Reference values for folate/folate equivalents for adults from different international societies and organizations.
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"},{slug:"intechopen-s-chapter-awarded-the-guenther-von-pannewitz-preis-2020-20200715",title:"IntechOpen's Chapter Awarded the Günther-von-Pannewitz-Preis 2020"}]},book:{item:{type:"book",id:"8007",leadTitle:null,fullTitle:"Estuaries and Coastal Zones - Dynamics and Response to Environmental Changes",title:"Estuaries and Coastal Zones",subtitle:"Dynamics and Response to Environmental Changes",reviewType:"peer-reviewed",abstract:"Estuaries and their surrounding wetland regions are among the most productive ecosystems in the world, with more than half of humanity inhabiting their shores. Anthropogenic factors make estuaries highly susceptible to ecosystem degradation. Coastal waters are closely connected with human activity, and their dynamic processes may greatly affect coastal environments. This book provides a compendium of studies on estuarine dynamics, river plumes, and coastal water dynamics, studies that have investigated the changes in estuarine and coastal zones in response to sea-level rise and other environmental factors, and policy and management strategies to ensure the health and economy of coastal zones. This book aims to display novel frontiers in these fields and may help to inspire in-depth studies in the future.",isbn:"978-1-78985-580-7",printIsbn:"978-1-78985-579-1",pdfIsbn:"978-1-83880-317-9",doi:"10.5772/intechopen.77837",price:119,priceEur:129,priceUsd:155,slug:"estuaries-and-coastal-zones-dynamics-and-response-to-environmental-changes",numberOfPages:268,isOpenForSubmission:!1,isInWos:null,hash:"ec140486c42d62e69ef428e6cf71b6d7",bookSignature:"Jiayi Pan and Adam Devlin",publishedDate:"March 25th 2020",coverURL:"https://cdn.intechopen.com/books/images_new/8007.jpg",numberOfDownloads:2592,numberOfWosCitations:0,numberOfCrossrefCitations:2,numberOfDimensionsCitations:5,hasAltmetrics:0,numberOfTotalCitations:7,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 6th 2019",dateEndSecondStepPublish:"March 27th 2019",dateEndThirdStepPublish:"May 26th 2019",dateEndFourthStepPublish:"August 14th 2019",dateEndFifthStepPublish:"October 13th 2019",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,editors:[{id:"179303",title:"Prof.",name:"Jiayi",middleName:null,surname:"Pan",slug:"jiayi-pan",fullName:"Jiayi Pan",profilePictureURL:"https://mts.intechopen.com/storage/users/179303/images/system/179303.jpg",biography:"Professor Jiayi Pan received his Ph.D. in Physical Oceanography from the Institute of Oceanology, Chinese Academy of Sciences in 1996. He was a postdoctoral researcher at the University of Delaware from 1999 to 2003, then worked at the University of Southern Mississippi, Oregon Health and Science University, and Portland State University in 2003-2004, 2004-2005, and 2005-2009, respectively. He joined the Institute of Space and Earth Information Science, the Chinese University of Hong Kong as an associate professor in February 2009. Professor Jiayi Pan has been engaged in research on ocean remote sensing, air-sea interaction, estuarine dynamics, and internal wave dynamics for many years, and was the principal investigator (PI) or Co-PI for a number of research projects. In July 2019, he joined the School of Geography and Environment, Jiangxi Normal University as a distinguished professor.",institutionString:"Jiangxi Normal University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Chinese University of Hong Kong",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin",profilePictureURL:"https://mts.intechopen.com/storage/users/280757/images/system/280757.jpg",biography:"Dr. Adam T. Devlin is a physical oceanographer who analyzes the fluctuations in tides and sea level on a global and regional level, with a special interest in the dynamics of the Western Pacific Ocean. He also studies the patterns of water level and meteorological changes using historical records and modern satellite data to better predict future flood scenarios and impacts on coastal populations and ecosystems. Dr. Devlin holds a Ph.D. in Applied Physics from Portland State University, an MS in Applied Physics from Appalachian State University, and a BS in Physics from the University of Oregon. He worked at the Chinese University of Hong Kong from 2016 to 2019. Dr. Devlin joined the School of Geography and Environment, Jiangxi Normal University as a distinguished research professor in May 2019.",institutionString:"Jiangxi Normal University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Jiangxi Normal University",institutionURL:null,country:{name:"China"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"839",title:"Oceanography",slug:"oceanography"}],chapters:[{id:"69606",title:"A 30-Year History of the Tides and Currents in Elkhorn Slough, California",doi:"10.5772/intechopen.88671",slug:"a-30-year-history-of-the-tides-and-currents-in-elkhorn-slough-california",totalDownloads:222,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"William W. Broenkow and Laurence C. Breaker",downloadPdfUrl:"/chapter/pdf-download/69606",previewPdfUrl:"/chapter/pdf-preview/69606",authors:[{id:"285157",title:"Dr.",name:"Laurence C.",surname:"Breaker",slug:"laurence-c.-breaker",fullName:"Laurence C. Breaker"},{id:"305936",title:"Dr.",name:"William",surname:"Broenkow",slug:"william-broenkow",fullName:"William Broenkow"}],corrections:null},{id:"71004",title:"Tidal Evolution Related to Changing Sea Level; Worldwide and Regional Surveys, and the Impact to Estuaries and Other Coastal Zones",doi:"10.5772/intechopen.91061",slug:"tidal-evolution-related-to-changing-sea-level-worldwide-and-regional-surveys-and-the-impact-to-estua",totalDownloads:188,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Adam Thomas Devlin and Jiayi Pan",downloadPdfUrl:"/chapter/pdf-download/71004",previewPdfUrl:"/chapter/pdf-preview/71004",authors:[{id:"179303",title:"Prof.",name:"Jiayi",surname:"Pan",slug:"jiayi-pan",fullName:"Jiayi Pan"},{id:"280757",title:"Dr.",name:"Adam",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],corrections:null},{id:"68021",title:"Linear and Nonlinear Responses to Northeasters Coupled with Sea Level Rise: A Tale of Two Bays",doi:"10.5772/intechopen.87780",slug:"linear-and-nonlinear-responses-to-northeasters-coupled-with-sea-level-rise-a-tale-of-two-bays",totalDownloads:255,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Stephen Moore, Huijie Xue, Neal R. Pettigrew and John Cannon",downloadPdfUrl:"/chapter/pdf-download/68021",previewPdfUrl:"/chapter/pdf-preview/68021",authors:[{id:"296171",title:"Mr.",name:"Stephen",surname:"Moore",slug:"stephen-moore",fullName:"Stephen Moore"},{id:"297133",title:"Prof.",name:"Huijie",surname:"Xue",slug:"huijie-xue",fullName:"Huijie Xue"},{id:"297138",title:"Prof.",name:"Neal",surname:"Pettigrew",slug:"neal-pettigrew",fullName:"Neal Pettigrew"},{id:"303297",title:"Mr.",name:"John",surname:"Cannon",slug:"john-cannon",fullName:"John Cannon"}],corrections:null},{id:"69368",title:"Coastal Altimetry: A Promising Technology for the Coastal Oceanography Community",doi:"10.5772/intechopen.89373",slug:"coastal-altimetry-a-promising-technology-for-the-coastal-oceanography-community",totalDownloads:220,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Xi-Yu Xu, Ke Xu, Ying Xu and Ling-Wei Shi",downloadPdfUrl:"/chapter/pdf-download/69368",previewPdfUrl:"/chapter/pdf-preview/69368",authors:[{id:"212129",title:"Dr.",name:"Xiyu",surname:"Xu",slug:"xiyu-xu",fullName:"Xiyu Xu"},{id:"266210",title:"Dr.",name:"Ying",surname:"Xu",slug:"ying-xu",fullName:"Ying Xu"},{id:"299771",title:"Prof.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"},{id:"319788",title:"Dr.",name:"Ling",surname:"Wei Shi",slug:"ling-wei-shi",fullName:"Ling Wei Shi"}],corrections:null},{id:"67923",title:"Structure and Dynamics of Plumes Generated by Small Rivers",doi:"10.5772/intechopen.87843",slug:"structure-and-dynamics-of-plumes-generated-by-small-rivers",totalDownloads:314,totalCrossrefCites:1,totalDimensionsCites:4,signatures:"Alexander Osadchiev and Peter Zavialov",downloadPdfUrl:"/chapter/pdf-download/67923",previewPdfUrl:"/chapter/pdf-preview/67923",authors:[{id:"296909",title:"Prof.",name:"Peter",surname:"Zavialov",slug:"peter-zavialov",fullName:"Peter Zavialov"},{id:"296910",title:"Dr.",name:"Alexander",surname:"Osadchiev",slug:"alexander-osadchiev",fullName:"Alexander Osadchiev"}],corrections:null},{id:"70994",title:"Circulations in the Pearl River Estuary: Observation and Modeling",doi:"10.5772/intechopen.91058",slug:"circulations-in-the-pearl-river-estuary-observation-and-modeling",totalDownloads:211,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Jiayi Pan, Wenfeng Lai and Adam Thomas Devlin",downloadPdfUrl:"/chapter/pdf-download/70994",previewPdfUrl:"/chapter/pdf-preview/70994",authors:[{id:"280757",title:"Dr.",name:"Adam",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"},{id:"302219",title:"Associate Prof.",name:"Jiayi",surname:"Pan",slug:"jiayi-pan",fullName:"Jiayi Pan"},{id:"309888",title:"Dr.",name:"Wenfeng",surname:"Lai",slug:"wenfeng-lai",fullName:"Wenfeng Lai"}],corrections:null},{id:"68475",title:"Phytoplankton Biomass and Environmental Descriptors of Water Quality of an Urban Lagoon",doi:"10.5772/intechopen.87955",slug:"phytoplankton-biomass-and-environmental-descriptors-of-water-quality-of-an-urban-lagoon",totalDownloads:220,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Marco V.J. Cutrim, Francinara S. Ferreira, Lisana F. Cavalcanti, Ana K.D.S. Sá, Andrea Christina Gomes de Azevedo-Cutrim and Ricardo Luvizotto Santos",downloadPdfUrl:"/chapter/pdf-download/68475",previewPdfUrl:"/chapter/pdf-preview/68475",authors:[{id:"295083",title:"Dr.",name:"Marco",surname:"Cutrim",slug:"marco-cutrim",fullName:"Marco Cutrim"},{id:"295090",title:"MSc.",name:"Lisana",surname:"Cavalcanti",slug:"lisana-cavalcanti",fullName:"Lisana Cavalcanti"},{id:"295091",title:"MSc.",name:"Ana Karoline",surname:"Duarte Dos Santos",slug:"ana-karoline-duarte-dos-santos",fullName:"Ana Karoline Duarte Dos Santos"},{id:"295092",title:"MSc.",name:"Francinara Santos",surname:"Ferreira",slug:"francinara-santos-ferreira",fullName:"Francinara Santos Ferreira"},{id:"303089",title:"Dr.",name:"Ricardo",surname:"Luvizotto Santos",slug:"ricardo-luvizotto-santos",fullName:"Ricardo Luvizotto Santos"},{id:"303090",title:"Dr.",name:"Andrea Christina",surname:"Gomes De Azevedo-Cutrim",slug:"andrea-christina-gomes-de-azevedo-cutrim",fullName:"Andrea Christina Gomes De Azevedo-Cutrim"}],corrections:null},{id:"70692",title:"Variations of the Absorption of Chromophoric Dissolved Organic Matter in the Pearl River Estuary",doi:"10.5772/intechopen.90765",slug:"variations-of-the-absorption-of-chromophoric-dissolved-organic-matter-in-the-pearl-river-estuary",totalDownloads:158,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Xia Lei, Jiayi Pan and Adam Thomas Devlin",downloadPdfUrl:"/chapter/pdf-download/70692",previewPdfUrl:"/chapter/pdf-preview/70692",authors:[{id:"310299",title:"Dr.",name:"Lei",surname:"Xia",slug:"lei-xia",fullName:"Lei Xia"}],corrections:null},{id:"69004",title:"Response of Coastal Upwelling East of Hainan Island in the South China Sea to Sudden Impact and Long-Term Variability of Atmospheric Forcing",doi:"10.5772/intechopen.88828",slug:"response-of-coastal-upwelling-east-of-hainan-island-in-the-south-china-sea-to-sudden-impact-and-long",totalDownloads:252,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Lingling Xie and Mingming Li",downloadPdfUrl:"/chapter/pdf-download/69004",previewPdfUrl:"/chapter/pdf-preview/69004",authors:[{id:"299611",title:"Dr.",name:"Lingling",surname:"Xie",slug:"lingling-xie",fullName:"Lingling Xie"},{id:"299758",title:"Dr.",name:"Mingming",surname:"Li",slug:"mingming-li",fullName:"Mingming Li"}],corrections:null},{id:"69040",title:"Strengthening Democracy in Indonesian Marine Spatial Planning through Open Spatial Data",doi:"10.5772/intechopen.88287",slug:"strengthening-democracy-in-indonesian-marine-spatial-planning-through-open-spatial-data",totalDownloads:263,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Adipandang Yudono and Permana Yudiarso",downloadPdfUrl:"/chapter/pdf-download/69040",previewPdfUrl:"/chapter/pdf-preview/69040",authors:[{id:"273252",title:"Dr.",name:"Adipandang",surname:"Yudono",slug:"adipandang-yudono",fullName:"Adipandang Yudono"},{id:"274347",title:"Mr.",name:"Permana",surname:"Yudiarso",slug:"permana-yudiarso",fullName:"Permana Yudiarso"}],corrections:null},{id:"68450",title:"Environmental Problems and Coastal Mitigation in South America: Examples from Northeast Brazil and Northern Colombia",doi:"10.5772/intechopen.87959",slug:"environmental-problems-and-coastal-mitigation-in-south-america-examples-from-northeast-brazil-and-no",totalDownloads:289,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Vanda Claudino-Sales, Ping Wang, Fábio Perdigão Vasconcelos and Adely Pereira Silveira",downloadPdfUrl:"/chapter/pdf-download/68450",previewPdfUrl:"/chapter/pdf-preview/68450",authors:[{id:"296615",title:"Prof.",name:"Vanda",surname:"Claudino-Sales",slug:"vanda-claudino-sales",fullName:"Vanda Claudino-Sales"},{id:"296616",title:"Prof.",name:"Ping",surname:"Wang",slug:"ping-wang",fullName:"Ping Wang"},{id:"296617",title:"Prof.",name:"Fabio Perdigao",surname:"Vasconcelos",slug:"fabio-perdigao-vasconcelos",fullName:"Fabio Perdigao Vasconcelos"},{id:"296618",title:"Dr.",name:"Adely",surname:"Silveira",slug:"adely-silveira",fullName:"Adely Silveira"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"6195",title:"Sea Level Rise and Coastal Infrastructure",subtitle:null,isOpenForSubmission:!1,hash:"4eb2fa7c0bf9d4a493375ee47276aa38",slug:"sea-level-rise-and-coastal-infrastructure",bookSignature:"Yuanzhi Zhang, Yijun Hou and Xiaomei Yang",coverURL:"https://cdn.intechopen.com/books/images_new/6195.