Commonly used cell lines [75].
\r\n\tThe development of the interpersonal model and the Kleinian school in the second half of the last century allowed the emergence of an original understanding of the unconscious mind. Within the intersubjective paradigm, the psychoanalytic situation is conceptualized as an interpersonal field to which both the analyst and the patient contribute substantially. We have shown elsewhere how the failure to give a full account of such an intersubjective dimension in both psychoanalytic theory and practice amounts to a core liability in contemporary psychoanalytic discourse.
\r\n\r\n\tThe present book will focus on a few areas where the insufficient development of our discipline is currently apparent: five wounds that mark the body of the psychoanalytic enterprise.
\r\n\r\n\tNew contributions are particularly needed in the following areas: Current conceptualization of the unconscious mind is mechanistic and not suited to incorporate the full network of interpersonal exchanges which unfolds in the analytic room; Furthermore, the development of interpersonal psychoanalysis and the theory of the object relations warrants a greater appreciation of the impact of extratranference relations (e.g., couple, family, peers) on the patient's inner life both within and without the psychoanalytic situation.
\r\n\r\n\tAn integration of theories and models from other psychological paradigms is clearly in order here; the book will also focus on Barangers’ theory of the bi-personal field that makes traditional unipersonal models of the psychoanalytic process untenable. Also, it will help in the understanding of the reciprocal interactions of the two partners in the psychoanalytic dyad in most psychoanalytic institutes the training format relies naively on models from the academic or the professional domains. This fosters rigidity, conformism, and a hierarchical organizational style in the institutional life; e) all over the long span of his creative life Freud showed consistent interest in the application of psychoanalysis to literature, the arts, religion, and politics. Contemporary psychoanalysis is getting more and shyer and is pressed at the margins of social and political debate. The psychoanalytic theory includes unique lore of knowledge about the conscious and unconscious mind. Without it, a comprehensive understanding of human reality will stay out of the reach of contemporary culture.
",isbn:"978-1-80356-882-9",printIsbn:"978-1-80356-881-2",pdfIsbn:"978-1-80356-883-6",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"c6a104ee38fec8d9ba8aa139a33003ce",bookSignature:"Dr. Paolo Azzone",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11591.jpg",keywords:"Unconscious, Repression, Conformism, Intersubjective Paradigm, Interpersonal Psychoanalysis, Object Relation Theory, Couple Therapy, Family Therapy, Psychoanalytic Process, Transference Interpretation, Resistance, Controtransference",numberOfDownloads:12,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 31st 2022",dateEndSecondStepPublish:"June 17th 2022",dateEndThirdStepPublish:"August 16th 2022",dateEndFourthStepPublish:"November 4th 2022",dateEndFifthStepPublish:"January 3rd 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 months",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Paolo Azzone, M.D., is a psychiatrist and a psychoanalyst with over 20 years of experience in mental health topics. He was a tutor for the course in Clinical Psychiatry at the Medical School of the University of Milan and now is responsible for the Forensic Psychiatric Outpatient Program at the ASST-Rhodense Hospital in Milan, Italy. Azzone contributed to the establishment of a psychotherapy research tradition in Italy and is a co-editor and author of multiple works that are linked to psychoanalysis.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"324882",title:"Dr.",name:"Paolo",middleName:null,surname:"Azzone",slug:"paolo-azzone",fullName:"Paolo Azzone",profilePictureURL:"https://mts.intechopen.com/storage/users/324882/images/system/324882.jpg",biography:null,institutionString:"ASST-Rhodense Hospital",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:[{id:"82322",title:"A Psychoanalytic Approach to Identity Politics",slug:"a-psychoanalytic-approach-to-identity-politics",totalDownloads:12,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"453624",firstName:"Martina",lastName:"Scerbe",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/453624/images/20399_n.jpg",email:"martina.s@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9500",title:"Recent Advances in Bone Tumours and Osteoarthritis",subtitle:null,isOpenForSubmission:!1,hash:"ea4ec0d6ee01b88e264178886e3210ed",slug:"recent-advances-in-bone-tumours-and-osteoarthritis",bookSignature:"Hiran Amarasekera",coverURL:"https://cdn.intechopen.com/books/images_new/9500.jpg",editedByType:"Edited by",editors:[{id:"67634",title:"Dr.",name:"Hiran",surname:"Amarasekera",slug:"hiran-amarasekera",fullName:"Hiran Amarasekera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"53566",title:"History of Cell Culture",doi:"10.5772/66905",slug:"history-of-cell-culture",body:'At the present time, animal and human cell cultures are significant tools widely used in many branches of live science. Different variants of cell culture found application in modeling diseases, IVF technology, stem cell and cancer research, monoclonal antibody production, regenerative medicine and therapeutic protein production. All those different scientific approaches would not be possible without some crucial discoveries that had been made over the centuries from Aristotelian spontaneous generation doctrine through Pasteur\'s experiments and Carrel\'s cell culture to large‐scale cultures for therapeutic proteins production and vision of the future of regenerative medicine and in situ bioprinting of wounds. The main milestones in cell cultures are presented in proposed chapter (see Figure 1).
Timeline: key milestone in cell cultures.
The development of biological sciences would not have been possible without one of the greatest inventions—microscopes. In the sixteenth and seventeenth centuries—two countries—the Netherlands and Italy played a crucial role in constructing and using microscopes and telescopes. In the Netherlands, around 1590, Hans Janssen and his son invented a compound microscope—constructed of two convex lenses. In the early 1600s (about 1610), the great Galileo Galilei (1564–1642) constructed several simple microscopes and telescopes, which he called as “occhialino.” The term “microscope” was used for the first time in 1625 by the Italian physician Giovanni Faber [1].
The first publication, in which Petrus Borellus described the use of microscope in medicine, was written in 1653. He presented 100 microscopic observations and applications (e.g., removing ingrowing eyelashes invisible with the naked eye). In 1646, Athanasius Kircher (1601–1680), a Jesuit priest, described that “in the blood of fever patients a number of things might be discovered.” Kicher showed later (in 1658) that maggots and other living creatures (some of them he called microscopic “worms”) occurred and developed in decaying tissues [1–3]. Two other microscopists—Swammerdam (1637–1680) in 1667 and Malpighi (1628–1694)-characterized red blood cells [1,2]. In Bologna, another scientist, Joseph Campini, illustrated the first use of the microscope in the clinical examination of a wound on the leg of a patient [1, 4].
At the beginning of the seventeenth century, two inventors—Robert Hook (1635–1702) and Antonie van Leeuwenhoek (1632–1732)-made an unusual discovery. Both of them made their first observations of life under the microscope and made the previously invisible microscopic world real [3].
The English physicist, Hooke, published in 1665 the first important work on microscope construction, its components and microscopic observations. In his
In 1676, the Royal Society (RS) received a letter from Antonie van Leeuwenhoek, in which the microscopist had described his exciting discoveries—observations and records of small living particles. These microorganisms, which Leeuwenhoek called “animalcules,” were mainly protozoa and bacteria [3, 4]. Implementation of his scientific project was inspired by the Hooke\'s bestseller,
Since Leeuwenhoek\'s invention microscopes have been one of the most fundamental tools, particularly, in the biological sciences, but also in clinical pathology and medical diagnosis [8]. In the twentieth century, many discoveries have been made in the field of life sciences, due to modern microscopy techniques. In 1941, Fritz Zernike constructed first phase contrast microscope. Another invention was a microscopic differential interference contrast technique (phase contrast) evolved by Georges Nomarski. Invention of fluorescence and confocal microscopy revolutionized life sciences. Confocal scanning microscopy gives possibility to examine fixed or alive biological specimens. This technique allows the selective and specific detection and visualization of molecules at small concentrations with good signal‐to‐background ratio [8]. Technique of confocal microscopy was evolved by Marvin Minsky in 1957 [9]. Confocal scanning microscopy technique is based on the restriction of photodetection to light originating from the focal point, whereas in fluorescence microscopy, the entire sample is excited indiscriminately, where the fluorescent photons arise from out‐of‐focus fluorofores. The optical sectioning gives three‐dimensional microscopic reconstruction of biological samples. For photodamge and photobleaching reduction, the confocal microscopy was improved by the use of spinning disk scanners that were based on the disk invented by Nipkow (in 1884). Use of many pinholes enhances detection of the fluorescence and reduces excitation [8].
The fluorescent microscopy was also revolutionized by the two‐photon microscopy invention. In this technique, two‐photon excitation is applied, that means that using ultrafast laser (infrared) is possible to obtain locally very high photon concentration that occurs only at the focal point of the microscope. The two low‐energy photons excite together a chromophore (only at the scan plane) and generate fluorescence. Use of infrared results in lowering the light scattering cross section of living tissues, which gives possibility to examine fluorophores deep in living samples. In contrast to confocal microscopy, the two‐photon microscopy ensures that the problem of photodamage and photobleaching is reduced, but disadvantage of that method is worse spatial resolution in comparison with confocal microscopes [8]. In the 1990s, Stefan Hell developed super‐resolution fluorescence microscopy technique and gave the scientists possibility to examine structures of the size of a few nanometers.
Immunofluorescene techniques with the new fluorescence molecules (immunofluorescence reagents, organic dyes, quantum dots) and discovery of fluorescent proteins (e.g., GFP) and use of confocal microscopy made new possibilities to examine biological specimens [10, 11]. For example, confocal microscopy allows the live‐cell imaging (time‐laps microscopy) to monitor cell movements, cell and tissue structures in one (1‐D), two (2‐D), three (3‐D) spatial dimensions or 4D—(3D × time) [12]. The variant of live‐cell imaging techniques—fluorescence loss in photobleaching (FLIP)-utilizes repeated photobleaching that can be used to assess the continuity of membrane of endoplasmic reticulum or Goligi apparatus. Fluorescence resonance energy transfer (FRET) technique gives opportunity to display interactions between two molecular species. The energy transfer from fluorescent “donor” to fluorescent “acceptor” is possible when fluorofores are in nanometer proximity [12].
Using fluorescent dyes, it is possible to label live or death cell nuclei, for example, SYTO59 or SYTO61 for live cells, DAPI, popidium iodide (Figure 2), Sytox Green or T0‐Pro‐3 for the nuclei of death cells [12], and fluorescently labeled antibodies used for, for example, HeLa cell mitoses with anti‐tubulin staning [13], anti‐cytokeratin staining (Figure 2).
Bovine mammary epithelial cells immunostained against cytokeratins and DAPI‐stained nuclei (confocal laser scanning microscopy, 400×) (A). Dome structures stained with propidium iodide (confocal laser scanning microscopy; magnification, 600×) (B) [
Cellular junction identification is based on detection of structural components and proteins that are associated with those components. For studying cell adhesion and cellular junctions monoclonal, polyclonal antibodies labeled with conjugates for visualization of the target cellular structures are used for gap junction-Connexin‐40, CX40; Connexin‐43, CX43; pannaxin (1, 2) for synapses; for tight junctions (TJ)—claudins, occludins, JAMs (junctional adhesion molecules) and CRB1 (human Crumbs homolog 1); for adherents junctions—cadherin‐catenin‐actin modules; for desmosomes and hemidesmosomes—cadherins (desmoglesins and desmocllins) and intergins [15–17].
Mentioned techniques can be used for determination of ion concentration, for example, pH, Ca2+, K+, Na+, O2, in biological systems (for example within cells) [18]. Many of fluorescence probes are ion indicators with a different fluorescence lifetime (
Using modern microscopy technique gives the possibility to study cell structures, motility of cells and organelles, cell‐cell communication and membrane potential in single cells. Microscopic techniques found important application in biomedical field (e.g., confocal endomicroscopy, oftalmology) [19, 20].
The live cells in vitro and in vivo imaging techniques accelerate drug discovery. Real‐time imagine provides analysis of drug response upon target activity and pathophysiology and results in higher clinical predictivity [21]. Based on in vitro model, the monitoring of cellular phenotypes within complex samples such as co‐cultures, 3‐D culture models, is now possible. Cell attachment, migration (velocity, direction), vesicle formation, angiogenesis, stem cell differentiation can be recorded using automated imaging platforms [21, 22].
Some of them are based on the label‐free phase holographic microscopy. In this technique, the low‐power (635 nm) red diode laser divided into two beams—reference and an object beam—that passes through the unlabeled cell cultures on T‐flask surface merged together can be recorded as the hologram imagines (Figure 3) [23–25].
Cell cultures visualized using label‐free holographic microscopy. L929 fibroblast cell line, 200× (A). MCF‐7 adenocarcinoma cell line, 200× (B) [unpublished, Luzny and Jedrzejczak‐Silicka].
Another microscope—the atomic force microscopy (AFM)-gives unique possibility to visualize structure, topography (Figure 4) and examine mechanical properties of cells (e.g., adhesion force distribution, cells stiffness—Young\'s modulus as a biomarker of the relative metastatic potential).This method is a variant of scanning probe microscopy that demonstrated better resolution, than the optical diffraction limit [26].
The peripheral MAC
From the ancient Romans, through the Middle Ages, to the late of the nineteenth century, the Aristotelian doctrine of spontaneous generation was one of the most basic laws in biological sciences [3]. This idea was presented for the first time by Aristotle in his History of Animals, where he described the generation of insects from animal flesh, mud, and other organic and inorganic matter [27]. According to this thesis, non‐living matter (water, land or hay) bears the potential to generate spontaneously different and complex organisms. For example, in the seventeenth century literature, recipes for mice were known—the mixture of old shirts and wheat placed in a jar for 21 days produced mice [28, 29]. Even the invention of the microscope and investigations of Leeuwenhoek and Hook did not refute the Aritostelian doctrine. The existence of micro‐organism—protozoa, and unicellular living organisms was a specific link between the inanimate substance and living organisms, and perversely, supported the spontaneous generation doctrine [3].
The first attempt to verify the idea of spontaneous generation was made by an Italian physician Francesco Redi (1626–1697). In 1668, Redi tested his hypothesis (described in the “
This theory was disproved by the Italian naturalist Lazzaro Spallanzani (1729–1799) in the mid‐eighteenth century. In his masterful experiments, he showed that an organism was derived from another living organism(s), and he confirmed that there was a gap between inaminate matter and living organisms [3]. He repeated the experiments of English priest and biologist John Turberville Needham. In 1745, Needham started his experimentation after reading about Leewenhoek\'s animalcules in the letter to RS [31]. He observed the growth of microorganisms in chicken broth placed in the sealed flask and heated for 30 min [31]. This result seemed to validate the Aristotelian doctrine of spontaneous generation; Spallanzani was intrigued, but not convinced, and suggested that microorganisms had not appeared spontaneously after the boiling process but had entered the broth from the air before the flask was sealed [28]. He found significant errors in Needham\'s experiments and modified previous technique on the basis of his own several hundred experiments. He placed the broth in the flask, sealed the flask, created a partial vacuum and then boiled the broth [28]. The results of the experiments clearly demonstrated that the infusoria (a class of aquatic microorganisms, including primarily the organisms which now are classify as Protista) did not generate spontaneously in sterilized flasks [27]. His assiduity earned him success in disproving the validity of the theory of spontaneous generation, but even supporters of empirical evidence of spontaneous generation argued that he had only proven that spontaneous generation could not occur without air [28, 31, 32].
Finally, the spontaneous generation doctrine was laid by Louis Pasteur (1822–1895) [3]. Between 1860 and 1862, the young French chemist performed a lengthy series of experiments that were a variation of Needham and Spallanzani methods. His experiments focused on the development of microbes in the previously boiled infusions. Pasteur’ s experiments were performed in a series of flasks with their necks heated in a flame and drawn out into a long “S” shape, like a “swan neck.” The “swan‐necked flasks” were prepared after flasks had being filled with the pre‐boiled infusion (liquid was heated to 100°C and boiled for several minutes) [30, 33]. Air could enter to such a flask, but not micro‐organisms. When Pasteur tilted the flask, the broth reached the lowest point in the neck and airborne microorganisms could have settled by the gravity. In addition, when the neck was broken off, the dust particles entered the flasks [28, 30]. The effect of this action was rapidly visible—the yeast/sugar water infusion became cloudy with microbes. Based on the obtained results, Pasteur concluded that microbes and their germs were carried out with the dust particles. When the dust was excluded, the infusoria was not altered. This experiment not only refuted the theory of spontaneous generation, and proved that the living matter can only arise from pre‐existing life, but also demonstrated that micro‐organisms are omnipresent—even in the air [28, 30]. Even after the presentation of Pasteur\'s result, some of his opponents suggested that his experiment proved only that dust was necessary for spontaneous generation [30]. But what would have happened if Pauster had tried his famous experiment with the “swan‐necked flasks” and boiled hay infusion? About a decade later, it was found that the hay bacillus—
The results obtained by Pauster were validated in practice by Lister (1827–1912). Pauster\'s conclusions about the prevalence of microorganisms in the air were taken into account in his pioneering antiseptic surgical procedures [34]. Lister suggested that microorganisms caused infection and gangrene similarly to Pasteur\'s fermentation process [36, 37]. He prevented wound infections in his patients using spray (Richardson\'s hand spray) and a solution of carbolic acid as an antibacterial agent. Lister later used in his aseptic methods a large hand‐operated tripod to achieve germ‐free conditions [34, 35]. Thanks to this technique, the end of the nineteenth century was the beginning of aseptic surgery and also symbolically the end of the Aristotelian doctrine.
At the same time, when the great debate about the spontaneous generation was held, other observations were made focusing on cell components and organization of the living matter. In the first decade of the eighteenth century, nucleus was probably observed in plant and animal tissues, but the first description of nuclei in epithelial cells was made by Felice Fontana (1730–1805) and published in 1781 in the
Technical improvements in microscope constructions helped in 1838 the botanist Matthias Schleiden (1804–1881) and in 1839 the zoologist Theodor Schwann (1810–1882) to formulate the “cell theory” [3, 42]. They suggested that every organism and every structural element of plant and animal tissues are formed of cells. Schleiden studied the structure of plant tissues and concluded that all plant structural elements are composed of cells or their products. He also properly noticed that the “increase in the size and number of cells is responsible for growth” [43]. Although his atomistic conclusion of the “cell theory” was proper, the reminiscence of the “spontaneous generation” doctrine influenced his theory of “free cell formation.” According to this theory, the formation of a nucleus of “crystallization” within the cytoblast was the first phase of cell generation. Subsequent to nucleus formation was the enlargement of condensed material leading to the formation of a new cell [3]. This theory of “free cell formation” was rejected by scientists of that time—Robert Remark, Rudolf Virchow, Albert Kölliker [3].
A year later, Schwann examined animal tissues and also observed that “the elementary parts of all tissues are formed from cells” and that “there is one universal principle of development for the elementary parts of organisms…and this principle is in the formation of cells” [3, 44]. He argued that even “the highly differentiated organisms (plants and animals)…are the formation of cells.” In his Untersuchungen, he wrote that “the tissues of animals are formed of cells. The globules of lymph, pus and mucus are cells with their walls distinct and isolated from each other. Horny (squamous) tissues are cells with distinct walls, but united into coherent tissues; bone and cartilage are formed of cells whose walls have coalesced; fibrous tissue and tendon are cells which have split into fibres; and muscle, nerves and capillary vessels are cells of which both the walls and cavities have coalesced” [43, 44]. Schwann defined that a cell has three essential elements—nucleus, a fluid content and a wall (or membrane) [43, 45, 46]. Other fundamental principle formulated by Schwann (partially as a token of gratitude to his colleague Schleiden) determined that the “cells arise inside and near other cells by differentiation of a homogenous primary substance called the “cytoblastema” in a process analogous to crystallization” [47, 48]. After Schwann\'s conclusion pertaining to morphological units of tissues and organs, two histopathological atlas texts were published by Julius Vogel and Herman Lebert. Eventually, the formulation of the “cell theory” provoked the scientist in the nineteenth century to verify the Aristotelian doctrine and accepted the “cell theory” as a scientific fact [42].
Meanwhile, Virchow and other scientists presented the view that cells are formed
On the contrary, Louis Pasteur developed the germ theory of diseases. Pasteur\'s theory was rejected in its entirety by Virchow who was convinced that the diseased tissue was caused by changes within healthy cells, but not from invasion of other organisms [49]. Virchow tried to understand the nature and origin of cancer, and some of his theories were correct; nevertheless, Pasteur was also right about the causality of diseases [45, 49, 51].
In the late nineteenth century, Wilhelm Roux (185–1924) demonstrated that it is possible to maintain living cells (of the neural plate of chick embryos) outside the body in saline buffer for a few days [52].
At the same time, Leo Loeb (1869–1959) evaluated a technique called “tissue culture within the body.” In this technique, Loeb was able to culture cells from inside and outside body tissues. For example, he placed skin fragments of guinea pig embryo in agar and coagulated serum, then grafted them into adult animals. Using this procedure, Loeb obtained reproduction of mitotic epithelial cells. This technique was not strictly considered as a classical cell and tissue culture, due to grafting tissues and fluids in living animals [52, 53].
The American embryologist Ross Granville Harrison (1870–1959) developed the first techniques of cell culture in vitro in the first decade of the twentieth century [52–56]. In Harrison\'s experiments (1907–1910, at the Yale University), small pieces of living frog embryonic tissue were isolated and grew outside the body. He placed the tissue in a solution of lymph on a coverslip, inverted the material on a glass slide with a depression in it and maintained the explanted tissue in a hanging drop [54, 57]. Harrison\'s method, although adapted from microbiological technique and used for bacteria studies (invented by Robert Koch in the 1880s and first used for anthrax bacilli growth), was successfully applied to cell cultures [52, 54]. Harrison\'s experimentations made the cell life “visible.” In his research article “Observations on the Living Developing Nerve Fiber,” he described a method of maintaining nerve cells and was able to monitor fiber development [52, 58–60]. He noted “the development of the nerve fibers by independent growth from cells outside the body” [59]. The development of the nerve fiber was a continuous process from a single cell, in parts from chain of cells, or progressed within plasmatic bridges that remained between embryonic cells after their division [54, 60]. The use of a clotted lymph and special technique helped Harrison in the presentation of nerve outgrowth from tissue explants into the medium, but unfortunately, Harrison\'s observations were time‐limited by rapid bacterial contaminations. For that reason, Harrison introduced aseptic techniques in working with cell cultures. The glassware was flamed, chirurgical equipment (e.g., needles, scissors and forceps) was boiled, and the cloths and filter papers were autoclaved. Aseptic technique made it possible to obtain sterile preparations that could be maintained in vitro for over five weeks. Due to changes in sterile tissue preparation, Harrison was able to report various stages of cell development in a continuous manner over time. Drawings of observed nerve fibers were made with a camera lucida [54]. Thanks to the development of his technique, Harrison shed light on enormous possibilities of cell and tissue culture application not only as a tool in bacteriology, embryology, physiology or histology studies, but also the production of monoclonal antibodies, vaccines and drugs [52].
