dry sludge. This quantity contributes a very significant amount in the wastewater treatment operational cost. Reducing quantity or converting the organic sludge to the alternative materials or energy is very helpful in terms of reducing operational cost.
Previously, research has been carried out by several researchers regarding the analysis of the characteristics of sludge collected from sewer, as well as sludge generated from wastewater treatment process in wastewater treatment facilities. There are two major groups of sludge types whose characteristics are analyzed, which are municipal and industrial sludge. Municipal sludge is sludge originating from domestic activities in connection with activities in a residential area, while industrial sludge is produced from production processes in various fields of industry.
Most of the previous research studies summarized in Table 1 are regarding characteristics of sludge from urban/municipal activities [2, 7, 8]. Several reports concerning industrial sludge treatment have also been summarized [4, 5, 19]. Not all of the research studies summarized in Table 1 are using treated sludge as the feedstock for energy recovery process. Some researchers use organic sludge which is the by-product of the manufacturing process of TFT-LCD and sludge from pulp and textile industries [4]. In addition, there is a review report of various sludge characteristics of each wastewater treatment stage [20].
The origin of sludge (feedstock) | C | H | O | N | S | Volatile matter | Fix carbon | Ash |
---|---|---|---|---|---|---|---|---|
% | % | % | % | % | % | % | % | |
Dry treated sewage sludge, digested (municipal) [2] | 29.50 | 4.67 | 20.20 | 5.27 | 1.31 | — | — | 39.04 |
Recycling of organic sludge from TFT-LCD manufacturing process [4] | 50.00 | — | — | 9.00 | 2.10 | — | — | — |
Pretreated pulp industrial sludge [5] | 18.48 | 1.78 | 78.82 | 0.83 | — | |||
Pretreated textile industrial sludge [5] | 32.15 | 5.73 | 59.04 | 1.36 | 1.64 | |||
Dry treated sludge from urban wastewater treatment [7] | 38.82 | 6.19 | — | 5.78 | 1.17 | 64.90 | 7.90 | 27.20 |
Dry treated sludge from urban wastewater treatment [8] | 28.50 | 4.30 | 22.40 | 4.10 | 0.80 | 47.00 | 6.40 | 39.90 |
Dried sewage sludge [9] | 36.45 | 5.93 | 25.74 | 7.03 | 0.77 | 59.06 | 9.36 | 24.08 |
Urban sewage plant [18] | 36.11 | 5.25 | — | 6.50 | 1.03 | 57.22 | 6.09 | 31.27 |
Dried sludge from wastewater treatment plant of thermal power plants [19] | 32.30 | 4.90 | 24.90 | 5.30 | 0.57 | 64.70 | — | — |
Primary treatment [20] | 51.50 | 7.00 | 35.50 | 4.50 | 1.50 | 65.00 | — | — |
Biological treatment (low) [20] | 52.50 | 6.00 | 33.00 | 7.50 | 1.00 | 67.00 | — | — |
Biological treatment (low and mid) [20] | 53.00 | 6.70 | 33.00 | 6.30 | 1.00 | 77.00 | — | — |
Primary and biological (mix) [20] | 51.00 | 7.40 | 33.00 | 7.10 | 1.50 | 72.00 | ||
Digested [20] | 49.00 | 7.70 | 35.00 | 6.20 | 2.10 | 50.00 |
Characteristics of sludge from previous research.
When compared carefully based on the summary from Table 1, it can be observed that organic sludge which has the highest amount of volatile matter is sludge originating from a centralized biological wastewater treatment process. It can be observed that the volatile matter content in the sludge analyzed is in the range of 47.00–77.00%. If it is assumed that the main component of volatile matter is carbon compounds, which in the process will be converted into flammable gas and/or flammable oil, it means that volatile matter can be expressed as volatile carbon and can be used as a benchmark in determining the energy content. Furthermore, it can be expressed to determine the calorific value of the flammable gas and/or flammable oil produced from thermal conversion process. In fact, volatile matter contains not only carbon compounds but also volatile components such as nitrogen compounds, sulfur, and other components varying in number depending on the process characteristics and complex compounds involved. It shows that gas produced from the thermal conversion still requires a purification process to minimize the negative impact of emission from combustion (Figure 2).
Treated industrial sludge in Jababeka’s wastewater treatment facility. (Source: Kurniawan et al.).
Before going further, it is necessary to clarify the terms that will be discussed in this section. What is meant by conversion of sludge to energy, in this context, can be the decomposition process of carbonaceous (organic) sludge into gas/fuel oil which will then be used as an energy source, or it can be in the form of direct conversion of sludge to energy in the form of heat released from combustion.
Organic sludge has the potential to be an alternative sustainable energy source if managed with the proper and efficient method. What needs to be realized is, to convert sludge into an energy source, a certain amount of energy is needed in the conversion process. In Table 2, we can observe several methods of converting feedstock into energy sources through various types of process. The sludge to energy conversion discussed in this paper covers the physical, biochemical, thermochemical, and transesterification conversion methods.
