\r\n\t
\r\n\tAdditionally, authors are expected to cover the medicinal effect of tea polyphenols viz. catechins, theaflavins and thearubigins which are the major chemical compounds of tea. Green tea contains a higher quantity of catechins as compared to black tea which becomes transformed into more complex compounds (theaflavins and therubigins) during the manufacturing of black tea. Out of many therapeutic uses these bioactive compounds, protection against cardiovascular diseases, atherosclerosis, cancer, gene mutation, and diabetics have been reported and are more promising. This book will also highlight the nutraceuticals of tea. The catechins along with other various bioactive compounds present in tea have many therapeutic properties which attribute to the development of various food products where tea constitutes as an active ingredient. That is why it is important to stress the potential use of tea and their bioactive constituents (catechins, polysaccharides, vitamins, amino acids etc.) in food products with added nutraceutical values. Finally, the contamination of tea and its effect on our health will also be covered. Tea and its food products may contain various types of contaminations which may include toxic heavy metals, pesticides, microorganisms, and environmental pollutants etc. which are present from tea infusion and from residues. These contaminations which are above the regulatory limit may pose a serious threat to public health. Submitted chapters are expected to contain novel information, be informative as well as thought-provoking.
Hepatitis B virus (HBV) is a blood-borne virus that infects the liver. Until the discovery of the virus in the 1960s [1], it was transmitted sexually and by transfusion of contaminated blood and blood fractions. Today, the virus has been virtually eliminated from the blood supply by a simple blood test while infection has been prevented by a highly efficacious vaccine [2, 3]. Prior to establishment of vaccination programs in various countries, infants born to infected mothers replicating virus often acquired the virus at birth by exposure to contaminated maternal blood. More than 90% of these children became HBV carriers, characterized by the persistence of virus or virus antigens in their blood for years to decades. These children were a high risk for the development of chronic liver disease (CLD), which progressed from hepatitis, to fibrosis, cirrhosis, and hepatocellular carcinoma (HCC) [4]. Fortunately, newborns in many countries receive the HBV vaccine at birth, which helps to prevent mother-to-infant transmission as well as protect from exposure later in life. Among unvaccinated adults engaging in unprotected sex, roughly 5–10% become carriers, and these individuals are also at high risk for the development of CLD and HCC. Although estimates vary, there are ~300–350 million carriers of HBV worldwide [5]. HCC is the sixth most prevalent cancer worldwide, with about 600,000 newly diagnosed cases annually, and the second leading cause of cancer deaths [6]. Interferon, and in more recent years, powerful nucleoside analogs, have successfully treated patients with chronic hepatitis B, but presently there is no cure [7, 8]. HCC is curable by surgical resection, but this is often accompanied by relapse. Dozens of drugs, alone or in combination, have been evaluated in clinical trials for patients with advanced HCC, but only the multi-kinase inhibitors, Sorafenib and regorafenib, and the immune checkpoint inhibitor nivolumab, have been useful in modestly extending the lifespan of such patients [9, 10]. Given that the carrier state and CLD are the major risk factors for HCC [11], there is strong rationale to better understand the host-virus relationship that contributes to the pathogenesis of chronic infection.
A hallmark in the pathogenesis of HBV infection is its’ variability. Among acutely infected adults, up to 65% develop a subclinical infection characterized only by the appearance of one or more viral antibodies in the blood, while another 25% develop acute resolving infection, which may or may not include a bout of hepatitis. The remaining 10% of patients develop chronic infection (i.e., the persistence of virus and virus antigens in the blood for more than 6 months). In chimpanzees [12] and woodchucks [13], acute infections are characterized by the nearly complete clearance of virus from the blood and liver followed by seroconversion from surface antigen to corresponding antibody. In this case, virus is mostly cleared by non-cytolytic cytokines (e.g., interferon gamma [IFNɣ] and tumor necrosis factor alpha [TNFα]) prior to the appearance of T and other inflammatory cells in the liver, suggesting that most virus clearance occurs prior to the development of acute hepatitis. Further work showed that CD4+ and CD8+ T cells, natural killer (NK) cells, Fas, various IFNs and corresponding receptors, and the TNF receptor 1 participate in virus clearance, suggesting redundant pathways inhibit HBV replication in the liver [14]. The subsequent contribution of a T cell response appears to clear virus infected cells by cytolytic mechanisms involving Fas and granzymes. In this context, CD4+ T cells are required to prime CD8+ T cells to facilitate virus elimination in acute infection [14]. When this happens in acute, resolving infection, the T cell response to HBV is vigorous, polyclonal and multi-specific, while among those who go on to develop chronic infection, adaptive immunity is relatively weak and narrowly focused, suggesting that clearance of HBV is T cell dependent. When T cell responses are not adequate, CLD may develop and progress to cirrhosis and HCC. However, CLD may spontaneously resolve at any of these stages. While the origin of this variability is not completely characterized, it is clear that the ability of the host to mount adaptive immune responses is a key element to limiting virus spread.
HBV is a small virus consisting of only four open reading frames (ORF) [15]. One ORF encodes a family of envelope polypeptides (Figure 1). The major envelope polypeptide, HBsAg, triggers neutralizing antibody which is central to virus clearance after acute exposure and is the major component of the HBV vaccine [2]. HBsAg polypeptides are transmembrane proteins and glycoproteins that are on the envelope of virus particles, and are also secreted as small, spherical and variably long filamentous subviral particles that lack the virus nucleocapsid and HBV DNA. It is thought that these subviral particles, which are produced at concentrations several logs above that of infectious virus particles, absorb neutralizing antibody and trigger immunological tolerance, both of which promote virus persistence in the blood. Moreover, in patients with CLD, there does not seem to be any correlation between intrahepatic HBsAg expression patterns and inflammatory infiltrates [16, 17], nor have HBsAg specific T cell clones been isolated from such patients [18]. In addition, T cell sensitization to HBsAg in acute and chronic HBV infection is usually undetectable [19], so while HBsAg clearance occurs in acute, resolving infections, it is not clear that it is an immunological target in established infections.
Genetic organization of HBV showing the ORFs (in color). The positions of enhancer 1 (EN1) and 2 (EN2) are also shown. The direct repeat 1 (DR1) and 2 (DR2) sequences at the ends of the long and short DNA strands are also indicted. The pregenomic RNA (3.5 kb) is greater than genome length, while the 2.1 and 2.4 kb subgenomic mRNAs encode surface antigen polypeptides, and the 0.7 kb mRNA encodes the X protein. Reproduced from [20] with permission.
The second ORF, or core gene, encodes the hepatitis B core antigen (HBcAg) or nucleocapsid protein that polymerizes as an icosahedron around the virus replication complex, the latter of which consists of the virus nucleic acid and HBV encoded polymerase [20]. The fact that the pregenomic RNA and the reverse transcribed viral DNA product are sequestered within a nucleocapsid means that they are not readily detected by pattern recognition receptors, (e.g., toll-like receptors, retinoic acid inducible gene 1 [RIG-1], and mitochondrial anti-viral signaling [MAVS]) that trigger innate immunity [21]. Moreover, innate immune responses do not develop in the liver of acutely infected chimpanzees [22], suggesting that HBV replication and spread may be conducted in “stealth” mode with virus nucleocapsids upon infection and again during virus replication. If so, then this may explain why up to 70% of acutely infected adults who become carriers do not develop CLD. However, carriers who develop CLD also have intrahepatic core antigen, suggesting that HBcAg may be an important immunological target in CLD [23]. Alternatively, patients with acute, resolving hepatitis show a vigorous peripheral blood mononuclear cell response to HBcAg that is temporally associated with the clearance of HBsAg, while in patients with chronic infection, T cell responsiveness to HBcAg is relatively weak, providing an opportunity for HBV to spread in the liver and establish a chronic infection [19].