In 1910, Montrose Burrows (1884–1947) visited Harrison at Yale and adapted the method of hanging drop cell culture to his experimental requirements [58, 59]. Burrows worked with warm blood tissues, in which the chicken plasma clot was used [54]. Plasma was much easier to obtain and was more homogenous in quality, and thus, the preparation process was more reliable [52]. Then, together with Alexis Carrel (1873–1944) at the Rockefeller Institute for Medical Research in New York, they established cell cultures of embryonic and adult tissues (connective, periosteum, cartilage, bone, bone marrow, skin, kidneys and thyroid gland) of many species (e.g., dog, cat, chicken, guinea pig, rat) that could be maintained in vitro, due to the “plasmatic media”—fresh plasma from the same source as the tissues [52, 61, 62]. Burrows and Carrel evaluated other culture media composed of diluted plasma with different salt and serum solutions [52, 63]. Using complex media, they were able to subculture and maintain cultures for several months. They worked not only with normal adult mammalian tissues, but also with cancerous tissues. Those changes distinguished Burrows and Carrel\'s cultures from Harrison\'s and gave them the possibility to introduce the idea of continuous culture—obtaining new cultures from the old ones, without establishing primary cultures from new tissue explants [54, 64]. The results obtained by Carrel and Barrows were published in the Journal of the American Medical Association in 1910, and the term “tissue culture” was defined for the first time in 1911 as “a plasmatic medium inoculated with small fragments of living tissues.” The introduced term “tissue culture” described also the growth and reproduction outside the body [54, 60].
In January, 1912, Carrel and his coworkers developed the first “cell line” derived from the fragments of explanted chicken embryo heart [52, 61]. This cell line was subcultured hundreds of times, and after the initial contamination outbreak, it was continued by Arthur Ebeling in Carrel\'s laboratory. This cell line was maintained by washing with Ringer\'s solution and medium changes [65, 66]. Due to the rigorous aseptic techniques, this is one of the most famous cell lines (described in many articles, e.g., cell line birthday was celebrated annually in the New York World Telegram); it was maintained until 1946 when the cell line culture was finally terminated, 2 years after Carrel\'s death [61]. Carrel\'s cell line was a phenomenon for scientists. Indefinite growth of Carrel\'s cells was evident, and it was defined that cells could live indefinitely except for some lethal circumstances [67, 68]. Problems with obtaining indefinite growth of cells were attributed to the inadequacies of the technique. In 1956, Haff and Swim described cell aging in vitro, but they stated that their failure to obtain an immortal cell line was caused by deficiencies in the culture medium [67, 69].
The success of Alexis Carrel and his laboratory was not only possible due to the rigorous aseptic techniques, but also due to the development of first practical cell culture flasks (in 1923), which were called “D flasks”. This culture flask (also called a D‐3.5 flask) had a diameter of 3.5 cm and was made of PYREX glass. New cell culture flasks allowed to culture cells in a larger medium volume and made culture maintenance much easier [61].
In 1938, Carrel published the book “The culture of organs,” in which he presented the cultivation techniques of whole organs. Carrel started a collaboration with Charles A. Lindbergh in 1930. They worked on the process of organ perfusion, such as whole heart perfusions of cats and kittens. Organ perfusion was carried out through the aorta with Tyrode\'s solution supplemented with 50% serum at 37°C [62, 65, 66].
The early of twentieth century was the time when the basic principles for plant and animal cell cultures in vitro were developed [70]. Evaluation of cell culture knowledge was possible not only due to hanging drop culture technique. The significant impact on cell culture development had introduction of the aseptic techniques and Rous and Jones tissue trypsinization technique [70–72]. Rous and his colleague found that use of trypsin solution results in obtaining single cell suspension and cells detachment for subculture. The 3% trypsin solution was used successfully for plasma digestion and did not damage most cells. When 5% trypsin solution was tested, obtained cells were dead [72]. Until then, cultures were obtained from the tissue explants, and use of trypsin facilitated procedure of obtaining homogenous cell strains [73].
The first cell line—the “L” cell line—was established by Earle in 1948. This cell line was derived from subcutaneous mouse tissue [70, 71] and displayed quite different morphology from the origin of tissue [70].
In 50s and 60s, another diploid cell lines were developed—HeLa (by Gay, see subsection 7) MRC‐5 (by Jacobs) and WI‐38 (by Hayflick and Moorhead) from human tissue and Vero (Verde—French for green and RenO—French for kidney) cell line obtained from simian tissue [70, 74]. The examples of the earliest derived cell lines are presented in Table 1.
Name | Species and tissue | Morphology | Author and year of origin |
---|---|---|---|
L929 | Mouse connective tissue | Fibroblast | Earle, 1948 |
HeLa | Human cervix | Epithelial | Gay, 1951 |
CHO | Chinese Hamster ovary | Epithelial‐like | Puck, 1957 |
MDCK | Canine kidney | Epithelial | Madin and Darby, 1958 |
WI‐38 | Human lung | Fibroblast | Hayflick, 1961 |
BHK‐21 | Syrian Hamster kidney | Fibroblast | Macpherson and Stoker, 1961 |
Vero | African Green Monkey kidney | Epithelial | Yasumura and Kawakita, 1962 |
NIH 3T3 | Mouse embryo | Fibroblast | Todaro and Green, 1962 |
MCR‐5 | Human lung | Fibroblast | Jacobs, 1966 |
SH‐SY5Y | Human neuroblastoma | Neuroblast | Biedler, 1970 |
Commonly used cell lines [75].
The establishment of cell lines gives possibilities to determine differences between cell lines culture and the primary cell cultures. The primary cell cultures are obtained directly from the tissues or organs and are considered primary until the first passage (subculture). The primary cell cultures are mainly initiated from normal or malignant adult tissues and embryonic tissues. The population of cells in primary cultures prepared by tissue disruption (using enzymatic or/and physical methods) is mixed and contains different cell types. This type of culture is used in many areas such as physiology and cellular metabolism, cytogenetics, pharmacology or tissue engineering [70, 76]. Subculture technique allowed researches to obtain cell lines by serial subculture cells from primary cell cultures. The cell lines established from normal tissues display finite growth (see Section 6.3—Hayflick phenomenon). In the contrary, cell lines obtained from cancerous tissues were able to indefinitely proliferation. The indefinitely proliferation of cells from normal tissues was also described and was in general the result of spontaneous transformation (see Section 8). Different cell lines are commonly used in many valuable studies, but use of cell lines also has same disadvantages and limitations, especially in drug development. The main disadvantages and limitation of using cell lines are listed below:
The genetic aberrations of cell lines related with increasing passage numbers,
The genotypic and phenotypic drift in continuous cultures, especially deposited in cell banks for many years,
The cell line response toward the tested drug might be different form patient response toward the same drugs,
Different microenvironments of the original tumor and cancer cell cultures (2D and 3D),
Cross‐contamination of cell cultures with HeLa cell line (it was reported that a large number of cancer cell lines are cross‐contaminated),
Culture conditions can change the morphology, the gene expression and several cellular pathways,
Infections with mycoplasma that can change the culture properties,
Difficulty in the establishment of long‐term cancer cell lines of certain types of tumors,
Cell culture environment is different from that of the original tumor,
Loss of the natural heterogeneity of the tumor or tissue [77, 78].
On the basis of different experiments on cell cultured in vitro, the conditions and physicochemical properties of environment for the growth and maintenance of human and animal cell cultures were established (see Table 2).
Factors | Characteristic |
---|---|
Growth substrates | The surface for cell adhesion, growth, proliferation that determine also cellular secretion activity of cells. Earlier the glass surface was widely used, now in most of laboratories plastic (usually polystyrene) labware is used for typical monolayer cultures. The surface of that cell culture vessels can be enhanced by coating with proteins, such as collagen, gelatin, laminin, fibronectin that are components of extracellular matrix. For that purpose also polymers can be used, for example, poly‐L‐lysine or other commercial matrices [52, 54, 79] |
Media | Are composed of two main components: a basal nutrient medium and supplements. The balanced salt solution, for example, DPBS, HBSS, EBSS, form basis of complex media. The supplements complete media with nutrients, proteins, amino acids, buffering system and vitamins. The most popular media are Dulbecco\'s Modified Eagle\'s Medium (DMEM), Eagle\'s Minimal Essential Medium (EMEM), Medium 199 (M199), Roswell Park Memorial Institute (RPMI–1640) or Lebovitz Medium (L‐15) [73] |
Amino acids and vitamins | The amino acids essential for growth and cell proliferation, for example, cysteine, L‐glutamine and tyrosine. For proper metabolism, cells require B vitamins (especially presence of B12 is essential), choline, folic acid, inositol, biotin [52, 73, 75] |
Ions and trace elements | The major ions—Na+, K+, Mg2+, Ca2+, Cl-, PO43-, SO42-, HCO3-—affect osmolarity of culture media. Trace elements such as zinc, copper, selenium and tricarboxylic acids intermediates are used in cultures madia [52, 75] |
Carbohydrates and organic supplements | Glucose is mainly used as an energy source [33], but in some cell types galactose, mammose, fructose or maltose can be used [56, 59]. Other sources of carbon provide nucleosides. The culture media can be also supplemented with pyruvate, lipids (cholesterol, steroids, fatty acids), citric acids intermediates [52, 75, 79, 80] |
Serum | Serum is a complex mixture of proteins, source of minerals, lipids, hormones, and growth and adhesion factors. Fetal bovine serum (FBS) and newborn calf serum (NCS) are most common. For more specific cultures human, horse or rabbit sera are used [52, 73] |
Antibiotics and antimycotic solutions | Antibiotics and antifungal with laminar flow hoods reduced the frequency of contamination. In cell cultures most often penicillin streptomycin solutions are used. As the antimycotic agents the kanamycin or amphotericin B are applied [52, 73, 79] |
Growth factors and hormones | Hormones and growth factors are used especially in serum‐free media. Those factors are ensured cellular growth, division, and differentiation. The most popular are fibroblastic growth factor (FGF), insulin‐like growth factor (IGF), vascular endothelial growth factor (VEGF) or platelet derived growth factor (PDGF). In the group of hormones the most common are hydrocortisol and insulin [52, 73, 79] |
Potential hydrogen (pH) | For animal and human cells a pH was determined in the range of 7.0 -7.4. Some differences can be noticed for transformed cells (7.0–7.4), and in some cases cells require higher pH levels, for example, normal fibroblasts (7.4–7.7). In the range of 6.5–7.0 cells stop growing, and between pH 6.0–6.5 cells losing their viability. The pH level can be checked by presence of phenol red in culture medium [52, 73, 79] |
Oxygen | The oxygen, as a part of the gas phase is required for adequate cell physiology, function, and differentiation. The oxygen requirements are depend on the type of cells. In general, low concentrations of oxygen are used and depend on the dissolved oxygen in culture media. The higher concentration of oxygen can inhibit cell growth and metabolism. In some cases transformed cells can be anaerobic [52, 73, 79] |
Carbon dioxide and bicarbonate | The buffering system is essential to maintain proper pH. For establishing physiological pH for cells CO2 is dissolved in the culture medium. Carbon dioxide establishes equilibrium with HCO3- ions. The bicarbonate buffers not only show low toxicity, but also help in glucose metabolism. The other buffering system include use of HEPES buffer, but is was found that this system is toxic to some type of cells [52, 73, 79] |
Temperature | Generally most of cell lines are maintained at 37°C (earlier called “warm‐blood animal” temperature), but temperature is determined by origin of tissue, for example, lower temperature is usually used for skin and testicles cell cultures [52] |
Osmolarity | Cells exhibit rather wide tolerance to osmotic pressure. This factor can influence on growth and cell function. In general osmolatiry should be similar to the natural tissue environment. The osmolarites between 260 mOsm/kg and 320 ± 10 mOsm/kg are applicable [52, 73, 79] |
Viscosity | The important factor for cell suspension cultured in stirred vessels or when cells are dissociated after trypsinization [52] |
In the 1920s, composition of salt solutions was formulated specifically for cell cultures, for example, Pannett and Compton (1924), Gay (1936), Earle (1943) or Hanks salts (1948). Establishing formulas of salt solutions was the first step to define cell cultures requirements. The scientists indentified the most needed components for cellular metabolism, such as amino acids, salts, vitamins, hormones and glucose. Between 1932 and 1962, about 60 chemically defined media were worked out [80], for example, Morgan, Morton and Parker develop media199, and Earle and his coworkers worked out protein free media for L cell culture. In that time, EM medium—Essential Medium, and DMEM—Dulbecco Modified Eagle\'s Medium, were also develop with essential and nonessential amino acids [71]. Media were also divided into two types of media that were worked out—media for long‐term and short‐cultivation, for example, Trowell\'s medium T8 (1959) for organ culture [80, 81]. In 50s and 60s, different scales (small and large scale) of cell cultures were worked out. The large‐scale cell culture development has allowed the creation of Salk vaccine for polio infection. The polio virus was cultured in simian and human kidney cells [70].
Nowadays, cell culture media are usually supplemented with the antibiotics, but first effect of antibiotics on cell cultured in vitro was established in the 1940s. Herrell and coworkers found that the different preparation of penicillin exhibited toxic action on mitosis due to some impurities in penicillin preparation. In the comparison with penicillin G, it was practically harmless for cells [82, 83]. Keilova presented in her work influence of streptomycin directly on the explants of heart, aorta and frontal bone of the chick embryo [84]. It was also found by Lawrence that in higher concentration, antibiotics (including penicillin, streptomycin, tetracycline and neomycin) affected not only migration of epithelium around skin explants, but also in some concentrations caused respiratory damage or necrotic changes [83]. In other study, Krueger analyzed effect of streptomycin on protein synthesis in mammalian cells and found that this antibiotic altered the in vitro synthesis of antibody to phage MS‐2 in spleen and lymph node cells from immunized rabbits [85].
For protection or for cleaning up the cell cultures, combining of antibiotics with specific antisera or chemical can be used [86]. For fungus or yeast antifungal agents, for example, Amphotericin B (Fungizone) and Nystatnin can help to prevent their growth but will not eliminate them [86]. Mycoplasmas are theoretically not susceptible to common antibiotics such as penicillin and its analogues. Some studies report that several bacteriostatic antimicrobial agents inhibit the growth of mycoplasmas, but not eradicate the contaminants. On the other hand, using of antibiotics causes antibiotic‐resistant strains development [87]. The antibiotics such as aminoglycosides and lincosamides are highly effective in mycoplasma elimination. It was also found that tetracyclines and quinolones are highly effective against mycoplasmas. The quinolones—ciprofloxacin, enrofloxacin—are commercially available as mycoplasma removal agent (MRA). Other product—BM‐Cyclin—contains the macrolide tiamulin and the tetracyclineminocycline [88, 89].
Besides, the culture media requirements, physiochemical conditions for cell cultures should be properly complied. Firstly, incubator was used by Robert Koch in his microbiological studies in the second half of the nineteenth century. Incubators were also used by Virchow, Pasteur or Pettenkofer in their pioneering studies [90]. Use of incubators for cell cultures was recommended by Carrel and Burrows. Working with cell cultures of “warm‐blood” animals, they needed to maintain proper culture temperature [67]. Earlier, some of scientists use only warm media to work with in vitro cultures, but this method was very unsatisfactorily. The CO2 incubators became widely available commercially by the 1960s [91]. Today, cell culture is maintained in automated incubators that ensure proper environmental conditions—temperature, humidity and gaseous atmosphere (see Table 2). Most mammal cell cultures require temperature of 37°C, CO2 in the range of 5–10% and relative humidity (RH) of 95% to minimize media evaporation and condensation [92, 93].
Development of the animal and human cell cultures would not be possible without combination of techniques that prevent cell cultures form bacterial, fungal contaminations. The early safety cabinet dedicated to microbiological researches was, for the first time, presented in 1909 by the W. K. Mulford Pharmaceutical Co., Glenolden, Pa. The first safety cabined (a ventilated hood) was designed to prevent infection with
Good aseptic technique—working with a biological safety cabinets (BSC), use of sterilized equipment, plasticware, glassware,
To prevent cell cultures contamination, the copper CO2 incubators can be used, due to inhibition the growth of many different microorganisms (e.g., bacteria, fungi, algae, yeast). The copper ions disrupt key proteins and proteins essential to microbial life [97],
Mycoplasma testing (monthly) using, for example, PCR‐based kits, DNA fluorochrome staining (Figure 5), autoradiography, ELISA, immunofluorescence, biochemical assays,
Routine microscopic culture observations for microbial and yeast detection,
Use of routine antibiotics should be avoided, and using antibiotics might cause selection of the resistant microbial strains,
Regular filtering of culture media using 0.2 µm filters for protection against bacteria and fungi, and 0.1 µm filters to remove mycoplasma,
Avoiding chemical contamination by testing all new lots of reagents—media, sera, trypsin, water,
Use of medical grade gases rather than industrial grade gas mixture that may contain toxic impurities, for example, carbon monoxide,
To avoid cross‐contamination by other cell lines, monitoring cell culture program should be incorporated, for example, karyotyping, electrophoresis and isoenzyme analysis, detection of markers using immunological or biochemical techniques, DNA fingerprinting [86, 97, 98].
Photomicrographs (400×) of bovine mammary epithelial cells stained with DAPI dye. The clean culture (A) [
In 1961, Leonard Hayflick (1928) and Paul Moorhead defined the finite life span of normal human cells. Hayflick inspired by Carrel\'s observations started research on the possible viral etiology of human cancer [99, 100]. Firstly (in 1958), normal human embryonic cells were exposed to cancer‐cell extracts. Hayflick expected that normal cells would change and display cancer‐like properties, but normal cells did not grow any longer. Hayflick thought that he made a mistake in culture medium composition, glassware cleaning or other technical procedures. A few years later (in 1961), when working with the cytogenetist Paul Moorhead, he performed a series of experiments that validated Carrel\'s theory. In their work, they demonstrated that normal human fibroblasts doubled a finite number of times, stopped dividing and entered the phase III phenomenon. Hayflick divided the time of primary cell culture into three phases [99, 100]. Phase I—“or the primary cell culture that terminates with the formation of the first confluent sheet.” Phase II—“is characterized by luxuriant growth necessitating many subcultivations” [99]. This phase takes about ten months, and the cells in this phase are termed “cell strains” [99, 100]. Finally, the cell strain enters Phase III. In phase III, the cells stop dividing, and the cell strain is lost after a finite period of time. On the basis of these experiments, Hayflick argued that normal cells have a finite capacity to replicate as opposed to cancer cells (e.g., HeLa cell line) that are immortal and display indefinite growth [99, 100].
Hayflick and Moorhead findings revised Carrel\'s idea of cellular immortality. Due to evidence of defined life span of normal cells, Dr. Witkowski conducted his own private investigations to find the answer to the phenomenon of Dr. Carrel\'s immortal cells. In his publication, he presented three theories to explain why the culture obtained by Carrel and his coworkers was maintained in vitro for 34 years. The first hypothesis presented the “cell transformation theory.” It is known that transformation can occur spontaneously and can also be induced by oncogenic viruses, but it is also established that spontaneous transformations occur particularly often in murine cell cultures and are extremely rare in chick cells. The transformed cells usually display changes in morphology and behavior, but Carrel\'s cells were described as being unchanged in appearance. Thus, Witkowski raised a question—“could the ‘immortal’ cells have been a spontaneously transformed cell line?” [67]. The second theory concerns cell contamination. The “immortal strain” was cultured using embryo extract, and Hayflick also noted that periods of intense cell growth corresponded to the occasions on which embryo extract was incorporated in the culture medium [67, 99]. Hayflick suggested that embryo extract contained living cells, and those cells grew and gave the impression that the original cells were stimulated by the extract. The question is Could Alexis Carrel replenish his cultures with “young” cells? [67]. The third theory was the “re‐stocking” theory. It was suggested that the “immortal cells” could originate from intentionally replenished cell culture population by Carrel\'s technicians [67]. The presented theories tried to explain the phenomenon of Carrel\'s culture.
In 1951, Henrietta Lacks was diagnosed with aggressive adenocarcinoma of the cervix by Dr. Jones at Johns Hopkins Hospital in Baltimore. After cervical biopsy, the samples were send to Dr. George Gay (1917–1994)—director of the Tissue Culture Laboratory [52]. His assistant, Mary Kubicek, first noticed that the cells remained viable in a nutrient solution of chicken plasma [101, 102]. She placed Lacks’ specimen into the culture medium and cultured in roller tubes. Established cell cultures grew robustly, were durable and divided every 20 h. This cell line was called HeLa (derived from patient\'s name—Henrietta Lacks), but for years, HeLa cells were also interpreted as originating from Harriet Lane or Helen Larsen [71, 101, 102]. This situation was associated with confidential information about the originator of HeLa cells, and it was until the Obstetrics and Gynecology named Henrietta Lack as the HeLa cell source in 1971 [101–104].