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2221",title:"Tsunami - Analysis of a Hazard",subtitle:"From Physical Interpretation to Human Impact",isOpenForSubmission:!1,hash:"a7ce45cda9743300d394136417028a84",slug:"tsunami-analysis-of-a-hazard-from-physical-interpretation-to-human-impact",bookSignature:"Gloria I. Lopez",coverURL:"https://cdn.intechopen.com/books/images_new/2221.jpg",editedByType:"Edited by",editors:[{id:"146976",title:"Dr.",name:"Gloria",surname:"López",slug:"gloria-lopez",fullName:"Gloria López"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8669",title:"Coastal Environment, Disaster, and Infrastructure",subtitle:"A Case Study of China's Coastline",isOpenForSubmission:!1,hash:"52abc534177a147ffd3154db2f4f4ba1",slug:"coastal-environment-disaster-and-infrastructure-a-case-study-of-china-s-coastline",bookSignature:"X. San Liang and Yuanzhi Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/8669.jpg",editedByType:"Edited by",editors:[{id:"210315",title:"Prof.",name:"X. San",surname:"Liang",slug:"x.-san-liang",fullName:"X. San Liang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"7606",title:"Coastal and Marine Environments",subtitle:"Physical Processes and Numerical Modelling",isOpenForSubmission:!1,hash:"dd1227726856d58b88116129b0de8384",slug:"coastal-and-marine-environments-physical-processes-and-numerical-modelling",bookSignature:"José Simão Antunes Do Carmo",coverURL:"https://cdn.intechopen.com/books/images_new/7606.jpg",editedByType:"Edited by",editors:[{id:"67904",title:"Prof.",name:"José Simão",surname:"Antunes Do Carmo",slug:"jose-simao-antunes-do-carmo",fullName:"José Simão Antunes Do Carmo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6012",title:"Morphodynamic Model for Predicting Beach Changes Based on Bagnold's Concept and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"79ce8dc1cde58947a61fe4aea725d437",slug:"morphodynamic-model-for-predicting-beach-changes-based-on-bagnold-s-concept-and-its-applications",bookSignature:"Takaaki Uda, Masumi Serizawa and Shiho Miyahara",coverURL:"https://cdn.intechopen.com/books/images_new/6012.jpg",editedByType:"Authored by",editors:[{id:"13491",title:"Dr.",name:"Takaaki",surname:"Uda",slug:"takaaki-uda",fullName:"Takaaki Uda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"67321",slug:"corrigendum-to-clinical-approach-in-the-diagnosis-of-acute-appendicitis",title:"Corrigendum to: Clinical Approach in the Diagnosis of Acute Appendicitis",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/67321.pdf",downloadPdfUrl:"/chapter/pdf-download/67321",previewPdfUrl:"/chapter/pdf-preview/67321",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/67321",risUrl:"/chapter/ris/67321",chapter:{id:"61365",slug:"clinical-approach-in-the-diagnosis-of-acute-appendicitis",signatures:"Alfredo Alvarado",dateSubmitted:"September 14th 2017",dateReviewed:"February 16th 2018",datePrePublished:null,datePublished:"June 27th 2018",book:{id:"6471",title:"Current Issues in the Diagnostics and Treatment of Acute Appendicitis",subtitle:null,fullTitle:"Current Issues in the Diagnostics and Treatment of Acute Appendicitis",slug:"current-issues-in-the-diagnostics-and-treatment-of-acute-appendicitis",publishedDate:"June 27th 2018",bookSignature:"Dmitry Victorovich Garbuzenko",coverURL:"https://cdn.intechopen.com/books/images_new/6471.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"108808",title:"Prof.",name:"Dmitry",middleName:"Victorovich",surname:"Garbuzenko",slug:"dmitry-garbuzenko",fullName:"Dmitry Garbuzenko"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"221775",title:"M.D.",name:"Alfredo",middleName:null,surname:"Alvarado",fullName:"Alfredo Alvarado",slug:"alfredo-alvarado",email:"alfredoalvara@hotmail.com",position:null,institution:null}]}},chapter:{id:"61365",slug:"clinical-approach-in-the-diagnosis-of-acute-appendicitis",signatures:"Alfredo Alvarado",dateSubmitted:"September 14th 2017",dateReviewed:"February 16th 2018",datePrePublished:null,datePublished:"June 27th 2018",book:{id:"6471",title:"Current Issues in the Diagnostics and Treatment of Acute Appendicitis",subtitle:null,fullTitle:"Current Issues in the Diagnostics and Treatment of Acute Appendicitis",slug:"current-issues-in-the-diagnostics-and-treatment-of-acute-appendicitis",publishedDate:"June 27th 2018",bookSignature:"Dmitry Victorovich Garbuzenko",coverURL:"https://cdn.intechopen.com/books/images_new/6471.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"108808",title:"Prof.",name:"Dmitry",middleName:"Victorovich",surname:"Garbuzenko",slug:"dmitry-garbuzenko",fullName:"Dmitry Garbuzenko"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"221775",title:"M.D.",name:"Alfredo",middleName:null,surname:"Alvarado",fullName:"Alfredo Alvarado",slug:"alfredo-alvarado",email:"alfredoalvara@hotmail.com",position:null,institution:null}]},book:{id:"6471",title:"Current Issues in the Diagnostics and Treatment of Acute Appendicitis",subtitle:null,fullTitle:"Current Issues in the Diagnostics and Treatment of Acute Appendicitis",slug:"current-issues-in-the-diagnostics-and-treatment-of-acute-appendicitis",publishedDate:"June 27th 2018",bookSignature:"Dmitry Victorovich Garbuzenko",coverURL:"https://cdn.intechopen.com/books/images_new/6471.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"108808",title:"Prof.",name:"Dmitry",middleName:"Victorovich",surname:"Garbuzenko",slug:"dmitry-garbuzenko",fullName:"Dmitry Garbuzenko"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"9413",leadTitle:null,title:"Essentials in Hip and Ankle",subtitle:null,reviewType:"peer-reviewed",abstract:"Each chapter of this book covers physical examination, imaging, differential diagnoses, and treatment. For each diagnosis, the book sets out the typical presentation, options for non-operative and operative management, and expected outcomes. Each chapter is concise enough to be read easily. Users can read the text from cover to cover to gain a general foundation of knowledge. Practical and user-friendly, Essentials in Hip and Ankle is the ideal, on-the-spot resource for medical students and practitioners seeking fast facts on diagnosis and management. Its format makes it a perfect quick-reference, and its content breadth covers commonly encountered orthopedic problems in practice.",isbn:"978-1-83880-326-1",printIsbn:"978-1-83880-325-4",pdfIsbn:"978-1-83962-601-2",doi:"10.5772/intechopen.85454",price:119,priceEur:129,priceUsd:155,slug:"essentials-in-hip-and-ankle",numberOfPages:124,isOpenForSubmission:!1,hash:"1c44b3dd87ad50bb95ac035e5bf5ea54",bookSignature:"Carlos Suarez-Ahedo, Anell Olivos-Meza and Arie M. Rijke",publishedDate:"July 29th 2020",coverURL:"https://cdn.intechopen.com/books/images_new/9413.jpg",keywords:null,numberOfDownloads:1883,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 11th 2019",dateEndSecondStepPublish:"September 24th 2019",dateEndThirdStepPublish:"November 23rd 2019",dateEndFourthStepPublish:"February 11th 2020",dateEndFifthStepPublish:"April 11th 2020",remainingDaysToSecondStep:"a year",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"235976",title:"M.D.",name:"Carlos",middleName:null,surname:"Suarez-Ahedo",slug:"carlos-suarez-ahedo",fullName:"Carlos Suarez-Ahedo",profilePictureURL:"https://mts.intechopen.com/storage/users/235976/images/system/235976.jpeg",biography:"Dr. Suarez-Ahedo is a recognized orthopedic surgeon leading minimally invasive total hip and total knee replacement, sports medicine and arthroscopic surgery, providing superior knowledge and expertise to his patients.\n\nDr. Suarez-Ahedo regularly gives lectures and teaches courses for orthoaedic surgeons around the world and is actively involved in the research and development of new techniques in joint replacement and arthroscopic surgery.\n\nHe is also author and coauthor of several scientific publications in recognized international journals in the field of sports medicine, arthroscopic surgery, and hip pathology. \n\nDr. Suarez-Ahedo is a La Salle University graduate (Mexico). He completed his training in Orthopedic Surgery at the Spanish Hospital in Mexico City. His subspecialty training includes a fellowship in Articular Surgery, fellowship in Adult Joint Hip and Knee Reconstruction at the National Rehabilitation Institute of Mexico, and an additional Fellowship in Hip Preservation Surgery at the American Hip Institute in Chicago, USA. His professional affiliations include International Member of the American Academy of Orthopaedic Surgeons (AAOS), the Arthroscopy Association of North America (AANA), and the International Society of Technology in Arthroplasty (ISTA), the International Society for Hip Arthroscopy (ISHA), and the Société Internationale de Chirurgie Orthopédique et de Traumatologie (SICOT).",institutionString:"American Hip Institute",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],coeditorOne:{id:"240588",title:"Dr.",name:"Anell",middleName:null,surname:"Olivos-Meza",slug:"anell-olivos-meza",fullName:"Anell Olivos-Meza",profilePictureURL:"https://mts.intechopen.com/storage/users/240588/images/system/240588.jpeg",biography:'Dr. Anell Olivos-Meza graduated from Universidad Veracruzana, Xalapa Veracruz, Mexico in 2004, and completed her internship at the National Institute of Medical Science and Nutrition \\"Salvador Zubiran\\", Mexico City from 2004 to 2005. Dr. Olivos-Meza received her Medical Degree in 2007 from the University of Veracruz. She has been a Research Fellow in the Cartilage and Connective Tissue Laboratory (2007-2008) at Mayo Clinic College of Medicine, Rochester Minnesota, USA. In 2010, she completed her Master’s degree in clinical research at the University of Veracruz. From 2011 until 2012 she was a part of the Direction and Administration of Medical Units (Postgraduate Studies) at the University of Puebla (Benemérita Universidad Autónoma de Puebla), Puebla, Mexico. Dr. Olivos-Meza completed the Orthopedic Surgery Residence Program from 2008-2012 at the Center of Medical Specialties in Veracruz State \\"Dr. Rafael Lucio\\", Xalapa, Veracruz, Mexico. From 2012 until 2013 she attended a Low Limb Articular Surgery Fellowship Program at the National Institute of Rehabilitation, Mexico City. She was a Clinical Visitor in the Low Limb Adult Reconstruction Service, Mayo Clinic, Rochester, USA, on several occasions in 2012. In 2014 she completed the Orthopedic Sports Medicine and Arthroscopy Fellowship Program at the National Institute of Rehabilitation. Mexico City. Her PhD Program was in the field of cartilage repair (2012-2016) at the Universidad Nacional Autónoma de México (UNAM) and National Institute of Rehabilitation, Mexico City. She is a member of several societies, such as: International Cartilage Repair & Joint Reconstruction Society; Mexican Orthopedic Society; Orthopedic Research Society Global Engagement Committee; Research Committee at the Instituto Nacional de Rehabilitación; Ethic Committee at the Instituto Nacional de Rehabilitación.',institutionString:"Instituto Nacional de Rehabilitación",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Instituto Nacional de Rehabilitación",institutionURL:null,country:{name:"Mexico"}}},coeditorTwo:{id:"245166",title:"Prof.",name:"Arie M.",middleName:null,surname:"Rijke",slug:"arie-m.