A proteolytic fragment of HBcAg, known as HBeAg, is secreted into the circulation and serves as a surrogate marker of virus replication. Seroconversion from HBeAg to anti-HBe is usually accompanied by a significant decrease in virus replication in both the liver and blood and resolution of CLD [24]. The detection of HBcAg specific cytotoxic T lymphocytes (CTL) is associated with the clearance of virus replication, often a transient exacerbation of CLD, and seroconversion to anti-HBe during the natural history of infection [24], suggesting that HBcAg is an important virus target in CLD. HBcAg specific T cells have been detected in the peripheral blood and liver [18, 25] of patients with CLD, suggesting that HBcAg is an immunological target in chronic hepatitis B. Interestingly, HBeAg in serum may attenuate immune responses against virus infected liver, because some patients who develop mutations in HBV that no longer express HBeAg, continue to support high levels of virus replication and ongoing, CLD [26, 27]. In fact, HBeAg appears to be a T cell tolerogen that down-regulates immune responses against HBcAg [28]. HBeAg may also stimulate the appearance of regulatory dendritic cells, which would also suppress virus specific immunity and promote virus persistence [29] by up-regulating the expression of suppressor of cytokine signaling 2 (SOCS2), which in turn represses IFN signaling, thereby blunting innate anti-viral responses and promoting virus persistence [30]. Thus, HBeAg polypeptides, like subviral HBsAg particles, promote chronicity by acting as tolerogens.
The HBV encoded polymerase, encoded by a third ORF, has DNA dependent and RNA dependent DNA polymerase (DNAp) activities, and RNase H activity. Upon infection, the partially double stranded viral DNA is made fully double stranded by the endogenous DNAp activity [20] (Figure 2). The HBV genome then appears as a supercoiled mini-chromosome in the nuclei of infected cells, and this acts as a template for the transcription of subgenomic RNAs and a greater than genome length pre-genomic RNA. The latter then migrates into the cytoplasm, where it is packaged with the virus polymerase into nascent (“immature”) core (or nucleocapsid) particles, where the pregenomic RNA is reverse transcribed into minus strand DNA, with the latter then being used as a template for partial plus strand synthesis just prior to the budding and secretion of progeny virus (Figure 2). Some immature core particles are recycled into the nucleus to replenish the pool of covalently closed circular (ccc) HBV DNA. Although the HBV polymerase triggers antibody responses [31], there is no evidence that immune responses against the polymerase directly impact pathogenesis or virus persistence. However, HBV polymerase inhibits RIG-1 and nuclear factor kappa B (NF-ĸB) induction of IFNβ, suggesting that the polymerase could block innate signaling [32, 33], thereby contributing to virus persistence.
General scheme of HBV replication. See the text for additional details. Reproduced from [20] with permission.
There is evidence to suggest that persistent, high levels of HBV replication correlate with the progression of CLD to HCC [34]. However, independent work showed an elevated risk for HCC among patients with CLD but low virus titers [35, 36]. Other observations have shown no correlation between HBV DNA levels in serum (>105 copies/ml) and histological grade or stage of liver disease in carriers [37, 38]. In addition, it is controversial as to whether long term nucleoside analog therapy resulted in a decreased risk for the development of HCC [6, 35]. Given that HBV is not directly cytopathic [39], that carriers with high levels of HBV DNA in serum are often asymptomatic, and that the pathogenesis of CLD is immune mediated [17, 40], a correlation between virus replication and CLD may contribute to, but not by itself, determine disease progression. Moreover, most carriers with CLD who develop cirrhosis and HCC have long since seroconverted from HBeAg (reflecting high levels of virus replication) to anti-HBe (reflecting low or undetectable virus replication), indicating that disease progression may occur at low virus titers [36]. Among patients with sustained high levels of HBV replication and successive bouts of CLD, there is a wave of liver regeneration following each episode of hepatitis to restore full liver function. At these times, fragments of HBV DNA, mostly encoding the HBx ORF (and sometimes the HBx plus preS/S ORFs), become integrated at multiple sites within host DNA [41, 42] (Figure 3). Over time, these integration events result in increased intrahepatic expression levels of HBx that alter patterns of host (and support virus) gene expression (Figure 3). HBV integrates early after infection, not only in permissive liver cell lines, but also in non-replicating primary human hepatocytes [43]. Many fragments of integrated HBV DNA encode HBx that is capable of trans-activation [44]. Although the relatively low levels of HBx made from the virus mini-chromosome support virus gene expression and replication, it is hypothesized that as intrahepatic levels of HBx increase [45] (Figure 3), it epigenetically alter the expression patterns of selected host genes [46] that contribute to both virus persistence and to malignant transformation. Thus, the changing intrahepatic levels of HBx promote virus persistence and ultimately, contribute to malignant transformation [47].
Natural history of chronic hepatitis B featuring the progressive lesions that develop in CLD compared to increased number of integration events, many of which produce functional HBx (modified from [53] with permission).
Given that the current treatment of chronic hepatitis B with nucleoside analogs is not curative, there has been a major effort to eliminate ccc DNA [47], especially since ccc DNA is the template for all virus transcripts. Since nucleoside analogs do not eliminate integrated HBV templates or the HBV mini-chromosome, continued virus gene expression from these templates will drive pathogenesis toward HCC. Formation of ccc DNA is a complex process that involves a variety of host proteins, including several DNA polymerases [48] that could potentially be therapeutic targets, although this approach may be accompanied by toxicity. As outlined below, HBx regulates the formation, function and intracellular copy number of ccc DNA by several epigenetic mechanisms that involve altered expression of histone methyltransferases and histone deacetylases, by promoting degradation of the anti-viral restriction factor Smc5/6, and by increasing expression of DNA methyltransferases [48]. Anti-viral immune responses in which selected cytokines mediate non-cytolytic degradation of ccc DNA have also been documented in vitro [48, 49]. Among these, IFN alpha up-regulated expression of APOBEC3 nuclear deaminase resulted in a modest reduction in ccc DNA copy number via deamination [50]. Gene editing approaches, such as CRISPR/Cas9 have also been demonstrated to work in vitro and in vivo [51], but off-target effects, ability to access and act on all susceptible cells, and recognition of all HBV genotypes, remain to be addressed. In addition, the recent finding of ccc host DNA in both normal and tumor cells, as a mechanism whereby host cells regulate gene expression [52], implies that targeting ccc DNA may also have toxic effects on the treated cells whether or not they are virally infected. Thus, it is not clear whether this approach in a liver which is already damaged will exacerbate that damage and/or have an anti-tumor effect.
HBx, the trans-activation protein of HBV, trans-activates virus gene expression and replication in vitro [54, 55]. The contribution of this regulatory protein to virus persistence in the carrier state was shown in woodchucks experimentally infected with the HBV-like virus, woodchuck hepatitis virus (WHV). Wild type WHV readily establishes a chronic infection, characterized by persistent virus replication and CLD that progresses to HCC [56]. However, experimental infection with a mutant of WHV that does not encode woodchuck hepatitis x (WHx) antigen yielded no carrier state and no CLD [57, 58], suggesting that trans-activation of virus gene expression and replication is central to the establishment of the carrier state. Among infected woodchucks, there was co-staining between WHV core antigen (where virus replication takes place) and WHx [59, 60], while in human infection, HBx often co-existed with HBe in serum [61] and replication complexes (i.e., with HBcAg) in the liver [62]. Thus, HBx expression is associated with virus replication.