In 1952, Dr. Gay and his coworkers published the results of 1‐year HeLa cultures. They stated that they had established and maintained “continuous roller‐tube cultures for almost a year” [105]. It was demonstrated that the cells of HeLa line grew in various media—in chicken plasma medium, bovine embryo extract and human placental cord serum [102, 105]. HeLa cell line established by Gay gave Jonas Salk and John Enders possibilities to develop poliovirus cultures in a non‐nervous tissue system [71, 101, 102]. The poliomyelitis virus was successfully propagated in HeLa cell cultures by Dr. Gay [102]. HeLa cell line was cultured in almost all known culture media and was rapidly distributed to the laboratories in the United States and other countries to scientists who were interested in cancer studies. HeLa cell line was also distributed to pharmaceutical companies, and thus, HeLa cells became the most popular and valuable resource for cancer studies [96, 102].
The most famous cell line was studied intensively, in particular the mechanisms that made it so aggressive. Currently, it is known that HeLa cells were infected with human papillomavirus 18 responsible for protein synthesis that degrades the protein of the p53 tumor suppressor gene [101]. HPV18‐positive HeLa cells displayed changes in microRNA expression [102]. It was also found that HeLa cells had a mutation within Lacks’ HLA supergene family on chromosome 6 [101]. In 2013, HeLa genome was fully sequenced and published without the knowledge of Lack\'s family (later, the family has endorsed restricted access to HeLa genome data) [103]. Groups from the European Molecular Biology Laboratory and the Institute of Human Genetics (Heidelberg, Germany) determined that the insertion of HPV18 was located on chromosome 8 [106, 107]. This result was consistent with previous studies, but additionally, nine putative viral integration sites were found. It was also discovered that four of the HeLa chromosomes had been shattered and reassembled into highly rearranged chromosomes. The term “chromothripsis” was introduced to define the described phenomenon, and it was found to be associated with 2–3% of all cancers. The presence of chromothripsis was also confirmed especially in chromosome 11 [106, 107]. Other rearrangements were observed on chromosomes 5, 19 and X. The chromothripsis process is also manifested in a high number of CN (copy number along the genome) switches, high interconnectivity and alternations between a low number (2–3) of CN states [106–110]. The comparison of transcriptomes of HeLa with normalized gene expression levels of 16 tissues (from Illumina Human BodyMap 2.0) showed that 1907 genes, of which 805 genes were protein‐coding, were more highly expressed in HeLa cells. Finally, 23,966 genes, of which 5593 were protein‐coding, were not found to expressed in HeLa cells [107].
In the light of the results presented by Landry and his coworkers, the suggestion of the biologist Van Valen made in 1991 that HeLa cells have become new species—
In cell cultures, the transformation may occur spontaneously, and immortal cell populations were observed in many laboratories from the early 1940s to the early 1960s [113]. Immortal cells arise spontaneously from normal cells, and murine cell cultures are especially prone to that process [67, 117]. Cell cultures can be transformed by oncogenic viruses, for example, SV40 [115, 116] or by radiation (x irradiation) [114, 117] and chemical carcinogens, for example, methylocholanthracene [64, 118]. Hayflick defined the immortality term as a”life form capable of indefinite survival in conditions where no changes have occurred in molecular composition from some arbitrary beginning” [119].
Cell culture observations in the fifties brought the conclusions that cells derived from, for example, skin and muscle exhibit contact inhibition of growth. Other findings were made for cells infected with the Rous sarcoma virus. In that case, cell growth was not arrested, and it was the first evidence of cells’ transformation by oncogenic retroviruses. The dense focus assay was widely used to describe oncogenic activity and indicated that the transformed cells displayed the ability to continue proliferate even after they reached confluence. In studies focused on the transformed cells, it was also noted that those cells were able to form a multilayer on top of normal cells. It was also argued that the loss of contact inhibition was correlated with tumorigenicity. The transformed cells were able to anchorage‐independent growth and proliferate in the absence of serum in medium [120]. Working with SV40, scientists developed a model‐transforming virus. SV40 was used for transformations of many different animal and human cell cultures, for example, 3T3 cell line was established [117, 120, 121]. The mechanisms that play a crucial role in immortalization and transformation are not very well defined, but several cell lines provide evidence that telomere maintenance, pRB and p53 tumor suppressor protein pathways are important in these processes [120].
The first hybrid mammalian cells were obtained via viral fusion in human and mouse cells in 1965 by Harris and Watkins. In their work, they demonstrated that fusion of cells of different species was possible [122]. Using a new technique of UV inactivation, Harris and Watkins obtained heterokaryons from human HeLa cells and Ehrlich ascites tumor cells from mice [123].
Firstly, monoclonal antibodies were produced by Georges Köhler and Cesar Milstein in 1984 [52]. They described derivation of a number of culture cell lines that were able to secrete anti‐sheep red blood cell (SRBC) antibodies. Cell fusions were obtained using mouse myeloma and mouse spleen cells from an immunized donor. For cell fusion, two myeloma cell lines derived from BALB/c mice were used. The P1Bu1 cell line was resistant to 5‐bromo‐2′‐deoxyuridine and did not grow in the HAT selective medium. Thus, the cell line secreted a myeloma protein—IgG2A. The second cell line was P3‐X63Ag8, derived from P3 cells resistant to 8‐azaguanine, and did not grow in HAT medium. The P3‐X63Ag8 secreted MOPC 21–IgG1 (κ). Cell fusion was performed using an inactivated Sendai virus. The karyotype of hybrid cells (after 4 months) was lower than the sum of the two parental cell lines. After cell fusion by Sendai virus, the cells of P3‐X63Ag8 line were able to growth in HAT medium and secreted immunoglobulins that contained MOPC 21 protein [124, 125].
Through research conducted by Köhler and Milstein, medicine and science obtained monoclonal antibodies as a very useful tool for research and diagnosis that can be used in the treatment of different diseases, for example, rheumatoid arthritis, cancer, cardiovascular diseases, transplantations or infectious diseases [126–128]. For this reason, in 1984, The Nobel Assembly of Karolinska Institutet decided to award the Nobel Prize in Physiology or Medicine to Niels K. Jerne, Georges J.F. Köhler and César Milstein for theories related to “the specificity in development and control of the immune system” and the discovery of “the principle for production of monoclonal antibodies” [128].
On the basis of knowledge about the cell cycle and gene expression regulation, in 1986, the first therapeutic protein—recombinant tissue‐type plasminogen activator (tPA, Activase; Genentech, San Francisco, CA, USA)—was obtained in the culture of immortalized Chinese hamster (
The production of recombinant proteins in mammalian cells can be performed in two main forms: adherent cell cultures and suspension cell cultures [129]. The example of adherent cells widely used in protein production is the CHO cell line [133]. This immortalized cell line was established by Dr. Puck in his laboratory (at the Eleanor Roosevelt Institute for Cancer Research) in 1957. For establishing primary cell cultures, 0.1 g of ovary tissue of Chinese hamster was used. After the trypsinization process, cell culture was described as predominantly of fibroblast type, with a near diploid karyotype (only about 1% of the cell population had a different number of chromosomes, more or less than 2n = 22). This small difference in diploid character of primary cells is generally rare in primary cells of full diploid karyotype. After some time from establishing the culture, the morphology of cells changed, and it seemed that the cell culture underwent spontaneous immortalization. After further 10 months of the culture, other morphological changes were observed. Recloning of these cells with a modified morphology (from fibroblast‐like to more epitheloid) resulted in the cell line known as CHO (or CHO‐ori) [134]. The CHO cells were used for the first time in biotechnology after establishing the CHO‐DXB11 cell line. This cell line established by Dr. Chasin carries a deletion of one DHFR locus and a missense mutation (T137R) of the second locus. Those changes made the cells totally incapable of the reduction of foliate to dihydrofolate (DHF). This cell line was a system for the production of human tPA in a roller bottle system. The cells are grown attached to the inner wall of the bottle filled with culture medium to 10–30% of its normal volume. The bottles are slowly rotated to assure oxygen supply and to wet the cells [129, 134]. Among other pharmaceutical proteins produced using CHO cultures are Epogen (erythropoietin), ENBREL (a TNF inhibitor) or HERCEPTIN (an anti‐HER2 breast cancer antibody) (see Table 3) [129, 134, 135].
Biotherapeutic product | Type | Therapeutic use | Manufacturer | FDA approval |
---|---|---|---|---|
Activase | Tissue plazminogen activator | Acute myocardial infraction | Genentech | 1987 |
Epogen | Erythropoietin | Anemia | Amgen | 1989 |
Pulmozyme | Deoxyribonuclease I | Cystic fibrosis | Genentech | 1993 |
Cerezyme | β‐Glucocerebrosidase | Gaucher\'s disease | Genzyme | 1994 |
Avonex | Interferon‐β | Relapsing multiple sclerosis | Biogen Idec | 1996 |
Rituxan | Anti‐CD20 mAb | Non‐Hodgkin\'s lymphoma | Genentech, Biogen Idec | 1997 |
Follistim | Follicle stimulating hormone (FSH) | Infertility | Serono | 1997 |
Benefix | Factor IX | Hemophilia B | Wyeth | 1997 |
Herceptin | Anti‐HER2 mAb | Metastatic Brest cancer | Genentech | 1998 |
Tenecteplase | Tissue plazminogen activator (engineered) | Myocardial infraction | Genentech | 2000 |
ReFacto | Factor VIII | Hemophilia A | Wyeth | 2000 |
Aransp | Erythropoietin (engineered) | Anemia | Amgen | 2001 |
Humira | Anti‐TNFα mAb | Rheumatoid arthritis | Abbott | 2002 |
Raptiva | Anti‐CD11a mAb | Chronic psoriasis | Genentech | 2003 |
Xolair | Anti‐IgE mAb | Moderate/severe asthma | Genentech | 2003 |
Avastin | Anti‐VEGF mAb | Metastatic colorectal cancer | Genentech | 2004 |
Luveris | Luteinizing hormone (LH) | Infertility | Serono | 2004 |
Aldurazyme | Laronidase | Mucopolysaccharidosis | Genzyme | 2006 |
Myozyme | α‐Gluosidase | Pompe disease | Genzyme | 2006 |
Vectibix | Anti‐EGFR mAb | Metastatic colorectal cancer | Amgen | 2006 |
Denosumab | Anti‐RANKL mAb | Osteoporosis, giant cell tumor of bone | Amgen | 2010 |
Ipilimumab | Anti‐CTLA4 mAb | Melanoma | Bristol-Myers Squibb | 2011 |
To scale‐up production bioprocesses, adherent cells can also be cultivated in stirred‐tank bioreactors. For anchored‐dependent cells, (e.g., CHO) polymer microcarriers are used, and follicle‐stimulating hormone and virus vaccines were produced this way [129].
The second form of the production of recombinant proteins in mammalian cells is a suspension culture. CHO cells are also capable of growing as a single‐cell suspension. Cell lines, such as NS0, BHK, HEK‐293 or PER‐C6 (human retina‐derived), are grown in suspension. Suspension cultures are optimized for a high‐density cell culture in the absence of serum or other animal‐derived components. In some procedures, the reduction of the temperature (to 30–33°C) and increased osmolarity are used to enhance the production process [129, 136]. Production on a higher scale is possible by using bioreactors. The main types of mammalian cell cultures are batch, fed batch, repeated batch, continuous and perfusion cultures [137].
Finally, mammalian cell culture ensures most often consistent glycosylation patterns and relatively homogeneous (in comparison with
In 2006, Shinya Yamanaka and his colleagues demonstrated that reprogramming of adult mouse tail‐tip fibroblasts toward embryo stem cells by simultaneously induced expression of four transcription factors—Oct3/4, Sox2, Klf4, and c‐Myc—was possible. Reprogrammed cells were selected by the presence of
Other group of scientists—Thomson and his colleagues—demonstrated that pluripotency in human fibroblasts can be obtained by reprogramming of
Firstly noticed that the differences between iPSC and adult human cells were morphology and growth characteristic. Before 2009, the human iPS cells were described as highly similar to human embryonic stem cells (ES), and those similarities included morphology, proliferation, expression of cell‐surface markers, gene expression (with the telomerase expression) and chromatin organization [140]. In 2009, Chin and his colleges [144] presented results obtained from the comparison of three human ESC lines and five iPSC lines. They reported differences in hundreds of genes expression. Deng et al. [145] and Doi et al. [146] reported differences in DNA methylation and indicated that epigenetic memories of donor cells in human iPSC [141].
Induced pluripotent stem cells (IPSCs) are genetically identical to the mature body cells from which they were derived. It was noticed that the same genes are chemically altered in stem cells derived from adult cells, when cells undergo differentiation, and also when the normal cells become cancer cells. The iPSCs display ability to self‐renew and differentiate to every type of cells. The difference between adult and iPSCs is subtle. The study that focused on fibroblasts and the pluripotent stem cells into which they were reprogrammed shows that difference was classified as epigenetic (it was described as—what gets copied when the cell divides, although it is not the part of the DNA sequence). It is due chemical change—methylation that is associated with silencing genes. During that study, differentially methylated regions (DMRs) of genes whose expression was changed in the process of being reprogrammed from a parent cell to a stem cell were identified. The process of reprogramming an adult cell to a stem cell involves DMRs and genes. Studies based on cancer cell showed that differently methylated sites were located in cancer cells which matching up with many of the methylated areas that had been implicated during differentiation processes of normal tissues [146]. It was stated that there is the high degree of overlap between the differently methylated regions and genes that are involved in reprogramming fibroblasts into stem cells and also reprogramming a normal cells into a cancer cells [146].
In 2012, the Nobel Prize in Physiology and Medicine was awarded to John B. Guordon (for the discoveries that proved reversible nature of cell specialization) and Shinya Yamanaka (for reprogramming mature mouse cells to immature cells) [147, 148]. Both discoveries are of great importance in many areas of medicine, for example, oncology and regenerative medicine. It was reported that ESC were successfully used in cartilage repair, peripheral nerve repair or cardiac regenerative therapy. Moreover, MSC were used in certain types of therapies, for example, autologous transplantations or hematopoietic disease therapies [148].
ECM (extracellular matrix) development allows to obtain cell‐cell and ECM‐cell interactions in cultures [52]. Using 2‐D cell cultures, the researchers were not able to mimic in vivo state. The classical monolayer cultures have various limitations, for example, loss of tissue specific architecture, cell‐cell interactions [56, 57]. The new techniques development helped to improve cell cultures microenvironment, for example, three‐dimensional (3D) cell culture models. This technique gave possibility to achieve non‐adherent (anchorage‐independent) and adherent (anchorage‐dependent) cell cultures. For anchorage‐independent cultures, the cell aggregation can be achieved by using low‐attachment surface dishes and/or coated with agarose and poly‐hydroxyethyl methacrylate (pMEMA). The 3‐D cultures of the anchorage‐dependent cells can be obtained by using porous materials for prefabricated scaffolds that support adherence of cells [52]. The 3‐D culture format gives unique possibility to analyze and to understand tumor cell growth, migration, therapy resistance. The culture of multicellular tumor spheroid (MCTS) for anticancer drug screening was developed. For this cell model, chitosan/collagen/alginate (CCA) fibrous scaffold was used, and such 3‐D model gave important information about metastatic spread of carcinoma cells [56, 149]. The 3‐D culture technique is based on the idea to mimic and has many advantages, but this relatively new and innovative technique displays some limitation and disadvantage that are summarized below:
The advantages are as follows:
More representative in vitro model that exhibits biochemical and morphological features specific for the in vivo state,
3‐D culture ensure cell‐cell and cell‐ECM interactions (mechanical and biochemical signals) that are essential for different processes such as differentiation and proliferation,
This type of cultures ensure more accurate tissue‐specific architecture,
More accurate for drug and cancer biology experiments [56],
Different types of 3‐D cell culture systems, for example, 3‐D spheroids grown on matrix, 3‐D spheroids grown within matrix (scaffold‐based 3‐D culture), 3‐D spheroids grown in suspension, scaffold‐free 3‐D culture [77, 150].
The disadvantages are as follows:
Some matrices used for 3‐D cultures are animal‐derived or human‐derived and have components (often unwanted such as growth factors or viruses) from that reason implementation for clinical work is difficult (risk the potential transmission of diseases),
In some 3‐D cultures, detachment of cells is difficult,
Some existing systems fail to mimic the biomechanical characteristics of tissue in vivo represent a static condition [150],
For scaffold‐based culture systems, reproducibility between different batches is unsatisfactory,
In synthetic scaffolds PEG‐based, PEG is cell compatible but inert; cells that are embedded are not able to attach to the matrix without modifications (e.g., RGD‐sites covalently attached to PEG hydrogels),
Difficulties in encapsulated cells recovering (e.g., for isolation of nucleic acids or protein), screening and bioprocessing in 3‐D culture systems like imaging tools are difficult, for example, autofluorescence of collagenous scaffold [150].
Progress in 3‐D cell culture technology created the possibility of tissue engineering development and enhanced progress in the regenerative medicine [52]. Firstly, tissue‐engineered cartilage was developed in nineties, and in 2013, the ear was printed using a hydrogel to form an ear‐shaped scaffold and cells that formed cartilage [151]. The 3‐D bioprinting technology is one of most intriguing innovation, but the idea of 3D printing is not new. The first description of 3‐D printing was made by Charles W. Hull that he called his method “sterolitography” [152–155]. The formation of 3‐D scaffolds for biological materials was the first step in the development of that technology. The next step was to evaluate technique that allows to print living cells layer‐by‐layer into special 3‐D scaffolds [153].
The 3‐D bioprinting technology depends on many elements such as inkjet, microextrusion and laser‐assisted printing. The first inkjets printers used for bioprinting were modified version of widely available 2‐D ink‐based printers. In the cartridge, the ink was replaced with a biological material, and the paper with a stage with controlled elevator to control of the xyz axis. Now, inkjet printers for bioprinting applications use thermal or acoustic methods to eject drops of bioink onto substrate. The other crucial element of bioprinting is the microextrusion that usually consists of a material‐handling system, dispensing system and the stage. The function of the microextrusion printers is to control extrusion of small bead of material, which is deposited onto substrate. The extrusion of material can be controlled by pneumatic or mechanical dispensing systems. The third important factor in organ or tissue printing process is laser‐assisted bioprinting (LAB). The LAB device consists of a pulsed laser beam, a focusing system, a “ribbon” that provides transport of material, and substrates for cell‐containing material. The materials used in regenerative medicine and 3‐D bioprinting are based on natural (e.g., alginate, collagen, chitosan, fibrin) or synthetic polymers (e.g., PEG). Materials should be characterized by good printability, high biocompatibility, known degradation kinetics and byproducts, material biomimicry and proper structural and mechanical attributes [153].
The successful bioprinting process depends on cells selection for tissue or organ printing. Printing organs or tissues requires multiple cell types, for example, the primary functional cells, embryonic and induced pluripotent stem cells. The cells chosen for bioprinting must be robust to survive the printing process, and thus, in many studies, cell lines are used. For example, fibroblast or transformed cell lines are robust enough to shear stress and pressure [153, 155].
The progress in bioprinting manifests in obtained 2‐D tissue such as skin, hollow tubes (e.g., blood vessels, trachea), organs as the bladder or solid organs such as the kidney [153].
The organ and tissue printing will not only solve problem of organ transplantation but will give possibilities to use those construct in drug discovery, chemical, biological or toxicological analysis, and cancer research [153, 156]. For example, the cancer 3‐D tissue model was obtained for human ovarian cancer (OVCAR‐5) cells and normal fibroblast [156].
The future of animal cell technology will enlarge its applications, for example, use of viral vectors for gene therapy, vaccine technology, recombinant protein production for therapeutic purposes. Moreover, human cell cultures can also be used for personal therapies—gene therapies, tissue engineering, transplantation of organs. In the future, more human diseases will be treated by new form of therapies based on organ and tissue cultures [74].
Since HeLa established, immoral cancer cell lines are intensively studied as a biological models to investigate cancers biology (e.g., cancer initiation, progression, metastasis, tumor microenvironment and cancer stem cells) and evolved anticancer drugs or alternative form of therapy, for example, hyperthermal therapy, use of nanoparticles. However, many results obtained from the examination of immortal cancer cell lines suggest that cancer cell lines are not representative, due to cancer heterogeneity and drug‐resistant tumors occurring in patients [157]. To solve the problems with the present standard therapy (“one treatment fits all”), two elements should be realized. The first one, that is based on the idea—“health is a molecular thing,” that focused on genome‐based studies and biomarkers analyses that will expand the range of diagnostic, and the cancer patients will be treated with the optimal targeted therapy [157, 158]. For example, form of personalized medicine was presented by Thomas Blankenstein and Wolfgang Uckert (Berlin Institute of Health) who are working on a T‐cell therapy (using genetically modified T cells) that specifically targets mutations (mutations that lead to errors in the mechanisms that control cell division) in the genome in order to fight tumors [159]. The second one includes the derivation and short‐term culture of primary cells from solid tumors to evaluate or improve personalized cancer therapy [157].
Studies with cancer cell lines give opportunity to understand of tumor biology and allow high‐throughput screening for drug development. Although many important investigations were performed using cancer cell lines, the results give limited information and present low clinical correlation. The genetic aberrations of cancer cell lines that are related with increasing passage numbers are one of the reasons why this type of study does not fully represent clinical situation. Thus, primary tumor cell cultures (e.g., 3‐D tumor culture derived from solid tumor specimens) can give more accurate information about individual cancer cases and support establishment of clinical setting [157, 160].
Due to specify of cancer cells, different therapeutic strategies should be chosen, for example, monoclonal antibodies, radiotherapy, chemotherapy, small molecule inhibitors, targeted therapies or combinations of two, three forms of treatment. Information about the”specify of cancer cells” is complex and includes not only tumor microenvironment and signalling pathways analyses, but also patient‐specific tumor cultures for drug profiling prior to adequate clinical treatment selection [157].
Future medicine will able to use widely stem cells [adult and as well human embryonic stem cells (HESC)] for damage tissue replacement [74]. The idea of Dr. Atala\'s of in situ bioprinting therapy and the results obtained in that area are promising. It was presented by Albanna and his colleagues that “the skin bioprinter is able to deliver two different types of skin cells and biomaterials directly on target locations and cover skin wounds and defects.” It is possible that in the near future, use of skin bioprinters will be a useful tool in surgical reconstruction and a preferred form of therapy in wound and burns treatment [161].