-rijke",fullName:"Arie M. Rijke",profilePictureURL:"https://mts.intechopen.com/storage/users/245166/images/9708_n.png",biography:"Arie M. Rijke has a Ph.D degree in physical chemistry and an M.D. degree specializing in musculo-skeletal radiology. He has held faculty positions in the School of Medicine and the School of Engineering of the University of Virginia since 1970. He is the Founder and President of Sport Tech, Inc., a company that specializes in diagnostic equipment for the evaluation of injury to the clinically important ligaments of the ankle, knee, shoulder, and elbow. The company uses its patent rights in the manufacture of the LigMaster product.",institutionString:"University of Virginia",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Virginia",institutionURL:null,country:{name:"United States of America"}}},coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1064",title:"Human Anatomy",slug:"human-anatomy"}],chapters:[{id:"72468",title:"Surgical Anatomy of Acetabulum and Biomechanics",slug:"surgical-anatomy-of-acetabulum-and-biomechanics",totalDownloads:200,totalCrossrefCites:0,authors:[{id:"301625",title:"Dr.",name:"Sachin Kumar",surname:"Sharma",slug:"sachin-kumar-sharma",fullName:"Sachin Kumar Sharma"},{id:"309278",title:"Prof.",name:"Hemant",surname:"Mathur",slug:"hemant-mathur",fullName:"Hemant Mathur"}]},{id:"70714",title:"Femoroacetabular Impingement: Anatomy and Pathogenesis",slug:"femoroacetabular-impingement-anatomy-and-pathogenesis",totalDownloads:160,totalCrossrefCites:0,authors:[{id:"303002",title:"Dr.",name:"Nefiss",surname:"Mouadh",slug:"nefiss-mouadh",fullName:"Nefiss Mouadh"},{id:"310780",title:"Dr.",name:"Ben Maatoug",surname:"Aymen",slug:"ben-maatoug-aymen",fullName:"Ben Maatoug Aymen"},{id:"310781",title:"Dr.",name:"Teborbi",surname:"Anis",slug:"teborbi-anis",fullName:"Teborbi Anis"},{id:"310828",title:"Dr.",name:"Tekaya",surname:"Asma",slug:"tekaya-asma",fullName:"Tekaya Asma"},{id:"310829",title:"Prof.",name:"Ezzaouia",surname:"Khelil",slug:"ezzaouia-khelil",fullName:"Ezzaouia Khelil"},{id:"310830",title:"Prof.",name:"Bouzidi",surname:"Ramzi",slug:"bouzidi-ramzi",fullName:"Bouzidi Ramzi"}]},{id:"71604",title:"Arthroscopic and Endoscopic Management of the Internal Snapping Hip Syndrome",slug:"arthroscopic-and-endoscopic-management-of-the-internal-snapping-hip-syndrome",totalDownloads:210,totalCrossrefCites:0,authors:[{id:"238107",title:"Dr.",name:"Adinun",surname:"Apivatgaroon",slug:"adinun-apivatgaroon",fullName:"Adinun Apivatgaroon"}]},{id:"69307",title:"The Practice of Computer-Assisted Planning and Navigation for Hip Arthroscopy",slug:"the-practice-of-computer-assisted-planning-and-navigation-for-hip-arthroscopy",totalDownloads:230,totalCrossrefCites:0,authors:[{id:"303024",title:"Associate Prof.",name:"Naomi",surname:"Kobayashi",slug:"naomi-kobayashi",fullName:"Naomi Kobayashi"},{id:"303025",title:"Dr.",name:"Shota",surname:"Higashihira",slug:"shota-higashihira",fullName:"Shota Higashihira"},{id:"303026",title:"Prof.",name:"Yutaka",surname:"Inaba",slug:"yutaka-inaba",fullName:"Yutaka Inaba"}]},{id:"70353",title:"Patient-Report Outcome Measures for Ankle-Related Functionality",slug:"patient-report-outcome-measures-for-ankle-related-functionality",totalDownloads:178,totalCrossrefCites:0,authors:[{id:"304364",title:"M.Sc.",name:"Tarcísio",surname:"Santos Moreira",slug:"tarcisio-santos-moreira",fullName:"Tarcísio Santos Moreira"}]},{id:"69414",title:"Diagnosis and Treatment of Chronic Ankle Instability",slug:"diagnosis-and-treatment-of-chronic-ankle-instability",totalDownloads:494,totalCrossrefCites:0,authors:[{id:"225458",title:"Dr.",name:"Yanyu",surname:"Chen",slug:"yanyu-chen",fullName:"Yanyu Chen"}]},{id:"70162",title:"Rehabilitation of Lateral Ankle Sprains in Sports",slug:"rehabilitation-of-lateral-ankle-sprains-in-sports",totalDownloads:411,totalCrossrefCites:0,authors:[{id:"305115",title:"M.Sc.",name:"Rachana",surname:"Dabadghav",slug:"rachana-dabadghav",fullName:"Rachana Dabadghav"}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"270941",firstName:"Sandra",lastName:"Maljavac",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/270941/images/7824_n.jpg",email:"sandra.m@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"7329",title:"Histology",subtitle:null,isOpenForSubmission:!1,hash:"9af2e2fd8f28c4d1b8b9510c3d73e1ec",slug:"histology",bookSignature:"Thomas Heinbockel and Vonnie D.C. Shields",coverURL:"https://cdn.intechopen.com/books/images_new/7329.jpg",editedByType:"Edited by",editors:[{id:"70569",title:"Dr.",name:"Thomas",surname:"Heinbockel",slug:"thomas-heinbockel",fullName:"Thomas Heinbockel"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7870",title:"Muscle Cells",subtitle:"Recent Advances and Future Perspectives",isOpenForSubmission:!1,hash:"64634d90d737661d1e606cac28b79969",slug:"muscle-cells-recent-advances-and-future-perspectives",bookSignature:"Mani T. Valarmathi",coverURL:"https://cdn.intechopen.com/books/images_new/7870.jpg",editedByType:"Edited by",editors:[{id:"69697",title:"Dr.",name:"Mani T.",surname:"Valarmathi",slug:"mani-t.-valarmathi",fullName:"Mani T. Valarmathi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5933",title:"Human Anatomy",subtitle:"Reviews and Medical Advances",isOpenForSubmission:!1,hash:"30fc0e64308e5905986edf17b56080d5",slug:"human-anatomy-reviews-and-medical-advances",bookSignature:"Alina Maria Sisu",coverURL:"https://cdn.intechopen.com/books/images_new/5933.jpg",editedByType:"Edited by",editors:[{id:"138775",title:"Associate Prof.",name:"Alina Maria",surname:"Sisu",slug:"alina-maria-sisu",fullName:"Alina Maria Sisu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"55722",title:"Folic and Folate Acid",doi:"10.5772/intechopen.69383",slug:"folic-and-folate-acid",body:'
Folate is a group of small water-soluble molecules that form one of the so-called B complex vitamins, also known as vitamin B9 or folacin. It is found naturally in a wide variety of foods, including vegetables, fruits, nuts, beans, dairy products, meats, eggs, seafood, and grains. However, only approximately 50% of the folate naturally present in food is bioavailable [1]. Folate is critical for the metabolism of nucleic acid precursors and several amino acids, as well as to methylation reactions. Folic acid helps our bodies produce and maintain new cells, and it helps prevent DNA changes that may lead to cancer. DNA methylation is an epigenetic mechanism that evidently plays a role in Alzheimer’s disease [2]. An increase in the risks of depression and cardiovascular disease was observed independent of folic acid and vitamin B12 status [3, 4]. In this review, we will discuss recent issues related to the impact of folate and folic acid on cognitive and reproductive functions.
Folate metabolism is closely linked to homocysteine (Hcy) metabolism, where Hcy is as an important factor in arteriosclerosis and aging. After the discovery of Hcy in 1932, it was demonstrated to be an important intermediate in the metabolism of amino acids. The folate metabolite 5-methyltetrahydrofolate (5-MTHF) is a substrate of methionine synthase, which remethylates Hcy to form methionine and links the folate cycle with Hcy metabolism (Figure 1) [5].
Pathways for the folate cycles and homocysteine metabolism. Source: Ref. [5].
The substrate 5-methultetrahydrofolate requires vitamin B12 as a cofactor of methionine synthase. The effect of vitamin B12 is diminished by the larger role of folate status in determining total Hcy. Pyridoxal phosphate, the active form of vitamin B, is a cofactor for enzymes involved in amino acid metabolism. These enzymes include cystathionine β-synthase, the first enzyme in the transsulfuration pathway that breaks down Hcy to sulfate.
Insufficient amounts of folate and vitamin B12 limit the conversion of Hcy into methionine, which is a direct precursor of S-adenosylmethionin (SAM). SAM plays an important role in the methylation of neurotransmitters involved in depression [6]. Lower concentrations of SAM and monoamine neurotransmitter metabolites were observed in the cerebrospinal fluid of severely depressed patients with high Hcy levels, compared to similar patients with normal Hcy levels [7].
MTHF is able to cross the blood-brain barrier into the cerebrospinal fluid [8]. One important function of folate is its role in the one-carbon cycle. In this pathway, folate is converted by methylenetetrahydrofolate reductase into MTHF, which combines with the amino acid Hcy to produce eventually, with the help of vitamin B12, S-adenosylmethionine (SAMe). SAMe is important, because it functions as a methyl donor in a variety of biochemical reactions and has been suggested to be somehow involved in the synthesis of the three neurotransmitters in the brain: serotonin, epinephrine, and dopamine [9]. Figure 1 illustrates the actions of 5-MTHF and SAMe in methylation and neurotransmitter synthesis [10]. Thus, a folate deficiency could result in a deficiency of these neurotransmitters.
According to epidemiological and biological evidence, depressive disorders among individuals with epilepsy or neurological and psychiatric problems and the elderly could be caused by low folate [11, 12]. Folic acid affects the rate of the synthesis of the neurotransmitters dopamine, norepinephrine, and serotonin and it acts as a cofactor in the hydroxylation of phenylalanine and tryptophan [13]. Biogenic amine metabolism disturbances may lead to various psychiatric disorders, and a deficiency in folic acid may exacerbate neuropsychiatric disorders such as mental confusion, memory changes, cognitive slowing, and mood disorders.
Measurements of folate levels in plasma, serum, and erythrocytes are the most widely used biochemical indices of folate status, in addition to measurements of dietary folate intake. In a previous study of 883 elderly Latina women aged 60–93, the adjusted odds ratio for increased depressive symptoms in women in the lowest tertile of plasma folate was 2.04, which was significantly different from that in women in the highest tertile of folate [3]. Gilbody et al. reported that subjects with low serum levels, red blood cell (RBC) folate levels, and low folate intake had 1.4 times increased risk of depressive symptoms, compared with those with a high folate status [14]. On the other hand, in the Women’s Health and Aging Study, serum homocysteine and folic acid levels were not associated with depression status among physically disabled women with a mean age of 77.3 years [15].
The elderly are of particular concern because of age-related declines in vitamin absorption and the extraction of vitamin B12 from protein [16] and age-related increases in autoimmunity against intrinsic factor or the gastric parietal cells that produce it [17]. Elevated plasma Hcy concentrations are common in older age [18]. With advanced age, the prevalence of a low vitamin B12 status increases from 5% at age 65 to 20% at age 80 years [19]. The reviews of population-based studies found that a low folate status is associated with mild cognitive impairment, Alzheimer’s disease, and depression in healthy and neuropsychiatric diseased older people [20].
Several epidemiological studies have suggested an inverse association between folate status and the risk of cancer, including colorectal, lung, pancreatic, esophageal, stomach, cervical, ovarian, and breast cancers [21]. Folic acid helps our bodies produce and maintain new cells, and it helps prevent DNA changes. Folate plays an essential role in one-carbon transfer involving the remethylation of Hcy to methionine, thereby ensuring the provision of SAMe, the primary methyl group donor for most biological methylation reactions. Folic acid linked with conjugating agents only enters cells through the folate receptor (FR) [22], a cell surface glycosylphosphatidylinositol-anchored glycoprotein in humans [23]. Folate might influence the development of cancer through its role in one-carbon metabolism and its subsequent effects on DNA replication and cell division [24]. However, research has not established the precise nature of folate’s effect on carcinogenesis.
Maternal nutrition, especially folate, is critical for optimizing pregnancy outcomes. The increase in folate required during pregnancy is due to the growth of the fetus and uteroplacental organs. The demand for folate is increased to support both the normal physiological changes of mothers and the optimal growth and development of the fetus and offspring [25]. Impaired placental perfusion due to hyperhomocysteinemia is implicated in having a negative effect on pregnancy outcomes. Inadequate folate intake before conception and early pregnancy increases the risk of congenital malformations of the brain and spinal cord, such as anencephaly, spina bifida, and neural tube defects (NTDs). NTDs are the most common and severe congenital malformations of the central nervous system, occurring secondary to lack of closure of the neural tube and leading to long-term morbidity. Neurulation, the process of neural tube formation, is completed 28 days after conception, as many women do not realize that they are pregnant at this stage [26]. Das et al. found in the systematic review that folate fortification had a significant impact on reducing neural tube defects (risk ratio; RR: 0.57 (95% CI: 0.45, 0.73)), spina bifida (RR: 0.64 (95% CI: 0.57, 0.71)), and anencephaly (RR: 0.80 (95% CI: 0.73, 0.87)). Folate fortification significantly reduced the incidence of congenital abnormalities [27].
Folate deficiency can cause anemia, insomnia, irritability, and far more serious health problems. In 2000, the D-A-CH societies (Germany [D], Austria [A], and Switzerland [CH]) initiated a recommendation of 400 µg of folate daily among adults [28], a value agreed to by the USA, Canada [29], Australia, and New Zealand [30]. The World Health Organization (WHO) and the Food and Agriculture Organization (FAO) of the United Nations [30] also agreed, setting an estimated average requirement (EAR) of 320 μg of dietary folate equivalents (DFE)/day and a recommended dietary allowance (RDA) of 400 μg DFE/day for adults. Table 1 indicates the various recommendations. By combining RBC folate, plasma total Hcy, and plasma or serum folate, the Institute of Medicine concluded an EAR for adults with a focus on adequate quantities of folate, via food or food plus folic acid and consumed under controlled conditions, to maintain normal blood concentrations of these indicators [31].
Adults | Pregnant women | |||
---|---|---|---|---|
EAR (µg/day) | RDA (µg/day) | EAR (µg/day) | RDA (µg/day) | |
WHO/FAO1 | 320 | 400 | 370–470 | 600 |
USA, Canada2 | 320 | 400 | 600 | |
Australia and New Zealand3 | 320 | 400 | 520 | 600 |
Japan4 | 200 | 240 | 400 | 440 |
Reference values for folate/folate equivalents for adults from different international societies and organizations.