At the molecular level, HBx regulates HBV replication by binding to various cellular proteins. For example, HBx binds to jumonji C-domain-containing 5 (JMJD5), a arginyl-hydroxylase, which promotes the expression of transcription factors (e.g., such as hepatocyte nuclear factors 3 gamma and 4 alpha [HNF3G and HNF4A] and CCAAT/enhancer-binding protein alpha) that facilitate hepatocyte differentiation [63]. Given that HBV replicates in differentiated hepatocytes, the binding of HBx to JMJD5 facilitates HBV replication via epigenetic alterations in host gene expression. In addition, HBx promotes the formation of ccc DNA by recruiting the transcriptional scaffold, p300; the cAMP response element binding protein CREB; the CREB transcription factor binding protein, CBP; the histone acetyltransferase p300/CBP-associated factor, as well as the histone deactylases HDAC1, Sirt1 [48] and Sirt2 [12]. Once ccc DNA is formed, HBx up-regulates HBV replication, in part, by binding to cullin4-damage specific DNA binding protein (CUL4-DDB1) ubiquitin ligase [64, 65], suggesting that HBx may function, at least in part, at the level of the proteasome. HBx modulates proteasome activity by direct binding to the 26S proteasomal subunit [66], which is responsible for degradation of HBx and several anti-viral proteins. One of the latter is Smc5/6, which is involved in the structural maintenance of chromosomes (i.e., genome stability) and DNA repair [67]. Smc5/6 and HBx bind to the HBV mini-chromosome [67, 68], resulting in epigenetic changes of virus gene expression. HBx binding to CUL4-DDB1 triggers altered enzymatic activity of the E3 ligase CRL4, which then stimulates the ubiquitination and subsequent proteasomal degradation of Smc5/6 [68, 69, 70], thereby promoting virus replication. Other anti-viral systems, such as IFN induced APOBEC3A [50], may also be similarly degraded. In this context, HBV is not very good in triggering innate immunity, which may underscore why there are hundreds of millions of carriers worldwide [71]. As mentioned above, sequestration and reverse transcription of pregenomic HBV RNA in immature nucleocapsids (Figure 2) may block the induction of innate immunity. In addition, although HBV replication is exquisitely sensitive to inhibition by IFNs, HBx appears to block IFN expression and signaling [72, 73, 74], suggesting that both innate and adaptive immunity could be compromised, thereby permitting virus persistence. Under these circumstances, CLD would continue to damage the liver while being unable to resolve the virus infection. HBx also regulates HBV replication by stimulating the expression of DNA methyl-transferases (DNMTs), which suppresses HBV transcription via DNA methylation [75]. DNMTs also methylate tumor suppressor genes, thereby down-regulating their expression, and permitting the accumulation of mutations and chromosomal instability that contribute importantly to HCC. Thus, HBx regulates the activity of ccc DNA in both positive and negative ways, and in doing so, impacts upon the pathogenesis of CLD. The reason why it is important to regulate the intrahepatic levels of ccc DNA is because when virus antigens are greatly overproduced, they could trigger cytopathic effects (CPE), thereby limiting virus replication. For example, mutations in the preS region of the S gene prevent secretion of surface antigen and complete virus particles, and eventually CPE. Pre-S mutations also promote recycling of viral DNA into the nucleus where it results in increased levels of viral ccc DNA, which potentially promotes virus persistence [76] (Figure 2). In transgenic mice overproducing HBsAg, CPE develops and eventually evolves into HCC [77]. Although the latter is not characteristic of HCC pathogenesis among human carriers, it does underscore that selected HBV mutants that may arise during chronic infection potentially contribute to pathogenesis via CPE.
Although HBV is not cytopathic, HBx strongly activates NF-ĸB [78], which promotes the expression of many pro-inflammatory cytokines and chemokines that attenuate virus replication and contribute to the pathogenesis of CLD and HCC. For example, HBx stimulates the expression of IFN inducible proteins, such as the CXC chemokine IP-10 [79] which promotes leukocyte chemotaxis. HBx also stimulates production of interleukin-23 (IL-23) [79], which contributes to the maintenance and expansion of pro-inflammatory Th17 cells. Among others, IL-6 is up-regulated by HBx in a MyD88 manner [80], which indicates that HBx is activating a pro-inflammatory environment via innate immune pathways early on after infection. The repressive effect of IL-6 upon HBV replication is demonstrated by the fact that IL-6 treatment of infected cells results in the loss of HNF1a and HNF4a, both of which bind to ccc DNA. Il-6 also redistributes signal transducers and activators of transcription 3 (STAT3) signaling from ccc DNA to IL-6 target genes [49]. HBx targets up-regulation of IL-18, which up-regulates FasL [81], which in this case blocks the killing of infected cells by CTLs. HBx also up-regulates tumor TNFα [82], which was shown to suppress HBcAg expression [83], thereby inhibiting virus replication. In addition, the pro-inflammatory IL-32 was up-regulated by HBx in a NF-ĸB dependent manner [84]. This is not an exhaustive list. Many of these molecules are turned on as a result of HBx stimulating multiple signal transduction pathways in the cytoplasm (in addition to NF-ĸB), but the bigger question is trying to understand how a non-cytopathic virus is mediating these and other related changes in infected cells.
The fact that HBx plays a central role in HBV replication suggests that intracellular conditions that stimulate HBx activity would also promote the carrier state, which would be evolutionally selected for because it would provide a large window of time for virus to be transmitted to other hosts. In this context, the expression and activity of HBx is stimulated in an oxidative environment, since the addition of anti-oxidants to cells expressing HBx strongly diminish HBx trans-activation activity [85, 86]. An oxidative environment (accompanied by oxidative stress of cellular organelles) could be created in the infected cell by virtue of the association of HBx with mitochondria [87]. HBx interacts with the voltage dependent anion channel on the outer mitochondrial membrane, altering transmembrane potential [88], resulting in diminished electron transport, increased free radical accumulation, including elevated lipid peroxidation products [89], release of calcium into the cytosol [55], and under specific circumstances, cell death [90]. Release of calcium into the cytosol, resulted in the activation of the protein tyrosine kinase 2 and Src kinase families, leading to stimulation of ras, raf, mitogen activated protein kinase, and Jun, which stimulate HBV transcription and replication [55]. HBx also induces oxidative stress in the endoplasmic reticulum, which activates the unfolded protein response and expression of pro-inflammatory cyclooxygenase-2 through the activating transcription factor 4 pathway [91]. Free radicals are also characteristic of immune responses aimed at damaging and destroying infected cells that are replicating HBV. In addition, mitochondrial associated HBx induces oxidative stress, which activates selected transcription factors, such as NF-ĸB, STAT3 and activating protein 1 [86]. However, HBx is also known to block mitochondrial triggered cell death, not only by activation of survival [21, 92] and hepato-protective pathways such as NF-ĸB that over-ride apoptosis signaling, but also by blocking key caspases and promoting autophagy [93] and mitophagy [94]. The maintenance of mitochondrial and cellular homeostasis by mitophagy acts to attenuate virus induced apoptosis, so that on the one hand, autophagy and mitophagy promote cell survival and virus persistence, while simultaneous mitochondrial damage may contribute to CLD [94].
In this chronic pro-inflammatory environment, one would expect to see a correlation between HBx staining and the intensity of CLD. In fact, WHx staining has been observed around inflammatory foci in chronically infected woodchuck livers [95], and among human carriers, relatively low levels of intrahepatic HBx staining was observed in patient biopsy samples from people with low grade hepatitis, while intense and widespread HBx staining was observed in patient biopsies from those with advanced fibrosis and cirrhosis [45, 96], suggesting a direct correlation between HBx staining and liver damage. Independent work also showed low levels of HBx mRNA in the livers of patients with mild CLD (e.g., mild hepatitis), and much higher levels among patients with severe lesions in the liver (advanced fibrosis and cirrhosis) [97]. The relationship of HBx expression to disease severity is also consistent with the idea that when the liver regenerates following each bout of hepatitis, fragments of HBV DNA encoding the HBx region (and sometimes part of the preS/S encoding gene as well) increasingly integrate into multiple regions of the host genome during normal host DNA replication, resulting in increasing accumulation of intrahepatic HBx as CLD progresses. In contrast, the copy number of ccc DNA per cell decreases with regeneration.
The relationship between HBx expression and CLD has been recapitulated in HBx transgenic mice, where the presence, frequency and distribution of HBx in the liver increase with age, as does liver pathology, which progressively develops from hepatitis and steatosis, to dysplasia and microscopic nodules of HCC, and finally to multi-nodular macroscopic HCC with age [98]. In this model, HBx is expressed from its own enhancer and promoter, which is not active until after birth when appropriate transcription factors in the liver begin to appear. HBx expression triggers immune responses in the absence of other HBV gene products, so it is likely that the pathogenesis observed is due to the impact of increasing levels of HBx upon host gene expression combined with immune responses directed against virus infected cells. There is no ccc DNA in this system, just as it is difficult to detect HBV replication among patients with advanced stages of CLD (i.e., cirrhosis). Thus, it is possible that early in chronic infection, and immune responses to virus antigens emanating from ccc DNA templates play an important role in triggering and sustaining immune mediated pathogenesis, but following bouts of CLD and liver regeneration, where the levels of virus replication decrease at the same time that integration of virus DNA fragments increase, pathogenesis appears to be increasingly driven by one or more antigens made from integrated HBV DNA. Although cis-acting mechanisms have been postulated to contribute importantly to the pathogenesis of HCC in selected cases, the broadly distributed integration events of the HBx ORF into most chromosomes [99], suggests that the HBx proteins encoded by most integration events promote CLD and HCC in trans [47]. In this model, integration of HBV sequences would accumulate in areas of euchromatin and fragile sites much more frequently that at or within specific genes [100].