The March of 2020 was the start of the most significant pandemic that the world has ever seen and unleashed a crisis of gigantic proportions. We never imagined that the so advanced human race would be defeated by a virus, impacting different aspects of human development such as education, health, income, well-being, etc. As news of the Covid-19 virus traveled from the Wuhan province of China to the rest of the world, national borders were closed overnight, flights suspended, and lockdowns imposed globally in the first attempt to contain the spread of the virus. The Covid-19 virus brought the entire world to a standstill. With many lost lives and livelihoods, we continue to fight the virus tooth and nail. The virus had a devastating impact on people, businesses, and economic systems, with the entire world, turned upside down. To ensure continuity in how we worked, learned, and lived, the world embraced digital transformation, overhauling systems over the next few months. Lockdown measure shifted many activities online. However, this adoption of technology brought the digital divide globally to the front. The World Economic Forum indicated that more than 4 billion people, mostly in developing countries, still do not have access to the Internet [1]. That is almost half of the world’s population. And, as expected, the impact was severe for people without Internet access. Even with technological advances, Internet access and availability are issues in several countries globally. Many rural and low-income communities worldwide, including those in large urban areas, lack reliable, affordable access. So, when schools and other educational institutions adopted online schooling to ensure learning continued, that was a start to one of the most prolific challenges and changes in the history of educational systems.
The pandemic brought about the most extensive disruption of education systems ever. The United Nations estimates that approximately 1.6 billion students in more than 190 countries were out of classrooms due to the lockdowns imposed by governments across many countries. Schools and other educational institutions closed overnight to contain the spread of the virus, impacting 94 percent of the world’s student population and up to 99 percent in low and lower-middle-income countries [2]. However, education systems worldwide were swift to react and digitally transform themselves. The crisis stimulated innovation within the education sector, with solutions previously thought difficult or impossible to implement were seamlessly adopted within the educational landscape. Educational stakeholders quickly developed distance learning solutions, with online learning becoming the new way of acquiring education from home. Though this shift to online learning mitigated the pandemic’s adverse effects on education, the entire experience also caused many students’ trauma and loss of knowledge, particularly in disadvantaged and vulnerable communities. For these students, the crisis exacerbated the already existing educational inequities globally. Without access to or availability of the Internet, electronic devices for learning or a home environment conducive to learning, students lose learning times. A lot of schools also lacked the infrastructure to help such students. According to the United Nations, the economic impact of the pandemic coupled with school closures could turn the learning crisis into a generational catastrophe impacting the future of many students. Nevertheless, the pandemic has taught us that while technology is here to stay, creating sustainable and resilient systems is required to overcome the challenges and avoid this crisis turning into a generational catastrophe.
According to UNESCO, millions of children do not go to school each day due to emergencies and ongoing humanitarian crises. Schools protect children from the physical dangers around them, provide food, water, health care and hygiene supplies, and ensure their physical and emotional well-being [3]. Education attainment is a significant factor in reducing poverty and increasing a student’s ability to lead a healthy life and participate in society. Despite the enormous benefits of education to children and communities, the United Nations points out that education is often the first service suspended and the last to be restored during a crisis. And this scenario is what we experienced during the Covid-19 pandemic. Though most students experienced the negative impact of the pandemic on their learning, the vulnerable ones before the pandemic were disproportionately affected widening the pre-existing opportunity and achievement gaps.
Schools are a source of daily meals and provide a safe and comforting environment for many students globally, alleviating the difficulties at home. While school closures led to the quick adoption of alternate learning modes, the prominent rise of online learning as a delivery model impacted students from different walks of life. The hardest hit were those from vulnerable and marginalized communities. Students from privileged backgrounds could find a way to work around the new learning systems with access to all or most of the resources required. However, many students from disadvantaged backgrounds lost access to education and other facilities when schools shut down. Students lost access to their meals, health facilities and other benefits apart from learning that schools provide. The Covid-19 pandemic exposed many shortcomings and inequities, such as; limited access to the internet and devices for learning, supportive home learning environment, putting many students at a further disadvantage. Furthermore, other students faced mental and emotional health issues due to social isolation from their friends and peers.
In the United States, the McKinsey & Company [4], analysis of schools showed that the impact of the pandemic on K–12 student learning was significant. Their research indicates that students, on average, were five months behind in mathematics and four months behind in reading by the end of the 2020–2021 school year. In math, students in most Black schools ended the year with six months of unfinished learning, and for students in low-income schools, the deficit was seven months. High schoolers have become more likely to drop out of school, and high school seniors, especially those from low-income families, are less likely to go on to postsecondary education. And the crisis had an impact on not just academics but also on the broader health and well-being of students. Students of color and low-income students suffered the most. Long-standing inequities such as disproportionate levels of punishment, suspensions, assignment to special education programs, inherent racism, stereotyping and social labeling have further compounded other pandemic-related factors such as social isolation and family economic losses. These challenges reiterate the urgent need to build educational systems that are resilient and sustainable and where every child can succeed, irrespective of their background.
Extant research since 2020 in the context of K-12 education examined the impact of Covid-19 on learning loss for students across different parts of the world. Several studies have brought to light the inequities and injustices faced by marginalized groups. Research has also revealed that systems and structures in educational institutions were under immense stress during this crisis. This time of global upheaval and uncertainty allows us to question the design of educational systems that perpetuate and aggravate historical barriers to equitable education. With several kinds of inequities within the educational systems brought to the front during the pandemic, we believe in the need to broaden the notions of academic resilience and bring about a remarkable transformation in the education landscape.
An important lesson from the pandemic is the realization that we as individuals do not exist in isolation, and we are all interconnected. The lesson that we argue can serve as a systematic transformation required to overhaul education systems and redesign them based on strong partnerships and collaborations among its stakeholders. We contend that such sustainable educational systems are required so that all students from every walk of life succeed at school and in life. We argue that creating such sustainable systems would require a mindset that we as a human race are connected, and in order to progress, we must do so together. We characterized this concept as “Ubuntu” mindset that is critical to understanding our interconnection with each other required to build strong partnerships to transform learning environments. Educational leadership and management can benefit from developing an Ubuntu mindset to bring about a transformation where every stakeholder works collaboratively to ensure that every student succeeds. This idea fulfills one of the fundamental principles of ‘transdisciplinary education,’ which scholars highly recommend as one way to accomplish sustainability goals.
The United Nations adopted the Sustainable Development Goals (SDGs), also known as the Global Goals, as a universal call to action to end poverty, protect the planet, and ensure that by 2030 all people enjoy peace and prosperity [5]. The movement serves as the blueprint to achieve a better and more sustainable future for all and address the global challenges we face: poverty, climate change, and educational inequity. The 17 SDGs aim to ensure that development must balance social, economic and environmental sustainability, given their interconnectedness. SDG 4 – Quality Education focuses on ‘
‘ESD for 2030’is the global framework for the implementation of Education for Sustainable Development from 2020 to 2030. The framework emphasizes education’s contribution to the achievement of the SDGs. It aims to review the “
Ubuntu is a philosophy that inspires the beliefs, values, norms and practices of different African societies [11] and is one of the “inspiring dimensions of life in Africa” [12]. Ramose [13] states that “Ubuntu is simultaneously the foundation and the edifice of African philosophy” (p. 49). The notion of Ubuntu has its roots in the sub-Saharan African culture and focuses on the interconnectedness and relationality amongst the human race [14]. The concept is indigenous to the African continent and one of the foundations of the different cultures across Africa. Ubuntu is one of the foundational tenets of African communal cultural life [15], and its meaning is often explained with the phrase “umuntu ngumuntu ngabantu”, which means “a person is a person through other people” [16]. Similarly, Mbigi [17] also stated that Ubuntu literally means “I am because you are – I can only be a person through others” (p. 6). According to Lutz [18], Ubuntu signifies the notion of one being truly human only as a part of the community rather than in isolation. This means that “people are not individuals, living in a state of independence, but part of a community, living in relationships and interdependence” ([19] p. 36). The basic concept is that our social and economic development evolves through relationships with the larger group. Malunga [20] describes Ubuntu as a cultural worldview that captures the essence of being human and humanity. According to Woermann and Engelbrecht [21], Ubuntu “addresses our interconnectedness, our common humanity and the responsibility to each other that flows from our deeply felt connection.”
Describing the core values of Ubuntu, Mangaliso et al. [11] stated vales that include harmony and solidarity, reciprocity, respect for elders, collaboration, mutual concern, compassion, consultation, and consensus”. Similarly, Horwitz [22] points out the significance of collective solidarity and interrelationships, stating that “values such as adherence to social obligations, collective trust, deference to rank and seniority, sanctity of reciprocity and good social and personal relations are relevant” (p. 2943). Ubuntu “addresses our interconnectedness, our common humanity and the responsibility to each other that flows from our deeply felt connection” ([12], p. 1). Oviawe [23] describes Ubuntu as “a philosophy of being that locates identity and meaning-making within a collective approach as opposed to an individualistic one” (p. 3).
Relationality and interconnectedness are central to the concept of Ubuntu. According to Nussbaum ([12], p. 1), “one of the ontological assumptions of Ubuntu is the communal or relational nature of being” The entire idea of Ubuntu is opposite to that of individualism, which characterizes many Western cultures. According to Hofstede [24], individualism can be defined as “a preference for a loosely-knit social framework in which individuals are expected to take care of only themselves and their immediate families” (p. 1). Contrarily, the central belief of Ubuntu is the fact that we are humans only because of the connection that we share with other human beings. Explaining the same, Mbigi ([17], p. 69) stated that, “I cannot separate my humanity from the humanity of those around me”. Pérezts et al. [14] reiterated the fact that “such a relational approach to morality and ethics grounded in harmony, and brings a different ethos to Western approaches, which prioritize utility, autonomy and capability” (p. 736). Ubuntu stresses “an I/we relationship as opposed to the Western I/you relationship with its emphasis on the individual” ([25], p. 21). An individual is bound by others and a sense of community and does not exist independently. Luthans et al. [26] stated, “under Ubuntu there is an individual existence of the self and the simultaneous existence for others” (p. 515).
In his book titled “Ubuntu: Shaping the Current Workplace with (African) Wisdom”, the author Vuyisile Msila [27] demystified the concept of Ubuntu and explained its meaning for everyday corporate life and organizations. He talks about the “five P’s in Ubuntu philosophy:
People-centeredness: Ubuntu emphasizes the role of the people within the organization. Without an interest in people, Ubuntu cannot be realized.
Permeable walls: communication in the organization is not restricted, and the walls are not opaque. All the members can communicate with one another without fear.
Partisanship: one of the most positive factors of the Ubuntu philosophy is loyalty. People communicate freely, making them feel closer to the organization.
Progeny: Ubuntu leadership promotes collective decision-making. However, effective leadership is respected, and the leader is respected.
Production: when the above characterizes the organization, production is guaranteed. The organization prospers when its members enjoy respect, loyalty and good leadership” (p. 15).
According to Mangaliso et al. [11] “a great deal of research on Ubuntu has offered positive vantage points for revaluing African philosophies and translating them into management practices, most notably in the field of human relations” (p. 4). Msila [28] stated that Ubuntu is a very crucial concept for many institutions in the society, including the understanding of leadership and management in varied organizations. Though Ubuntu might be an African philosophy, its basic ideas and ethos have a global appeal for leading and managing people and organizations effectively. According to Lutz [18], the first step in developing a leadership and management style based on upon the philosophy of Ubuntu, is to recognize the organization or institution as a community, where every individual is critical to the success of the community. According to Karsten and Illa [29] “Ubuntu provides a strong philosophical base for the community concept of management” (p. 6). Similarly, McFarlin et al. [30] state that the African management philosophy that “views the corporation as a community and can be summed up in one word – Ubuntu” (p. 71). The idea here is not about maximizing the value for only the owners or shareholders of the organization, but for the entire community and its members who are important stakeholders of the organization. The central idea of Ubuntu is interconnection between individuals. Ubuntu espouses the idea of the collective achievement of the goals of the organization. It does not relegate an individual’s own goal as secondary, but confirms to the idea of achievement of individual goals and the achievement of group goals are equally critical and go hand-in-hand. Ubuntu is about pursuing your own good through the common good [18].
To ensure that we overcome the barriers faced and become more resilient to such drastic effects on schooling systems, a systematic transformation is required. Scholars have indicated that traditional top-down hierarchical structures in school are rigid and not agile to change and adaption. Such hierarchical styles have resulted in dysfunctional schools and researchers call for the need to adopt newer and contemporary leadership and management styles in educational institutions. The pandemic brought to light the interdependence amongst educational stakeholders including children to overcome the difficulties faced during the pandemic. Collaboration, co-operation and partnerships were some of the basic qualities that helped schools overcome the challenges and ensured that there were no interruptions to learning. As we navigate an uncertain future, leading with such a people-centered and collaborative mindset is critical to developing resilience and sustainable education systems. And this is where an Ubuntu mindset comes into the picture. Msila [31] contends Ubuntu as a classic model for educational leadership and management. The communal nature of Ubuntu can help the success of any institution including educational leadership and management. He states that leading with an Ubuntu mindset would enable school leaders to lead school effectively with the resources at their disposal.
Extant research has established the benefits of leading with an Ubuntu mindset for educational leadership and management. The basic fundamental principles of Ubuntu, namely interconnectedness and relationality are important to cater to the diverse stakeholders in educational institutions. Schools have students with different nationalities, cultures, social class, language, values and belief systems. Ubuntu brings together people from different walks of life, to work and live harmoniously. Mbigi and Maree [32] explain that Ubuntu enables one to move towards a common goal based on the belief of collective shared values and solidarity with the group. Similarly, Ubuntu style of leading an organization involves “a departure from hierarchically structured management relations and rather introduces a cooperative and supportive form of leadership in which collective solidarity of the group is employed and respected” ([31], p. 149). Here the leader seeks co-operation and interdependence amongst members of the organization to achieve its goals. Collective solidarity amongst team members can enable the effective achievement of goals. Rather than a top-down management approach, Ubuntu is about shared decision-making, participation, collaboration, cooperation and a shared vision. It is about fostering a culture of collectivism among the organization and progressing the entire system with a ‘whole institution’ approach. Mboyo [33] reiterated how leadership and management of educational systems can benefit from the unique Ubuntu operational patterns such as understanding others’ needs, negotiating and prioritizing needs, assessing available resources, attending to others’ needs, and raised expectations and commitment to organizational goals.
Ubuntu as a philosophy not only helps leading and managing educational institutions, but also can be adopted as a teaching philosophy by teachers to reconstruct their behavior and effectiveness in schools [34]. Today’s culturally diverse societies are reflected in classrooms, where we have students from different walks of life. Ensuring the learning of diverse students requires teachers to adopt strategies that ensure inclusive education processes that help every learner succeed. Ubuntu as a philosophy that can assist teachers to manage classrooms effectively, as it encourages working together amongst people in various settings [35]. Broodryk [36] stated that underlying values of Ubuntu include that of humanness, trust, empathy, respect, tolerance and compassion. Embodying such values would help teachers connect better with their diverse students and this would make a significant difference in the school and student outcomes [37]. With students from marginalized and vulnerable communities facing racism within schools, educators with an Ubuntu mindset would help us address the systematic barriers within the school system. Given the benefits of adopting Ubuntu, Mutanga [38] called for teacher education premised on the indigenous Unhu/Ubuntu philosophy. Pather [39] contended that Ubuntu as a concept, encourages inclusion and cohesion in education, where there is a continued focus on a segregated approach to supporting children. According to Elder et al. [40], Ubuntu can help us with defining and understanding newer interpretations of inclusive education, where every child feels included and an important part of the classroom. Beets [41] recommended “infusing the principles of Ubuntu in the way teachers act, opens new possibilities for deepening the morality of their teaching practice - of how they, for example, use assessment to enhance both teaching and learning in the interests of each learner and ultimately society” (p. 70). Furthermore, Brock-Utne [42] calls for the need of an Ubuntu paradigm in curriculum work, language of instruction and assessment to redesign school systems based on the basic principle of humanity. Similarly, Nxumalo and Mncube [43] recommend the inclusion of Ubuntu philosophy in the school curriculum using indigenous games for teaching a decolonized curriculum content and instilling moral principles and cultural beliefs such as the value of communal identity.
In order to prepare students to cope with the challenges of an uncertain, volatile, ever-changing and a complex world, an approach to teaching needs to meet the ideals of ESD. Only academic or discipline knowledge is inadequate to prepare students to tackle sustainability challenges. Thus, ESD promotes an inter- and a transdisciplinary, learner-centered, participatory, and locally relevant approach to learning and teaching [44]. Sustainability problems are often acknowledged as complex or “wicked problems” that require a multifaceted approach, and this is where transdisciplinary education plays a pivotal role. Transdisciplinarity is characterized by its focus on “wicked problems” that need creative solutions, its reliance on stakeholder involvement, and engaged, socially responsible education [45]. According to UNESCO, “transdisciplinary approach is an approach to curriculum integration which dissolves the boundaries between the conventional disciplines and organizes teaching and learning around the construction of meaning in the context of real-world problems” [46]. This approach focuses on producing knowledge with the help of non-academic stakeholders who bring in practice-based, local and indigenous knowledges [47]. Mutual learning, collaboration, decision-making and problem solving amongst educational institutions, businesses, government and the society characterize transdisciplinarity in education. A transdisciplinary approach to education can “facilitate transformative learning through a focus on real-world challenges, complex systems thinking, the integration of diverse knowledges and reflexivity” ([48], p. 1). According to Kubisch et al. [44], “transdisciplinarity is characterized by three aspects:
The starting points are socially relevant issues, which are jointly identified and which are researched by means of integrative scientific methods, with the aim of developing interdisciplinary solutions or strategies for transformation;
during the whole research process there is an exchange between scientific and non-scientific partners, the latter, e.g., politicians, require the generated knowledge for decision-making;
integration of non-scientific partners, like citizens, to consider experiences and context-based knowledge” (p. 3).
We focus on one critical aspect of transdisciplinarity, that is, the integration of out-of-school partners or reliance on stakeholder involvement in achieving holistic education. This approach is emphasized in the concept of partnerships [49] and the Ubuntu mindset enables development of successful partnerships [50, 51].
Ubuntu can provide a theoretical foundation for adopting a transdisciplinary approach to education given the fact that community and partnerships are central to the Ubuntu mindset. Achieving the SDGs requires the co-production of knowledge between academic and non-academic actors [52]. Transdisciplinarity considers society as an equal partner and recommends the inclusion of practice-based, local and indigenous knowledges, and to “build capacity and consensus by mutual learning processes” ([47], p. 2). Developing an Ubuntu mindset can help educational institutions to develop strong partnerships with the community that can bring in diverse stakeholders and diverse knowledges within the ambit of learning. Building such partnerships with the community gives students an opportunity to actively conduct research on real-world problems and develop sustainable solutions with out-of-school partners [53]. It enables students to integrate knowledge from diverse domains, recognize real-world complexity and engage affected stakeholders in processes of mutual learning [54]. The inclusion of community partners in setting varied challenges for students provides an important source of practical and contextual knowledge, and helps them understand what they have learnt from a real-world perspective. In partnerships, dissimilarities in knowledge, know-hows, competencies and experiences are not considered as a deterrent but as a foundation of productive partnerships, whereby both students and out-of-school partners stand to gain [49]. Such collaborations offer students access to new and different types of knowledge, such as experiential knowledge and different disciplinary methods [55]. Furthermore, according to Rieckmann [56], partnerships enable students to learn “on the basis of a real societal challenge in local contexts” (p. 57). From an ESD perspective, collaboration with various stakeholders, both in and out-of-school, is desirable as it enables students to engage in competency and societal-oriented learning processes around a real-world sustainability problem. Developing an Ubuntu mindset puts collaboration at the heart of all activities within the school, which helps students learn from diverse stakeholders, value multiple perspectives, analyze their own viewpoints, and make informed sustainable decisions. Ubuntu emphasizes interdependence and relationality, and echoes the ideals of transdisciplinarity.
“
These words from the late Archbishop Tutu, the embodiment of Ubuntu, captures the essence of the need to re-imagine our individual selves connected to human development that support our collective survival leaving no one behind. This is an Ubuntu mindset that we have argued is needed to drive the transdisciplinary transformative processes required to achieve the Sustainable Development Goals and make the world a better place for us all.
Msengana [57] reiterated that adopting an Ubunutu mindset can help in building social relationships in a socially and racially divided organization. The author further stated that cultivating an Ubuntu mindset would help foster the spirit of harmony and reconciliation within the organization and society as a whole. Inequities, discrimination or biases, on the basis of race, gender, socioeconomic status, etc., existing in societies are replicated in schools as well Covid-19 has shaken up the entire education system globally and our traditionally entrenched ways of learning & schooling. Survival and resilience became the mantra of educational institutions and pushed all stakeholders to test their limits to ensure learning continued. While the pandemic opened up new possibilities, it also revealed several challenges and systematic barriers. To bring about a transformative change where every student can succeed, requires a mindset change. Desired organizational goals cannot be achieved in isolation but only through the collective efforts of all members of the organization. In a transformational change, people are the most important part of the system and hence, are critical partners in the process and the desired state. Achieving the desire state of change requires multiple partners who come together for a greater good. Such a transformation requires everyone to understand our interconnection and interdependence on each other in order to complete the bigger picture. An Ubuntu mindset is one such concept that would help bring these multiple stakeholders together and create sustainable and future-proof school systems based on a transdisciplinary approach to learning and teaching. Responses to Covid-19 have been an emergency fix to ensure there were no interruptions in schooling. So, as we move towards a new post-pandemic era, this necessitates recommitting and reimagining our humanity to inform the fundamental transformation required in our schooling systems, right from academic achievement to building inclusive education systems that leave no child behind.