1Source: The WHO/Food and Agriculture Organization of the United Nations at the Institute of Medicine (IOM) of the National Academies [31].
2Source: IOM [29].
3Source: Australian National Health and Medical Research Council and New Zealand Ministry of Health [30].
4Source: Overview of Dietary Reference Intakes for Japanese by the Minister of Health, Labour and Welfare [59].
Notes: EAR, estimated average requirement (average daily level of intake estimated to meet the requirements of 50% of healthy individuals); RDA, recommended dietary allowance (average daily level of intake sufficient to meet the nutrient requirements of nearly all (97–98%) healthy individuals).
Each country issues an RDA as the mean of estimated requirements for pregnant women that must be increased to meet the demands of increasing maternal tissues, fetal growth, fat store growth, and the increase in basal metabolic rate. In 1992, the U.S. Public Health Service recommended that all women of reproductive age in the USA capable of becoming pregnant should consume 400 μg of synthetic folic acid daily from fortified foods or supplements. In addition, they should consume a balanced, healthy diet of folate-rich food to prevent two common and serious birth defects: spina bifida and anencephaly [32, 33]. All women between 15 and 45 years of age should consume folic acid daily because half of U.S. pregnancies are unplanned and because these birth defects occur early in pregnancy (3–4 weeks after conception), before most women know they are pregnant. The Food and Drug Administration mandated the addition of folic acid to all enriched cereal grain products by January 1998 [34]. Experimental and epidemiological evidence has shown that periconceptional dietary supplementation with folic acid can result in an estimated 50–70% decrease in the prevalence of NTDs [35].
In 2009, the U.S. Preventive Services Task Force published updated guidelines reinforcing these recommendations [36]. Recently, the National Institute for Health and Clinical Excellence [37] reinforced this focus on the periconceptional period. The best-known recommendation for women who are planning a pregnancy is to take 400 μg of folic acid a day in supplements to prevent NTDs. As of July 2015, almost 80 countries had fortified their wheat flour with folic acid, and health agencies in many countries have officially recommended the periconceptional consumption of folic acid in the range of 400–500 μg by young women capable of conceiving or planning to conceive [37].
Fortification leads to a decrease in the prevalence of serum deficiency from 30% to less than 1% and a decrease in the prevalence of an RBC folate deficiency from 6% to no measureable deficiency [38]. The number of cases of spina bifida and anencephaly among deliveries occurring during 1995–2011 in 19 population-based birth defect surveillance programs in the US was reported by the Centers for Disease Control and Prevention (Figure 2) [39]. Overall, a 28% reduction in prevalence was observed for anencephaly and spinal bifida. The mandatory fortification of standardized enriched cereal grain products in the US has resulted in a substantial increase in blood folate concentrations. In a study based on data from a National Health and Nutrition Examination Survey, the mean serum folate concentration for women aged 15–44 years who did not use supplements increased from 10.7 to 28.6 nmol/L shortly after initiating fortification in the USA, an almost threefold increase [40].
Prevalence of spina bifida and anencephaly in the USA, 1995–2011. *NTDs: Spina bifida + anencephaly. Source: Neural tube defect ascertainment project of the National Birth Defects Prevention Network at Centers for Disease Control and Prevention [39].
The incidence rate of NTDs was reported to be 0.97 per 1000 births in some European countries [41]. The reported NTD prevalence ranges and medians for each region were: Africa (5.2–75.4; 11.7 per 10,000 births), Eastern Mediterranean (2.1–124.1; 21.9 per 10,000 births), Europe (1.3–35.9; 9.0 per 10,000 births), Americas (3.3–27.9; 11.5 per 10,000 births), South-East Asia (1.9–66.2; 15.8 per 10,000 births), and Western Pacific (0.3–199.4; 6.9 per 10,000 births) [42]. According to the Morbidity and Mortality Weekly Report, if 50–70% of NTDs can be prevented by consuming 400 μg of folic acid per day, assuming a prevalence of 300,000 NTDs per year, worldwide folic acid fortification could prevent 150,000–210,000 NTDs annually [35].
Figure 3 shows the world’s industrially milled flour and rice fortification legislation with at least iron and folic acid, from March 2017. According to the food fortification initiative, globally, 86 countries have initiated legislation to mandate the fortification of wheat flour alone or in combination with other grains, while over 100 countries have not introduced mandatory folic acid fortification, including the EU, China, and Japan [43].
World’s map of industrially milled flour and rice fortification with at least iron or folic acid. Source: Food fortification initiative in March 2017 [43].
The U.S. program adds 140 µg of folic acid per 100 g of enriched cereal grain product and it has been estimated to provide 100–200 µg of folic acid per day to women of childbearing age [44]. In Canada, it is mandatory to fortify white-wheat flour and enriched cornmeal with 150 μg of folic acid/100 g and enriched pasta with 200–270 μg of folic acid/100 g [45]. Berry et al. estimated that in the USA and Canada, the additional intake of about 100–150 μg/day of folic acid through food fortification has been effective in reducing the prevalence of NTDs at birth and in increasing blood folate concentrations in both countries [46].
In Ireland, all bread, including white, wholemeal, and brown, manufactured or marketed in Ireland, with the exception of minor bread products, should be fortified on a mandatory basis with folic acid at a level that provides 120 µg per 100 g of bread consumed. The voluntary folic acid fortification of foods, for example, cereal bars, yogurt, or juice, is permitted [47].
In Australia, all plain, fancy and sweet breads, rolls, and buns, including bagels, focaccia, English muffins made with yeast and flour mixes or flour for domestic bread making must contain folic acid. Organic bread is not required to contain folic acid. Some manufacturers also voluntarily choose to fortify other foods with folic acid, for example, breakfast cereal. Manufacturers must list folic acid in the ingredients list on the labels of foods fortified with folic acid. Currently, some cereals and cereal products, bread, and fruit juice have folic acid voluntarily added by food manufacturers [48].
Folate requirements can be affected by bioavailability, nutrient interactions, and smoking. The bioavailability of folates in food is about 50–60%, whereas that of the folic acid used to fortify foods or as a supplement is about 85% [1]. Folic acid as a supplement is almost 100% bioavailable on an empty stomach. Among 2919 older adults with elevated Hcy concentrations of ≥12 µmol/L, participants received either 500 µg of vitamin B12 and 400 µg of folic acid daily or a placebo for 2 years. Depressive symptoms were measured with the Geriatric Depression Scale-15. However, 2-year supplementation with vitamin B12 and folic acid in older adults with hyperhomocysteinemia showed that lowering Hcy concentrations does not reduce depressive symptoms, but it may have a small positive effect on health-related quality of life [49]. A study by Lachner et al. suggested a supplementation dose of at least 1000 µg/day might be more effective in reducing depressive symptoms [50]. Okereke et al. reported that long-term, high-dose, daily supplementation with folic acid and vitamins B6 and B12 did not reduce overall depression risk in 4331 older women (mean age 63.6 years), without prior depression [51].
Nguyen et al. [52] conducted a randomized controlled trial designed to assess the impact of supplementation in Guatemala. In total, 459 women aged 15–49 years were assigned to four groups at random to receive weekly (5000 or 2800 μg) or daily (400 or 200 μg) folic acid plus iron, zinc, and vitamin B12 for 12 weeks. Depression was measured using the Center for Epidemiologic Studies Depression Scale. Women in the lowest tertile of RBC folate were 1.7 times more likely to be depressed than those were in the highest tertile (OR = 1.71; 95%CI: 0.91, 3.18) at baseline. However, this relationship disappeared after adjustments for potential confounding factors. Mean depression scores and the prevalence of depression decreased postintervention, with no differences in the degree of improvement by group. It is difficult to evaluate the effect of supplementation on depressive symptoms, because this study had no placebo control group. This is because a number of reports have suggested that folate supplementation may enhance the effectiveness of certain antidepressant regimens [53, 54].
The nutritional intake of reproductive-age women appears inadequate during the preconceptional period. Among almost all women, folate intake is less than the RDA. Promoting women’s health during preconception is a key public health strategy. Thiele et al. [55] observed in Germany that better educated women had higher indices of qualitatively beneficial diets than did lesser educated women. Adolescents at universities and colleges are potentially important targets for the promotion of healthy lifestyles, including physical, psychological, and eating habits. However, little is known about nutritional and health-related behaviors.
Questions arise as to how pregnant women show concern for their consumed diets and whether pregnant women get appropriate nutrient information during their routine antenatal checkups. Bookari et al. [56] reported that 65% of pregnant women were not familiar with the healthy eating recommendations. Nearly 80% of pregnant women would have liked education about nutrition and dietary advice [57], but Anya et al. [58] reported that women spend 3 min or less with their antenatal care providers and less than 40% had been informed or educated about diet and nutrition. These results suggest pregnant women lack opportunities to receive adequate and appropriate nutrition education during antenatal care. Most women expect advice on general dietary improvements, with the remainder seeking advice on how to promote the quality and quantity of nutritional intake. A critical goal for women should be to make behavior changes to ensure a good nutritional status before, during, and beyond pregnancy, which may lead to improved birth outcomes. More effective education campaigns should be set up by health care providers to improve women’s awareness. Health care providers should educate reproductive-age women about careful food selection and meal planning and preparation at clinics, schools, or offices through mass media.
Folate deficiency impairs DNA replication and cell division, which adversely affects rapidly proliferating tissues, such as bone marrow, and results in the production of unusually large macrocytic cells with poorly differentiated nuclei. An increase in the risks of anemia, depression, and cancer was observed independent of folic acid. As the world is aging rapidly, attention on aging-related mental disorders has increased. Malnutrition is common among people aged 65 years and older. In addition, despite the abundance of information concerning folic acid, many women of reproductive age either are still unaware of its importance or do not value this information. The RDA guidelines have not worked effectively to appeal to the public. More effective education campaigns should be set up by health care providers to improve women’s awareness.
There is a need for transporting man, machines, materials and munitions through Earth’s atmosphere at high speed. Engines that propel fast airplanes are either rockets, or engines of airbreathing type. Turbojets, ramjets and scramjets (supersonic combustion ramjets) are types of airbreathing engines for propelling airplanes in the sensible atmosphere. The practical airbreathing engine for hypersonic speeds (above 5000 km/h) is the scramjet. A schematic is shown in Figure 1. The key components of the scramjet engine are the intake, the combustor and the nozzle. Mission studies have shown that a scramjet-propelled vehicle can provide a 2-hour travel time to most places on Earth or it can aid in the task of boosting vehicles to Earth orbit.
\nThe scramjet and its three components.
The air intake is one of the three essential components of supersonic and hypersonic airbreathing engines. It conditions the approaching freestream airflow for the combustor and the nozzle, compressing the airflow for best performance of the downstream components. For best overall engine performance, it must do so with minimal losses. The intake’s performance can be thought of in terms of what the intake does and how well it is doing it-the capability and the efficiency. Capability can be quantified by such variables as the ratio of entry-to-exit Mach number, ratio of flow areas (contraction) or ratio of pressures (compression). Efficiency can be measured by the total pressure recovery or the entropy rise from entry to exit. These considerations of “what” and “how well” are governed by the First and Second Laws of Thermodynamics. Both capability and efficiency are highly dependent on the geometry of the intake surface. This raises additional design concerns about the intake’s length and weight as well as exit flow inclination and uniformity, and the startability of the intake flow. These factors have a major effect on the intake’s performance and on its design.
\nThe hypersonic intake decelerates and compresses the freestream airflow as it flows into the combustion chamber. In doing this, (a) the intake flow must start and achieve the required decrease in Mach number with a high thermodynamic efficiency; (b) the compressed airflow, flowing into the combustor, should be uniform and stable; (c) the intake should operate efficiently and stably over the entire flight envelope bounded by flight Mach number, altitude and angle of attack; (d) the intake structure should be as light as possible; (e) drag of external surfaces and aerodynamic heating loads should be minimal; (f) for useful engine operation, the intake duct shape and flight conditions must be such that the intake airflow is predictable, properly conditioned (uniform in some sense) and aligned with the combustor walls as it flows into the combustor. These requirements for intake design are often contradictory, making it difficult to attain optimum individual operating conditions simultaneously. For example, in a fixed-geometry intake, flow starting and the need for substantial Mach number reduction pose a very serious geometric flowpath contraction contradiction that leads to an onerous design task.
\nThermodynamic cycle calculations of high Mach number airbreathing engines, such as scramjets, have shown that the engines should have air intakes that contract and compress the flow by factors of 6–10 and 10–20 respectively and that this contraction and compression should be done with minimal loss of total pressure. Aside from high contraction and compression, the attainment of efficient intake performance is critically dependent on the freestream Mach number and the lateral and stream-wise contours of the intake surface, both being factors in determining the character of the flow in the intake and its performance.
\nSince all these design concerns are intake shape-dependent, it is most convenient and reasonable to start an iterative type intake design procedure with the selection of an intake shape that is known to produce a geometrically simple, compressive flow. Flow on a plane inclined wedge, Prandtl-Meyer flow and flow over a circular cone, as well as their combinations, have been used extensively as starting points for supersonic intakes because their aerodynamic characteristics are simple and easily predictable analytically. These “textbook” flows are usually adaptable to physical variations in geometry where shape change may be required for optimised performance over a range of Mach numbers and to ensure intake flow startability. In selecting such simple and easily predictable flows and their streamlines, for intake applications, we search for geometric streamlines that join a uniform and parallel freestream entry flow to an equally uniform and parallel exit flow. For most intakes the exit flow direction should be the same as that of the freestream. The flow compression in the intake should be longitudinally distributed so as to be isentropic at the high Mach number, upstream end of the intake. Minimal shock losses are obtained when compression through shock waves occurs at the lower Mach number, downstream end. So as to minimize viscous losses, all surfaces should contribute usefully to the compression task by individually supporting positive pressure gradients. The desirable qualities should not deteriorate significantly at off-design conditions of flight Mach number, altitude or angle of attack.