The model above suggests that targeting ccc DNA in HBeAg carriers with CLD may be an important therapeutic goal to bring about a functional (but not sterilizing) cure due to the presence of integrated virus DNA that express one or more virus proteins. Among anti-HBe carriers with advanced CLD, targeting the much lower levels of ccc DNA may not be effective in preventing progression to cirrhosis and HCC, because at this stage, most of the HBx made probably comes from integrated templates. Under these circumstances, ccc DNA may persist in a transcriptionally inactive form, which is consistent with the absence of HBV DNA in the blood, even after treatment with direct acting anti-viral agents or therapy aimed at stimulating immune responses against virus infected cells [101, 102]. In fact, early work already pointed out that seroconversion to anti-HBe is sometimes associated with the progression of CLD [103, 104], even though later work showed that disease progression was associated with continued replication of HBV DNA carrying one or more mutations in the core gene that blocks production of HBeAg [27]. These mutations were probably selected for during the natural history of infection by immune responses targeting HBcAg [105]. Although these findings suggest that CLD progresses in the liver supporting replication of selected virus mutants, it has also recently been suggested that linear HBV DNA, and not ccc DNA, is the template for integration into host DNA [43], from which one or more virus gene products are made, and contribute to pathogenesis. Thus, persistent inflammation in a chronically damaged liver may result in the development of HCC despite low levels or undetectable levels of virus replication.
HBV encodes polypeptides from four ORFs that trigger corresponding immune responses during acute and chronic infections. When these responses are rapid, strong and multi-specific, acute, resolving infection can be achieved. When these immune responses are weak and of limited specificity (against few virus epitopes), the carrier state may develop. Although the pathogenesis of HBV is variable in different hosts, the virus encodes proteins that blunt innate immunity, and as a consequence, adaptive immunity is not triggered at all or to a limited extent. The latter causes liver damage over many years without eliminating the virus. Even though available treatments suppress virus replication, none are curative, and the persistence of viral ccc DNA sustains infection. Production of HBx regulates virus gene expression and replication, but over time, increased integration of HBV DNA fragments encoding HBx results in high levels of HBx expression that epigenetically alter the expression of numerous host genes that up- or down-regulate HBV replication and impact disease activity. For example, HBx activation of AKT decreased HBV replication, but this was accompanied by an inhibition of apoptosis, suggesting that HBx balances HBV replication and cell survival by stimulating signaling that enhance hepatocyte survival at the expense of higher levels of HBV replication [106]. The generation of free radicals by immune responses against virus infected cells, combined with HBx mediated alterations in mitochondrial function, promote HBx activity. These events result in the activation of signaling pathways (e.g., AP-1 and NF-ĸB) that over-ride apoptosis and/or directly block the activation of critical caspases, so that whether HBx stimulates or block apoptosis depends upon whether the liver is experiencing inflammation and oxidative stress. It also depends upon whether HBx is being expressed in normal hepatocytes, where apoptotic pathways could be triggered, or whether HBx is expressed at high levels in cells where apoptotic pathways are compromised. In addition to being pro-inflammatory, activated NF-ĸB protects infected cells against immune elimination. Thus, the dichotomy of HBx activity may be a reflection of the environment wherein HBx is expressed. Importantly, the epigenetic mechanisms whereby HBx regulates virus replication also have an impact on cell growth and survival, and many of these same alterations in host gene expression are also hallmarks of cancer [107], which may explain why there is such a high risk of HCC among carriers with CLD [11]. The common denominator is that many of the pathways and molecules that support HBV gene expression and replication also protect infected cells from elimination, and contribute centrally to malignant transformation.
The author wants to acknowledge Temple University for providing him with the opportunity to work on this project.
The author declares no conflict of interest.
"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality. Throughout the world, we are seeing progress in attracting, retaining, and promoting women in STEMM. IntechOpen are certainly supporting this work globally by empowering all scientists and ensuring that women are encouraged and enabled to publish and take leading roles within the scientific community." Dr. Catrin Rutland, University of Nottingham, UK
",metaTitle:"Advantages of Publishing with IntechOpen",metaDescription:"We have more than a decade of experience in Open Access publishing. \n\n ",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"We have more than a decade of experience in Open Access publishing. The advantages of publishing with IntechOpen include:
\\n\\nOur platform – IntechOpen is the world’s leading publisher of OA books, built by scientists, for scientists.
\\n\\nOur reputation – Everything we publish goes through a two-stage peer review process. We’re proud to count Nobel laureates among our esteemed authors. We meet European Commission standards for funding, and the research we’ve published has been funded by the Bill and Melinda Gates Foundation and the Wellcome Trust, among others. IntechOpen is a member of all relevant trade associations (including the STM Association and the Association of Learned and Professional Society Publishers) and has a selection of books indexed in Web of Science's Book Citation Index.
\\n\\nOur expertise – We’ve published more than 4,200 books by more than 116,000 authors and editors.
\\n\\nOur reach – Our books have more than 125 million downloads and more than 84,800 Web of Science citations. We increase citations via indexing in all the major databases, including the Book Citation Index at Web of Science and Google Scholar.
\\n\\nOur services – The support we offer our authors and editors is second to none. Each book in our program receives the following:
\\n\\nOur end-to-end publishing service frees our authors and editors to focus on what matters: research. We empower them to shape their fields and connect with the global scientific community.
\\n\\n"In developing countries until now, advancement in science has been very limited, because insufficient economic resources are dedicated to science and education. These limitations are more marked when the scientists are women. In order to develop science in the poorest countries and decrease the gender gap that exists in scientific fields, Open Access networks like IntechOpen are essential. Free access to scientific research could contribute to ameliorating difficult life conditions and breaking down barriers." Marquidia Pacheco, National Institute for Nuclear Research (ININ), Mexico
\\n\\nInterested? Contact Ana Pantar (book.idea@intechopen.com) for more information.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'We have more than a decade of experience in Open Access publishing. The advantages of publishing with IntechOpen include:
\n\nOur platform – IntechOpen is the world’s leading publisher of OA books, built by scientists, for scientists.
\n\nOur reputation – Everything we publish goes through a two-stage peer review process. We’re proud to count Nobel laureates among our esteemed authors. We meet European Commission standards for funding, and the research we’ve published has been funded by the Bill and Melinda Gates Foundation and the Wellcome Trust, among others. IntechOpen is a member of all relevant trade associations (including the STM Association and the Association of Learned and Professional Society Publishers) and has a selection of books indexed in Web of Science's Book Citation Index.
\n\nOur expertise – We’ve published more than 4,200 books by more than 116,000 authors and editors.
\n\nOur reach – Our books have more than 125 million downloads and more than 84,800 Web of Science citations. We increase citations via indexing in all the major databases, including the Book Citation Index at Web of Science and Google Scholar.
\n\nOur services – The support we offer our authors and editors is second to none. Each book in our program receives the following:
\n\nOur end-to-end publishing service frees our authors and editors to focus on what matters: research. We empower them to shape their fields and connect with the global scientific community.