IntechOpen has always supported new and evolving ideas in scholarly publishing. We understand the community we serve, but to provide an even better service for our IntechOpen Authors and Academic Editors, we have partnered with leading companies and associations in the scientific field and beyond.
",metaTitle:"Partnerships",metaDescription:"IntechOpen was built by scientists, for scientists. We understand the community we serve, but to bring an even better service to the table for IntechOpen Authors and Academic Editors, we partnered with the leading companies and associations in the industry and beyond.",metaKeywords:null,canonicalURL:"/page/partnerships",contentRaw:'[{"type":"htmlEditorComponent","content":"\\n"}]'},components:[{type:"htmlEditorComponent",content:'
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13389},{group:"region",caption:"Middle and South America",value:2,count:11661},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22334},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33642}],offset:12,limit:12,total:135275},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"-dateEndThirdStepPublish",topicId:"23"},books:[{type:"book",id:"12425",title:"Gun Violence and Prevention",subtitle:null,isOpenForSubmission:!0,hash:"c59a1f1f61c8ea43cdef919ebdaffc37",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12425.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11433",title:"Human Migration in the Last Three Centuries",subtitle:null,isOpenForSubmission:!0,hash:"9836df9e82aa9f82e3852a60204909a8",slug:null,bookSignature:"Dr. Ingrid Muenstermann",coverURL:"https://cdn.intechopen.com/books/images_new/11433.jpg",editedByType:null,editors:[{id:"77112",title:"Dr.",name:"Ingrid",surname:"Muenstermann",slug:"ingrid-muenstermann",fullName:"Ingrid Muenstermann"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11473",title:"Social Inequality - Structure and Social Processes",subtitle:null,isOpenForSubmission:!0,hash:"cefab077e403fd1695fb2946e7914942",slug:null,bookSignature:"Ph.D. Yaroslava Robles-Bykbaev",coverURL:"https://cdn.intechopen.com/books/images_new/11473.jpg",editedByType:null,editors:[{id:"313341",title:"Ph.D.",name:"Yaroslava",surname:"Robles-Bykbaev",slug:"yaroslava-robles-bykbaev",fullName:"Yaroslava Robles-Bykbaev"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11780",title:"Volunteering",subtitle:null,isOpenForSubmission:!0,hash:"008a5fc8005ea6b9228cfe39f9521abe",slug:null,bookSignature:"Ph.D. Diann Kelly",coverURL:"https://cdn.intechopen.com/books/images_new/11780.jpg",editedByType:null,editors:[{id:"325207",title:"Ph.D.",name:"Diann",surname:"Cameron Kelly",slug:"diann-cameron-kelly",fullName:"Diann Cameron Kelly"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11474",title:"Quality of Life Interventions - Magnitude of Effect and Transferability",subtitle:null,isOpenForSubmission:!0,hash:"5a6bcdaf5ee144d043bcdab893ff9e1c",slug:null,bookSignature:"Ph.D. Sage Arbor and Dr. Tafline C. Arbor",coverURL:"https://cdn.intechopen.com/books/images_new/11474.jpg",editedByType:null,editors:[{id:"245319",title:"Ph.D.",name:"Sage",surname:"Arbor",slug:"sage-arbor",fullName:"Sage Arbor"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11438",title:"Fake News in the Era of Global Crises",subtitle:null,isOpenForSubmission:!0,hash:"5f61f975031e13ee705d8b5853f1aa58",slug:null,bookSignature:"Dr. David Eller",coverURL:"https://cdn.intechopen.com/books/images_new/11438.jpg",editedByType:null,editors:[{id:"476616",title:"Dr.",name:"Jack",surname:"Eller",slug:"jack-eller",fullName:"Jack Eller"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12250",title:"Citizen Science - Methods, Approaches and New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"655a28c11339d0891d964ca336d4e076",slug:null,bookSignature:"Dr. Alessio Vovlas",coverURL:"https://cdn.intechopen.com/books/images_new/12250.jpg",editedByType:null,editors:[{id:"313084",title:"Dr.",name:"Alessio",surname:"Vovlas",slug:"alessio-vovlas",fullName:"Alessio Vovlas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11769",title:"Multiculturalism and Interculturalism",subtitle:null,isOpenForSubmission:!0,hash:"6c4bda24f278d74f943f2155f13f4d73",slug:null,bookSignature:"Dr. Muhammad Mohiuddin, Dr. Tareque Aziz and Dr. Sreenivasan Jayashree",coverURL:"https://cdn.intechopen.com/books/images_new/11769.jpg",editedByType:null,editors:[{id:"418514",title:"Dr.",name:"Muhammad",surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12367",title:"Military History",subtitle:null,isOpenForSubmission:!0,hash:"210658c7ff10b14fee1f85fbffc101d6",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12367.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12246",title:"Retirement",subtitle:null,isOpenForSubmission:!0,hash:"006a7132cbe6660a7999e23a3f70a369",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12246.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12247",title:"Unemployment",subtitle:null,isOpenForSubmission:!0,hash:"e6ec2925729d653cd8cfacf55341ec46",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12247.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12248",title:"Public Relations",subtitle:null,isOpenForSubmission:!0,hash:"b8b5e746c77dda862707d565b44085ee",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12248.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:26},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:7},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:16},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:41},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:16},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:66},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:6},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:30},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3737",title:"MATLAB",subtitle:"Modelling, Programming and Simulations",isOpenForSubmission:!1,hash:null,slug:"matlab-modelling-programming-and-simulations",bookSignature:"Emilson Pereira Leite",coverURL:"https://cdn.intechopen.com/books/images_new/3737.jpg",editors:[{id:"12051",title:"Prof.",name:"Emilson",middleName:null,surname:"Pereira Leite",slug:"emilson-pereira-leite",fullName:"Emilson Pereira Leite"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"1770",title:"Gel Electrophoresis",subtitle:"Principles and Basics",isOpenForSubmission:!1,hash:"279701f6c802cf02deef45103e0611ff",slug:"gel-electrophoresis-principles-and-basics",bookSignature:"Sameh Magdeldin",coverURL:"https://cdn.intechopen.com/books/images_new/1770.jpg",editors:[{id:"123648",title:"Dr.",name:"Sameh",middleName:null,surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4797},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7175,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1981,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2308,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1473,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318571,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271836,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",publishedDate:"July 1st 2013",numberOfDownloads:243450,editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1582,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2082,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",publishedDate:"October 17th 2012",numberOfDownloads:256294,editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"16",title:"Medicine",slug:"medicine",parent:{id:"3",title:"Health Sciences",slug:"health-sciences"},numberOfBooks:1715,numberOfSeries:2,numberOfAuthorsAndEditors:44985,numberOfWosCitations:27034,numberOfCrossrefCitations:18318,numberOfDimensionsCitations:42581,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"16",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10482",title:"Human Tooth and Developmental Dental Defects",subtitle:"Compositional and Genetic Implications",isOpenForSubmission:!1,hash:"82a91346a98d34805e30511d6504bd4c",slug:"human-tooth-and-developmental-dental-defects-compositional-and-genetic-implications",bookSignature:"Ana Gil de Bona and Hakan Karaaslan",coverURL:"https://cdn.intechopen.com/books/images_new/10482.jpg",editedByType:"Edited by",editors:[{id:"203919",title:"Dr.",name:"Ana",middleName:null,surname:"Gil De Bona",slug:"ana-gil-de-bona",fullName:"Ana Gil De Bona"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10878",title:"Bioethical Issues in Healthcare",subtitle:null,isOpenForSubmission:!1,hash:"a6f32d3f2227df637fffd969a0cb5ed7",slug:"bioethical-issues-in-healthcare",bookSignature:"Peter A. Clark",coverURL:"https://cdn.intechopen.com/books/images_new/10878.jpg",editedByType:"Edited by",editors:[{id:"58889",title:"Dr.",name:"Peter A.",middleName:null,surname:"Clark",slug:"peter-a.-clark",fullName:"Peter A. Clark"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editedByType:"Edited by",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11044",title:"Dysphagia",subtitle:"New Advances",isOpenForSubmission:!1,hash:"8961f55525f51bd82d3daa09debd158f",slug:"dysphagia-new-advances",bookSignature:"Monjur Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/11044.jpg",editedByType:"Edited by",editors:[{id:"206355",title:"Associate Prof.",name:"Monjur",middleName:null,surname:"Ahmed",slug:"monjur-ahmed",fullName:"Monjur Ahmed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10473",title:"Sarcoidosis",subtitle:"New Perspectives",isOpenForSubmission:!1,hash:"4bffdfb8619408d0a5608527292b6985",slug:"sarcoidosis-new-perspectives",bookSignature:"Seyyed Shamsadin Athari and Entezar Mehrabi Nasab",coverURL:"https://cdn.intechopen.com/books/images_new/10473.jpg",editedByType:"Edited by",editors:[{id:"139889",title:"Dr.",name:"Seyyed Shamsadin",middleName:null,surname:"Athari",slug:"seyyed-shamsadin-athari",fullName:"Seyyed Shamsadin Athari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10835",title:"Autonomic Nervous System",subtitle:"Special Interest Topics",isOpenForSubmission:!1,hash:"48ac242dc6c5073b2590a509c44628e2",slug:"autonomic-nervous-system-special-interest-topics",bookSignature:"Theodoros Aslanidis and Christos Nouris",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",editedByType:"Edited by",editors:[{id:"200252",title:"Dr.",name:"Theodoros",middleName:null,surname:"Aslanidis",slug:"theodoros-aslanidis",fullName:"Theodoros Aslanidis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10792",title:"Radiation Oncology",subtitle:null,isOpenForSubmission:!1,hash:"4bdaabf921c75d51fc30e7076ab83f2a",slug:"radiation-oncology",bookSignature:"Badruddeen, Usama Ahmad, Mohd Aftab Siddiqui and Juber Akhtar",coverURL:"https://cdn.intechopen.com/books/images_new/10792.jpg",editedByType:"Edited by",editors:[{id:"345932",title:"Dr.",name:null,middleName:null,surname:"Badruddeen",slug:"badruddeen",fullName:"Badruddeen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11236",title:"Heart Transplantation",subtitle:"New Insights in Therapeutic Strategies",isOpenForSubmission:!1,hash:"057f326c913ef980a7aaedb700047c03",slug:"heart-transplantation-new-insights-in-therapeutic-strategies",bookSignature:"Norihide Fukushima",coverURL:"https://cdn.intechopen.com/books/images_new/11236.jpg",editedByType:"Edited by",editors:[{id:"284629",title:"Prof.",name:"Norihide",middleName:null,surname:"Fukushima",slug:"norihide-fukushima",fullName:"Norihide Fukushima"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11377",title:"Chagas Disease",subtitle:"From Cellular and Molecular Aspects of Trypanosoma cruzi-Host Interactions to the Clinical Intervention",isOpenForSubmission:!1,hash:"b9bf20f391782bc73924ff9bfb3ccbeb",slug:"chagas-disease-from-cellular-and-molecular-aspects-of-trypanosoma-cruzi-host-interactions-to-the-clinical-intervention",bookSignature:"Rubem Menna-Barreto",coverURL:"https://cdn.intechopen.com/books/images_new/11377.jpg",editedByType:"Edited by",editors:[{id:"174902",title:"Dr.",name:"Rubem",middleName:null,surname:"Menna-Barreto",slug:"rubem-menna-barreto",fullName:"Rubem Menna-Barreto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11042",title:"Complementary Therapies",subtitle:null,isOpenForSubmission:!1,hash:"9eb32ccbef95289a133a76e5808a525b",slug:"complementary-therapies",bookSignature:"Mario Bernardo-Filho, Redha Taiar, Danúbia da Cunha de Sá-Caputo and Adérito Seixas",coverURL:"https://cdn.intechopen.com/books/images_new/11042.jpg",editedByType:"Edited by",editors:[{id:"157376",title:"Prof.",name:"Mario",middleName:null,surname:"Bernardo-Filho",slug:"mario-bernardo-filho",fullName:"Mario Bernardo-Filho"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1715,seriesByTopicCollection:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:141,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:123,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0}],seriesByTopicTotal:2,mostCitedChapters:[{id:"19013",doi:"10.5772/21983",title:"Cell Responses to Surface and Architecture of Tissue Engineering Scaffolds",slug:"cell-responses-to-surface-and-architecture-of-tissue-engineering-scaffolds",totalDownloads:10520,totalCrossrefCites:134,totalDimensionsCites:305,abstract:null,book:{id:"314",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",title:"Regenerative Medicine and Tissue Engineering",fullTitle:"Regenerative Medicine and Tissue Engineering - Cells and Biomaterials"},signatures:"Hsin-I Chang and Yiwei Wang",authors:[{id:"45747",title:"Dr.",name:"Hsin-I",middleName:null,surname:"Chang",slug:"hsin-i-chang",fullName:"Hsin-I Chang"},{id:"53659",title:"Ms.",name:"Yiwei",middleName:null,surname:"Wang",slug:"yiwei-wang",fullName:"Yiwei Wang"}]},{id:"46479",doi:"10.5772/57353",title:"Floating Drug Delivery Systems for Eradication of Helicobacter pylori in Treatment of Peptic Ulcer Disease",slug:"floating-drug-delivery-systems-for-eradication-of-helicobacter-pylori-in-treatment-of-peptic-ulcer-d",totalDownloads:2864,totalCrossrefCites:139,totalDimensionsCites:302,abstract:null,book:{id:"3839",slug:"trends-in-helicobacter-pylori-infection",title:"Trends in Helicobacter pylori Infection",fullTitle:"Trends in Helicobacter pylori Infection"},signatures:"Yousef Javadzadeh and Sanaz Hamedeyazdan",authors:[{id:"94276",title:"Prof.",name:"Yousef",middleName:null,surname:"Javadzadeh",slug:"yousef-javadzadeh",fullName:"Yousef Javadzadeh"},{id:"98229",title:"Dr.",name:"Sanaz",middleName:null,surname:"Hamedeyazdan",slug:"sanaz-hamedeyazdan",fullName:"Sanaz Hamedeyazdan"}]},{id:"25512",doi:"10.5772/30872",title:"Epidemiology of Psychological Distress",slug:"epidemiology-of-psychological-distress",totalDownloads:8820,totalCrossrefCites:95,totalDimensionsCites:256,abstract:null,book:{id:"727",slug:"mental-illnesses-understanding-prediction-and-control",title:"Mental Illnesses",fullTitle:"Mental Illnesses - Understanding, Prediction and Control"},signatures:"Aline Drapeau, Alain Marchand and Dominic Beaulieu-Prévost",authors:[{id:"84582",title:"Dr.",name:"Aline",middleName:null,surname:"Drapeau",slug:"aline-drapeau",fullName:"Aline Drapeau"},{id:"84605",title:"Dr.",name:"Alain",middleName:null,surname:"Marchand",slug:"alain-marchand",fullName:"Alain Marchand"},{id:"84606",title:"Dr.",name:"Dominic",middleName:null,surname:"Beaulieu-Prévost",slug:"dominic-beaulieu-prevost",fullName:"Dominic Beaulieu-Prévost"}]},{id:"27687",doi:"10.5772/29869",title:"Heavy Metals and Human Health",slug:"heavy-metals-and-human-health",totalDownloads:18969,totalCrossrefCites:87,totalDimensionsCites:196,abstract:null,book:{id:"1012",slug:"environmental-health-emerging-issues-and-practice",title:"Environmental Health",fullTitle:"Environmental Health - Emerging Issues and Practice"},signatures:"Simone Morais, Fernando Garcia e Costa and Maria de Lourdes Pereira",authors:[{id:"13875",title:"Prof.",name:"Simone",middleName:null,surname:"Morais",slug:"simone-morais",fullName:"Simone Morais"},{id:"79715",title:"Prof.",name:"Maria De Lourdes",middleName:null,surname:"Pereira",slug:"maria-de-lourdes-pereira",fullName:"Maria De Lourdes Pereira"},{id:"87294",title:"Prof.",name:"Fernando",middleName:null,surname:"Garcia E Costa",slug:"fernando-garcia-e-costa",fullName:"Fernando Garcia E Costa"}]},{id:"40113",doi:"10.5772/49957",title:"Normalization of EMG Signals: To Normalize or Not to Normalize and What to Normalize to?",slug:"normalization-of-emg-signals-to-normalize-or-not-to-normalize-and-what-to-normalize-to-",totalDownloads:12327,totalCrossrefCites:91,totalDimensionsCites:189,abstract:null,book:{id:"2996",slug:"computational-intelligence-in-electromyography-analysis-a-perspective-on-current-applications-and-future-challenges",title:"Computational Intelligence in Electromyography Analysis",fullTitle:"Computational Intelligence in Electromyography Analysis - A Perspective on Current Applications and Future Challenges"},signatures:"Mark Halaki and Karen Ginn",authors:[{id:"151305",title:"Prof.",name:"Karen",middleName:null,surname:"Ginn",slug:"karen-ginn",fullName:"Karen Ginn"},{id:"153880",title:"Dr.",name:"Mark",middleName:null,surname:"Halaki",slug:"mark-halaki",fullName:"Mark Halaki"}]}],mostDownloadedChaptersLast30Days:[{id:"64851",title:"Herbal Medicines in African Traditional Medicine",slug:"herbal-medicines-in-african-traditional-medicine",totalDownloads:14512,totalCrossrefCites:33,totalDimensionsCites:56,abstract:"African traditional medicine is a form of holistic health care system organized into three levels of specialty, namely divination, spiritualism, and herbalism. The traditional healer provides health care services based on culture, religious background, knowledge, attitudes, and beliefs that are prevalent in his community. Illness is regarded as having both natural and supernatural causes and thus must be treated by both physical and spiritual means, using divination, incantations, animal sacrifice, exorcism, and herbs. Herbal medicine is the cornerstone of traditional medicine but may include minerals and animal parts. The adjustment is ok, but may be replaced with –‘ Herbal medicine was once termed primitive by western medicine but through scientific investigations there is a better understanding of its therapeutic activities such that many pharmaceuticals have been modeled on phytochemicals derived from it. Major obstacles to the use of African medicinal plants are their poor quality control and safety. Traditional medical practices are still shrouded with much secrecy, with few reports or documentations of adverse reactions. However, the future of African traditional medicine is bright if viewed in the context of service provision, increase of health care coverage, economic potential, and poverty reduction. Formal recognition and integration of traditional medicine into conventional medicine will hold much promise for the future.",book:{id:"6302",slug:"herbal-medicine",title:"Herbal Medicine",fullTitle:"Herbal Medicine"},signatures:"Ezekwesili-Ofili Josephine Ozioma and Okaka Antoinette Nwamaka\nChinwe",authors:[{id:"191264",title:"Prof.",name:"Josephine",middleName:"Ozioma",surname:"Ozioma Ezekwesili-Ofili",slug:"josephine-ozioma-ezekwesili-ofili",fullName:"Josephine Ozioma Ezekwesili-Ofili"},{id:"211585",title:"Prof.",name:"Antoinette",middleName:null,surname:"Okaka",slug:"antoinette-okaka",fullName:"Antoinette Okaka"}]},{id:"76640",title:"Control of Clinical Laboratory Errors by FMEA Model",slug:"control-of-clinical-laboratory-errors-by-fmea-model",totalDownloads:1208,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Patient safety is an aim for clinical applications and is a fundamental principle of healthcare and quality management. The main global health organizations have incorporated patient safety in their review of work practices. The data provided by the medical laboratories have a direct impact on patient safety and a fault in any of processes such as strategic, operational and support, could affect it. To provide appreciate and reliable data to the physicians, it is important to emphasize the need to design risk management plan in the laboratory. Failure Mode and Effect Analysis (FMEA) is an efficient technique for error detection and reduction. Technical Committee of the International Organization for Standardization (ISO) licensed a technical specification for medical laboratories suggesting FMEA as a method for prospective risk analysis of high-risk processes. FMEA model helps to identify quality failures, their effects and risks with their reduction/elimination, which depends on severity, probability and detection. Applying FMEA in clinical approaches can lead to a significant reduction of the risk priority number (RPN).",book:{id:"9808",slug:"contemporary-topics-in-patient-safety-volume-1",title:"Contemporary Topics in Patient Safety",fullTitle:"Contemporary Topics in Patient Safety - Volume 1"},signatures:"Hoda Sabati, Amin Mohsenzadeh and Nooshin Khelghati",authors:[{id:"340486",title:"M.Sc.",name:"Hoda",middleName:null,surname:"Sabati",slug:"hoda-sabati",fullName:"Hoda Sabati"},{id:"348872",title:"M.Sc.",name:"Amin",middleName:null,surname:"Mohsenzadeh",slug:"amin-mohsenzadeh",fullName:"Amin Mohsenzadeh"},{id:"348874",title:"MSc.",name:"Nooshin",middleName:null,surname:"Khelghati",slug:"nooshin-khelghati",fullName:"Nooshin Khelghati"}]},{id:"65467",title:"Anesthesia Management for Large-Volume Liposuction",slug:"anesthesia-management-for-large-volume-liposuction",totalDownloads:6203,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"The apparent easiness with which liposuction is performed favors that patients, young surgeons, and anesthesiologists without experience in this field ignore the many events that occur during this procedure. Liposuction is a procedure to improve the body contour and not a surgery to reduce weight, although recently people who have failed in their plans to lose weight look at liposuction as a means to contour their body figure. Tumescent liposuction of large volumes requires a meticulous selection of each patient; their preoperative evaluation and perioperative management are essential to obtain the expected results. The various techniques of general anesthesia are the most recommended and should be monitored in the usual way, as well as monitoring the total doses of infiltrated local anesthetics to avoid systemic toxicity. The management of intravenous fluids is controversial, but the current trend is the restricted use of hydrosaline solutions. The most feared complications are deep vein thrombosis, pulmonary thromboembolism, fat embolism, lung edema, hypothermia, infections and even death. The adherence to the management guidelines and prophylaxis of venous thrombosis/thromboembolism is mandatory.",book:{id:"6221",slug:"anesthesia-topics-for-plastic-and-reconstructive-surgery",title:"Anesthesia Topics for Plastic and Reconstructive Surgery",fullTitle:"Anesthesia Topics for Plastic and Reconstructive Surgery"},signatures:"Sergio Granados-Tinajero, Carlos Buenrostro-Vásquez, Cecilia\nCárdenas-Maytorena and Marcela Contreras-López",authors:[{id:"273532",title:"Dr.",name:"Sergio Octavio",middleName:null,surname:"Granados Tinajero",slug:"sergio-octavio-granados-tinajero",fullName:"Sergio Octavio Granados Tinajero"}]},{id:"30178",title:"Chest Mobilization Techniques for Improving Ventilation and Gas Exchange in Chronic Lung Disease",slug:"chest-mobilization-techniques-for-improving-ventilation-and-gas-exchange-in-chronic-lung-disease",totalDownloads:31227,totalCrossrefCites:0,totalDimensionsCites:5,abstract:null,book:{id:"648",slug:"chronic-obstructive-pulmonary-disease-current-concepts-and-practice",title:"Chronic Obstructive Pulmonary Disease",fullTitle:"Chronic Obstructive Pulmonary Disease - Current Concepts and Practice"},signatures:"Donrawee Leelarungrayub",authors:[{id:"73709",title:"Associate Prof.",name:"Jirakrit",middleName:null,surname:"Leelarungrayub",slug:"jirakrit-leelarungrayub",fullName:"Jirakrit Leelarungrayub"}]},{id:"46082",title:"Fecal Incontinence",slug:"fecal-incontinence",totalDownloads:3866,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"3835",slug:"fecal-incontinence-causes-management-and-outcome",title:"Fecal Incontinence",fullTitle:"Fecal Incontinence - Causes, Management and Outcome"},signatures:"Arzu Ilce",authors:[{id:"30672",title:"Dr.",name:"Arzu",middleName:null,surname:"Ilce",slug:"arzu-ilce",fullName:"Arzu