Conversion method | Feedstock | Main process |
---|---|---|
Anaerobic digestion | Wastewater sludge from food-processing industry [32]. | Fermentation using a clostridium strain to produce hydrogen and methane. |
Pelletization | Recycling of organic sludge from TFT-LCD manufacturing process [4]. | Characterization of sludge refuse-derived fuel (RDF) and its combustion behavior and properties |
Pelletization | Urban wastewater sludge from biological treatment [13]. | Combustion characteristics of pure biomass RDF and RDF from sludge-biomass mixture. Comparative study of the energy consumption for pelletization process. |
Pyrolysis | Treated wastewater sludge originating from domestic, commercial and industrial activities [13]. | Characterization of fundamental properties of the wastewater sludge pyrolysis product in a fixed bed pyrolysis reactor. |
Pyrolysis | Wastewater sludge from petrochemical industry; oily sludge from primary decanter [14] | Pyrolysis product characterization of wastewater sludge in a fixed bed pyrolysis reactor. |
Pyrolysis | Wastewater biosolids [21]. | Pyrolysis product characterization of wastewater biosolid in a fixed bed pyrolysis reactor and its energy comparison for required and resulting energy content. |
Pyrolysis | Combination of rice waste and treated sewage sludge [30] | To produce bio-oil in fluidized-bed reactor through fast pyrolysis. |
Pyrolysis | Thickened excess activated sludge, dewatered digested sludge, and dried excessive activated sludge [27]. | Flash pyrolysis to produce pyrolysis oil in fixed bed reactor. |
Gasification | Solar dried-treated wastewater sludge [29]. | Syngas production in semi-batch steam gasification reactor. |
Gasification | Undigested and dried-treated sewage sludge pellets [22]. | Gasification of feedstock pellets in fixed bed downdraft reactor. |
Transesterification | Wet activated sludge [17]. | Hexane-lipid extraction and non-catalytic biodiesel production in tubular glass transesterification reactor. |
Transesterification | Dried sludge of food processing plant [15]. | In situ transesterification of sludge in subcritical mixture of methanol and acetic acid. |
Various conversion methods of sludge to energy source.
What is discussed in this section is the method of compacting sludge into a form of pellets or briquettes for later use as solid fuel known as refuse-derived fuel (RDF). It is done to facilitate storage and transport compared to the original form. The compacting process will directly affect the water content. In the direct combustion process, the low water content will increase the ease of solids to burn. It will affect the combustion temperature and heat value generated from combustion, because the heat produced is only used for the oxidation of organic matter rather than vaporizing the water content. Besides being burned directly, RDF sludge can also be applied to the pyrolysis process or gasification to produce synthesis gas or pyrolysis oil (Figure 3).
Pathway of sludge combustion process (Source: Kurniawan et al.).
The decomposition of organic compounds using biological processes is one method that can be done to produce alternative energy sources. Biogas which has the main content of methane gas is produced from the decomposition process under controlled anaerobic conditions. Several stages in the biogas production process include the stages of hydrolysis, liquefaction, and fermentation; the formation of hydrogen and acetic acid; and the last is the methane gas formation stage [25]. Each stage of the process that the sludge goes through will involve different types of enzymes produced from the metabolism of anaerobic bacteria. Previous research has reported on critical review along with the biogas production process from wastewater sludge [25].
In the thermochemical method, combustion process is one part that cannot be separated. Heat is produced from chemical reactions that occur due to the decomposition of organic compounds through oxidation process. Some types of treatments classified as thermochemical methods include direct combustion, incineration, pyrolysis, and gasification. The combustion process takes place in a compartment, which is usually known as combustion chamber. In this compartment, several types of configuration are known based on the type of working fluid flow pattern (updraft and downdraft) and the type of solid bed (fixed and fluidized bed) (Figure 4).
Sludge-energy conversion pathway (Source: Kurniawan et al. with modification).
In the fixed bed type, solid bed is on the screen or perforated plate in fixed position. As for the type of fluidized bed, solids are suspended in the working fluid flow. Updraft and downdraft flow show the pattern of working fluid in the bed reactor. Combination of solid bed types and the types of working fluid flow pattern can be applied to pyrolysis and gasification reactor according to needs.
The most fundamental difference between direct combustion with pyrolysis/gasification is the amount of oxygen used in the oxidation process. A certain amount of oxygen with sufficient stoichiometric concentration (even in excessive condition usually) is required in direct combustion, so that carbonaceous compound will be completely oxidized to carbon dioxide and water vapor. An imbalance in the amount of stoichiometric oxygen will result in incomplete combustion, indicated by the production of volatile compounds other than carbon dioxide. This phenomenon occurs in the gasification process, the supply of oxygen to the combustion chamber is intentionally limited in such a way that it does not meet the stoichiometric equilibrium as occurs in the complete combustion of carbonaceous compounds. In this process, flammable synthesis gas will be produced. In the context of the shortness of the duration and stages of the mass reduction process, and the flexibility of renewable energy that can be produced, gasification is a viable option compared to direct combustion or anaerobic digestion method .
Typical oxidation medium in combustion is air, whereas in gasification, it can be air, pure-oxygen, steam, or other substances [29]. In gasification, the energy released from decomposed solid fuel is packed into chemical energy in the form of gas fuel . On the contrary, combustion decomposes solid fuel and releases as much as possible the energy content in the form of heat. There are four stages of gasification process, heating and drying, devolatilization, gas-gas reaction, and char gas reaction [3]. At the drying stage, there is an increase in temperature of carbonaceous sludge which results in evaporation of sludge-water content. At the devolatilization stage, thermal cracking process occurs that produces light gas products such as H2, CO, CO2, CH4, H2O, and NH3. This devolatilization stage is also known as pyrolysis stage. In the gasification process, a gasification medium is required in the form of air, oxygen, or steam. In contrast to pyrolysis, no medium is required, but heat is required as a driving force to release the volatile compounds. Based on the explanation, it can be said that gasification is a pyrolysis process that is optimized to convert solid fuel into synthesis gas. The next two stages are the chemical reaction stage between gas-gas and char-gas which will eventually produce synthesis gas (syngas).