\nScramjet engine thermodynamic cycle calculations and combustor performance place a requirement on the hypersonic air intake to reduce the freestream Mach number by a factor of about three and to do so with a total pressure recovery of at least 0.5. These design targets can be met by employing combinations of simple inviscid flows that are assembled to form the intake flowpath. The simple flows can be based on either planarly symmetric (planar) or axially symmetric (axial) supersonic “text-book” flows. In planar flows, flow properties are the same in parallel geometric planes. In axial flows, flow properties are invariant in planes around a common axis. Because of planar or axial symmetry, the number of independent spatial geometric variables, needed to specify the flow, is reduced from three to two—a great simplification for design and analysis. These simple flows also possess radial symmetry in that there is no variation of flow properties along flat planes (planar flow) or cones (conical Taylor-Maccoll flow). Use of simple flows with flat plate and conical symmetry allows the number of spatial variables that are required to specify and describe the flow, to be further reduced by one, so that only one independent geometric variable remains—a further simplification for intake design and analysis. Examples of such commonly used simple planar flows are the flow behind a flat oblique shock and Prandtl-Meyer flow. Commonly used simple axial flows are the flow over a cone and the Busemann flow. Simple flows and their combinations do not carry shocks that are curved in the flow plane; this keeps the intake flows irrotational and uniform. An important part of intake design consists of combining and connecting the simple flows to yield the desired intake performance. The other part consists of using selected streamline sheets of these flows to form desired flowpath shapes—a technique called wavecatching.
\nThe focus in this paper is on the use of axial, internal flow elements (basic flows) [1, 2, 3], rather than planar flow elements, to construct intake flow paths. The axisymmetric intake attains most of its compression by flow convergence rather than flow turning or shock deflection. The converging flow is isentropic, it is similar to sink flow and it causes a Mach number decrease which leads directly to weak terminal shocks waves and efficient intakes with high capability. The internal converging flowfield is the most important feature of an axial flow intake.
\nProblems of viscous losses and flow starting are eased by use of wavecatcher technology, providing leading edge truncation and sweep and by the fact that high adverse pressure gradients occur in the inviscid core flow rather than in the wall surface boundary layers. Hypersonic intakes that utilize axisymmetric compressive basic flows with specified entrance and exit shapes have received attention because of their high performance (capability and efficiency) and analytical simplicity [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24].
\nA preferred geometry for a scramjet combustor is a duct with a circular cross section because of its superior ability to withstand both heat and pressure loads. Frictional losses are also at a minimum for such a duct since a cylinder has the smallest surface area for a given cross-sectional area. This leads to a cylindrical (axially symmetric) geometry as being desirable also for the intake that is attached to the front of the combustor duct. The same circular exit geometry for the intake is demanded by a gas turbine engine, in this case because the axial compressor face is circular. Towards these ends, it is pertinent to study an axisymmetric flow and it is entirely fortuitous that axisymmetric, conical, Taylor-Maccoll flow provides a streamtube shape [1, 2] that satisfies the above intake design requirements, both geometric/structural as well as aerodynamic [3]. In recognition of Adolph Busemann’s pioneering work [1] on such streamtube shapes, they are called Busemann flows and Busemann intakes. References [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 24] all concern Busemann flow.
\nThe reduction of Mach number, in the various basic flows, is accomplished by one or more fluid mechanical mechanism: (a) compressive flow turning; (b) flow convergence with area contraction and compression in a converging passage and (c) flow deflection through an oblique shock. Flow turning and contraction are isentropic processes leading to no loss in efficiency. Flow deflection through an oblique shock entails an entropy increase—a loss in intake efficiency. If shocks are needed to deflect or re-direct the flow then they should be as weak as possible, occurring at the lowest possible Mach number (e.g., Busemann shock). Planar flow turning by Prandtl-Meyer-type flow requires much turning to accomplish a significant Mach number reduction, so that, after P-M turning, strong shocks are required to re-direct the flow back to the freestream direction for the combustor. On the other hand, isentropic Mach number reduction by area contraction leads to a rapid streamwise Mach number reduction when the flow is axial. In such flows, Busemann flow being typical, there is comparatively little flow turning towards the center line, the compression being accomplished by area contraction and, as a result, there is no need for much deflection (re-turning) by a shock at the exit. Also, since there is considerable Mach number reduction in the converging flow, the terminal shock faces a reduced Mach number. This weaker terminal shock minimizes efficiency losses. The axial flow intakes derive their high efficiency from the axial convergence, being only little degraded by flow deflection through the terminal shock. The axial Busemann intakes have been mistakenly labeled as “inward turning” even when part of their converging flow is turning outward, away from the axis. We suggest dropping the “inward turning inlet” terminology in favor of “axial flow intake” or “converging flow intake,” because their fundamental and characterizing distinction is axial convergence. It is precisely the lack of much “inward turning” that leads to the high performance of Busemann intakes. It would be better to use the flow-related and meaningful concepts of turning, convergence and deflection to characterize intake flow types in general. Isentropic turning, as in P-M flow, may have to be used where variable geometry demands the use of planar flow. The resulting flow turning, away from the flight direction, has to be compensated by lossy oblique shock deflections. On the other hand, flow convergence, such as occurs in sink flow, is an effective mechanism because it is isentropic and involves no flow turning. Deflection occurs through an oblique shock; it is non-isentropic and it should be used only when there is no other possibility of orienting the flow. It should not be used to reduce the Mach number. A practical flow, such as Busemann [1], incorporates all three of these aerodynamic mechanisms as they interactively contribute to intake performance.
\nThe three modes of compression are illustrated in the Prandtl-Meyer intake, the Oswatitch intake and the Busemann intake (Figure 2). The Prandtl-Meyer intake obtains performance by isentropic turning through the compression fan, followed by deflection through the oblique shock; there is no convergence. The Oswatitch intake has flow divergence and turning followed by deflection through a shock. The Busemann intake has turning and convergence followed by shock deflection. Three intake models were designed to reduce the Mach number from 8.33 to 4.8 with a static pressure ratio of 26.8. All three intakes were tested in a gun tunnel [11] at Mach 8.33 and it was found that, for the same amount of contraction, the inviscid total pressure recoveries of the Busemann, Oswatitch and Prandtl-Meyer intakes were 0.983, 0.763 and 0.763. Experimental total pressure recoveries were 0.484, 0.485 and 0.240. The reason for the differences stems from the fact that the surface area and consequently the viscous losses, were greatest for the Prandtl-Meyer intake. Sidewalls, needed to contain the planar Prandtl-Meyer flow, did not preserve the intake’s efficiency but contributed to the surface area and viscous losses. The lack of an extensive leading edge and attendant viscous flow contributed to the efficiency of the Oswatitch intake. These results illustrate the superiority of axial over planar basic flows where it is the Mach number reduction, achieved by convergence, that leads to the high performance of the Busemann intake.
\nSchematics of three intakes tested in a gun tunnel at Mach 8.33 [11].
The design technique of replacing known streamline sheets garnered from simple flows, by solid surfaces to generate aerodynamic shapes, known as “streamline tracing” has been applied to wing-body shapes [20]. The resulting airplane shapes are named “waveriders.” The objective in waverider design has been to generate airplane-like shapes that produce high ratios of airplane lift-to-drag force. The same streamline tracing technique, in this case called “wavecatching,” is applied to intake flowpath design [4, 7, 13, 14, 21, 22, 23, 24, 25, 26] to generate intake surfaces. The objective, in this case, is to generate intake surfaces that capture, support and contain internal flows that have a high performance as supersonic/hypersonic air intakes. Both waverider and wavecatcher applications rest on the fluid-mechanical principle of replacing impervious streamline sheets by solid wall surfaces. In both applications the design starts with the selection of a freestream capture area cross-sectional shape. The shape is projected, as a closed trace, onto the leading shock wave of a prescribed simple flow. In the case of wavecatchers, the trace becomes the leading edge of the intake and the shock wave or Mach wave covers the leading edge of the intake at the design condition. All the mass flow passing through the trace is captured into the intake. The streamtube extending downstream from every point of the closed trace forms the shape of the intake’s flowpath. By selecting a suitable shape for the entry flow trace, much design flexibility is available in integrating the resulting engine flowpath with the airframe shape and the intake’s exit flow shape to suit the combustor. Pre-selecting the simple flow determines the internal flow as well as the intake performance. The technique is equally applicable to planar and axial flows as well as to non-symmetric flows. The basic wavecatcher technique, when applied to symmetric flows, produces geometrically similar flowpath cross sections. Various methods of morphing can be applied to gradually change the flowpath shape if the entry and exit cross sections are not to be geometrically similar [7, 11, 26]. Two very important extra virtues of the wavecatcher design method are that it produces flow paths with swept leading edges, much like a sugar scoop where, at the design Mach number, the leading shock is everywhere attached to the leading edge; there is no flow spillage. However, at off-design conditions, such a swept leading edge does permit overboard mass spillage during intake flow starting, making otherwise non-startable intakes startable. Experimental results on wavecatcher intake shapes, based on Busemann flow, were presented in [4]. Using streamline tracing methodology, based on the flow in a straight conical duct, the notion of selecting portions of the axisymmetric versions of internal flow was used also in [21, 22, 23, 27]. The significant virtues of wavecatcher intakes has been utilized in many subsequent intake studies [10, 13, 21, 22, 23, 28, 29, 30]. The technique of streamline tracing, to produce modular flowpaths of arbitrary cross sectional shape (wavecatching), results in the following attractive aspects: (a) the total mass flow is divided between individual modules, reducing the mass flow demand of test facilities, both wind tunnels and flight test, (b) thrust vector control is easier to implement with flow in individual modules, (c) highly swept module leading edges make mass flow spillage possible for intake flow starting, (d) module freestream capture shapes are easily integrated with airframe shapes, (e) modules can be raised off the airframe surface so as not to ingest the fore-body boundary layer, (f) properly designed modules are self-startable.
\nWavecatching and morphing techniques for modular Busemann intakes will be discussed in Section 7; module startability in Section 8.
\nFor spontaneous ignition and supersonic combustion, the Mach number at combustor entry should be about one-third of the flight Mach number. In a flight Mach number range 4–25, the intake cross-sectional area must decrease by a factor of 5–20. Such a highly convergent duct can support two distinctly different flow configurations at any given supersonic flight Mach number. One flow type produces a bow shock in front of the intake that diverts much flow overboard and, in this case, the intake flow is subsonic with unacceptably low performance. This is termed “subcritical” or “unstarted” flow. The other possible flow configuration has no bow shock, no overboard spillage and is supersonic throughout. This “supercritical,” or “started” flow, is required for efficient scramjet engine operation. Attainment of supercritical flow in high contraction ratio intakes present a problem in that the intake flow will not assume the started flow state spontaneously under steady flight conditions. Starting requires that the near-normal bow shock, in front of the unstarted intake, moves downstream into the intake to be “swallowed” and that a stable hypersonic/supersonic flow is established throughout the converging portion of the intake. Spontaneous starting will not occur in intakes whose exit-to-entry area ratio is below 0.6. Unfortunately, startable intakes with exit-to-entry area ratios at or above this value do not produce enough compression to be useful as scramjet intakes. Methods of intake flow starting must be found and implemented for high contraction intake flowpaths. Intake starting is not open to design compromises; it is a critical, non-negotiable requirement that presents challenges and places severe conditions on intake design. Since startability is determined, to a limited extent, by flight Mach number, there is some design flexibility in choosing the start Mach number. Various methods of promoting intake flow starting have been explored in [9, 11, 18, 25, 27, 31, 32, 33, 34, 35, 36, 37]. Section 8 presents an analytical approach to the design of spontaneously starting, modular Busemann intakes.
\nUnstarting of started flow is also a concern in that flight at an extreme angle of attack or at combustor overpressure conditions can cause the intake to regurgitate a stopping shock and the intake flow to revert from a started condition to a condition of unstart. Such an event must be prevented since it is followed by a catastrophic loss of thrust. A review of research progress on detection and control of unstart mechanisms of hypersonic inlets is described in [27, 34].
\nBusemann [1] described an axisymmetric, conical flow that starts in the uniform freestream, compresses and contracts isentropically and passes through a conical shockwave to become uniform and parallel to the freestream flow. Courant and Friedrichs [2] make a brief reference to Busemann flow, suggesting its use as an air intake. Molder and Szpiro [3] used the Taylor-Maccoll equations to calculate the inviscid Busemann flow and present a capability/efficiency performance map for the flow as a hypersonic air intake. Experiments, at Mach 8.33, on a full Busemann intake and on modular, wavecatcher surfaces, based on Busemann flow were conducted by Mölder and Romeskie [4] and by Jacobsen et al. [25]. VanWie and Molder [12] suggested applications of the Busemann intake to hypersonic flight vehicles.
\nThe Busemann intake shape is analytically defined by only two numerical parameters [3]. This has made it easily “transportable” and led to its proposed use as a benchmark standard for internal flow CFD verification [38], and a basis for more general studies of intake flows as well as experiments for such issues as flow starting [18, 25, 27, 31, 32, 33, 34, 35, 36, 37], viscous effects [15, 39], truncation [16, 18], drag measurement [11], wavecatcher configurations [13], leading edge blunting [10] and cross section morphing [7]. Viscous effects and truncation and stunting are found in [15, 18, 39]. Experimental results for full and modular Busemann intakes are found in [11, 13, 18, 21, 23, 25, 33, 37, 40]. A four-module Busemann-based intake on a scramjet engine was launched at Mach 5, from a large ballistic gun [41].
\nThe high performance [24] and analytical simplicity of the Busemann intake has made it a subject for some 60 publications.