Ilce"}]}],onlineFirstChaptersFilter:{topicId:"16",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"83087",title:"Role of Cellular Responses in Periodontal Tissue Destruction",slug:"role-of-cellular-responses-in-periodontal-tissue-destruction",totalDownloads:1,totalDimensionsCites:null,doi:"10.5772/intechopen.106645",abstract:"Periodontal tissue destruction is the deterioration of tooth-supporting components, particularly the periodontal ligament (PDL) and alveolar bone, resulting in gingival recession, root exposure, tooth mobility and drifting, and, finally, tooth loss. The breakdown of the epithelial barriers by infection or mechanical damage allows bacteria and their toxins to enter and stimulates the immune response. The bacteria cause periodontal damage via the cascade of the host reaction which is crucial in the destruction of the connective tissue around the tooth. The OPG/RANKL/RANK system is the key player in bone regulation of periodontal tissue and was controlled by both immune and non-immune cells. This knowledge has predicated the successfulness of implant and orthodontics treatments with the predictable healing and regeneration of the bone and supporting tissues surrounding the teeth.",book:{id:"11566",title:"Periodontology - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11566.jpg"},signatures:"Nam Cong-Nhat Huynh"},{id:"83086",title:"Therapeutic Options in Graves’ Hyperthyroidism",slug:"therapeutic-options-in-graves-hyperthyroidism",totalDownloads:1,totalDimensionsCites:null,doi:"10.5772/intechopen.106562",abstract:"The classical approach to treating Graves’ hyperthyroidism involves rapid control of the symptoms, generally with a beta adrenergic blocker, and reduction of thyroid hormone secretion by antithyroid drugs (ATDs) and/or using one of the several modalities available, including radioactive iodine therapy (RAI), and surgery; the selection of the treatment modalities often varies according to different guidelines, patient preferences and local traditions. Thionamides are invariably used as first-line medication to control hyperthyroidism and induce remission of the disease, thereby relieving the symptoms. In case of failure of the medical therapy, which is not uncommon, definitive treatment with surgery or RAI is the standard modality of management after due consideration and discussion with the patients. However, the therapeutic options available for patients with Graves’ hyperthyroidism have remained largely unchanged for the past several decades despite the current treatments having either limited efficacy or significant adverse effects. The clinical demand for new therapeutic regimens of Graves’ disease has led to the emergence of several new therapeutic ideas/options like biologic, peptide immunomodulation and small molecules, currently under investigations which may lead to the restoration of a euthyroid state without the requirement for ongoing therapy, but the potential risk of immunocompromise and cost implications needs careful consideration.",book:{id:"11712",title:"Hyperthyroidism - Recent Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11712.jpg"},signatures:"Javaid Ahmad Bhat, Shoiab Mohd Patto, Pooran Sharma, Mohammad Hayat Bhat and Shahnaz Ahmad Mir"},{id:"83085",title:"Research Progress on the Health Benefits of Scented Tea",slug:"research-progress-on-the-health-benefits-of-scented-tea",totalDownloads:0,totalDimensionsCites:null,doi:"10.5772/intechopen.106605",abstract:"Scented tea, also known as fragrant tea, mainly comprises green tea as the tea base and the dried and processed flowers of various plants. It is a unique reprocessed tea in China. There are many types of scented tea, including jasmine, lily, osmanthus, rose and honeysuckle. The scenting process greatly influences the quality of the scented tea. Humidifying continuous scenting processes, frying flower processes and innovative drying methods have been developed to resolve the issues of cumbersome, time-consuming and low utilisation rates of flowers in the process of making scented tea. The main chemical components of scented tea are polyphenols as well as exogenous plant glycosides, flavonoids, lactones, coumarins, quercetin, steroids, terpenoids and other compounds. Scented tea plays an active role in the prevention and treatment of various diseases and has as anti-oxidant, anti-cancer, hypoglycaemic, hypolipidemic, immunomodulatory and neuromodulatory effects. This chapter mainly reviews and summarises the types of scented teas and their related health functions.",book:{id:"11821",title:"Health Benefits of Tea - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11821.jpg"},signatures:"Bowen Liu, Jun Zhang, Xiaojian Zhou, Shuduan Deng and Guanben Du"},{id:"83084",title:"Association of Fatness and Leg Power with Blood Pressure in Adolescents",slug:"association-of-fatness-and-leg-power-with-blood-pressure-in-adolescents",totalDownloads:2,totalDimensionsCites:0,doi:"10.5772/intechopen.106279",abstract:"This cross-sectional study examined the independent and joint association of fatness and leg power (LP) with resting blood pressure (BP) in adolescents (12 to 15 years) in Benue state of Nigeria. The present study comprised 2047 adolescents, including 1087 girls. Participants were assessed for body mass index (BMI), LP, and resting BP. Multivariate regression models assessing the associations of the independent variables with BP were conducted. Fatness and LP were independent predictors of resting BP among participants and the relationship of LP with BP was more robust in girls than boys. Combined fatness and LP in predicting BP was modest (R2 = 10.4–14.3%) after controlling for maturity status. Low LP was associated with systolic blood pressure (SBP) in both girls (R2 = 9.0%, β = 0.260, p = 0.001) and boys (R2 = 11.0%, β = 0.226, p = 0.001). In the model for diastolic blood pressure (DBP), only fatness was associated with BP in girls (p = 0.001). The odd of hypertension (HTN) risk among overweight girls was 2.6 times that compared to their healthy-weight peers. Girls with low LP were 0.40 times more likely to develop HTN risk compared to their counterparts with high LP. This study has demonstrated that lower body muscle power is more important than fatness in predicting HTN in adolescent boys and girls.",book:{id:"11022",title:"Weight Management - Challenges and Opportunities",coverURL:"https://cdn.intechopen.com/books/images_new/11022.jpg"},signatures:"Danladi Musa, Daniel Iornyor and Andrew Tyoakaa"},{id:"82915",title:"Imaging Ankylosing Spondylitis",slug:"imaging-ankylosing-spondylitis",totalDownloads:1,totalDimensionsCites:0,doi:"10.5772/intechopen.106345",abstract:"Ankylosing spondylitis (AS) is a chronic inflammatory disease affecting the spine and the sacroiliac joints. AS occurs with the inflammation of the entheses and formation of syndesmophytes and finally sacral and spinal ankylosis. Imaging demonstrates both inflammatory and chronic lesions. Sacroiliitis is the hallmark of the disease. Spinal changes usually take place in advanced stages of the disease. 1984 The Modified New York criteria evaluated for the diagnosis of AS with definite radiological sacroiliitis (bilaterally grade 2 or unilateral grade 3/4 sacroiliitis) on imaging. The Modified New York criteria are well performed in diagnosing the established disease but its sensitivity is too low in early disease identification and leads to a diagnostic delay. So, in 2009 The Assessment in Spondyloarthritis International Society (ASAS) recommended classification criteria for axial spondyloarthritis (axSpA). Patients have sacroiliitis on imaging and ≥1 SpA features (imaging arm) or positive HLA B27 and ≥2 SpA features (clinical arm) are classified as axial SpA. On the imaging arm, either radiographic sacroiliitis according to Modified New York criteria or active inflammation on MRI is required. Imaging is also used for determining extent of disease, monitoring activity and progression of the disease, assessment of the treatment effect, and prognosis in AS patients.",book:{id:"11273",title:"Ankylosing Spondylitis",coverURL:"https://cdn.intechopen.com/books/images_new/11273.jpg"},signatures:"Esra Dilsat Bayrak"},{id:"83074",title:"Targeted Regulation and Cellular Imaging of Tumor-Associated Macrophages in Triple-Negative Breast Cancer: From New Mechanistic Insights to Candidate Translational Applications",slug:"targeted-regulation-and-cellular-imaging-of-tumor-associated-macrophages-in-triple-negative-breast-c",totalDownloads:2,totalDimensionsCites:0,doi:"10.5772/intechopen.105654",abstract:"The complex interplay between immune cells and tumor cells within the tumor microenvironment (TME) can lead to disease progression. Specifically, signals generated in the TME can cause immunosuppression, promoting angiogenesis and immune evasion, which leads to tumor development. The interplay of M1 and M2 macrophage populations that coincide with these tumor markers is particularly important in the TME. Triple-negative breast cancer (TNBC) often presents as advanced disease, and these tumors are also often bereft of recognized molecular targets that can be found in other subtypes, limiting their therapeutic options. However, tumor-associated macrophages (TAMs) infiltration in TNBC is frequently observed. Moreover, a high density of TAMs, particularly M2 macrophages, is associated with poorer outcomes in various cancers, including TNBC. This provides a strong basis for exploiting TAMs as potential therapeutic targets. Specifically, efforts to increase M2 to M1 repolarization are promising therapeutic approaches in TNBC, and four recent studies wherein divergent approaches to target the M2-rich macrophage population and reverse immune subversion are described. These and similar efforts may yield promising diagnostic or therapeutic options for TNBC, a great clinical need.",book:{id:"11277",title:"Macrophages -140 Years of Their Discovery",coverURL:"https://cdn.intechopen.com/books/images_new/11277.jpg"},signatures:"Anupama Hooda-Nehra, Tracey L. Smith, Alejandra I. Ferrer, Fernanda I. Staquicini, Wadih Arap, Renata Pasqualini and Pranela Rameshwar"}],onlineFirstChaptersTotal:747},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:140,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:123,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:22,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"August 14th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"7",title:"Bioinformatics and Medical Informatics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",isOpenForSubmission:!0,editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",slug:"slawomir-wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",biography:"Professor Sławomir Wilczyński, Head of the Chair of Department of Basic Biomedical Sciences, Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Poland. His research interests are focused on modern imaging methods used in medicine and pharmacy, including in particular hyperspectral imaging, dynamic thermovision analysis, high-resolution ultrasound, as well as other techniques such as EPR, NMR and hemispheric directional reflectance. Author of over 100 scientific works, patents and industrial designs. Expert of the Polish National Center for Research and Development, Member of the Investment Committee in the Bridge Alfa NCBiR program, expert of the Polish Ministry of Funds and Regional Policy, Polish Medical Research Agency. Editor-in-chief of the journal in the field of aesthetic medicine and dermatology - Aesthetica.",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},{id:"8",title:"Bioinspired Technology and Biomechanics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",isOpenForSubmission:!0,editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",slug:"adriano-andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",biography:"Dr. Adriano de Oliveira Andrade graduated in Electrical Engineering at the Federal University of Goiás (Brazil) in 1997. He received his MSc and PhD in Biomedical Engineering respectively from the Federal University of Uberlândia (UFU, Brazil) in 2000 and from the University of Reading (UK) in 2005. He completed a one-year Post-Doctoral Fellowship awarded by the DFAIT (Foreign Affairs and International Trade Canada) at the Institute of Biomedical Engineering of the University of New Brunswick (Canada) in 2010. Currently, he is Professor in the Faculty of Electrical Engineering (UFU). He has authored and co-authored more than 200 peer-reviewed publications in Biomedical Engineering. He has been a researcher of The National Council for Scientific and Technological Development (CNPq-Brazil) since 2009. He has served as an ad-hoc consultant for CNPq, CAPES (Coordination for the Improvement of Higher Education Personnel), FINEP (Brazilian Innovation Agency), and other funding bodies on several occasions. He was the Secretary of the Brazilian Society of Biomedical Engineering (SBEB) from 2015 to 2016, President of SBEB (2017-2018) and Vice-President of SBEB (2019-2020). He was the head of the undergraduate program in Biomedical Engineering of the Federal University of Uberlândia (2015 - June/2019) and the head of the Centre for Innovation and Technology Assessment in Health (NIATS/UFU) since 2010. He is the head of the Postgraduate Program in Biomedical Engineering (UFU, July/2019 - to date). He was the secretary of the Parkinson's Disease Association of Uberlândia (2018-2019). Dr. Andrade's primary area of research is focused towards getting information from the neuromuscular system to understand its strategies of organization, adaptation and controlling in the context of motor neuron diseases. His research interests include Biomedical Signal Processing and Modelling, Assistive Technology, Rehabilitation Engineering, Neuroengineering and Parkinson's Disease.",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",isOpenForSubmission:!0,editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",biography:"Dr. Luis Villarreal is a research professor from the Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México. Dr. Villarreal is the editor in chief and founder of the Revista de Ciencias Tecnológicas (RECIT) (https://recit.uabc.mx/) and is a member of several editorial and reviewer boards for numerous international journals. He has published more than thirty international papers and reviewed more than ninety-two manuscripts. His research interests include biomaterials, nanomaterials, bioengineering, biosensors, drug delivery systems, and tissue engineering.",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:27,paginationItems:[{id:"83092",title:"Novel Composites for Bone Tissue Engineering",doi:"10.5772/intechopen.106255",signatures:"Pugalanthipandian Sankaralingam, Poornimadevi Sakthivel and Vijayakumar Chinnaswamy Thangavel",slug:"novel-composites-for-bone-tissue-engineering",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:0,authors:null,book:{title:"Biomimetics - Bridging the Gap",coverURL:"https://cdn.intechopen.com/books/images_new/11453.jpg",subseries:{id:"8",title:"Bioinspired Technology and Biomechanics"}}},{id:"82800",title:"Repurposing Drugs as Potential Therapeutics for the SARS-Cov-2 Viral Infection: Automatizing a Blind Molecular Docking High-throughput Pipeline",doi:"10.5772/intechopen.105792",signatures:"Aldo Herrera-Rodulfo, Mariana Andrade-Medina and Mauricio Carrillo-Tripp",slug:"repurposing-drugs-as-potential-therapeutics-for-the-sars-cov-2-viral-infection-automatizing-a-blind-",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Molecular Docking - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11451.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82582",title:"Protecting Bioelectric Signals from Electromagnetic Interference in a Wireless World",doi:"10.5772/intechopen.105951",signatures:"David Marcarian",slug:"protecting-bioelectric-signals-from-electromagnetic-interference-in-a-wireless-world",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82586",title:"Fundamentals of Molecular Docking and Comparative Analysis of Protein–Small-Molecule Docking Approaches",doi:"10.5772/intechopen.105815",signatures:"Maden Sefika Feyza, Sezer Selin and Acuner Saliha Ece",slug:"fundamentals-of-molecular-docking-and-comparative-analysis-of-protein-small-molecule-docking-approac",totalDownloads:27,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Molecular Docking - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11451.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},overviewPagePublishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",biography:"Michele Lanza is Associate Professor of Ophthalmology at Università della Campania, Luigi Vanvitelli, Napoli, Italy. His fields of interest are anterior segment disease, keratoconus, glaucoma, corneal dystrophies, and cataracts. His research topics include\nintraocular lens power calculation, eye modification induced by refractive surgery, glaucoma progression, and validation of new diagnostic devices in ophthalmology. \nHe has published more than 100 papers in international and Italian scientific journals, more than 60 in journals with impact factors, and chapters in international and Italian books. He has also edited two international books and authored more than 150 communications or posters for the most important international and Italian ophthalmology conferences.",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}]},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:5,paginationItems:[{id:"10845",title:"Marine Ecosystems - Biodiversity, Ecosystem Services and Human Impacts",coverURL:"https://cdn.intechopen.com/books/images_new/10845.jpg",hash:"727e7eb3d4ba529ec5eb4f150e078523",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 22nd 2022",isOpenForSubmission:!0,editors:[{id:"320124",title:"Dr.",name:"Ana M.M.",surname:"Gonçalves",slug:"ana-m.m.-goncalves",fullName:"Ana M.M. Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12222",title:"Advances and Challenges in Microplastics",coverURL:"https://cdn.intechopen.com/books/images_new/12222.jpg",hash:"a36734a551e0997d2255f6ce99eff818",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 1st 2022",isOpenForSubmission:!0,editors:[{id:"347657",title:"Prof.",name:"El-Sayed",surname:"Salama",slug:"el-sayed-salama",fullName:"El-Sayed Salama"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11650",title:"Aquifers - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11650.jpg",hash:"27c1a2a053cb1d83de903c5b969bc3a2",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 12th 2022",isOpenForSubmission:!0,editors:[{id:"271093",title:"Dr.",name:"Abhay",surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12223",title:"Sustainable Management of Natural Resources",coverURL:"https://cdn.intechopen.com/books/images_new/12223.jpg",hash:"1881a08bbd8f5dc1102c5cb7c635bc35",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 19th 2022",isOpenForSubmission:!0,editors:[{id:"144417",title:"Dr.",name:"Mohd Nazip",surname:"Suratman",slug:"mohd-nazip-suratman",fullName:"Mohd Nazip Suratman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11668",title:"Mercury Pollution",coverURL:"https://cdn.intechopen.com/books/images_new/11668.jpg",hash:"0bd111f57835089cad4a9741326dbab7",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 22nd 2022",isOpenForSubmission:!0,editors:[{id:"196849",title:"Dr.",name:"Ahmed",surname:"Abdelhafez",slug:"ahmed-abdelhafez",fullName:"Ahmed Abdelhafez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:27,paginationItems:[{id:"83092",title:"Novel Composites for Bone Tissue Engineering",doi:"10.5772/intechopen.106255",signatures:"Pugalanthipandian Sankaralingam, Poornimadevi Sakthivel and Vijayakumar Chinnaswamy Thangavel",slug:"novel-composites-for-bone-tissue-engineering",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:0,authors:null,book:{title:"Biomimetics - Bridging the Gap",coverURL:"https://cdn.intechopen.com/books/images_new/11453.jpg",subseries:{id:"8",title:"Bioinspired Technology and Biomechanics"}}},{id:"82800",title:"Repurposing Drugs as Potential Therapeutics for the SARS-Cov-2 Viral Infection: Automatizing a Blind Molecular Docking High-throughput Pipeline",doi:"10.5772/intechopen.105792",signatures:"Aldo Herrera-Rodulfo, Mariana Andrade-Medina and Mauricio Carrillo-Tripp",slug:"repurposing-drugs-as-potential-therapeutics-for-the-sars-cov-2-viral-infection-automatizing-a-blind-",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Molecular Docking - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11451.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82582",title:"Protecting Bioelectric Signals from Electromagnetic Interference in a Wireless World",doi:"10.5772/intechopen.105951",signatures:"David Marcarian",slug:"protecting-bioelectric-signals-from-electromagnetic-interference-in-a-wireless-world",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82586",title:"Fundamentals of Molecular Docking and Comparative Analysis of Protein–Small-Molecule Docking Approaches",doi:"10.5772/intechopen.105815",signatures:"Maden Sefika Feyza, Sezer Selin and Acuner Saliha Ece",slug:"fundamentals-of-molecular-docking-and-comparative-analysis-of-protein-small-molecule-docking-approac",totalDownloads:27,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Molecular Docking - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11451.