Gasification process for pellets made from sewage sludge (sludge RDF) has been carried out by several previous researchers [22, 26, 28]. Research shows that the use of fixed bed and fluidized bed gasifiers is quite promising. The results of this study were obtained from several types of sludge which have different characteristics, so they cannot be compared with each other. The total heating value generated in the use of a fixed bed-type gasifier is around 4 MJ/m3 with hydrogen concentration around 10–11% v/v [22]. Other studies on uncompressed sewage sludge gasification showed that the higher the oxygen content and the temperature of compressed air, the higher heating value produced [6, 33]. In addition, it can be observed that the higher the sludge humidity, the higher the hydrogen concentration and its heating value [33]. This phenomenon occurs because the water content in the form of moisture on the sludge evaporates into steam which involves a water-gas shift reaction, in this case, the equilibrium of the reaction shifts to the right due to excess concentration of carbon components and water molecule in the form of steam on the side of reactant. This is in line with the previous research which shows that high-quality syngas can be obtained from steam-gasification of wet sludge which results in higher hydrogen-carbon ratio than air-gasification or oxygen-gasification [24]. Other studies on the type of gasification using water in supercritical conditions indicate that the higher and the longer detention time will increase the yield of hydrogen and methane [1].
In addition to anaerobic digestion, direct combustion, pyrolysis, and gasification, another option for organic sludge energy recovery is the transesterification process. It involves the reaction between triglycerides and methanol under controlled conditions, either with or without the presence of a catalyst. The use of homogeneous catalyst is relatively cheap compared to the use of heterogeneous catalysts. However, homogeneous catalysts are very sensitive to free fatty acids and the water content in oil, and can trigger saponification and hydrolysis reactions [17]. The first stage of the process is to extract the oil contained in the sludge that will be reacted with methanol to produce crude biodiesel; then the refining process is carried out by separating the biodiesel fraction from the glycerin layer. Several studies on sludge energy recovery through transesterification process have been carried out in lab-scale experiments or only in the form of simulation or process review. Research about transesterification on lab scale has been carried out in a quart-tubing tubular reactor equipped with gas sensors, heaters, and other equipment to produce controlled process conditions [17]. The products resulting from esterification reaction in the form of biodiesel, which is still mixed with glycerin, are then allowed to settle for 2 hours to be separated and then analyzed by gas chromatography. Another research has analyzed challenges in terms of process commercialization, including sludge collection, optimization of biodiesel production process, maintaining quality of product, formation of soap as a by-product and its purification method, proper design of bioreactor, pharmaceutical chemical in sludge, regulatory concerns, and economics of biodiesel production [15].
This section is an extended article from a paper entitled “The prospect of hazardous sludge reduction trough gasification process,” which was presented in scientific forum. The study of the topic originated from consideration of disposal cost of biological sludge to secure landfill. The energy produced is a by-product of the process of reducing the organic sludge mass which, if optimized, can also be an alternative energy source and it is hoped that more or less can be utilized as a substitute for fossil fuels in the area of treatment facilities.
From several options of sludge to energy conversion method discussed in the previous section (see part 2.3), it can be observed that conversion technology is not a major problem, considering that up to now there are quite a number of conversion method options that have been developed. However, in the context of its implementation, it is necessary to consider several aspects including technical, economic, environmental, and other aspects that are interrelated with this.
Technically, the selection of the conversion method should conform to the characteristics of the sludge. In sludge with high oil/fat content, the extraction options for oil/fat content followed by transesterification (extraction-transesterification) are possible. The oil extracted from sludge still has carbonaceous solid, which can be treated by thermal or biochemical processing methods, whereas for sludge with low oil/fat content, the extraction-transesterification method is certainly not the proper option considering the yield will also be very low.
Another technical aspect that needs to be considered is the ease of operation. The complexity of the technology used will directly affect operational ease and will also affect the operational and energy costs. Environmental impacts that may result from the advanced treatment of sludge carried out also need to be considered. In the thermal conversion method that involves the combustion process, it must be ensured that the resulting flue gas is treated first before being released into the atmosphere. Improper treatment of flue gas can be a source of pollutants for the earth’s atmosphere and may even be a contributor of gaseous pollutants, which in large quantities can exacerbate the greenhouse effect. In addition, reviews of economic aspects are also an aspect that needs to be considered, including investment cost, operational cost, energy cost, and other costs that are related to this process.
Experiments of the pyrolysis process are carried out on a laboratory scale using pyrolysis reactor in the form of a closed stainless steel vessel equipped with a gas-fired heating system. The reactor is also equipped with a gas-liquid separator made of polypropylene and several valves to regulate the fluid flow involved in the process, as illustrated in Figure 5.
Simplified schematic diagram of organic sludge pyrolysis process.
Treated wastewater sludge which contain 66% of carbonaceous compound has the potential that can be used as an alternative energy source if it is managed by the appropriate method. The amount of water contained in the wet sludge (43% of the total wet basis) is removed through the belt filter press unit and then dried with sunlight in the sludge drying area, until the water content is around 10% (dry basis).
In addition to organic matter and water, there are also contents of sulfur and other minerals which amount to 4% of the dry weight.
Sludge which has reduced in its water content by about 10% is then put into a fixed-bed pyrolysis reactor so that the mass of solids is reduced by 40%. Mass loss occurs due to the decomposition process of organic matter into simpler matter. The measurement results show that the decomposition process occurs at reactor temperature up to 550°C. The fraction that is converted to gas will then flow to the gas-liquid separator which is equipped with a carbon filter layer to reduce the amount of gas impurities carried to the gas collector.
Not all gas produced from thermal decomposition process flows into the gas collector, the heavier fraction will condense in the separator because of the difference in temperature and pressure inside the reactor with those on the inside of the separator.