\nThe basic Busemann intake surface is axisymmetric (Figure 3). It is a converging duct with its axis aligned with the freestream. When started, it captures freestream flow (M1) in a circular cross section. Since there is no flow deflection at the leading edge there is a zero-strength conical Mach wave (io) from the leading edge at the freestream Mach angle. The flow then starts turning towards the axis, so that flow area decreases and pressure increases in the flow and along the surface (icfs). A maximum turning angle (inflection point) is reached at (f). Turning from (i) to (f) has made the flow convergent so as to compress by convergence. While still convergent and inclined towards the axis, the flow (fs) starts turning away from the axis, passing through a conical shock (os) where it is deflected to become uniform and parallel to the axis at the exit of the intake. This “turning away” of the pre-shock flow lessens the flow deflection requirement of the terminal shock, leading directly to an increase in efficiency. It is this efficiency increase and the convergence in (icfsoi) that contribute directly to the superior performance of the Busemann intake. Flow in the region (icfsoi) is isentropic and irrotational. In the region (icoi) the compression waves from the surface (ic) converge to the focus (o). The compression waves from the rest of the surface (cfs) are incident on the terminal shock. Aside from axial symmetry, this flow is also conically symmetric so that there is a focal point (o) on the axis, from which rays can be drawn, in any direction, such that the flow conditions on any ray are constant. Except for the leading ray (io), the rays are not Mach waves. Axial symmetry makes the rays to be generators of cones so that the flow conditions on circular cones are constant and the conditions are functions of only the conical angle θ (Figure 3). All the streamlines are geometrically self-similar, with shapes that are scalable with distance from the origin. Thus, only one streamline, r = f(θ), needs to be calculated to define the intake surface. Disappearance of the radial dimension (r) as an independent variable, in conically symmetric flow, permits the depiction of all flow conditions on the single remaining spatial variable—the conical angle, θ. This offers great simplicity in flow analysis where a wide variety of intake surfaces is available for selection of surface shapes that yield both a high compression and a high efficiency for the intake. Furthermore, the presence conical flow means that all shocks, facing conical flow are also conical and therefore of constant strength, at any angular position. The flows are not only uniform but also irrotational—generally a desirable feature for flow that leaves the intake to enter a combustion chamber. These features of conical flow and, in particular, Busemann flow, which is by nature an internal, compressive flow, make the basic Busemann streamline shape an attractive candidate for constructing an air intake for a hypersonic flight vehicle’s engine.
\nBusemann intake contour is icfs. io is a freestream Mach cone. os is a conical shock. Uniform entry flow at (1). Uniform exit flow at (3). Supersonic, isentropic, axially and conically symmetric flow from (1) to (2). Flow crosses oblique conical shock from (2) to (3), C-characteristics in ico focus at o. C-characteristics from cfs are incident on the shock along os. All streamlines have an inflection point on the cone fo. Spherical-polar coordinate system (r, θ) is centered at o with corresponding radial and angular Mach number components u and v.
Flow which is both axially and conically symmetric is best described in spherical polar coordinates (r, θ, ϕ) where r is distance measured radially out from the origin, θ is the angle measured counterclockwise from the downstream direction and ϕ is the circumferential coordinate around the axis of symmetry (Figure 4). For Busemann flow the origin is at the apex of the conical shock, on the center line of symmetry (xx). The flow velocity components in the radial and angular directions are designated as U and V. Drawing similar triangles along the streamline, in Figure 4 gives the streamline equation:
\nThe coordinates (r, θ); the Mach number (M) and its radial and angular components u and v.
Busemann flow, and axisymmetric conical flow are governed by the Taylor-Maccoll equation, the same equation that governs the supersonic flow over an axisymmetric cone at zero angle of attack. The original Taylor-Maccoll equation is a non-linear, second order total differential equation with the spherical polar angle, θ, as independent variable and the radial flow velocity, U, as dependent variable [42, 43].
\nThis is the model equation that governs steady, axisymmetric, conical flow of a perfect gas. No explicit algebraic solution has been found, nor are there any numerical schemes for solution of the second-order Eq. (2) as given above. However, the equation can be converted to two first order Eqs. (3) and (4), at the price of acquiring the additional dependent variable, V. But the two equations are now amenable to standard numerical solution methods. Most of these solutions have been done with boundary conditions applicable to flow over an axisymmetric cone [42, 43].
\nThe first-order versions of Eq. (1) are the momentum equations, in spherical polar coordinates, in the r and θ directions [44]:
\nwhere a is the speed of sound that can be written in terms of the velocities and the total conditions through the energy equation. The second of these equations is also the irrotationality condition, implying that conical flows are necessarily irrotational. Explicit reference to the speed of sound and total conditions can be circumvented if the equations are recast so as to have the radial and angular Mach number components (u, v) as dependent variables in place of the corresponding velocity components (U, V). The boundary conditions, when expressed as Mach number components at the up- and down-stream sides of conical shocks, are then applicable directly to the solution of the equations. Also, total conditions, which have no influence on the Mach number solution, do not have to be invoked.
\nThe Taylor-Maccoll (T-M) Eqs. (3) and (4) have been recast in terms of the radial and angular Mach numbers u and v, where u = U/a and v = V/a and a is the local sound speed:
\nThese two equations seem more complicated than their parents (3) and (4). However, it will be shown that the use of Mach number components u and v leads to meaningful and useful physical interpretations from Eqs. (5) and (6). Also, the sound speed has been eliminated as a variable.
\nIn terms of Mach number components, the streamline Eq. (1) is,
\nand the flow Mach number is,
\nHaving the T-M equations in this form reveals their singular nature at v = ±1 where the singularity is caused by the (v2 − 1)-term in the denominators above.1 The term u + v cot θ, appearing in both numerators, is the component of Mach number normal to the axis. This component is zero for the freestream flow, so that, at the entrance, the Taylor-Maccoll equations take on a 0/0 type singularity and it turns out that (u + v cot θ)/(v2 − 1) has a finite value at the freestream entrance of the Busemann intake.
\nAs a result of using the Mach number variables u and v, the absence of any explicit reference to total conditions, as well as the sound speed, leads to a more straightforward application of the boundary conditions. A standard, fourth-order Runge-Kutta scheme [45] has been used to integrate the Mach number components, u and v form of Eqs. (5) and (6) and \n
Eqs. (5) and (6) are simultaneous, first-order, total differential equations that can be solved by standard methods, such as in Ralston and Wilf [45], for the two Mach numbers u and v in terms of θ. The Mach number M is then found from \n
Integration of Eqs. (5) and (6) requires the starting values u and v at the value of θ = θ2 in front of the shock. A convenient and aerodynamically significant approach is to select the Mach number in front of the shock M2 and the aerodynamic shock angle θ23 as the starting variables. The flow deflection through the shock, δ23, is found from the equation relating Mach number, shock angle and flow deflection [28]:
\nThe angular location of the shock, which is the starting value for the variable of integration, θ, is then:
\nThis ensures that the flow behind the shock is parallel to the axis, which is the most common requirement of flow entering a combustor. The starting values for the radial and circumferential Mach numbers are then:
\nThe radial variable, r, becomes dependent on u and v and the starting value r2 at the shock. The value of r2, the shock’s length, is arbitrary at this stage. It determines the scale size of the streamline and its utility becomes relevant when considering morphing and wavecatching in Sections 1.3 and 7. Note that, prior to integration of Eqs. (5) and (6), and calculation of the intake surface shape, we could calculate the intake’s efficiency, using the total pressure ratio as measure,
\nand the capability from the exit Mach number,
\nwhere \n
Eqs. (5) and (6) are then numerically integrated from θ2 to θ1 = π–μ1 in an upwind direction with an increasing θ. Since θ1 is not known a priori, the integration is continued until the normal-to-the-axis (cross-stream) Mach number (u sin θ + v cos θ) becomes zero or positive, indicating that the freestream has been reached. The calculated shape and Mach number contours of such an integration are shown in the top half of Figure 5.
\nFlow Mach number contours in the axisymmetric Busemann intake for inviscid flow. Top half is obtained by integrating the Taylor-Maccoll equations. Bottom half is a CFD calculation [by Ogawa] of flow in the same intake shape as the top half.
Note the conical nature of the contours. The calculated Busemann shape is then used as input to a CFD code to predict the flow as shown in the lower half of Figure 5. Although the CFD code is not “told” anything about conicality, the conical nature of the flow is well represented by the CFD calculations. Both methods predict a uniform exit flow downstream of the conical shock (courtesy Dr. Ogawa). This is an illustration of the use of Busemann flow as a benchmark for verifying the application of a CFD code to internal flow. Graphical results of an integration of Eqs. 5–7 are shown in Figure 6 for a Busemann intake that reduces the Mach number from 5.22 to 1.93 with a total pressure recovery of 0.94.
\nBusemann intake contour (black curve) with conical shock (red) and cone of inflection points (green). Mach number distribution (blue). Pressure distribution, normalized with respect to exit pressure (red, on the right side ordinate), for an intake that reduces the Mach number from 5.22 to 1.93 with a total pressure recovery of 0.94.
At the entry, Busemann flow joins to the freestream at a conical Mach wave. The Mach number normal to this wave, v = −1, which makes both Eqs. (5) and (6) have a zero in their denominators. At the conical Mach wave \n
This section describes some features of Busemann-type intake flow that are unique to axisymmetric conically symmetric flow. First, there is the geometric simplicitly that arises from the axial and conical symmetries. These symmetries require that conditions on a circle, which circumscribes the axis, are constant and conditions are constant also on any circular cone surface whose axis is aligned with the symmetry axis and whose apex is confocal with all other such cones.
\nAnother very important feature is the fact that all solutions of the T-M equations, starting from an acute angled, conical shock, always end up at a straight and parallel freestream flow. Busemann flow would be useless, as the basis for an air intake, if this were not so. This fortuitous feature must be inherent in the T-M Eqs. (5) and (6). This property of the T-M equations holds whether the downstream flow is set to be uniform or not, as long as it is conical.
\nThe downstream end of the Busemann flow has an inflection point where the surface turns away from the axis, towards being parallel with the exit flow. This lessens the flow deflection required from the terminal shock and also lessens the strength and loss produced by the terminal shock. This feature contributes directly to the high efficiency of the Busemann intake flow.
\nIn a parallel, uniform, freestream a conical axisymmetric shock is produced by a conical body and the shock strength is proportional to the cone angle. In Busemann flow there is no solid cone, yet a conical shock is produced. This “free-standing” shock is possible because the flow in front of the shock is converging towards the center line and the center line behind the shock is acting as a zero-angle cone to force the flow into a parallel and uniform downstream direction. Such a free-standing conical shock, with uniform post-shock flow, is unique to Busemann flow.
\nExperiments were conducted, in a Mach 3 wind tunnel, at the Defence Research and Development Canada (Valcartier) laboratories to demonstrate the existence of the free-standing conical shock [40]. Since a full Busemann intake would not start spontaneously in the steady wind tunnel flow and, also, since the shock would be hidden from tunnel optics by a full Busemann duct, only an annular, leading edge portion of the Busemann duct was constructed and tested (Figure 7b). The tip of the conical shock, produced by the annulus, is in the region of influence of the annulus and that was sufficient to produce a freestanding conical shock at the center line that was in the field of view of the tunnel optics (Figure 8). Compression waves, from the annulus, converge to the center line and reflect as a conical shock as calculated by CFD in Figure 7a. No incident shock or Mach reflection is apparent. Calculated post-shock Mach number is 1.48, and pressure is 10.1 and temperature is 1.94 times their freestream values.
\n(a) Freestanding conical shock at center line, produced by axisymmetric Busemann leading edge annulus in a Mach 3 freestream. CFD calculation by E.V. Timofeev. (b) Busemann leading edge annulus in Mach 3 wind tunnel at DRDC [40].
Freestanding conical shock in Busemann flow at Mach 3 (DRDC). Blue arrow points to apex of conical shock.
The yellow arrow points to the focal point where the converging compression fan and the free-standing conical shock meet. The analytically predicted Busemann flow and its features have been confirmed by both CFD and experiment. The approach presented here is the only method for establishing a centered axial compression followed by a conical shock at the center line in a steady flow. Flow properties inside the apex of the conical shock can be precisely set and the shape of the required Busemann annulus calculated so as to create a local high pressure hot spot for igniting a supersonic fuel/air mixture at a precise location.
\nCharacteristics are two sets of intersecting lines in supersonic flow. The characteristics carry a physical significance in that they delineate the region of space that influences flow conditions at a particular point as well as the region of space that depends on the flow conditions at a point. The characteristic lines are selected such that, along these lines, the governing partial differential equations become total differential, finite difference equations, allowing numerical solutions of the flow-field [42, 46].
\nAlternatively, once a supersonic flow-field has been calculated by some non-characteristic methods, the characteristic lines can be calculated and superimposed and inferences about influences, causes and effects can be drawn. The α and β or C+ and C− characteristics are inclined at ±μ to the local streamlines where μ = sin−1(1/M) (Figure 9). In polar coordinates the α and β characteristics’ shapes are determined by integrating,
\nCharacteristics Cα and Cβ.
where the plus sign is for the α characteristic and minus is for the β characteristic. For x-y plotting one can integrate the α-characteristics directly:
\nand the β-characteristics by:
\nIntegration of the characteristics is easily performed inside the routine for integrating the T-M equations. This method was used to superimpose characteristics on the T-M solution above. Resulting characteristic lines are shown in Figure 10 for the same Mach 5.22 intake as in Figure 6.
\nα and β characteristics network for the Mach 5.22 Busemann intake. α characteristics are outbound from the center line and β characteristics are inbound. Note convergence of β characteristics at center line.
The Taylor-Maccoll equations point to the existence of a confocal, conical, compression fan—the axisymmetric analogue to a Prandtl-Meyer fan. Such a fan of coalescing characteristics, preceding a free-standing conical shock, is shown to exist experimentally (Figure 8), as well as by CFD calculations (Figures 7a and 10).