\n\n"In developing countries until now, advancement in science has been very limited, because insufficient economic resources are dedicated to science and education. These limitations are more marked when the scientists are women. In order to develop science in the poorest countries and decrease the gender gap that exists in scientific fields, Open Access networks like IntechOpen are essential. Free access to scientific research could contribute to ameliorating difficult life conditions and breaking down barriers." Marquidia Pacheco, National Institute for Nuclear Research (ININ), Mexico
\n\nInterested? Contact Ana Pantar (book.idea@intechopen.com) for more information.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:null},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5313},{group:"region",caption:"Middle and South America",value:2,count:4819},{group:"region",caption:"Africa",value:3,count:1468},{group:"region",caption:"Asia",value:4,count:9362},{group:"region",caption:"Australia and Oceania",value:5,count:837},{group:"region",caption:"Europe",value:6,count:14778}],offset:12,limit:12,total:108153},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"16"},books:[{type:"book",id:"7927",title:"Selected Topics in Child and Adolescent Mental Health",subtitle:null,isOpenForSubmission:!0,hash:"d0afa3f41927509c4a21502c591726b8",slug:null,bookSignature:"Dr. Maria Rosaria Muzio",coverURL:"https://cdn.intechopen.com/books/images_new/7927.jpg",editedByType:null,editors:[{id:"286957",title:"Dr.",name:"Maria",surname:"Rosaria Muzio",slug:"maria-rosaria-muzio",fullName:"Maria Rosaria Muzio"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8710",title:"Eosinophils",subtitle:null,isOpenForSubmission:!0,hash:"310c9d9e1510937f3bec11533ead88be",slug:null,bookSignature:"Dr. Seyyed Shamsadin Athari and Dr. Entezar Mehrabi Nasab",coverURL:"https://cdn.intechopen.com/books/images_new/8710.jpg",editedByType:null,editors:[{id:"139889",title:"Dr.",name:"Seyyed Shamsadin",surname:"Athari",slug:"seyyed-shamsadin-athari",fullName:"Seyyed Shamsadin Athari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7632",title:"Beyond LEO - Human Health Issues for Deep Space Exploration",subtitle:null,isOpenForSubmission:!0,hash:"800d9e65b9eca19dd1372fa0db7478cd",slug:null,bookSignature:"Dr. Robert J. Reynolds",coverURL:"https://cdn.intechopen.com/books/images_new/7632.jpg",editedByType:null,editors:[{id:"220737",title:"Dr.",name:"Robert",surname:"J. Reynolds",slug:"robert-j.-reynolds",fullName:"Robert J. Reynolds"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9133",title:"Hospital Acquired Infection and Legionnaires Disease",subtitle:null,isOpenForSubmission:!0,hash:"67e9b00ffb1203f7a41d2bb8507367c4",slug:null,bookSignature:"Dr. Salim Surani and Dr. Joseph Varon",coverURL:"https://cdn.intechopen.com/books/images_new/9133.jpg",editedByType:null,editors:[{id:"15654",title:"Dr.",name:"Salim",surname:"Surani",slug:"salim-surani",fullName:"Salim Surani"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9087",title:"Anemia",subtitle:null,isOpenForSubmission:!0,hash:"f94d3fb270e4af2b9813b12455424c22",slug:null,bookSignature:"Dr. Ota Fuchs",coverURL:"https://cdn.intechopen.com/books/images_new/9087.jpg",editedByType:null,editors:[{id:"36468",title:"Dr.",name:"Ota",surname:"Fuchs",slug:"ota-fuchs",fullName:"Ota Fuchs"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9451",title:"Learning Disabilities",subtitle:null,isOpenForSubmission:!0,hash:"9c7a717ecf24f759a2b2111dfca99960",slug:null,bookSignature:" Sandro Misciagna",coverURL:"https://cdn.intechopen.com/books/images_new/9451.jpg",editedByType:null,editors:[{id:"103586",title:null,name:"Sandro",surname:"Misciagna",slug:"sandro-misciagna",fullName:"Sandro Misciagna"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7966",title:"Diagnosis and Treatment of Osteomyelitis",subtitle:null,isOpenForSubmission:!0,hash:"764c30adac79d07c33b37020ee81218b",slug:null,bookSignature:"Prof. Mauricio S. Baptista and Dr. João Paulo Tardivo",coverURL:"https://cdn.intechopen.com/books/images_new/7966.jpg",editedByType:null,editors:[{id:"85863",title:"Prof.",name:"Mauricio S.",surname:"Baptista",slug:"mauricio-s.-baptista",fullName:"Mauricio S. Baptista"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7845",title:"Platelets",subtitle:null,isOpenForSubmission:!0,hash:"d33b20516d6ff3a5b7446a882109ba26",slug:null,bookSignature:"Dr. Steve W. W. Kerrigan and Prof. Niamh Moran",coverURL:"https://cdn.intechopen.com/books/images_new/7845.jpg",editedByType:null,editors:[{id:"73961",title:"Dr.",name:"Steve W.",surname:"Kerrigan",slug:"steve-w.-kerrigan",fullName:"Steve W. Kerrigan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9069",title:"Zinc and Human Health",subtitle:null,isOpenForSubmission:!0,hash:"b40ada91c760e960017f31af036f60e0",slug:null,bookSignature:"Dr. Andreas Grabrucker",coverURL:"https://cdn.intechopen.com/books/images_new/9069.jpg",editedByType:null,editors:[{id:"178792",title:"Dr.",name:"Andreas",surname:"Grabrucker",slug:"andreas-grabrucker",fullName:"Andreas Grabrucker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9464",title:"Health Benefits of Tea (Camellia sinensis)",subtitle:null,isOpenForSubmission:!0,hash:"f8945b63ec8437f5589e4168ff682e2d",slug:null,bookSignature:"Dr. Kula Kamal Senapati",coverURL:"https://cdn.intechopen.com/books/images_new/9464.jpg",editedByType:null,editors:[{id:"234221",title:"Dr.",name:"Kula Kamal",surname:"Senapati",slug:"kula-kamal-senapati",fullName:"Kula Kamal Senapati"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9056",title:"Multiple Chronic Conditions - Overview and Management of Chronic Disease Clusters",subtitle:null,isOpenForSubmission:!0,hash:"c842c2f3339a6a9290603393ab741253",slug:null,bookSignature:"Prof. Sevgi Akarsu",coverURL:"https://cdn.intechopen.com/books/images_new/9056.jpg",editedByType:null,editors:[{id:"182444",title:"Prof.",name:"Sevgi",surname:"Akarsu",slug:"sevgi-akarsu",fullName:"Sevgi Akarsu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9126",title:"Respiratory Physiology",subtitle:null,isOpenForSubmission:!0,hash:"e57374d11c8da9e7c70631881dcf55fa",slug:null,bookSignature:"Dr. Ketevan Nemsadze",coverURL:"https://cdn.intechopen.com/books/images_new/9126.jpg",editedByType:null,editors:[{id:"149748",title:"Dr.",name:"Ketevan",surname:"Nemsadze",slug:"ketevan-nemsadze",fullName:"Ketevan Nemsadze"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:35},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:32},{group:"topic",caption:"Business, Management and Economics",value:7,count:9},{group:"topic",caption:"Chemistry",value:8,count:29},{group:"topic",caption:"Computer and Information Science",value:9,count:26},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:14},{group:"topic",caption:"Engineering",value:11,count:75},{group:"topic",caption:"Environmental Sciences",value:12,count:13},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:37},{group:"topic",caption:"Mathematics",value:15,count:14},{group:"topic",caption:"Medicine",value:16,count:142},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:5},{group:"topic",caption:"Neuroscience",value:18,count:6},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:8},{group:"topic",caption:"Physics",value:20,count:20},{group:"topic",caption:"Psychology",value:21,count:2},{group:"topic",caption:"Robotics",value:22,count:6},{group:"topic",caption:"Social Sciences",value:23,count:14},{group:"topic",caption:"Technology",value:24,count:10},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3},{group:"topic",caption:"Intelligent System",value:535,count:1}],offset:12,limit:12,total:142},popularBooks:{featuredBooks:[{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7614",title:"Fourier Transforms",subtitle:"Century of Digitalization and Increasing Expectations",isOpenForSubmission:!1,hash:"ff3501657ae983a3b42fef1f7058ac91",slug:"fourier-transforms-century-of-digitalization-and-increasing-expectations",bookSignature:"Goran S. Nikoli? and Dragana Z. Markovi?