Differences in temperature and pressure occur due to decomposition of some solid sludge into gas accumulated in pyrolysis reactor. The wet gas fraction as a top product from pyrolysis reactor will be flow to the gas-liquid separator that allows the decrease in gas velocity so that the separation process of the gas fraction and heavier fractions can be occur. The top-most product of pyrolysis reactor that enters the separator will be separated into 90% dry gas and 10% condensate (see Figure 5). Another parameter analyzed is the particle size of the sludge that is treated. The initial treatment carried out in laboratory experiments is the drying process with an oven, and then reducing the lump of sludge into particle which has an average size of 11 mm. Sludge, which has been reduced in solid size, is then processed thermally so that it produces char, the remaining solid sludge that does not decompose and remains in a solid form with an average size of 4 mm (see Figure 6). The results of these observations indicate that the heat treatment given results in decrease in sludge particle size by about 36%, this is directly proportional to the decrease in sludge mass up to around 40%. The decrease in sludge mass and the decrease in sludge particle size indicate that decomposition of the sludge component has occurred. Components classified as volatile heat-sensitive matter are evaporated, while fixed carbon and other unevaporated components remain in the solid form (Table 3).
Average sludge particle size (a) & (b) size before pyrolysis: about 11 mm;(c) & (d) size after pyrolysis: about 4 mm (Source: Hakiki et al. [11]).
No | Items | US $/month |
---|---|---|
1 | Revenue | |
Sludge disposal cost saving (to PPLI) (55% dry solid) | 2808.0 | |
Green energy produced (expressed in US $ 0.08/kwh) | 932.4 | |
Employment cost saving (2 people) | 512.0 | |
Total revenue | 4252.4 | |
2 | COGS/expenses | |
Employment cost (4 people) | 1024.0 | |
Electricity consumption | 38.5 | |
Fuel for start up | 80.0 | |
Generator maintenance | 400.0 | |
Reactor maintenance | 400.0 | |
Miscellaneous expenses | 160.0 | |
Depreciation on investment | 886.9 | |
Total cost | 2989.4 | |
3 | Profit | 1263.4 |
4 | % Profit to revenue | 30% |
Benefit cost analysis of the proposed business model (Source: Hakiki et al. [11] with modification).
As mentioned in the previous paragraph, the decomposition process of solid sludge is indicated by a decrease in sludge particle size. And the decrease in sludge particle size also affects the total mass of sludge. The cost of managing treated wastewater sludge comes from the energy cost used to reduce the water content, in this case using a belt filter press unit. Besides that, there are sludge disposal costs involving third parties who have permits. In connection with this, a simulation of economic feasibility is carried out as one consideration to expand this research to the pilot scale.
The economic feasibility simulation was carried out to compare solid sludge management by secured landfill (existing) methods with the thermal process method. In its existing condition, the industrial estate manager issues around US $ 7020/month for sludge disposal to secured landfill through third-party services [11]. Also, about US $ 26,492/month is issued for the use of electrical energy in Jababeka’s wastewater treatment facilities [11], as illustrated in Figures 7 and 8. In the proposed business model, the cost incurred for the disposal of sludge is estimated to decrease to US $ 2808/month, while the cost of electricity consumption fell to US $ 25,560/month [11]. It is related to the calculation of green energy resulted from the process is assumed to be able to substitute energy requirements as much as that produced from the gasification process [11]. In total, based on the simulation results, it is estimated that there will be a reduction in costs of up to 40% if the proposed business model is actually implemented.
Existing business model (Source: Hakiki et al. [11] with modification).
Proposed business model (Source: Hakiki et al. [11] with modification).
In calculating and analyzing economic feasibility in the simulation, the following assumptions are made[11]: (1) The disposal costs of sludge will increase by 5% per year; (2) electricity consumption costs will increase by 3% per year; (3) employee salary costs will increase by 10% per year; (4) fuel costs will increase by 10% per year; (5) maintenance costs will increase by 10% per year; (6) miscellaneous costs will increase by 10% per year; (7) inflation rate is 6% per year. All assumptions are based on data valid in March 2017. The summary of economic simulation can be seen in Table 4.
Items | Units | Value |
---|---|---|
Capacity (70% dry solid) | tons/month | 75 |
Investment | US $ | 62,080.0 |
Lifetime of gasification unit | years | 5 |
Profit to revenue | % | 30% |
Payback period | years | 2.8 |
IRR | % | 42% |
NPV | US $ | 32,625,4 |
BC ratio | — | 2.1 |
Summary of economic simulation based on the proposed business model (Source: Hakiki et al. [11] with modification).
Management of wastewater sludge originating from wastewater treatment facilities can be done in several ways, including physical process (compacted into briquettes), biochemical process (anaerobic digestion), thermochemical process (pyrolysis/gasification), and extraction-transesterification (sludge as an alternative feedstock to produce biodiesel). In addition to these management methods, the last option has been commonly used in disposal to secured landfill. The last option is still seen as the best choice in terms of practicality and ease of process. In this option, the producing party utilizes the services of third parties who already have permission to manage the sludge produced. Along with increasing awareness about the decreasing reserves of fossil fuels and the increasing popularity of global warming issues, the secured landfill option needs to be reviewed further, considering that organic sludge still has the potential as an alternative energy source if managed with the proper method. Simulations carried out on wastewater sludge from Jababeka’s centralized wastewater treatment facilities showed that thermochemical processing methods were quite effective in reducing sludge mass. In addition, green energy produced can also be used to fulfill some needs in treatment facilities and can be a substitute for fossil fuels. Overall, based on the results of the feasibility study simulation, it can be concluded that the thermochemical processing method can be further considered to develop into the pilot scale.
This project is supported by PT Jababeka Infrastructure as a facilitator of the required data and laboratory test for several parameters. We extend our gratitude to Mr. Kukuh Sulaksono, Mr. Susilo, Ms. Istingani, Mr. Joni W. Simatupang, and other parties for their full support and assistance.