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82392",title:"Nanomaterials as Novel Biomarkers for Cancer Nanotheranostics: State of the Art",doi:"10.5772/intechopen.105700",signatures:"Hao Yu, Zhihai Han, Cunrong Chen and Leisheng Zhang",slug:"nanomaterials-as-novel-biomarkers-for-cancer-nanotheranostics-state-of-the-art",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}},{id:"82184",title:"Biological Sensing Using Infrared SPR Devices Based on ZnO",doi:"10.5772/intechopen.104562",signatures:"Hiroaki Matsui",slug:"biological-sensing-using-infrared-spr-devices-based-on-zno",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hiroaki",surname:"Matsui"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82122",title:"Recent Advances in Biosensing in Tissue Engineering and Regenerative Medicine",doi:"10.5772/intechopen.104922",signatures:"Alma T. Banigo, Chigozie A. Nnadiekwe and Emmanuel M. Beasi",slug:"recent-advances-in-biosensing-in-tissue-engineering-and-regenerative-medicine",totalDownloads:22,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82080",title:"The Clinical Usefulness of Prostate Cancer Biomarkers: Current and Future Directions",doi:"10.5772/intechopen.103172",signatures:"Donovan McGrowder, Lennox Anderson-Jackson, Lowell Dilworth, Shada Mohansingh, Melisa Anderson Cross, Sophia Bryan, Fabian Miller, Cameil Wilson-Clarke, Chukwuemeka Nwokocha, Ruby Alexander-Lindo and Shelly McFarlane",slug:"the-clinical-usefulness-of-prostate-cancer-biomarkers-current-and-future-directions",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82005",title:"Non-Invasive Approach for Glucose Detection in Urine Quality using Its Image Analysis",doi:"10.5772/intechopen.104791",signatures:"Anton Yudhana, Liya Yusrina Sabila, Arsyad Cahya Subrata, Hendriana Helda Pratama and Muhammad Syahrul Akbar",slug:"non-invasive-approach-for-glucose-detection-in-urine-quality-using-its-image-analysis",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81778",title:"Influence of Mechanical Properties of Biomaterials on the Reconstruction of Biomedical Parts via Additive Manufacturing Techniques: An Overview",doi:"10.5772/intechopen.104465",signatures:"Babatunde Olamide Omiyale, Akeem Abiodun Rasheed, Robinson Omoboyode Akinnusi and Temitope Olumide Olugbade",slug:"influence-of-mechanical-properties-of-biomaterials-on-the-reconstruction-of-biomedical-parts-via-add",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}}]},subseriesFiltersForOFChapters:[{caption:"Bioinspired Technology and Biomechanics",value:8,count:1,group:"subseries"},{caption:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",value:9,count:2,group:"subseries"},{caption:"Bioinformatics and Medical Informatics",value:7,count:20,group:"subseries"}],publishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",publishedDate:"July 27th 2022",editedByType:"Edited by",bookSignature:"Dragana Gabrić and Marko Vuletić",hash:"4af8830e463f89c57515c2da2b9777b0",volumeInSeries:11,fullTitle:"Current Concepts in Dental Implantology - From Science to Clinical Research",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić",profilePictureURL:"https://mts.intechopen.com/storage/users/26946/images/system/26946.png",institutionString:"University of Zagreb",institution:{name:"University of Zagreb",institutionURL:null,country:{name:"Croatia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9493",title:"Periodontology",subtitle:"Fundamentals and Clinical Features",coverURL:"https://cdn.intechopen.com/books/images_new/9493.jpg",slug:"periodontology-fundamentals-and-clinical-features",publishedDate:"February 16th 2022",editedByType:"Edited by",bookSignature:"Petra Surlin",hash:"dfe986c764d6c82ae820c2df5843a866",volumeInSeries:8,fullTitle:"Periodontology - Fundamentals and Clinical Features",editors:[{id:"171921",title:"Prof.",name:"Petra",middleName:null,surname:"Surlin",slug:"petra-surlin",fullName:"Petra Surlin",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:"University of Medicine and Pharmacy of Craiova",institution:{name:"University of Medicine and Pharmacy of Craiova",institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9588",title:"Clinical Concepts and Practical Management Techniques in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9588.jpg",slug:"clinical-concepts-and-practical-management-techniques-in-dentistry",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Aneesa Moolla",hash:"42deab8d3bcf3edf64d1d9028d42efd1",volumeInSeries:7,fullTitle:"Clinical Concepts and Practical Management Techniques in Dentistry",editors:[{id:"318170",title:"Dr.",name:"Aneesa",middleName:null,surname:"Moolla",slug:"aneesa-moolla",fullName:"Aneesa Moolla",profilePictureURL:"https://mts.intechopen.com/storage/users/318170/images/system/318170.png",institutionString:"University of the Witwatersrand",institution:{name:"University of the Witwatersrand",institutionURL:null,country:{name:"South Africa"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8202",title:"Periodontal Disease",subtitle:"Diagnostic and Adjunctive Non-surgical Considerations",coverURL:"https://cdn.intechopen.com/books/images_new/8202.jpg",slug:"periodontal-disease-diagnostic-and-adjunctive-non-surgical-considerations",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Nermin Mohammed Ahmed Yussif",hash:"0aee9799da7db2c732be44dd8fed16d8",volumeInSeries:6,fullTitle:"Periodontal Disease - Diagnostic and Adjunctive Non-surgical Considerations",editors:[{id:"210472",title:"Dr.",name:"Nermin",middleName:"Mohammed Ahmed",surname:"Yussif",slug:"nermin-yussif",fullName:"Nermin Yussif",profilePictureURL:"https://mts.intechopen.com/storage/users/210472/images/system/210472.jpg",institutionString:"MSA University",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8837",title:"Human Teeth",subtitle:"Key Skills and Clinical Illustrations",coverURL:"https://cdn.intechopen.com/books/images_new/8837.jpg",slug:"human-teeth-key-skills-and-clinical-illustrations",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Zühre Akarslan and Farid Bourzgui",hash:"ac055c5801032970123e0a196c2e1d32",volumeInSeries:5,fullTitle:"Human Teeth - Key Skills and Clinical Illustrations",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui",profilePictureURL:"https://mts.intechopen.com/storage/users/52177/images/system/52177.png",biography:"Prof. Farid Bourzgui obtained his DMD and his DNSO option in Orthodontics at the School of Dental Medicine, Casablanca Hassan II University, Morocco, in 1995 and 2000, respectively. Currently, he is a professor of Orthodontics. He holds a Certificate of Advanced Study type A in Technology of Biomaterials used in Dentistry (1995); Certificate of Advanced Study type B in Dento-Facial Orthopaedics (1997) from the Faculty of Dental Surgery, University Denis Diderot-Paris VII, France; Diploma of Advanced Study (DESA) in Biocompatibility of Biomaterials from the Faculty of Medicine and Pharmacy of Casablanca (2002); Certificate of Clinical Occlusodontics from the Faculty of Dentistry of Casablanca (2004); University Diploma of Biostatistics and Perceptual Health Measurement from the Faculty of Medicine and Pharmacy of Casablanca (2011); and a University Diploma of Pedagogy of Odontological Sciences from the Faculty of Dentistry of Casablanca (2013). He is the author of several scientific articles, book chapters, and books.",institutionString:"University of Hassan II Casablanca",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"7",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Hassan II Casablanca",institutionURL:null,country:{name:"Morocco"}}},equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7060",title:"Gingival Disease",subtitle:"A Professional Approach for Treatment and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/7060.jpg",slug:"gingival-disease-a-professional-approach-for-treatment-and-prevention",publishedDate:"October 23rd 2019",editedByType:"Edited by",bookSignature:"Alaa Eddin Omar Al Ostwani",hash:"b81d39988cba3a3cf746c1616912cf41",volumeInSeries:4,fullTitle:"Gingival Disease - A Professional Approach for Treatment and Prevention",editors:[{id:"240870",title:"Ph.D.",name:"Alaa Eddin Omar",middleName:null,surname:"Al Ostwani",slug:"alaa-eddin-omar-al-ostwani",fullName:"Alaa Eddin Omar Al Ostwani",profilePictureURL:"https://mts.intechopen.com/storage/users/240870/images/system/240870.jpeg",institutionString:"International University for Science and Technology.",institution:{name:"Islamic University of Science and Technology",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7572",title:"Trauma in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7572.jpg",slug:"trauma-in-dentistry",publishedDate:"July 3rd 2019",editedByType:"Edited by",bookSignature:"Serdar Gözler",hash:"7cb94732cfb315f8d1e70ebf500eb8a9",volumeInSeries:3,fullTitle:"Trauma in Dentistry",editors:[{id:"204606",title:"Dr.",name:"Serdar",middleName:null,surname:"Gözler",slug:"serdar-gozler",fullName:"Serdar Gözler",profilePictureURL:"https://mts.intechopen.com/storage/users/204606/images/system/204606.jpeg",institutionString:"Istanbul Aydin University",institution:{name:"Istanbul Aydın University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7139",title:"Current Approaches in Orthodontics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7139.jpg",slug:"current-approaches-in-orthodontics",publishedDate:"April 10th 2019",editedByType:"Edited by",bookSignature:"Belma Işık Aslan and Fatma Deniz Uzuner",hash:"2c77384eeb748cf05a898d65b9dcb48a",volumeInSeries:2,fullTitle:"Current Approaches in Orthodontics",editors:[{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan",profilePictureURL:"https://mts.intechopen.com/storage/users/42847/images/system/42847.jpg",institutionString:"Gazi University Dentistry Faculty Department of Orthodontics",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6668",title:"Dental Caries",subtitle:"Diagnosis, Prevention and Management",coverURL:"https://cdn.intechopen.com/books/images_new/6668.jpg",slug:"dental-caries-diagnosis-prevention-and-management",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Zühre Akarslan",hash:"b0f7667770a391f772726c3013c1b9ba",volumeInSeries:1,fullTitle:"Dental Caries - Diagnosis, Prevention and Management",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Prosthodontics and Implant Dentistry",value:2,count:3},{group:"subseries",caption:"Oral Health",value:1,count:6}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:3},{group:"publicationYear",caption:"2020",value:2020,count:2},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:148,paginationItems:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/165328/images/system/165328.jpg",biography:"Vahid Asadpour, MS, Ph.D., is currently with the Department of Research and Evaluation, Kaiser Permanente Southern California. He has both an MS and Ph.D. in Biomedical Engineering. He was previously a research scientist at the University of California Los Angeles (UCLA) and visiting professor and researcher at the University of North Dakota. He is currently working in artificial intelligence and its applications in medical signal processing. In addition, he is using digital signal processing in medical imaging and speech processing. Dr. Asadpour has developed brain-computer interfacing algorithms and has published books, book chapters, and several journal and conference papers in this field and other areas of intelligent signal processing. He has also designed medical devices, including a laser Doppler monitoring system.",institutionString:"Kaiser Permanente Southern California",institution:null},{id:"169608",title:"Prof.",name:"Marian",middleName:null,surname:"Găiceanu",slug:"marian-gaiceanu",fullName:"Marian Găiceanu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/169608/images/system/169608.png",biography:"Prof. Dr. Marian Gaiceanu graduated from the Naval and Electrical Engineering Faculty, Dunarea de Jos University of Galati, Romania, in 1997. He received a Ph.D. (Magna Cum Laude) in Electrical Engineering in 2002. Since 2017, Dr. Gaiceanu has been a Ph.D. supervisor for students in Electrical Engineering. He has been employed at Dunarea de Jos University of Galati since 1996, where he is currently a professor. Dr. Gaiceanu is a member of the National Council for Attesting Titles, Diplomas and Certificates, an expert of the Executive Agency for Higher Education, Research Funding, and a member of the Senate of the Dunarea de Jos University of Galati. He has been the head of the Integrated Energy Conversion Systems and Advanced Control of Complex Processes Research Center, Romania, since 2016. He has conducted several projects in power converter systems for electrical drives, power quality, PEM and SOFC fuel cell power converters for utilities, electric vehicles, and marine applications with the Department of Regulation and Control, SIEI S.pA. (2002–2004) and the Polytechnic University of Turin, Italy (2002–2004, 2006–2007). He is a member of the Institute of Electrical and Electronics Engineers (IEEE) and cofounder-member of the IEEE Power Electronics Romanian Chapter. He is a guest editor at Energies and an academic book editor for IntechOpen. He is also a member of the editorial boards of the Journal of Electrical Engineering, Electronics, Control and Computer Science and Sustainability. Dr. Gaiceanu has been General Chairman of the IEEE International Symposium on Electrical and Electronics Engineering in the last six editions.",institutionString:'"Dunarea de Jos" University of Galati',institution:{name:'"Dunarea de Jos" University of Galati',country:{name:"Romania"}}},{id:"4519",title:"Prof.",name:"Jaydip",middleName:null,surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4519/images/system/4519.jpeg",biography:"Jaydip Sen is associated with Praxis Business School, Kolkata, India, as a professor in the Department of Data Science. His research areas include security and privacy issues in computing and communication, intrusion detection systems, machine learning, deep learning, and artificial intelligence in the financial domain. He has more than 200 publications in reputed international journals, refereed conference proceedings, and 20 book chapters in books published by internationally renowned publishing houses, such as Springer, CRC press, IGI Global, etc. Currently, he is serving on the editorial board of the prestigious journal Frontiers in Communications and Networks and in the technical program committees of a number of high-ranked international conferences organized by the IEEE, USA, and the ACM, USA. He has been listed among the top 2% of scientists in the world for the last three consecutive years, 2019 to 2021 as per studies conducted by the Stanford University, USA.",institutionString:"Praxis Business School",institution:null},{id:"320071",title:"Dr.",name:"Sidra",middleName:null,surname:"Mehtab",slug:"sidra-mehtab",fullName:"Sidra Mehtab",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002v6KHoQAM/Profile_Picture_1584512086360",biography:"Sidra Mehtab has completed her BS with honors in Physics from Calcutta University, India in 2018. She has done MS in Data Science and Analytics from Maulana Abul Kalam Azad University of Technology (MAKAUT), Kolkata, India in 2020. Her research areas include Econometrics, Time Series Analysis, Machine Learning, Deep Learning, Artificial Intelligence, and Computer and Network Security with a particular focus on Cyber Security Analytics. Ms. Mehtab has published seven papers in international conferences and one of her papers has been accepted for publication in a reputable international journal. She has won the best paper awards in two prestigious international conferences – BAICONF 2019, and ICADCML 2021, organized in the Indian Institute of Management, Bangalore, India in December 2019, and SOA University, Bhubaneswar, India in January 2021. Besides, Ms. Mehtab has also published two book chapters in two books. Seven of her book chapters will be published in a volume shortly in 2021 by Cambridge Scholars’ Press, UK. Currently, she is working as the joint editor of two edited volumes on Time Series Analysis and Forecasting to be published in the first half of 2021 by an international house. Currently, she is working as a Data Scientist with an MNC in Delhi, India.",institutionString:"NSHM College of Management and Technology",institution:{name:"Association for Computing Machinery",country:{name:"United States of America"}}},{id:"226240",title:"Dr.",name:"Andri Irfan",middleName:null,surname:"Rifai",slug:"andri-irfan-rifai",fullName:"Andri Irfan Rifai",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/226240/images/7412_n.jpg",biography:"Andri IRFAN is a Senior Lecturer of Civil Engineering and Planning. He completed the PhD at the Universitas Indonesia & Universidade do Minho with Sandwich Program Scholarship from the Directorate General of Higher Education and LPDP scholarship. He has been teaching for more than 19 years and much active to applied his knowledge in the project construction in Indonesia. His research interest ranges from pavement management system to advanced data mining techniques for transportation engineering. He has published more than 50 papers in journals and 2 books.",institutionString:null,institution:{name:"Universitas Internasional Batam",country:{name:"Indonesia"}}},{id:"314576",title:"Dr.",name:"Ibai",middleName:null,surname:"Laña",slug:"ibai-lana",fullName:"Ibai Laña",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314576/images/system/314576.jpg",biography:"Dr. Ibai Laña works at TECNALIA as a data analyst. He received his Ph.D. in Artificial Intelligence from the University of the Basque Country (UPV/EHU), Spain, in 2018. He is currently a senior researcher at TECNALIA. His research interests fall within the intersection of intelligent transportation systems, machine learning, traffic data analysis, and data science. He has dealt with urban traffic forecasting problems, applying machine learning models and evolutionary algorithms. He has experience in origin-destination matrix estimation or point of interest and trajectory detection. Working with large volumes of data has given him a good command of big data processing tools and NoSQL databases. He has also been a visiting scholar at the Knowledge Engineering and Discovery Research Institute, Auckland University of Technology.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"314575",title:"Dr.",name:"Jesus",middleName:null,surname:"L. Lobo",slug:"jesus-l.-lobo",fullName:"Jesus L. Lobo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314575/images/system/314575.png",biography:"Dr. Jesús López is currently based in Bilbao (Spain) working at TECNALIA as Artificial Intelligence Research Scientist. In most cases, a project idea or a new research line needs to be investigated to see if it is good enough to take into production or to focus on it. That is exactly what he does, diving into Machine Learning algorithms and technologies to help TECNALIA to decide whether something is great in theory or will actually impact on the product or processes of its projects. So, he is expert at framing experiments, developing hypotheses, and proving whether they’re true or not, in order to investigate fundamental problems with a longer time horizon. He is also able to design and develop PoCs and system prototypes in simulation. He has participated in several national and internacional R&D projects.\n\nAs another relevant part of his everyday research work, he usually publishes his findings in reputed scientific refereed journals and international conferences, occasionally acting as reviewer and Programme Commitee member. Concretely, since 2018 he has published 9 JCR (8 Q1) journal papers, 9 conference papers (e.g. ECML PKDD 2021), and he has co-edited a book. He is also active in popular science writing data science stories for reputed blogs (KDNuggets, TowardsDataScience, Naukas). Besides, he has recently embarked on mentoring programmes as mentor, and has also worked as data science trainer.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"103779",title:"Prof.",name:"Yalcin",middleName:null,surname:"Isler",slug:"yalcin-isler",fullName:"Yalcin Isler",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRyQ8QAK/Profile_Picture_1628834958734",biography:"Yalcin Isler (1971 - Burdur / Turkey) received the B.Sc. degree in the Department of Electrical and Electronics Engineering from Anadolu University, Eskisehir, Turkey, in 1993, the M.Sc. degree from the Department of Electronics and Communication Engineering, Suleyman Demirel University, Isparta, Turkey, in 1996, the Ph.D. degree from the Department of Electrical and Electronics Engineering, Dokuz Eylul University, Izmir, Turkey, in 2009, and the Competence of Associate Professorship from the Turkish Interuniversity Council in 2019.\n\nHe was Lecturer at Burdur Vocational School in Suleyman Demirel University (1993-2000, Burdur / Turkey), Software Engineer (2000-2002, Izmir / Turkey), Research Assistant in Bulent Ecevit University (2002-2003, Zonguldak / Turkey), Research Assistant in Dokuz Eylul University (2003-2010, Izmir / Turkey), Assistant Professor at the Department of Electrical and Electronics Engineering in Bulent Ecevit University (2010-2012, Zonguldak / Turkey), Assistant Professor at the Department of Biomedical Engineering in Izmir Katip Celebi University (2012-2019, Izmir / Turkey). He is an Associate Professor at the Department of Biomedical Engineering at Izmir Katip Celebi University, Izmir / Turkey, since 2019. In addition to academics, he has also founded Islerya Medical and Information Technologies Company, Izmir / Turkey, since 2017.\n\nHis main research interests cover biomedical signal processing, pattern recognition, medical device design, programming, and embedded systems. He has many scientific papers and participated in several projects in these study fields. He was an IEEE Student Member (2009-2011) and IEEE Member (2011-2014) and has been IEEE Senior Member since 2014.",institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",country:{name:"Turkey"}}},{id:"339677",title:"Dr.",name:"Mrinmoy",middleName:null,surname:"Roy",slug:"mrinmoy-roy",fullName:"Mrinmoy Roy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/339677/images/16768_n.jpg",biography:"An accomplished Sales & Marketing professional with 12 years of cross-functional experience in well-known organisations such as CIPLA, LUPIN, GLENMARK, ASTRAZENECA across different segment of Sales & Marketing, International Business, Institutional Business, Product Management, Strategic Marketing of HIV, Oncology, Derma, Respiratory, Anti-Diabetic, Nutraceutical & Stomatological Product Portfolio and Generic as well as Chronic Critical Care Portfolio. A First Class MBA in International Business & Strategic Marketing, B.Pharm, D.Pharm, Google Certified Digital Marketing Professional. Qualified PhD Candidate in Operations and Management with special focus on Artificial Intelligence and Machine Learning adoption, analysis and use in Healthcare, Hospital & Pharma Domain. Seasoned with diverse therapy area of Pharmaceutical Sales & Marketing ranging from generating revenue through generating prescriptions, launching new products, and making them big brands with continuous strategy execution at the Physician and Patients level. Moved from Sales to Marketing and Business Development for 3.5 years in South East Asian Market operating from Manila, Philippines. Came back to India and handled and developed Brands such as Gluconorm, Lupisulin, Supracal, Absolut Woman, Hemozink, Fabiflu (For COVID 19), and many more. In my previous assignment I used to develop and execute strategies on Sales & Marketing, Commercialization & Business Development for Institution and Corporate Hospital Business portfolio of Oncology Therapy Area for AstraZeneca Pharma India Ltd. Being a Research Scholar and Student of ‘Operations Research & Management: Artificial Intelligence’ I published several pioneer research papers and book chapters on the same in Internationally reputed journals and Books indexed in Scopus, Springer and Ei Compendex, Google Scholar etc. Currently, I am launching PGDM Pharmaceutical Management Program in IIHMR Bangalore and spearheading the course curriculum and structure of the same. I am interested in Collaboration for Healthcare Innovation, Pharma AI Innovation, Future trend in Marketing and Management with incubation on Healthcare, Healthcare IT startups, AI-ML Modelling and Healthcare Algorithm based training module development. I am also an affiliated member of the Institute of Management Consultant of India, looking forward to Healthcare, Healthcare IT and Innovation, Pharma and Hospital Management Consulting works.",institutionString:null,institution:{name:"Lovely Professional University",country:{name:"India"}}},{id:"310576",title:"Prof.",name:"Erick Giovani",middleName:null,surname:"Sperandio Nascimento",slug:"erick-giovani-sperandio-nascimento",fullName:"Erick Giovani Sperandio Nascimento",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0033Y00002pDKxDQAW/ProfilePicture%202022-06-20%2019%3A57%3A24.788",biography:"Prof. Erick Sperandio is the Lead Researcher and professor of Artificial Intelligence (AI) at SENAI CIMATEC, Bahia, Brazil, also working with Computational Modeling (CM) and HPC. He holds a PhD in Environmental Engineering in the area of Atmospheric Computational Modeling, a Master in Informatics in the field of Computational Intelligence and Graduated in Computer Science from UFES. He currently coordinates, leads and participates in R&D projects in the areas of AI, computational modeling and supercomputing applied to different areas such as Oil and Gas, Health, Advanced Manufacturing, Renewable Energies and Atmospheric Sciences, advising undergraduate, master's and doctoral students. He is the Lead Researcher at SENAI CIMATEC's Reference Center on Artificial Intelligence. In addition, he is a Certified Instructor and University Ambassador of the NVIDIA Deep Learning Institute (DLI) in the areas of Deep Learning, Computer Vision, Natural Language Processing and Recommender Systems, and Principal Investigator of the NVIDIA/CIMATEC AI Joint Lab, the first in Latin America within the NVIDIA AI Technology Center (NVAITC) worldwide program. He also works as a researcher at the Supercomputing Center for Industrial Innovation (CS2i) and at the SENAI Institute of Innovation for Automation (ISI Automação), both from SENAI CIMATEC. He is a member and vice-coordinator of the Basic Board of Scientific-Technological Advice and Evaluation, in the area of Innovation, of the Foundation for Research Support of the State of Bahia (FAPESB). He serves as Technology Transfer Coordinator and one of the Principal Investigators at the National Applied Research Center in Artificial Intelligence (CPA-IA) of SENAI CIMATEC, focusing on Industry, being one of the six CPA-IA in Brazil approved by MCTI / FAPESP / CGI.br. He also participates as one of the representatives of Brazil in the BRICS Innovation Collaboration Working Group on HPC, ICT and AI. He is the coordinator of the Work Group of the Axis 5 - Workforce and Training - of the Brazilian Strategy for Artificial Intelligence (EBIA), and member of the MCTI/EMBRAPII AI Innovation Network Training Committee. He is the coordinator, by SENAI CIMATEC, of the Artificial Intelligence Reference Network of the State of Bahia (REDE BAH.IA). He leads the working group of experts representing Brazil in the Global Partnership on Artificial Intelligence (GPAI), on the theme \"AI and the Pandemic Response\".",institutionString:"Manufacturing and Technology Integrated Campus – SENAI CIMATEC",institution:null},{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:'"Politechnica" University Timişoara',institution:null},{id:"221364",title:"Dr.",name:"Eneko",middleName:null,surname:"Osaba",slug:"eneko-osaba",fullName:"Eneko Osaba",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/221364/images/system/221364.jpg",biography:"Dr. Eneko Osaba works at TECNALIA as a senior researcher. He obtained his Ph.D. in Artificial Intelligence in 2015. He has participated in more than twenty-five local and European research projects, and in the publication of more than 130 papers. He has performed several stays at universities in the United Kingdom, Italy, and Malta. Dr. Osaba has served as a program committee member in more than forty international conferences and participated in organizing activities in more than ten international conferences. He is a member of the editorial board of the International Journal of Artificial Intelligence, Data in Brief, and Journal of Advanced Transportation. He is also a guest editor for the Journal of Computational Science, Neurocomputing, Swarm, and Evolutionary Computation and IEEE ITS Magazine.