-Nikoli?",coverURL:"https://cdn.intechopen.com/books/images_new/7614.jpg",editors:[{id:"23261",title:"Prof.",name:"Goran",middleName:"S.",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7087",title:"Tendons",subtitle:null,isOpenForSubmission:!1,hash:"786abac0445c102d1399a1e727a2db7f",slug:"tendons",bookSignature:"Hasan Sözen",coverURL:"https://cdn.intechopen.com/books/images_new/7087.jpg",editors:[{id:"161402",title:"Dr.",name:"Hasan",middleName:null,surname:"Sözen",slug:"hasan-sozen",fullName:"Hasan Sözen"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,isOpenForSubmission:!1,hash:"61c627da05b2ace83056d11357bdf361",slug:"current-topics-in-neglected-tropical-diseases",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",editors:[{id:"131400",title:"Dr.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7610",title:"Renewable and Sustainable Composites",subtitle:null,isOpenForSubmission:!1,hash:"c2de26c3d329c54f093dc3f05417500a",slug:"renewable-and-sustainable-composites",bookSignature:"António B. Pereira and Fábio A. O. Fernandes",coverURL:"https://cdn.intechopen.com/books/images_new/7610.jpg",editors:[{id:"211131",title:"Prof.",name:"António",middleName:"Bastos",surname:"Pereira",slug:"antonio-pereira",fullName:"António Pereira"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8416",title:"Non-Equilibrium Particle Dynamics",subtitle:null,isOpenForSubmission:!1,hash:"2c3add7639dcd1cb442cb4313ea64e3a",slug:"non-equilibrium-particle-dynamics",bookSignature:"Albert S. Kim",coverURL:"https://cdn.intechopen.com/books/images_new/8416.jpg",editors:[{id:"21045",title:"Prof.",name:"Albert S.",middleName:null,surname:"Kim",slug:"albert-s.-kim",fullName:"Albert S. Kim"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8463",title:"Pediatric Surgery, Flowcharts and Clinical Algorithms",subtitle:null,isOpenForSubmission:!1,hash:"23f39beea4d557b0ae424e2eaf82bf5e",slug:"pediatric-surgery-flowcharts-and-clinical-algorithms",bookSignature:"Sameh Shehata",coverURL:"https://cdn.intechopen.com/books/images_new/8463.jpg",editors:[{id:"37518",title:"Prof.",name:"Sameh",middleName:null,surname:"Shehata",slug:"sameh-shehata",fullName:"Sameh Shehata"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4392},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7614",title:"Fourier Transforms",subtitle:"Century of Digitalization and Increasing Expectations",isOpenForSubmission:!1,hash:"ff3501657ae983a3b42fef1f7058ac91",slug:"fourier-transforms-century-of-digitalization-and-increasing-expectations",bookSignature:"Goran S. Nikoli? and Dragana Z. Markovi?-Nikoli?",coverURL:"https://cdn.intechopen.com/books/images_new/7614.jpg",editors:[{id:"23261",title:"Prof.",name:"Goran",middleName:"S.",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7087",title:"Tendons",subtitle:null,isOpenForSubmission:!1,hash:"786abac0445c102d1399a1e727a2db7f",slug:"tendons",bookSignature:"Hasan Sözen",coverURL:"https://cdn.intechopen.com/books/images_new/7087.jpg",editors:[{id:"161402",title:"Dr.",name:"Hasan",middleName:null,surname:"Sözen",slug:"hasan-sozen",fullName:"Hasan Sözen"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,isOpenForSubmission:!1,hash:"61c627da05b2ace83056d11357bdf361",slug:"current-topics-in-neglected-tropical-diseases",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",editors:[{id:"131400",title:"Dr.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7610",title:"Renewable and Sustainable Composites",subtitle:null,isOpenForSubmission:!1,hash:"c2de26c3d329c54f093dc3f05417500a",slug:"renewable-and-sustainable-composites",bookSignature:"António B. Pereira and Fábio A. O. Fernandes",coverURL:"https://cdn.intechopen.com/books/images_new/7610.jpg",editors:[{id:"211131",title:"Prof.",name:"António",middleName:"Bastos",surname:"Pereira",slug:"antonio-pereira",fullName:"António Pereira"}],productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8463",title:"Pediatric Surgery, Flowcharts and Clinical Algorithms",subtitle:null,isOpenForSubmission:!1,hash:"23f39beea4d557b0ae424e2eaf82bf5e",slug:"pediatric-surgery-flowcharts-and-clinical-algorithms",bookSignature:"Sameh Shehata",coverURL:"https://cdn.intechopen.com/books/images_new/8463.jpg",editedByType:"Edited by",editors:[{id:"37518",title:"Prof.",name:"Sameh",middleName:null,surname:"Shehata",slug:"sameh-shehata",fullName:"Sameh Shehata"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7187",title:"Osteosarcoma",subtitle:"Diagnosis, Mechanisms, and Translational Developments",isOpenForSubmission:!1,hash:"89096359b754beb806eca4c6d8aacaba",slug:"osteosarcoma-diagnosis-mechanisms-and-translational-developments",bookSignature:"Matthew Gregory Cable and Robert Lawrence Randall",coverURL:"https://cdn.intechopen.com/books/images_new/7187.jpg",editedByType:"Edited by",editors:[{id:"265693",title:"Dr.",name:"Matthew Gregory",middleName:null,surname:"Cable",slug:"matthew-gregory-cable",fullName:"Matthew Gregory Cable"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editedByType:"Edited by",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editedByType:"Edited by",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"e7ea7e74ce7a7a8e5359629e07c68d31",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",editedByType:"Edited by",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8256",title:"Distillation",subtitle:"Modelling, Simulation and Optimization",isOpenForSubmission:!1,hash:"c76af109f83e14d915e5cb3949ae8b80",slug:"distillation-modelling-simulation-and-optimization",bookSignature:"Vilmar Steffen",coverURL:"https://cdn.intechopen.com/books/images_new/8256.jpg",editedByType:"Edited by",editors:[{id:"189035",title:"Dr.",name:"Vilmar",middleName:null,surname:"Steffen",slug:"vilmar-steffen",fullName:"Vilmar Steffen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7240",title:"Growing and Handling of Bacterial Cultures",subtitle:null,isOpenForSubmission:!1,hash:"a76c3ef7718c0b72d0128817cdcbe6e3",slug:"growing-and-handling-of-bacterial-cultures",bookSignature:"Madhusmita Mishra",coverURL:"https://cdn.intechopen.com/books/images_new/7240.jpg",editedByType:"Edited by",editors:[{id:"204267",title:"Dr.",name:"Madhusmita",middleName:null,surname:"Mishra",slug:"madhusmita-mishra",fullName:"Madhusmita Mishra"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editedByType:"Edited by",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editedByType:"Edited by",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editedByType:"Edited by",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1124",title:"Pediatric Rehabilitation Medicine",slug:"pediatric-rehabilitation-medicine",parent:{title:"Physical Medicine and Rehabilitation",slug:"physical-medicine-and-rehabilitation"},numberOfBooks:2,numberOfAuthorsAndEditors:48,numberOfWosCitations:0,numberOfCrossrefCitations:11,numberOfDimensionsCitations:14,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"pediatric-rehabilitation-medicine",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7072",title:"Cerebral