IntechOpen's Authorship Policy is based on ICMJE criteria for authorship. An Author, one must:
',metaTitle:"Authorship Policy",metaDescription:"IN TECH's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, one must:",metaKeywords:null,canonicalURL:"/page/authorship-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"All contributors who meet these criteria are listed as Authors. Their exact contributions should be described in the manuscript at the time of submission.
\\n\\nConversely, all contributors who do not meet these criteria should be listed in the Acknowledgments section of the manuscript, along with a short description of their specific contributions.
\\n\\nCHANGES IN AUTHORSHIP
\\n\\nIf it is felt necessary to make changes to the list of Authors after a manuscript has been submitted or published, it is the responsibility of the Author concerned to provide a valid reason to amend the published list. Additionally, all listed Authors must verify and approve the proposed changes in order for any amendments to be made.
\\n\\nAFFILIATION
\\n\\nAuthors are responsible for ensuring all addresses and emails provided are correct. Under affiliation(s) all Authors should indicate where the research was conducted. Please note that no changes to the affiliation(s) can be made after the chapter has been published.
\\n\\nPolicy last updated: 2017-05-29
\\n"}]'},components:[{type:"htmlEditorComponent",content:"All contributors who meet these criteria are listed as Authors. Their exact contributions should be described in the manuscript at the time of submission.
\n\nConversely, all contributors who do not meet these criteria should be listed in the Acknowledgments section of the manuscript, along with a short description of their specific contributions.
\n\nCHANGES IN AUTHORSHIP
\n\nIf it is felt necessary to make changes to the list of Authors after a manuscript has been submitted or published, it is the responsibility of the Author concerned to provide a valid reason to amend the published list. Additionally, all listed Authors must verify and approve the proposed changes in order for any amendments to be made.
\n\nAFFILIATION
\n\nAuthors are responsible for ensuring all addresses and emails provided are correct. Under affiliation(s) all Authors should indicate where the research was conducted. Please note that no changes to the affiliation(s) can be made after the chapter has been published.
\n\nPolicy last updated: 2017-05-29
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5698},{group:"region",caption:"Middle and South America",value:2,count:5172},{group:"region",caption:"Africa",value:3,count:1689},{group:"region",caption:"Asia",value:4,count:10243},{group:"region",caption:"Australia and Oceania",value:5,count:888},{group:"region",caption:"Europe",value:6,count:15647}],offset:12,limit:12,total:117315},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateendthirdsteppublish"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:18},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:11},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:62},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5141},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1047",title:"Pulmonology",slug:"pulmonology",parent:{title:"Internal Medicine",slug:"internal-medicine"},numberOfBooks:33,numberOfAuthorsAndEditors:861,numberOfWosCitations:209,numberOfCrossrefCitations:147,numberOfDimensionsCitations:360,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"pulmonology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7990",title:"Update in Respiratory Diseases",subtitle:null,isOpenForSubmission:!1,hash:"6451d7376123e392f1c86ad58c6efd27",slug:"update-in-respiratory-diseases",bookSignature:"Jose Carlos Herrera Garcia",coverURL:"https://cdn.intechopen.com/books/images_new/7990.jpg",editedByType:"Edited by",editors:[{id:"224037",title:"Dr.",name:"Jose Carlos",middleName:null,surname:"Herrera Garcia",slug:"jose-carlos-herrera-garcia",fullName:"Jose Carlos Herrera Garcia"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9126",title:"Respiratory Physiology",subtitle:null,isOpenForSubmission:!1,hash:"e57374d11c8da9e7c70631881dcf55fa",slug:"respiratory-physiology",bookSignature:"Ketevan Nemsadze",coverURL:"https://cdn.intechopen.com/books/images_new/9126.jpg",editedByType:"Edited by",editors:[{id:"149748",title:"Dr.",name:"Ketevan",middleName:null,surname:"Nemsadze",slug:"ketevan-nemsadze",fullName:"Ketevan Nemsadze"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7872",title:"Cystic Fibrosis",subtitle:"Heterogeneity and Personalized Treatment",isOpenForSubmission:!1,hash:"5e2772740d2d4ebda048e06f2eee0b94",slug:"cystic-fibrosis-heterogeneity-and-personalized-treatment",bookSignature:"Dennis Wat and Dilip Nazareth",coverURL:"https://cdn.intechopen.com/books/images_new/7872.jpg",editedByType:"Edited by",editors:[{id:"92549",title:"Dr.",name:"Dennis",middleName:null,surname:"Wat",slug:"dennis-wat",fullName:"Dennis