\nThe characteristics mesh in Figure 11 is a schematic overlay on the Busemann flow. The α-characteristics (not shown) all start from the freestream Mach cone and proceed away from the axis to intercept either the surface streamline or the front surface of the shock. The blue and red β-characteristics start at the surface and proceed towards the axis. The first of the β-characteristics is the freestream (1) Mach cone itself, having an inclination μ1 at the axis. At the shock (2) the remaining characteristics have an inclination δ2 + μ2, different from μ1. Figure 11 is a zoomed-in schematic of the conditions at (o) showing a Busemann streamline (icfe) that joins a freestream (1) to the conical shock (oe) at (2). A streamline (ss) passes through the shock. The characteristic (os) and its projection to (c) is the last of the centered β-characteristics (blue) and it is also the first of the β-characteristics (red) that start at the surface and proceed towards the axis but intercepts the shock (oe).
\nSchematic of characteristics in Busemann flow. Centered compression fan (ioc). Shock-impinging characteristics (cfeo). Subscript (1) refers to freestream conditions, (2) refers to pre-shock conditions. Angles shown are for conditions at O.
An examination of the inclinations of the characteristics shows that the angular width of the centered compression fan, \n
An equation for the curvature of the T-M streamline is derived to show that the streamline can have points of zero curvature—inflection points. The Busemann streamline has two points of zero curvature where one of these points has significance in the starting of a Busemann-type intake. The conical surface containing all inflection points in a typical Busemann flow is shown in green in Figure 11 where the portion of the surface (icf) is turning towards the axis and the portion (fk) is turning away.
\nTo derive an expression for the curvature of the T-M streamline we use the defining equation of the streamline,
\nwhere u and v are the radial and angular components of Mach number as used in the T-M equations. Taking another θ-derivative of (7) gives,
\nIn polar coordinates, (r, θ) the curvature of a planar curve is [28, p. 34],
\nEliminating the derivatives of r with Eqs. (7) and (18) gives,
\nIn this expression the derivatives dv/dθ and du/dθ are given by the Taylor-Maccoll Eqs. (5) and (6) so that the streamline curvature is,
\nThis equation gives the curvature of the T-M streamline in terms of the polar coordinates, r and θ, and the radial and polar Mach number components, u and v. It is plotted as the black curve in Figure 12. A number of very interesting and important features, about the T-M streamline, become apparent from an examination of its curvature as given by Eq. (21):
D is inversely proportional to r so that when r → 0 then D → ∞. This means that streamlines near the origin of T-M flows are highly curved. This is a necessary condition for flow over a cone, where flow, near the tip and just aft of the conical shock, has to rapidly adjust to the inclination demanded by the cone surface, since the flow deflection produced by the conical shock is insufficient for the flow to be tangent to the cone surface. Similar highly curved streamlines are to be expected near the focal point of Busemann flow. Conical flow is not conically symmetric, i.e., independent of r, when it comes to gradients of its dependent variables, such as streamline curvature—the dependence being inversely proportional to r. This inverse dependence on r extends to other flow property gradients as well.
There is an asymptotic condition, (D = 0) in the T-M streamlines at v = 0. For flow over a cone, v = 0 at the cone surface. This confirms that the streamlines become asymptotic to the cone surface as they approach the surface. There is no v = 0 asymptotic condition in Busemann flow.
When u = 0 then D = 0. This means that the streamline has a point of inflection at the place where the radial Mach number is zero. For flow over a cone the condition u = 0 never occurs, so the streamlines are curved monotonically positive. However, for Busemann flow there is a location, \n
There is a point of zero curvature also when (u + v cot θ) = 0. The quantity (u + v cot θ) is the component of Mach number normal to the flow axis. For Busemann flow it is zero only where the Busemann flow joins the freestream. Thus, the leading edge of the Busemann flow has not only zero deflection but also zero curvature. Aerodynamically this means that the leading edge wave is neither compressive nor expansive but is a zero-strength Mach wave. The fact that the entering freestream flow is neither deflected nor curved by the Busemann leading edge means that the leading edge of a hypersonic air intake, based on Busemann flow, is ineffective in contributing to the intake’s task of reducing the Mach number. This provides an incentive to foreshorten some length of the leading edge surface so as to decrease viscous losses, possibly without incurring serious inviscid flow losses. For M-flow [32] the potential appearance of the condition (u + v cot θ) = 0 is prevented by the appearance of the (v → ±1)-singularity (described below) so that the post-shock flow never becomes parallel to the freestream. This is unfortunate from a practical viewpoint since it presents no possibility of grafting any of the flows that have a uniform upstream, such as cone or Busemann flows, to the downstream of M-flow. From a fundamental viewpoint it also presents an obstacle to the possibility of conical shock reflection at the center line of symmetry [31].
When the angular component of Mach number v → ±1 then D → ∞; the curvature becomes infinite and the streamline has a cusp or a corner. This indicates a singularity or a limit line at a corner. Neither cone nor Busemann flow exhibit such a limit line. However, it does occur in both M- and W-flows [32].
The quantity (v2 + u2)3/2, appearing in the denominator of Eq. (21), is just M3. It is always a positive quantity for all flows and has no drastic characterizing effect on D except to force streamlines to be less curved, to straighten out, at hypersonic speeds. Hypersonic intakes become long and slender.
Surface curvature (D), pressure gradient (P) and Mach number gradient (dM/ds), vs. axial distance (x) in the isentropic part of the Busemann intake. x = 0 is at the apex of the conical shock. Highest values are reached at the corner where x = 0.98.
The streamline equation may be written,
\nThe flow Mach number, M, in terms of its radial and axial components, u, and v, is,
\nSo that,
\ngiving,
\nwhere the derivative terms, in the square brackets, are given by the Taylor-Maccoll Eqs. (5) and (6), when multiplied by u and v, respectively.
\nso that,
\nThis is the Mach number gradient, expressed in terms of the coordinates (r, θ) and the corresponding Mach number components (u, v), where the Mach number component values come directly from the integration of the Taylor-Maccoll Eqs. (5) and (6). dM/ds is plotted in Figure 12 (with s measured in the downstream direction).
\nIn the isentropic flow, from the freestream to the shock, the gradients of Mach number and pressure are related by [47],
\nwhere \n
The pressure gradient is expressed in terms of the radial and azimuthal coordinates r and θ and the radial and angular Mach number components u and v. It is plotted in Figure 12. This permits the calculation of the surface pressure gradient from quantities obtained in the T-M calculation of Busemann flow.3 It also means that the surface pressure gradients are known everywhere on the surface of the highly three-dimensional wavecatcher shapes where all the surface gradients are useful as inputs to boundary layer calculations. Towards this end it is noted that, for the flow just upstream of the corner, where the shock impinges, the u and v Mach numbers are given by u2 and v2 from Eqs. (11) and (12), so that the gradients immediately before the shock-boundary-layer interaction at the corner can be evaluated just from the prescribed initial conditions using Eqs. (5)–(7), before embarking on a calculation of Eqs. (5) and (6). This enables a selection of initial conditions that is based on considerations involving the shock losses as well as the shock-boundary-layer interaction effects. The analytical expressions for all three gradients have the radial coordinate r in their denominators. This requires the gradients to be the mildest on the intake surface and highest at the origin—a desirable condition for orderly wall boundary layer development on the intake surface.
\nAs a check on the various algebraic results we have plotted them against the acute (20–90°) and obtuse (90–160°) angles of conical shocks for Mach 3 in Figure 13. The left half of this figure is for acute shocks and the right half is for obtuse shocks, i.e., cone flow and M-flow. u (red) and v (blue) are the Mach number components behind the shock in the \n
Mach number components (u, v) and gradients behind conical shock at Mach 3.
An integration of the TM-Eqs. (5) and (6) from the initial conditions (10–12) is terminated when (u + v cot θ) = 0 at the free-stream where we discover the Mach number M1. The results of many such calculations are shown in Figure 14 where each complete Busemann intake calculation is represented by a dot. For each case, a value of M2 is selected, in our case between 1 and 8, and k (the shock-normal component of M2) is cycled from 1 to M2. For each M2 and k the total pressure ratio, Eq. (13), and M3, Eq. (14), are calculated. Integration of the T-M equations then leads to the freestream at M1 and a point is plotted on a graph of M1 vs. M3 with pt3/pt1 as parameter, determining the point’s color. Every point in this figure represents a Busemann intake calculation from the downstream shock to the freestream. This graph can be used to select a Busemann intake design based on the desired entry and exit Mach numbers and the total pressure recovery. Any two of these parameters determine the third. For example, it is apparent from the graph that a Busemann intake that reduces the freestream Mach number from 7 to 3 does so with a total pressure recovery of 0.95. This graph represents both components of Busemann intake performance, the capability by M1 and M3 and the efficiency by pt3/pt1. Tradeoffs between these are workable with this diagram. As an example, a Busemann intake that reduces the Mach number by a factor of three does so with a total pressure recovery of about 0.90. A more refined and elaborate version of such a performance map is found in [3].
\nInviscid performance of Busemann intake.
High performance intakes have to have a very weak leading edge shock. Such a weak shock is inclined at near the Mach angle. This leads to the length-to-height ratio of the intake to be approximately M, the freestream Mach number. So that high performance intakes, including the Busemann intake, tend to become long and slender with large surface areas that have high shear near the leading edge, causing disproportionately high viscous losses. Surface length also leads to thick boundary layers at the exit with losses and the potential for major flow disruptions by boundary layer separation.
\nA comparison of inviscid and viscous flow in the Busemann intake is shown in Figure 15 by Mach number contours. The blue, low Mach number boundary layer, appears in the viscous flow. The effect of the boundary layer has led directly to the presence of a shock from the leading edge and a noticeable change in the flow at the center line, a change of exit Mach number from 5.3 to 4.8 and a reduction in total pressure recovery from 0.97 to 0.43. The boundary layer has a significant effect on the inviscid flow even when it appears to stay attached.
\nInviscid and viscous flow in the Mach 8 Busemann intake at 30 km flight altitude [20].
Flow displacement by the boundary layer causes a conical shock to appear and focus to a point on the center line ahead of the Busemann flow focal point and a reflected, conical shock appears downstream that impinges on the surface ahead of the corner, Figure 16. To restore the inviscid flow topology and pressure distribution of the Busemann flow it is necessary to correct the surface shape of the intake by the boundary layer displacement thickness. The importance of viscous correction methodologies has attracted considerable attention and research efforts as accurate calculation of the boundary layer displacement thickness plays a pivotal role in intake performance assessment. Complex interactions of the shock waves and boundary layers developed on the curved surface of the Busemann intakes pose a challenge to accurate detection of the boundary layer edge. A viscous correction was applied [39, 49] to the full and truncated Busemann intakes by using the displacement thickness obtained through numerical integration of the CFD-generated boundary layer properties. Reasonable detection of the boundary layer edge was attained by examining the total enthalpy profile [50, 51]. Viscous correction is applied typically once only to produce the final geometry. However, the importance of repeating the process, with subsequent iterations, has been highlighted in [52] with the application of an updating procedure of the displacement thickness. The results of correcting for the boundary layer effect are shown in Figure 17 where the bottom half of the figure shows the inviscid and viscous flow on a surface that has been obtained by enlarging the inviscid surface by the boundary layer displacement thickness. There is close resemblance between the inviscid and the boundary layer corrected inviscid flows in this figure. Both Figures 16 and 17 were calculated by H. Ogawa.
\nMach 8 Busemann intake flows, upper half without and lower half with boundary layer showing the effect of boundary layer on the wave structure of the inviscid flow in the unmodified Busemann intake.
Upper half contains inviscid Busemann flow. Lower half of flow is contained in a Busemann surface that has been corrected (enlarged) for boundary layer presence [17]. Note successful restoration of BL-corrected flow to be similar to inviscid flow.
The basic Busemann flow is contained in an axisymmetric streamtube of high contraction. As an intake, such a shape will not start at steady flow conditions. Also the axisymmetric shape may not conform well to the shape of the rest of the airplane surface nor the desired combustor entry and a need arises to modify its cross-sectional shape. Such modifications can be done while still retaining the basic Busemann flow characteristics by tracing the streamlines of the Busemann flow. This process depends on scaling and assembling adjacent, scaled streamlines into streamline sheets that form the wall surfaces of the intake module. The technique produces a wavecatcher intake module. In such constructions a chosen freestream capture cross-section shape becomes mirrored in a smaller, but geometrically similar, intake exit cross-section shape. If done properly, a wavecatcher module has a swept leading edge that captures the leading shock wave and mass flow at design conditions but permits flow spillage and promotes intake flow starting at design and off-design conditions. So a wavecatcher design gets away from an axisymmetric flowpath shape and it also leads to a startable intake as a separate outcome.
\nThe wavecatcher intake shape, that integrates well with the airplane, may have an exit shape that is not necessarily the best shape for the combustor. The combustor shape is very likely wanted to be circular because it is to join to the contiguous combustor duct which is strongest and least aerodynamically lossy when it is circular. There is thus a need to deform the intake flow path gradually from the freestream entry to the exit; typically, from a segment of a circle to that of a full circle or possibly to an ellipse, (Figure 18). The method of doing this is called morphing [5, 7, 22, 23].
\nWavecatcher intake modules traced from full Busemann flows.
The Busemann intake has a large amount of surface immediately behind the leading edge. This surface carries a thin boundary layer and a high shear stress, contributing disproportionately to boundary layer losses. The question arises: Can boundary layer losses be decreased by foreshortening some of the surface aft of the leading edge? Realizing that truncation of the leading edge or stunting the intake will result in leading edge flow deflection and shock losses which counter gains achieved from decreased boundary layer losses.