Palsy",subtitle:"Clinical and Therapeutic Aspects",isOpenForSubmission:!1,hash:"eebd6581cd862f95edfacb284191e1c5",slug:"cerebral-palsy-clinical-and-therapeutic-aspects",bookSignature:"Isam Jaber Al-Zwaini",coverURL:"https://cdn.intechopen.com/books/images_new/7072.jpg",editedByType:"Edited by",editors:[{id:"30993",title:"Prof.",name:"Isam Jaber",middleName:null,surname:"Al-Zwaini",slug:"isam-jaber-al-zwaini",fullName:"Isam Jaber Al-Zwaini"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5203",title:"Recovery of Motor Function Following Spinal Cord Injury",subtitle:null,isOpenForSubmission:!1,hash:"8c1d0a0fb7465d107de2089e21227ad8",slug:"recovery-of-motor-function-following-spinal-cord-injury",bookSignature:"Heidi Fuller and Monte Gates",coverURL:"https://cdn.intechopen.com/books/images_new/5203.jpg",editedByType:"Edited by",editors:[{id:"87307",title:"Dr.",name:"Heidi",middleName:null,surname:"Fuller",slug:"heidi-fuller",fullName:"Heidi Fuller"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,mostCitedChapters:[{id:"50997",doi:"10.5772/63759",title:"Normal Distribution and Plasticity of Serotonin Receptors after Spinal Cord Injury and Their Impacts on Motor Outputs",slug:"normal-distribution-and-plasticity-of-serotonin-receptors-after-spinal-cord-injury-and-their-impacts",totalDownloads:975,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"recovery-of-motor-function-following-spinal-cord-injury",title:"Recovery of Motor Function Following Spinal Cord Injury",fullTitle:"Recovery of Motor Function Following Spinal Cord Injury"},signatures:"Mengliang Zhang",authors:[{id:"180492",title:"Dr.",name:"Mengliang",middleName:null,surname:"Zhang",slug:"mengliang-zhang",fullName:"Mengliang Zhang"}]},{id:"50618",doi:"10.5772/63222",title:"Role of the Neuroinflammation in the Degree of Spinal Cord Injury: New Therapeutic Strategies",slug:"role-of-the-neuroinflammation-in-the-degree-of-spinal-cord-injury-new-therapeutic-strategies",totalDownloads:906,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"recovery-of-motor-function-following-spinal-cord-injury",title:"Recovery of Motor Function Following Spinal Cord Injury",fullTitle:"Recovery of Motor Function Following Spinal Cord Injury"},signatures:"Irene Paterniti, Emanuela Esposito and Salvatore Cuzzocrea",authors:[{id:"150412",title:"Prof.",name:"Salvatore",middleName:null,surname:"Cuzzocrea",slug:"salvatore-cuzzocrea",fullName:"Salvatore Cuzzocrea"},{id:"183507",title:"Ph.D.",name:"Emanuela",middleName:null,surname:"Esposito",slug:"emanuela-esposito",fullName:"Emanuela Esposito"},{id:"183508",title:"Ph.D.",name:"Irene",middleName:null,surname:"Paterniti",slug:"irene-paterniti",fullName:"Irene Paterniti"}]},{id:"50752",doi:"10.5772/62947",title:"Experimental Spinal Cord Injury Models in Rodents: Anatomical Correlations and Assessment of Motor Recovery",slug:"experimental-spinal-cord-injury-models-in-rodents-anatomical-correlations-and-assessment-of-motor-re",totalDownloads:1471,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"recovery-of-motor-function-following-spinal-cord-injury",title:"Recovery of Motor Function Following Spinal Cord Injury",fullTitle:"Recovery of Motor Function Following Spinal Cord Injury"},signatures:"Christina F. Vogelaar and Veronica Estrada",authors:[{id:"180296",title:"Dr.",name:"Christina Francisca",middleName:null,surname:"Vogelaar",slug:"christina-francisca-vogelaar",fullName:"Christina Francisca Vogelaar"},{id:"185622",title:"Dr.",name:"Veronica",middleName:null,surname:"Estrada",slug:"veronica-estrada",fullName:"Veronica Estrada"}]}],mostDownloadedChaptersLast30Days:[{id:"63463",title:"Clinical Classification of Cerebral Palsy",slug:"clinical-classification-of-cerebral-palsy",totalDownloads:762,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"cerebral-palsy-clinical-and-therapeutic-aspects",title:"Cerebral Palsy",fullTitle:"Cerebral Palsy - Clinical and Therapeutic Aspects"},signatures:"Christian Chukwukere Ogoke",authors:[{id:"250398",title:"Dr.",name:"Christian",middleName:"Chukwukere",surname:"Ogoke",slug:"christian-ogoke",fullName:"Christian Ogoke"}]},{id:"50752",title:"Experimental Spinal Cord Injury Models in Rodents: Anatomical Correlations and Assessment of Motor Recovery",slug:"experimental-spinal-cord-injury-models-in-rodents-anatomical-correlations-and-assessment-of-motor-re",totalDownloads:1471,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"recovery-of-motor-function-following-spinal-cord-injury",title:"Recovery of Motor Function Following Spinal Cord Injury",fullTitle:"Recovery of Motor Function Following Spinal Cord Injury"},signatures:"Christina F. Vogelaar and Veronica Estrada",authors:[{id:"180296",title:"Dr.",name:"Christina Francisca",middleName:null,surname:"Vogelaar",slug:"christina-francisca-vogelaar",fullName:"Christina Francisca Vogelaar"},{id:"185622",title:"Dr.",name:"Veronica",middleName:null,surname:"Estrada",slug:"veronica-estrada",fullName:"Veronica Estrada"}]},{id:"62885",title:"Use of Botulinum Toxin A in Cerebral Palsy",slug:"use-of-botulinum-toxin-a-in-cerebral-palsy",totalDownloads:370,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"cerebral-palsy-clinical-and-therapeutic-aspects",title:"Cerebral Palsy",fullTitle:"Cerebral Palsy - Clinical and Therapeutic Aspects"},signatures:"Adel A. Kareem",authors:[{id:"254143",title:"Dr.",name:"Adel",middleName:null,surname:"A. Kareem",slug:"adel-a.-kareem",fullName:"Adel A. Kareem"}]},{id:"63410",title:"Oral Health in Children with Cerebral Palsy",slug:"oral-health-in-children-with-cerebral-palsy",totalDownloads:327,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"cerebral-palsy-clinical-and-therapeutic-aspects",title:"Cerebral Palsy",fullTitle:"Cerebral Palsy - Clinical and Therapeutic Aspects"},signatures:"Rahena Akhter, Nur Mohmmad Monsur Hassan, Mangala Nadkarni,\nElizabeth F. Martin and Gulam Khandaker",authors:[{id:"231469",title:"Dr.",name:"Rahena",middleName:null,surname:"Akhter",slug:"rahena-akhter",fullName:"Rahena Akhter"},{id:"254193",title:"Dr.",name:"Nur Mohammad Monsur",middleName:null,surname:"Hassan",slug:"nur-mohammad-monsur-hassan",fullName:"Nur Mohammad Monsur Hassan"},{id:"254194",title:"Prof.",name:"Elizabeth",middleName:null,surname:"F. Martin",slug:"elizabeth-f.