Wat"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7155",title:"Diseases of Pleura",subtitle:null,isOpenForSubmission:!1,hash:"0c5e2d001498cc246b2c2e335e71b3dc",slug:"diseases-of-pleura",bookSignature:"Jelena Stojšić",coverURL:"https://cdn.intechopen.com/books/images_new/7155.jpg",editedByType:"Edited by",editors:[{id:"192769",title:"Ph.D.",name:"Jelena",middleName:null,surname:"Stojšić",slug:"jelena-stojsic",fullName:"Jelena Stojšić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8325",title:"Interventional Pulmonology and Pulmonary Hypertension",subtitle:"Updates on Specific Topics",isOpenForSubmission:!1,hash:"eaef88d222f670a00c67f12c5ebdb5e0",slug:"interventional-pulmonology-and-pulmonary-hypertension-updates-on-specific-topics",bookSignature:"Theodoros Aslanidis",coverURL:"https://cdn.intechopen.com/books/images_new/8325.jpg",editedByType:"Edited by",editors:[{id:"200252",title:"Dr.",name:"Theodoros",middleName:null,surname:"Aslanidis",slug:"theodoros-aslanidis",fullName:"Theodoros Aslanidis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7093",title:"Pneumothorax",subtitle:null,isOpenForSubmission:!1,hash:"0b1fdb8bb0448f48c2f234753898f3f8",slug:"pneumothorax",bookSignature:"Khalid Amer",coverURL:"https://cdn.intechopen.com/books/images_new/7093.jpg",editedByType:"Edited by",editors:[{id:"63412",title:"Dr.",name:"Khalid",middleName:null,surname:"Amer",slug:"khalid-amer",fullName:"Khalid Amer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8250",title:"The Burden of Respiratory Syncytial Virus Infection in the Young",subtitle:null,isOpenForSubmission:!1,hash:"576eea34382b48ecff475d3f267837a2",slug:"the-burden-of-respiratory-syncytial-virus-infection-in-the-young",bookSignature:"Bernhard Resch",coverURL:"https://cdn.intechopen.com/books/images_new/8250.jpg",editedByType:"Edited by",editors:[{id:"66173",title:"Prof.",name:"Bernhard",middleName:null,surname:"Resch",slug:"bernhard-resch",fullName:"Bernhard Resch"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8674",title:"Interstitial Lung Diseases",subtitle:null,isOpenForSubmission:!1,hash:"ec93938ba596b2062c6744b2885d23ea",slug:"interstitial-lung-diseases",bookSignature:"Jelena Stojšić",coverURL:"https://cdn.intechopen.com/books/images_new/8674.jpg",editedByType:"Edited by",editors:[{id:"192769",title:"Ph.D.",name:"Jelena",middleName:null,surname:"Stojšić",slug:"jelena-stojsic",fullName:"Jelena Stojšić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8738",title:"Asthma",subtitle:"Biological Evidences",isOpenForSubmission:!1,hash:"b0af4d7a29f41b1408f487f13af4216d",slug:"asthma-biological-evidences",bookSignature:"Celso Pereira",coverURL:"https://cdn.intechopen.com/books/images_new/8738.jpg",editedByType:"Edited by",editors:[{id:"66336",title:"Prof.",name:"Celso",middleName:null,surname:"Pereira",slug:"celso-pereira",fullName:"Celso Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6523",title:"Asthma Diagnosis and Management",subtitle:null,isOpenForSubmission:!1,hash:"bc182ff614fdd60e11dc8ef59f7f3df5",slug:"asthma-diagnosis-and-management-approach-based-on-phenotype-and-endotype",bookSignature:"Kuan-Hsiang Gary Huang and Chen Hsuan Sherry Tsai",coverURL:"https://cdn.intechopen.com/books/images_new/6523.jpg",editedByType:"Edited by",editors:[{id:"87842",title:"Dr.",name:"Kuan-Hsiang Gary",middleName:null,surname:"Huang",slug:"kuan-hsiang-gary-huang",fullName:"Kuan-Hsiang Gary Huang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6097",title:"COPD",subtitle:"An Update in Pathogenesis and Clinical Management",isOpenForSubmission:!1,hash:"aeea9ee8ddad49657d60b4ae35f11600",slug:"copd-an-update-in-pathogenesis-and-clinical-management",bookSignature:"Cormac McCarthy",coverURL:"https://cdn.intechopen.com/books/images_new/6097.jpg",editedByType:"Edited by",editors:[{id:"169423",title:"Dr.",name:"Cormac",middleName:null,surname:"McCarthy",slug:"cormac-mccarthy",fullName:"Cormac McCarthy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5938",title:"Contemporary Topics of Pneumonia",subtitle:null,isOpenForSubmission:!1,hash:"7b8f70c5a40d7270ab454c8a1e9959e8",slug:"contemporary-topics-of-pneumonia",bookSignature:"Zissis C. Chroneos",coverURL:"https://cdn.intechopen.com/books/images_new/5938.jpg",editedByType:"Edited by",editors:[{id:"80345",title:"Dr.",name:"Zissis",middleName:null,surname:"Chroneos",slug:"zissis-chroneos",fullName:"Zissis Chroneos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:33,mostCitedChapters:[{id:"30257",doi:"10.5772/31495",title:"Pulmonary Paracoccidioidomycosis: Clinical, Immunological and Histopathological Aspects",slug:"pulmonary-paracoccidioidomycosis-clinical-immunological-and-histopathological-aspects",totalDownloads:1629,totalCrossrefCites:0,totalDimensionsCites:11,book:{slug:"lung-diseases-selected-state-of-the-art-reviews",title:"Lung Diseases",fullTitle:"Lung Diseases - Selected State of the Art Reviews"},signatures:"Luz E. Cano, Ángel González, Damaris Lopera, Tonny W. Naranjo and Ángela