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"275829",title:"Dr.",name:"Esther",middleName:null,surname:"Villar-Rodriguez",slug:"esther-villar-rodriguez",fullName:"Esther Villar-Rodriguez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/275829/images/system/275829.jpg",biography:"Dr. Esther Villar obtained a Ph.D. in Information and Communication Technologies from the University of Alcalá, Spain, in 2015. She obtained a degree in Computer Science from the University of Deusto, Spain, in 2010, and an MSc in Computer Languages and Systems from the National University of Distance Education, Spain, in 2012. Her areas of interest and knowledge include natural language processing (NLP), detection of impersonation in social networks, semantic web, and machine learning. Dr. Esther Villar made several contributions at conferences and publishing in various journals in those fields. Currently, she is working within the OPTIMA (Optimization Modeling & Analytics) business of TECNALIA’s ICT Division as a data scientist in projects related to the prediction and optimization of management and industrial processes (resource planning, energy efficiency, etc).",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"278948",title:"Dr.",name:"Carlos Pedro",middleName:null,surname:"Gonçalves",slug:"carlos-pedro-goncalves",fullName:"Carlos Pedro Gonçalves",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRcmyQAC/Profile_Picture_1564224512145",biography:'Carlos Pedro Gonçalves (PhD) is an Associate Professor at Lusophone University of Humanities and Technologies and a researcher on Complexity Sciences, Quantum Technologies, Artificial Intelligence, Strategic Studies, Studies in Intelligence and Security, FinTech and Financial Risk Modeling. He is also a progammer with programming experience in:\n\nA) Quantum Computing using Qiskit Python module and IBM Quantum Experience Platform, with software developed on the simulation of Quantum Artificial Neural Networks and Quantum Cybersecurity;\n\nB) Artificial Intelligence and Machine learning programming in Python;\n\nC) Artificial Intelligence, Multiagent Systems Modeling and System Dynamics Modeling in Netlogo, with models developed in the areas of Chaos Theory, Econophysics, Artificial Intelligence, Classical and Quantum Complex Systems Science, with the Econophysics models having been cited worldwide and incorporated in PhD programs by different Universities.\n\nReceived an Arctic Code Vault Contributor status by GitHub, due to having developed open source software preserved in the \\"Arctic Code Vault\\" for future generations (https://archiveprogram.github.com/arctic-vault/), with the Strategy Analyzer A.I. module for decision making support (based on his PhD thesis, used in his Classes on Decision Making and in Strategic Intelligence Consulting Activities) and QNeural Python Quantum Neural Network simulator also preserved in the \\"Arctic Code Vault\\", for access to these software modules see: https://github.com/cpgoncalves. He is also a peer reviewer with outsanding review status from Elsevier journals, including Physica A, Neurocomputing and Engineering Applications of Artificial Intelligence. Science CV available at: https://www.cienciavitae.pt//pt/8E1C-A8B3-78C5 and ORCID: https://orcid.org/0000-0002-0298-3974',institutionString:"University of Lisbon",institution:{name:"Universidade Lusófona",country:{name:"Portugal"}}},{id:"241400",title:"Prof.",name:"Mohammed",middleName:null,surname:"Bsiss",slug:"mohammed-bsiss",fullName:"Mohammed Bsiss",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241400/images/8062_n.jpg",biography:null,institutionString:null,institution:null},{id:"276128",title:"Dr.",name:"Hira",middleName:null,surname:"Fatima",slug:"hira-fatima",fullName:"Hira Fatima",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/276128/images/14420_n.jpg",biography:"Dr. Hira Fatima\nAssistant Professor\nDepartment of Mathematics\nInstitute of Applied Science\nMangalayatan University, Aligarh\nMobile: no : 8532041179\nhirafatima2014@gmal.com\n\nDr. Hira Fatima has received his Ph.D. degree in pure Mathematics from Aligarh Muslim University, Aligarh India. Currently working as an Assistant Professor in the Department of Mathematics, Institute of Applied Science, Mangalayatan University, Aligarh. She taught so many courses of Mathematics of UG and PG level. Her research Area of Expertise is Functional Analysis & Sequence Spaces. She has been working on Ideal Convergence of double sequence. She has published 17 research papers in National and International Journals including Cogent Mathematics, Filomat, Journal of Intelligent and Fuzzy Systems, Advances in Difference Equations, Journal of Mathematical Analysis, Journal of Mathematical & Computer Science etc. She has also reviewed few research papers for the and international journals. She is a member of Indian Mathematical Society.",institutionString:null,institution:null},{id:"414880",title:"Dr.",name:"Maryam",middleName:null,surname:"Vatankhah",slug:"maryam-vatankhah",fullName:"Maryam Vatankhah",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Borough of Manhattan Community College",country:{name:"United States of America"}}},{id:"414879",title:"Prof.",name:"Mohammad-Reza",middleName:null,surname:"Akbarzadeh-Totonchi",slug:"mohammad-reza-akbarzadeh-totonchi",fullName:"Mohammad-Reza Akbarzadeh-Totonchi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Ferdowsi University of Mashhad",country:{name:"Iran"}}},{id:"414878",title:"Prof.",name:"Reza",middleName:null,surname:"Fazel-Rezai",slug:"reza-fazel-rezai",fullName:"Reza Fazel-Rezai",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"American Public University System",country:{name:"United States of America"}}},{id:"426586",title:"Dr.",name:"Oladunni A.",middleName:null,surname:"Daramola",slug:"oladunni-a.-daramola",fullName:"Oladunni A. Daramola",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Federal University of Technology",country:{name:"Nigeria"}}},{id:"357014",title:"Prof.",name:"Leon",middleName:null,surname:"Bobrowski",slug:"leon-bobrowski",fullName:"Leon Bobrowski",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Bialystok University of Technology",country:{name:"Poland"}}},{id:"302698",title:"Dr.",name:"Yao",middleName:null,surname:"Shan",slug:"yao-shan",fullName:"Yao Shan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Dalian University of Technology",country:{name:"China"}}},{id:"354126",title:"Dr.",name:"Setiawan",middleName:null,surname:"Hadi",slug:"setiawan-hadi",fullName:"Setiawan Hadi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Padjadjaran University",country:{name:"Indonesia"}}},{id:"125911",title:"Prof.",name:"Jia-Ching",middleName:null,surname:"Wang",slug:"jia-ching-wang",fullName:"Jia-Ching Wang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Central University",country:{name:"Taiwan"}}},{id:"332603",title:"Prof.",name:"Kumar S.",middleName:null,surname:"Ray",slug:"kumar-s.-ray",fullName:"Kumar S. Ray",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Statistical Institute",country:{name:"India"}}},{id:"415409",title:"Prof.",name:"Maghsoud",middleName:null,surname:"Amiri",slug:"maghsoud-amiri",fullName:"Maghsoud Amiri",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Allameh Tabataba'i University",country:{name:"Iran"}}},{id:"357085",title:"Mr.",name:"P. Mohan",middleName:null,surname:"Anand",slug:"p.-mohan-anand",fullName:"P. Mohan Anand",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"356696",title:"Ph.D. Student",name:"P.V.",middleName:null,surname:"Sai Charan",slug:"p.v.-sai-charan",fullName:"P.V. Sai Charan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"357086",title:"Prof.",name:"Sandeep K.",middleName:null,surname:"Shukla",slug:"sandeep-k.-shukla",fullName:"Sandeep K. Shukla",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}}]}},subseries:{item:{id:"87",type:"subseries",title:"Economics",keywords:"Globalization, Economic Integration, Growth and Development, International Trade, Environmental Development, Developed Countries, Developing Countries, Technical Innovation, Knowledge Management, Political Economy Analysis, Banking and Financial Markets",scope:"
\r\n\tThe topic on Economics is designed to disseminate knowledge around broad global economic issues. Original submissions will be accepted in English for applied and theoretical articles, case studies and reviews about the specific challenges and opportunities faced by the economies and markets around the world. The authors are encouraged to apply rigorous economic analysis with significant policy implications for developed and developing countries. Examples of subjects of interest will include, but are not limited to globalization, economic integration, growth and development, international trade, environmental development, country specific comparative analysis, technical innovation and knowledge management, political economy analysis, and banking and financial markets.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/87.jpg",hasOnlineFirst:!1,hasPublishedBooks:!1,annualVolume:11971,editor:{id:"327730",title:"Prof.",name:"Jaime",middleName:null,surname:"Ortiz",slug:"jaime-ortiz",fullName:"Jaime Ortiz",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002zaOKZQA2/Profile_Picture_1642145584421",biography:"Dr. Jaime Ortiz holds degrees from Chile, the Netherlands, and the United States. He has held tenured faculty, distinguished professorship, and executive leadership appointments in several universities around the world. Dr. Ortiz has previously worked for international organizations and non-government entities in economic and business matters, and he has university-wide globalization engagement in more than thirty-six countries. He has advised, among others, the United Nations Development Program, Inter-American Development Bank, Organization of American States, Pre-investment Organization of Latin America and the Caribbean, Technical Cooperation of the Suisse Government, and the World Bank. Dr. Ortiz is the author, co-author, or editor of books, book chapters, textbooks, research monographs and technical reports, and refereed journal articles. He is listed in Who’s Who in the World, Who’s Who in America, Who’s Who in Finance and Business, Who’s Who in Business Higher Education, Who’s Who in American Education, and Who’s Who Directory of Economists. Dr. Ortiz has been a Fulbright Scholar and an MSI Leadership Fellow with the W.K. Kellogg Foundation. His teaching interests revolve around global economies and markets while his research focuses on topics related to development and growth, global business decisions, and the economics of technical innovation.",institutionString:null,institution:{name:"University of Houston",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null,series:{id:"22",title:"Business, Management and Economics",doi:"10.5772/intechopen.100359",issn:"2753-894X"},editorialBoard:[{id:"104262",title:"Dr.",name:"Chee-Heong",middleName:null,surname:"Quah",slug:"chee-heong-quah",fullName:"Chee-Heong Quah",profilePictureURL:"https://mts.intechopen.com/storage/users/104262/images/system/104262.jpg",institutionString:null,institution:{name:"University of Malaya",institutionURL:null,country:{name:"Malaysia"}}},{id:"236659",title:"Prof.",name:"Monica Violeta",middleName:null,surname:"Achim",slug:"monica-violeta-achim",fullName:"Monica Violeta Achim",profilePictureURL:"https://mts.intechopen.com/storage/users/236659/images/system/236659.jpg",institutionString:null,institution:{name:"Babeș-Bolyai University",institutionURL:null,country:{name:"Romania"}}},{id:"202039",title:"Dr.",name:"Nahanga",middleName:null,surname:"Verter",slug:"nahanga-verter",fullName:"Nahanga Verter",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCwtQAG/Profile_Picture_1643101901237",institutionString:null,institution:{name:"Mendel University Brno",institutionURL:null,country:{name:"Czech Republic"}}},{id:"107745",title:"Emeritus Prof.",name:"Panagiotis E.",middleName:null,surname:"Petrakis",slug:"panagiotis-e.-petrakis",fullName:"Panagiotis E. Petrakis",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRzzaQAC/Profile_Picture_1644221136992",institutionString:null,institution:{name:"National and Kapodistrian University of Athens",institutionURL:null,country:{name:"Greece"}}},{id:"196259",title:"Dr.",name:"Ryan Merlin",middleName:null,surname:"Yonk",slug:"ryan-merlin-yonk",fullName:"Ryan Merlin Yonk",profilePictureURL:"https://mts.intechopen.com/storage/users/196259/images/system/196259.jpg",institutionString:null,institution:{name:"American Institute for Economic Research",institutionURL:null,country:{name:"United States of America"}}}]},onlineFirstChapters:{paginationCount:10,paginationItems:[{id:"82112",title:"Comparative Senescence and Lifespan",doi:"10.5772/intechopen.105137",signatures:"Hassan M. Heshmati",slug:"comparative-senescence-and-lifespan",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hassan M.",surname:"Heshmati"}],book:{title:"Mechanisms and Management of Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81796",title:"Apoptosis-Related Diseases and Peroxisomes",doi:"10.5772/intechopen.105052",signatures:"Meimei Wang, Yakun Liu, Ni Chen, Juan Wang and Ye Zhao",slug:"apoptosis-related-diseases-and-peroxisomes",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81723",title:"Peroxisomal Modulation as Therapeutic Alternative for Tackling Multiple Cancers",doi:"10.5772/intechopen.104873",signatures:"Shazia Usmani, Shadma Wahab, Abdul Hafeez, Shabana Khatoon and Syed Misbahul Hasan",slug:"peroxisomal-modulation-as-therapeutic-alternative-for-tackling-multiple-cancers",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81638",title:"Aging and Neuropsychiatric Disease: A General Overview of Prevalence and Trends",doi:"10.5772/intechopen.103102",signatures:"Jelena Milić",slug:"aging-and-neuropsychiatric-disease-a-general-overview-of-prevalence-and-trends",totalDownloads:30,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Mechanisms and Management of Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81290",title:"Musculoskeletal Abnormalities Caused by Cystic Fibrosis",doi:"10.5772/intechopen.104591",signatures:"Mark Lambrechts",slug:"musculoskeletal-abnormalities-caused-by-cystic-fibrosis",totalDownloads:29,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Advances in Skeletal Muscle Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11675.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81226",title:"Computational Methods for the Study of Peroxisomes in Health and Disease",doi:"10.5772/intechopen.103178",signatures:"Naomi van Wijk and Michal Linial",slug:"computational-methods-for-the-study-of-peroxisomes-in-health-and-disease",totalDownloads:32,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"80326",title:"Anti-Senescence Therapy",doi:"10.5772/intechopen.101585",signatures:"Raghad Alshadidi",slug:"anti-senescence-therapy",totalDownloads:110,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Mechanisms and Management of Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"79828",title:"Cellular Senescence in Bone",doi:"10.5772/intechopen.101803",signatures:"Danielle Wang and Haitao Wang",slug:"cellular-senescence-in-bone",totalDownloads:119,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Mechanisms and Management of Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"79668",title:"Identification of RNA Species That Bind to the hnRNP A1 in Normal and Senescent Human Fibroblasts",doi:"10.5772/intechopen.101525",signatures:"Heriberto Moran, Shanaz A. Ghandhi, Naoko Shimada and Karen Hubbard",slug:"identification-of-rna-species-that-bind-to-the-hnrnp-a1-in-normal-and-senescent-human-fibroblasts",totalDownloads:81,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Mechanisms and Management of Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"79295",title:"Genetic and Epigenetic Influences on Cutaneous Cellular Senescence",doi:"10.5772/intechopen.101152",signatures:"Tapash Jay Sarkar, Maiko Hermsmeier, Jessica L. Ross and G. Scott Herron",slug:"genetic-and-epigenetic-influences-on-cutaneous-cellular-senescence",totalDownloads:135,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Mechanisms and Management of Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}}]},publishedBooks:{paginationCount:4,paginationItems:[{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",slug:"animal-reproduction",publishedDate:"May 25th 2022",editedByType:"Edited by",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",hash:"2d66af42fb17d0a6556bb9ef28e273c7",volumeInSeries:11,fullTitle:"Animal Reproduction",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt",profilePictureURL:"https://mts.intechopen.com/storage/users/90846/images/system/90846.jpg",institutionString:"İskenderun Technical University",institution:{name:"İskenderun Technical University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",editedByType:"Edited by",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",hash:"13aaddf5fdbbc78387e77a7da2388bf6",volumeInSeries:6,fullTitle:"Animal Reproduction in Veterinary Medicine",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral",profilePictureURL:"https://mts.intechopen.com/storage/users/25600/images/system/25600.jpg",institutionString:"Independent Researcher",institution:{name:"Harran University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón Poggi",slug:"juan-carlos-gardon-poggi",fullName:"Juan Carlos Gardón Poggi",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:null,institution:{name:"Valencia Catholic University Saint Vincent Martyr",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:141,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:123,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:22,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"7",title:"Bioinformatics and Medical Informatics",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine"},{id:"8",title:"Bioinspired Technology and Biomechanics",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation"},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"August 3rd, 2022",hasOnlineFirst:!0,numberOfOpenTopics:3,numberOfPublishedChapters:107,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},subseries:[{id:"7",title:"Bioinformatics and Medical Informatics",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",annualVolume:11403,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"5886",title:"Dr.",name:"Alexandros",middleName:"T.",surname:"Tzallas",fullName:"Alexandros Tzallas",profilePictureURL:"https://mts.intechopen.com/storage/users/5886/images/system/5886.png",institutionString:"University of Ioannina, Greece & Imperial College London",institution:{name:"University of Ioannina",institutionURL:null,country:{name:"Greece"}}},{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",fullName:"Lulu Wang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRX6kQAG/Profile_Picture_1630329584194",institutionString:"Shenzhen Technology University",institution:{name:"Shenzhen Technology University",institutionURL:null,country:{name:"China"}}},{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",fullName:"Reda R. Gharieb",profilePictureURL:"https://mts.intechopen.com/storage/users/225387/images/system/225387.jpg",institutionString:"Assiut University",institution:{name:"Assiut University",institutionURL:null,country:{name:"Egypt"}}}]},{id:"8",title:"Bioinspired Technology and Biomechanics",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',annualVolume:11404,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"49517",title:"Prof.",name:"Hitoshi",middleName:null,surname:"Tsunashima",fullName:"Hitoshi Tsunashima",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTP4QAO/Profile_Picture_1625819726528",institutionString:null,institution:{name:"Nihon University",institutionURL:null,country:{name:"Japan"}}},{id:"425354",title:"Dr.",name:"Marcus",middleName:"Fraga",surname:"Vieira",fullName:"Marcus Vieira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003BJSgIQAX/Profile_Picture_1627904687309",institutionString:null,institution:{name:"Universidade Federal de Goiás",institutionURL:null,country:{name:"Brazil"}}},{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",fullName:"Ramana Vinjamuri",profilePictureURL:"https://mts.intechopen.com/storage/users/196746/images/system/196746.jpeg",institutionString:"University of Maryland, Baltimore County",institution:{name:"University of Maryland, Baltimore County",institutionURL:null,country:{name:"United States of America"}}}]},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",annualVolume:11405,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"35539",title:"Dr.",name:"Cecilia",middleName:null,surname:"Cristea",fullName:"Cecilia Cristea",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYQ65QAG/Profile_Picture_1621007741527",institutionString:null,institution:{name:"Iuliu Hațieganu University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"40735",title:"Dr.",name:"Gil",middleName:"Alberto Batista",surname:"Gonçalves",fullName:"Gil Gonçalves",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYRLGQA4/Profile_Picture_1628492612759",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"211725",title:"Associate Prof.",name:"Johann F.",middleName:null,surname:"Osma",fullName:"Johann F. Osma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDv7QAG/Profile_Picture_1626602531691",institutionString:null,institution:{name:"Universidad de Los Andes",institutionURL:null,country:{name:"Colombia"}}},{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",fullName:"Mani T. Valarmathi",profilePictureURL:"https://mts.intechopen.com/storage/users/69697/images/system/69697.jpg",institutionString:"Religen Inc. | A Life Science Company, United States of America",institution:null},{id:"205081",title:"Dr.",name:"Marco",middleName:"Vinícius",surname:"Chaud",fullName:"Marco Chaud",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDGeQAO/Profile_Picture_1622624307737",institutionString:null,institution:{name:"Universidade de Sorocaba",institutionURL:null,country:{name:"Brazil"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/59307",hash:"",query:{},params:{id:"59307"},fullPath:"/profiles/59307",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()