-martin",fullName:"Elizabeth F. Martin"},{id:"261319",title:"Dr.",name:"Mangala",middleName:null,surname:"Nadkarni",slug:"mangala-nadkarni",fullName:"Mangala Nadkarni"},{id:"261320",title:"Dr.",name:"Gulam",middleName:null,surname:"Khandaker",slug:"gulam-khandaker",fullName:"Gulam Khandaker"}]},{id:"62532",title:"Early Markers for Cerebral Palsy",slug:"early-markers-for-cerebral-palsy",totalDownloads:269,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"cerebral-palsy-clinical-and-therapeutic-aspects",title:"Cerebral Palsy",fullTitle:"Cerebral Palsy - Clinical and Therapeutic Aspects"},signatures:"Ali A. Al-Mayahi",authors:[{id:"252661",title:"Associate Prof.",name:"Ali",middleName:null,surname:"Al-Mayahi",slug:"ali-al-mayahi",fullName:"Ali Al-Mayahi"}]},{id:"64318",title:"Hip Surgery in Cerebral Palsy",slug:"hip-surgery-in-cerebral-palsy",totalDownloads:278,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"cerebral-palsy-clinical-and-therapeutic-aspects",title:"Cerebral Palsy",fullTitle:"Cerebral Palsy - Clinical and Therapeutic Aspects"},signatures:"João Lameiras-Campagnolo",authors:[{id:"251869",title:"Mr.",name:"João",middleName:null,surname:"Lameiras-Campagnolo",slug:"joao-lameiras-campagnolo",fullName:"João Lameiras-Campagnolo"}]},{id:"50957",title:"In Vitro Models of Spinal Cord Injury",slug:"in-vitro-models-of-spinal-cord-injury",totalDownloads:1676,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"recovery-of-motor-function-following-spinal-cord-injury",title:"Recovery of Motor Function Following Spinal Cord Injury",fullTitle:"Recovery of Motor Function Following Spinal Cord Injury"},signatures:"Lucia Slovinska, Juraj Blasko, Miriam Nagyova, Eva Szekiova and\nDasa Cizkova",authors:[{id:"83943",title:"Dr.",name:"Dasa",middleName:null,surname:"Cizkova",slug:"dasa-cizkova",fullName:"Dasa Cizkova"},{id:"90290",title:"Dr.",name:"Lucia",middleName:null,surname:"Slovinska",slug:"lucia-slovinska",fullName:"Lucia Slovinska"},{id:"185974",title:"Dr.",name:"Juraj",middleName:null,surname:"Blasko",slug:"juraj-blasko",fullName:"Juraj Blasko"},{id:"189135",title:"Dr.",name:"Miriam",middleName:null,surname:"Nagyova",slug:"miriam-nagyova",fullName:"Miriam Nagyova"},{id:"189136",title:"Dr.",name:"Eva",middleName:null,surname:"Szekiova",slug:"eva-szekiova",fullName:"Eva Szekiova"}]},{id:"63097",title:"Survival, Mortality, and Life Expectancy",slug:"survival-mortality-and-life-expectancy",totalDownloads:337,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"cerebral-palsy-clinical-and-therapeutic-aspects",title:"Cerebral Palsy",fullTitle:"Cerebral Palsy - Clinical and Therapeutic Aspects"},signatures:"Steven M. Day and Robert J. Reynolds",authors:[{id:"220737",title:"Dr.",name:"Robert",middleName:null,surname:"J. Reynolds",slug:"robert-j.-reynolds",fullName:"Robert J. Reynolds"},{id:"220748",title:"Dr.",name:"Steven",middleName:null,surname:"M. Day",slug:"steven-m.-day",fullName:"Steven M. Day"}]},{id:"62494",title:"Cerebral Palsy and Epilepsy",slug:"cerebral-palsy-and-epilepsy",totalDownloads:259,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"cerebral-palsy-clinical-and-therapeutic-aspects",title:"Cerebral Palsy",fullTitle:"Cerebral Palsy - Clinical and Therapeutic Aspects"},signatures:"Alexey Kholin",authors:[{id:"253091",title:"Dr.",name:"Alexey",middleName:null,surname:"Kholin",slug:"alexey-kholin",fullName:"Alexey Kholin"}]},{id:"51289",title:"Orthoses for Spinal Cord Injury Patients",slug:"orthoses-for-spinal-cord-injury-patients",totalDownloads:1345,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"recovery-of-motor-function-following-spinal-cord-injury",title:"Recovery of Motor Function Following Spinal Cord Injury",fullTitle:"Recovery of Motor Function Following Spinal Cord Injury"},signatures:"Mokhtar Arazpour, Monireh Ahmadi Bani, Mohammad Ebrahim\nMousavi, Mahmood Bahramizadeh and Mohammad Ali Mardani",authors:[{id:"179731",title:"Dr.",name:"Mokhtar",middleName:null,surname:"Arazpour",slug:"mokhtar-arazpour",fullName:"Mokhtar Arazpour"}]}],onlineFirstChaptersFilter:{topicSlug:"pediatric-rehabilitation-medicine",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"6837",title:"Lithium-ion Batteries - Thin Film for Energy Materials and Devices",subtitle:null,isOpenForSubmission:!0,hash:"ea7789260b319b9a4b472257f57bfeb5",slug:null,bookSignature:"Prof. Mitsunobu Sato, Dr. Li Lu and Dr. Hiroki Nagai",coverURL:"https://cdn.intechopen.com/books/images_new/6837.jpg",editedByType:null,editors:[{id:"179615",title:"Prof.",name:"Mitsunobu",middleName:null,surname:"Sato",slug:"mitsunobu-sato",fullName:"Mitsunobu Sato"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9423",title:"Applications of Artificial Intelligence in Process Industry Automation, Heat and Power Generation and Smart Manufacturing",subtitle:null,isOpenForSubmission:!0,hash:"10ac8fb0bdbf61044395963028653d21",slug:null,bookSignature:"Prof. Konstantinos G. Kyprianidis and Prof. Erik Dahlquist",coverURL:"https://cdn.intechopen.com/books/images_new/9423.jpg",editedByType:null,editors:[{id:"35868",title:"Prof.",name:"Konstantinos",middleName:"G.",surname:"Kyprianidis",slug:"konstantinos-kyprianidis",fullName:"Konstantinos Kyprianidis"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9428",title:"New Trends in the Use of Artificial Intelligence for the Industry 4.0",subtitle:null,isOpenForSubmission:!0,hash:"9e089eec484ce8e9eb32198c2d8b34ea",slug:null,bookSignature:"Dr. Luis Romeral Martinez, Dr. Roque A. Osornio-Rios and Dr. Miguel Delgado Prieto",coverURL:"https://cdn.intechopen.com/books/images_new/9428.jpg",editedByType:null,editors:[{id:"86501",title:"Dr.",name:"Luis",middleName:null,surname:"Romeral Martinez",slug:"luis-romeral-martinez",fullName:"Luis Romeral Martinez"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10107",title:"Artificial Intelligence in Oncology Drug Discovery & Development",subtitle:null,isOpenForSubmission:!0,hash:"043c178c3668865ab7d35dcb2ceea794",slug:null,bookSignature:"Dr. John Cassidy and Dr. Belle Taylor",coverURL:"https://cdn.intechopen.com/books/images_new/10107.jpg",editedByType:null,editors:[{id:"244455",title:"Dr.",name:"John",middleName:null,surname:"Cassidy",slug:"john-cassidy",fullName:"John Cassidy"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8903",title:"Carbon Based Material for Environmental Protection and Remediation",subtitle:null,isOpenForSubmission:!0,hash:"19da699b370f320eca63ef2ba02f745d",slug:null,bookSignature:"Dr. Mattia Bartoli and Dr. Marco Frediani",coverURL:"https://cdn.intechopen.com/books/images_new/8903.jpg",editedByType:null,editors:[{id:"188999",title:"Dr.",name:"Mattia",middleName:null,surname:"Bartoli",slug:"mattia-bartoli",fullName:"Mattia Bartoli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10132",title:"Applied Computational Near-surface Geophysics - From Integral and Derivative Formulas to MATLAB Codes",subtitle:null,isOpenForSubmission:!0,hash:"38cdbbb671df620b36ee96af1d9a3a90",slug:null,bookSignature:"Dr. Afshin Aghayan",coverURL:"https://cdn.intechopen.com/books/images_new/10132.jpg",editedByType:null,editors:[{id:"311030",title:"Dr.",name:"Afshin",middleName:null,surname:"Aghayan",slug:"afshin-aghayan",fullName:"Afshin Aghayan"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10110",title:"Advances and Technologies in Building Construction and Structural Analysis",subtitle:null,isOpenForSubmission:!0,hash:"df2ad14bc5588577e8bf0b7ebcdafd9d",slug:null,bookSignature:"Dr. Ali Kaboli and Dr. Sara Shirowzhan",coverURL:"https://cdn.intechopen.com/books/images_new/10110.jpg",editedByType:null,editors:[{id:"309192",title:"Dr.",name:"Ali",middleName:null,surname:"Kaboli",slug:"ali-kaboli",fullName:"Ali Kaboli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10175",title:"Ethics in Emerging Technologies",subtitle:null,isOpenForSubmission:!0,hash:"9c92da249676e35e2f7476182aa94e84",slug:null,bookSignature:"Prof. Ali Hessami",coverURL:"https://cdn.intechopen.com/books/images_new/10175.jpg",editedByType:null,editors:[{id:"108303",title:"Prof.",name:"Ali",middleName:null,surname:"Hessami",slug:"ali-hessami",fullName:"Ali Hessami"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:16},humansInSpaceProgram:{},teamHumansInSpaceProgram:{},route:{name:"profile.detail",path:"/profiles/57711/fernando-piston",hash:"",query:{},params:{id:"57711",slug:"fernando-piston"},fullPath:"/profiles/57711/fernando-piston",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()