Restrepo",authors:[{id:"87441",title:"Dr.",name:"Luz Elena",middleName:null,surname:"Cano",slug:"luz-elena-cano",fullName:"Luz Elena Cano"},{id:"87467",title:"Dr.",name:"Angel",middleName:null,surname:"Gonzalez",slug:"angel-gonzalez",fullName:"Angel Gonzalez"},{id:"87469",title:"Dr.",name:"Damaris",middleName:null,surname:"Lopera",slug:"damaris-lopera",fullName:"Damaris Lopera"},{id:"87470",title:"Dr.",name:"Tonny",middleName:null,surname:"Naranjo",slug:"tonny-naranjo",fullName:"Tonny Naranjo"},{id:"87475",title:"Prof.",name:"Angela",middleName:null,surname:"Restrepo",slug:"angela-restrepo",fullName:"Angela Restrepo"}]},{id:"46627",doi:"10.5772/58252",title:"Lung Inflammation, Oxidative Stress and Air Pollution",slug:"lung-inflammation-oxidative-stress-and-air-pollution",totalDownloads:1628,totalCrossrefCites:8,totalDimensionsCites:11,book:{slug:"lung-inflammation",title:"Lung Inflammation",fullTitle:"Lung Inflammation"},signatures:"Elisa Couto Gomes and Geraint Florida-James",authors:[{id:"91768",title:"Dr.",name:"Elisa",middleName:null,surname:"Gomes",slug:"elisa-gomes",fullName:"Elisa Gomes"},{id:"170705",title:"Dr.",name:"Geraint",middleName:null,surname:"Florida-James",slug:"geraint-florida-james",fullName:"Geraint Florida-James"}]},{id:"42381",doi:"10.5772/53957",title:"Structural and Functional Aspects of Viroporins in Human Respiratory Viruses: Respiratory Syncytial Virus and Coronaviruses",slug:"structural-and-functional-aspects-of-viroporins-in-human-respiratory-viruses-respiratory-syncytial-v",totalDownloads:2734,totalCrossrefCites:3,totalDimensionsCites:9,book:{slug:"respiratory-disease-and-infection-a-new-insight",title:"Respiratory Disease and Infection",fullTitle:"Respiratory Disease and Infection - A New Insight"},signatures:"Wahyu Surya, Montserrat Samsó and Jaume Torres",authors:[{id:"75210",title:"Prof.",name:"Jaume",middleName:null,surname:"Torres",slug:"jaume-torres",fullName:"Jaume Torres"},{id:"158475",title:"Mr.",name:"Wahyu",middleName:null,surname:"Surya",slug:"wahyu-surya",fullName:"Wahyu Surya"}]}],mostDownloadedChaptersLast30Days:[{id:"57668",title:"Pneumonia of Viral Etiologies",slug:"pneumonia-of-viral-etiologies",totalDownloads:1601,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"contemporary-topics-of-pneumonia",title:"Contemporary Topics of Pneumonia",fullTitle:"Contemporary Topics of Pneumonia"},signatures:"Al Johani Sameera and Akhter Javed",authors:[{id:"76522",title:"Dr.",name:"Javed",middleName:null,surname:"Akhter",slug:"javed-akhter",fullName:"Javed Akhter"},{id:"80162",title:"Dr.",name:"Sameera",middleName:"M.",surname:"Al Johani",slug:"sameera-al-johani",fullName:"Sameera Al Johani"}]},{id:"42381",title:"Structural and Functional Aspects of Viroporins in Human Respiratory Viruses: Respiratory Syncytial Virus and Coronaviruses",slug:"structural-and-functional-aspects-of-viroporins-in-human-respiratory-viruses-respiratory-syncytial-v",totalDownloads:2734,totalCrossrefCites:3,totalDimensionsCites:9,book:{slug:"respiratory-disease-and-infection-a-new-insight",title:"Respiratory Disease and Infection",fullTitle:"Respiratory Disease and Infection - A New Insight"},signatures:"Wahyu Surya, Montserrat Samsó and Jaume Torres",authors:[{id:"75210",title:"Prof.",name:"Jaume",middleName:null,surname:"Torres",slug:"jaume-torres",fullName:"Jaume Torres"},{id:"158475",title:"Mr.",name:"Wahyu",middleName:null,surname:"Surya",slug:"wahyu-surya",fullName:"Wahyu Surya"}]},{id:"71803",title:"Long-Term Adherence and Maintenance of Benefits in Pulmonary Rehabilitation",slug:"long-term-adherence-and-maintenance-of-benefits-in-pulmonary-rehabilitation",totalDownloads:157,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"update-in-respiratory-diseases",title:"Update in Respiratory Diseases",fullTitle:"Update in Respiratory Diseases"},signatures:"Hulya Sahin",authors:null},{id:"42375",title:"Pathogenesis of Viral Respiratory Infection",slug:"pathogenesis-of-viral-respiratory-infection",totalDownloads:3882,totalCrossrefCites:2,totalDimensionsCites:8,book:{slug:"respiratory-disease-and-infection-a-new-insight",title:"Respiratory Disease and Infection",fullTitle:"Respiratory Disease and Infection - A New Insight"},signatures:"Ma. Eugenia Manjarrez-Zavala, Dora Patricia Rosete-Olvera, Luis Horacio Gutiérrez-González, Rodolfo Ocadiz-Delgado and Carlos Cabello-Gutiérrez",authors:[{id:"91060",title:"Dr.",name:"Maria Eugenia",middleName:null,surname:"Manjarrez",slug:"maria-eugenia-manjarrez",fullName:"Maria Eugenia Manjarrez"},{id:"95405",title:"Dr.",name:"Carlos",middleName:null,surname:"Cabello Gutiérrez",slug:"carlos-cabello-gutierrez",fullName:"Carlos Cabello Gutiérrez"},{id:"95406",title:"Prof.",name:"Dora Patricia",middleName:null,surname:"Rosete",slug:"dora-patricia-rosete",fullName:"Dora Patricia Rosete"},{id:"166672",title:"Dr.",name:"Luis Horacio",middleName:null,surname:"Gutiérrez-González",slug:"luis-horacio-gutierrez-gonzalez",fullName:"Luis Horacio Gutiérrez-González"}]},{id:"59631",title:"Phosphodiesterase 3 and 4 Inhibition: Facing a Bright Future in Asthma Control",slug:"phosphodiesterase-3-and-4-inhibition-facing-a-bright-future-in-asthma-control",totalDownloads:613,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"asthma-diagnosis-and-management-approach-based-on-phenotype-and-endotype",title:"Asthma Diagnosis and Management",fullTitle:"Asthma Diagnosis and Management - Approach Based on Phenotype and Endotype"},signatures:"Jan Beute, Vincent Manganiello and Alex KleinJan",authors:[{id:"100286",title:"Dr.",name:"Alex",middleName:null,surname:"Kleinjan",slug:"alex-kleinjan",fullName:"Alex Kleinjan"},{id:"197845",title:"Dr.",name:"Jan",middleName:null,surname:"Beute",slug:"jan-beute",fullName:"Jan Beute"},{id:"197848",title:"Dr.",name:"Vincent",middleName:null,surname:"Manganiello",slug:"vincent-manganiello",fullName:"Vincent Manganiello"}]},{id:"53221",title:"Hypoxia and its Emerging Therapeutics in Neurodegenerative, Inflammatory and Renal Diseases",slug:"hypoxia-and-its-emerging-therapeutics-in-neurodegenerative-inflammatory-and-renal-diseases",totalDownloads:1236,totalCrossrefCites:0,totalDimensionsCites:4,book:{slug:"hypoxia-and-human-diseases",title:"Hypoxia and Human Diseases",fullTitle:"Hypoxia and Human Diseases"},signatures:"Deepak Bhatia, Mohammad Sanaei Ardekani, Qiwen Shi and\nShahrzad Movafagh",authors:[{id:"189604",title:"Dr.",name:"Shahrzad",middleName:null,surname:"Movafagh",slug:"shahrzad-movafagh",fullName:"Shahrzad Movafagh"},{id:"192092",title:"Dr.",name:"Deepak",middleName:null,surname:"Bhatia",slug:"deepak-bhatia",fullName:"Deepak Bhatia"},{id:"192093",title:"Dr.",name:"Mohammad",middleName:null,surname:"Sanaei Ardekani",slug:"mohammad-sanaei-ardekani",fullName:"Mohammad Sanaei Ardekani"},{id:"195341",title:"Dr.",name:"Qiwen",middleName:null,surname:"Shi",slug:"qiwen-shi",fullName:"Qiwen Shi"}]},{id:"65946",title:"The Role of Pulmonary Rehabilitation in Patients with Idiopathic Pulmonary Fibrosis",slug:"the-role-of-pulmonary-rehabilitation-in-patients-with-idiopathic-pulmonary-fibrosis",totalDownloads:800,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"interstitial-lung-diseases",title:"Interstitial Lung Diseases",fullTitle:"Interstitial Lung Diseases"},signatures:"Elena Dantes, Emanuela Tudorache and Milena Adina Man",authors:[{id:"207947",title:"Dr.",name:"Emanuela",middleName:null,surname:"Tudorache",slug:"emanuela-tudorache",fullName:"Emanuela Tudorache"},{id:"277501",title:"Dr.",name:"Elena",middleName:null,surname:"Dantes",slug:"elena-dantes",fullName:"Elena Dantes"},{id:"290427",title:"Dr.",name:"Man",middleName:null,surname:"Milena Adina",slug:"man-milena-adina",fullName:"Man Milena Adina"}]},{id:"52481",title:"The Multifaceted Role of Hypoxia‐Inducible Factor 1 (HIF1) in Lipid Metabolism",slug:"the-multifaceted-role-of-hypoxia-inducible-factor-1-hif1-in-lipid-metabolism",totalDownloads:1635,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"hypoxia-and-human-diseases",title:"Hypoxia and Human Diseases",fullTitle:"Hypoxia and Human Diseases"},signatures:"Guomin Shen and Xiaobo Li",authors:[{id:"188938",title:"Ph.D.",name:"Guomin",middleName:null,surname:"Shen",slug:"guomin-shen",fullName:"Guomin Shen"},{id:"194848",title:"Dr.",name:"Xiaobo",middleName:null,surname:"Li",slug:"xiaobo-li",fullName:"Xiaobo Li"}]},{id:"55737",title:"Multidrug-Resistant Gram-Negative Pneumonia and Infection in Intensive Care Unit",slug:"multidrug-resistant-gram-negative-pneumonia-and-infection-in-intensive-care-unit",totalDownloads:1123,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"contemporary-topics-of-pneumonia",title:"Contemporary Topics of Pneumonia",fullTitle:"Contemporary Topics of Pneumonia"},signatures:"Mauricio Rodriguez and Salim R. Surani",authors:[{id:"15654",title:"Dr.",name:"Salim",middleName:null,surname:"Surani",slug:"salim-surani",fullName:"Salim Surani"},{id:"201286",title:"Mr.",name:"Mauricio",middleName:null,surname:"Rodriguez",slug:"mauricio-rodriguez",fullName:"Mauricio Rodriguez"}]},{id:"52428",title:"Cardiovascular Adaptation to High-Altitude Hypoxia",slug:"cardiovascular-adaptation-to-high-altitude-hypoxia",totalDownloads:1647,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"hypoxia-and-human-diseases",title:"Hypoxia and Human Diseases",fullTitle:"Hypoxia and Human Diseases"},signatures:"Jun Ke, Lei Wang and Daliao Xiao",authors:[{id:"188957",title:"Dr.",name:"DaLiao",middleName:null,surname:"Xiao",slug:"daliao-xiao",fullName:"DaLiao Xiao"},{id:"190730",title:"Dr.",name:"Jun",middleName:null,surname:"Ke",slug:"jun-ke",fullName:"Jun Ke"},{id:"190731",title:"Dr.",name:"Lei",middleName:null,surname:"Wang",slug:"lei-wang",fullName:"Lei Wang"}]}],onlineFirstChaptersFilter:{topicSlug:"pulmonology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/59537/ravi-hadimani",hash:"",query:{},params:{id:"59537",slug:"ravi-hadimani"},fullPath:"/profiles/59537/ravi-hadimani",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()