\nDifficulties of cooling sharp leading edges lead to the adoption of leading edge blunting. Even a small amount of leading edge blunting can have a significant effect on the Busemann flow both in the boundary layer and in the inviscid stream [10].
\nThe objective of wavecatching is to generate intake flowpath surfaces different from the basic axisymmetric surface of the Busemann flow. The design starts with selecting the desired Busemann flow and calculating its streamline shape, \n
Two streamline traced intake modules are shown in Figure 18. Both are based on Busemann flow. In Figure 18a, the freestream capture tube shape is a quarter circle. The exit is also a quarter circle. Four such modules were placed back-to-back to construct the intake in Figure 19. Such four-module intakes were tested in a gun tunnel at Mach 8.33 [4] and this intake, on a scramjet, was launched from a ballistic gun at Mach 5 [41]. Figure 18b shows an intake, also traced from Busemann flow, from a circular capture tube shape, where the exit shape is also circular. Such a module was tested in a wind tunnel at Mach 4 [25].
\nFour-module Mach 5 scramjet intake based on Busemann flow.
The swept leading edges of modular wavecatcher surfaces permit flow spillage at design and below-design conditions thus promoting intake flow starting. Once started, the apparent three-dimensional intake flowpath contains a started, steady flow with the original Busemann flow properties. These are the two significant virtues of wavecatcher intake modules.
\nThe technique of generating wavecatcher intakes, described in Section 7.1, produces exit flow cross-section shapes that are geometrically similar to the freestream capture streamtube shapes. The purpose of morphing is to produce cross-sectional shapes of the intake flow path that gradually transform the intake’s entry shape to a geometrically different exit shape while, as much as possible, preserving the cross-sectional areas as well as the flow characteristics. For example, the flow from a quarter-circle entry is to be morphed to feed a circular combustor.
\nFigure 20 shows three orthogonal views of a wavecatcher intake and its cross sections when morphed from a quarter-circle to a full-circle. A detailed morphing method, as applied to the Busemann intake streamline \n
Three (blue) orthogonal views of a wavecatcher module and cross sections of the modular intake (black) when morphed from a quarter circle to a full circle.
Morphing of streamline-traced square (blue) and circular (red) streamlines into composite (purple) yielding cross section transition from large blue square to small red circle: (a) is exit geometry; (b) is entry geometry; (c) shows front view of streamlines; and (d) shows side view of streamlines.
We illustrate by morphing a large, square (blue) inflow cross section into a (red), small circular exit section. A typical morphed Busemann intake design starts from specifying the initial conditions at the Busemann shock. A Busemann streamline \n
Morphing can be used also if the axes of the entry and exit flows are offset, but still parallel.
\nAlthough morphing is applied to Busemann flow streamlines, Busemann flow is not preserved in the morphed intake. The morphing process is a purely geometric exercise and its arbitrary nature makes it necessary to verify the morphed intake’s flow features and performance, by CFD or experiment. VanWie et al. [7] examined the results of applying various weighting functions and calculated the performance of the morphed intakes using CFD.
\nAs discussed in Section 1, full Busemann intakes are inherently long and hence subject to substantial viscous losses and high structural weight. An examination of the Busemann intake flow-field reveals that the surface at the leading edge has no deflection or curvature in the streamwise direction, presenting no compression of the ingested freestream flow. Thus the leading surface makes little contribution to the task of compressing the flow in the intake. Even worse, it supports a boundary layer with high shear and attendant losses of intake efficiency. There is then a good reason to expect an improvement in efficiency as a result of eliminating the leading edge surface by foreshortening the intake surface. At the same time one can expect a deterioration of efficiency because the foreshortened intake now has a positive deflection generating a leading edge shock that produces an efficiency loss in the inviscid flow. There is a design trade-off here, between boundary layer and shock losses, which arises from intake foreshortening and it becomes of interest to find an amount of intake foreshortening that minimizes the sum of the boundary layer and the shock losses—maximizes the efficiency. This section describes two representative geometric methods of achieving foreshortening of air intakes, truncation and stunting. Truncation shortens the intake by removing some part of the leading edge surface. The effect of truncation of the Busemann intake was studied in [10, 16, 18]. Stunting is longitudinal contraction of the Busemann intake achieved by multiplying all streamwise intake surface coordinates by a constant factor <1. This is linear stunting or telescoping. When applied to a Busemann intake profile, the intake is foreshortened while the flow areas and the zero leading edge flow deflection and curvature are retained. No shock is produced at the leading edge and the overall design contraction is not changed.
\nCFD-generated intake performance data is presented for a Mach 8, full Busemann intake, flying at an altitude of 30 km, when foreshortened by various amounts of truncation or stunting. Figure 22 is a plot of intake total pressure recovery against fractional foreshortening of the full Busemann intake calculated by a Navier-Stokes code. The Busemann intake, with applied boundary layer and terminal shock losses lead to a total pressure recovery of 42% for the un-shortened intake.
\nEffects of truncation and stunting on Busemann intake total pressure recovery.
The effect of truncation on total pressure recovery by various amounts of truncation is shown by the blue curve in Figure 22. Truncation produces a modest increase of total pressure recovery from 42 to 46% at near 30% truncation and it appears that intake efficiency is not very sensitive to the amount of truncation.
\nThe effect of stunting, on total pressure recovery, by various amounts is shown by the red curve in Figure 22. Total pressure recovery peaks at 47% near 15% foreshortening; decreasing noticeably as stunting increases.
\nAssessment of truncation and stunting. Both truncation and stunting produce only modest, 4 and 5%, improvements in intake efficiency. However, since the methods are geometrically different, they affect intake capability differently as shown by the compression and contraction ratios in Figure 23.
\nVariation of intake compression and contraction as caused by truncation and stunting.
Intake performance, both efficiency and capability, are not affected much by considerable amounts of either truncation or stunting. This is due to the fact that the high-loss leading edge boundary layer flow is not eliminated but merely moved downstream. Also there is some increase in inviscid flow losses from the finite angle leading edge from truncation. However, an estimated 15–30% weight saving is available through wall materials elimination resulting from intake foreshortening. It appears that the significant advantage of truncation and stunting is not to intake performance but to the saving of structural weight. Similar results were found in [10].
\nBusemann flow has no deflection at the leading edge so that the leading edge tends to be sharp and thin. Such leading edges are difficult to cool at hypersonic speeds. Transpiration cooling is made possible by a slight rounding of the leading edge. Rounding or blunting affects both the viscous as well as the inviscid flow in the intake [10]. The strong bow shock causes a hot entropy layer to overlay the boundary layer and cause it to thicken. The same shock focuses on the symmetry axis producing a Mach reflection at the center line. It was shown in [10] that a 1 mm diameter leading edge on a 500 mm diameter Busemann intake, flying at Mach 10 and 30 km altitude, is optimal in reducing the viscous and inviscid losses. It seems that the combination of blunting and stunting should be such that the conical shock is kept incident on the Busemann surface corner, so that no reflected shock waves are formed, keeping the exit flow uniform.
\nThe Kantrowitz criterion for intake starting [26] says that the normal shock, in front of an intake duct, will move downstream and out of the duct if the flow at the exit of the duct is not choked—the duct flow will start. This criterion applies to the normal shock at the entry of the duct as well as at any other position in the duct. On a wavecatcher intake, Figures 18 and 19, overboard flow spillage will allow the shock to move downstream, over the external/open portion of the intake, until it reaches the V-notch at the beginning of the internal flow. This is made possible by an effectively large flow area, on the moving, post-shock side, allowing overboard flow spillage. If the Kantrowitz condition, for the shock at the point of inflection, at the V-notch, is satisfied the shock will continue moving downstream, out through the internal flow section, and the intake will start.
\nThe entry area of the internal flow, Af, is defined as the conical surface at the angular position where the surface is inflected because the flow is normal to the conical surface at the inflection and a stationary, conical, normal shock is compatible with the flow there. The size of this area is available from a Busemann intake calculation. This area is needed for application of the Kantrowitz starting criterion.
\nNote that, for given M2 and δ23, Eq. (9), gives two solutions for θ23, for a weak and a strong shock. This leads to the possibility of generating two different Busemann intakes, the weak shock version would have supersonic and the strong shock would have a subsonic exit flow. Because of its supersonic exit flow the weak shock intake is better suited for scramjet application. However, at contractions to be useful for scramjets, the Busemann intake with a weak shock does not start spontaneously or if it does start then it does so for intakes with an insufficient amount of contraction.
\nThe determination of startability for a wavecatcher Busemann intake is as follows. At first we examine the startable weak-shock Busemann flow to show that it does not provide sufficient compression:
At a prescribed weak shock angle, pre-shock Mach number and exit radius y3 begin integrating the T-M Eqs. (5) and (6) towards the upstream;
Halt the integration when reaching the inflection point, (of) in Figure 3, where u = 0. Note the Mach number Mf = v and \n
Calculate surface area of the conical surface at inflection point, Af;
Apply the Kantrowitz criterion to Mf, Af and A3 to determine if the internal passage will start.
If a start is indicated the intake is practical and integration can be continued to find the freestream (entry) Mach number, M1, and the other overall performance parameters such as the exit-to-entry area ratio A3/A1, the compression ratio p3/p1 and the total pressure recovery pt3/pt1.
Many such calculations, starting from weak shock waves, (os) in Figure 3, were performed with the outcomes plotted on a graph of area ratio, A3/A1 vs. entry Mach number, M1, in Figure 24. Each result is shown as a dot that is colored green if the totally internal flow Busemann intake duct starts, green or yellow if the wavecatcher Busemann intake module starts (as determined in d) above) and red if there is no start. Curves of the “startability index,” S = (A1 – Ai)/(AK – Ai), measure the location of a dot on the overall area ratio scale where S = 0 on the isentrope and S = 1 on the Kantrowitz criterion. Intermediate, fractional values, are on curves between these limits. The curve for S = 0.6 seems to well represent the startability limit for wavecatcher Busemann intake designs based on the weak shock condition. As seen from the figure the wavecatcher design lowers the startable area ratio from about 0.6 to 0.4. This is still not good enough. For good engine performance, it is desirable to operate intakes near the curve S = 0.1 in Figure 24. Startable weak shock Busemann designs do not produce this amount of contraction—the prospect of obtaining startable full or wavecatcher intakes, with sufficient compression, from weak shock Busemann flows is disappointing.
\nBusemann intake startability based on weak shock design: green—full Busemann start; green and yellow—wavecatcher start with spillage; and red—no start.
Startability calculations for the full and wavecatcher Busemann intakes were done also by starting the integration of Eqs. (5) and (6) from strong shock waves, following the (a–e) steps above.
\nThe outcomes are plotted in Figure 25. Each result is shown as a dot that is coloured green if the totally internal flow Busemann intake duct starts, green or yellow if the wavecatcher Busemann intake module starts (as determined in d) above) and red if there is no start.
\nBusemann intake startability regimes based on strong shock design. green—full Busemann start; green and yellow—module start with spillage; and red—no start.
The strong shock version has high overall contraction but low internal contraction so that it will self-start at overall contractions useful to the scramjet as a wavecatcher, but the strong shock and subsonic exit flow are not useful to the scramjet engine. In a wavecatcher module the about-to-start strong shock will be held in place by the appropriate back-pressure. It will move downstream if the back-pressure is lowered to be replaced by a weak shock structure. This now opens a possibility. We calculate a Busemann intake module, with a strong shock, such that it starts spontaneously, at a high overall contraction ratio, and then reduce the back-pressure to remove the strong shock and obtain a supersonic exit flow, with a weak shock. This yields an exit flow which is suitable for scramjet operation. In doing this, we note that the flow, from the freestream to the location of the strong shock has not changed as we switch to the weak shock, so that the intake remains on the strong-shock design flow up to the corner while being started. Also, the amount of internal contraction remains the same and we could really start the intake with the weak shock structure in the first place. The strong Busemann shape is really a design tool which leads to a modified Busemann flow but with a started intake of high compression and efficiency having a supersonic exit Mach number-an intake with a high overall contraction but with a low internal, startable contraction. The supersonic exit flow is no longer conical although its axial symmetry is preserved.
\nIn comparison to the weak shock case (Figure 24) there is a considerable enhancement of startability in the enlarged yellow domain so that starting can be expected near the S = 0.1 curve, which is acceptable for scramjet applications.
\nThe reason for this improvement in startability stems from the fact that, for the strong shock option, the angular distance between the strong shock (at the corner) and the inflection cone is small so that Af and A3 areas are close in size, i.e., there is not much internal contraction. This makes it easy for the conical normal shock, at the inflection location, to be swallowed. The strong shock design’s aim is to produce a wavecatcher Busemann intake with a high overall contraction ratio and a low internal contraction that starts spontaneously. The calculated shape is compatible with a normal conical shock positioned at the inflection location (angle) and we select the intakes, with internal contractions, that permit the shock to be swallowed. Flow downstream of the inflection shock is subsonic. The strong shock is present only fleetingly during flow starting. After swallowing a weak shock system appears in the exit with supersonic flow downstream. This flow is suitable for a scramjet combustor. Within the calculated strong shock contour the supersonic weak shock flow is no longer conically symmetric and has to be examined via CFD and experiment. The end result is a wavecatcher Busemann intake with a high overall contraction (S ∼ 0.1) but with a low internal, self-starting contraction and hence a startable intake and supersonic exit flow.
\nFigure 26 is a schlieren picture of four quarter-circle Busemann intake modules each with flows started by the unsteady gun tunnel starting flow [4]. Arrow points to weak shock emanating from the v-notch in the cowl of one of the modules. Exit Mach number is 5.23.
\nImpulsively started 4-module Busemann intake in the gun tunnel at Mach 8.33 (model is similar to Figure 19).
A review and summary is presented of hypersonic air intake technology highlighting design objectives, basic flows, airframe integration, flowpath modification and intake flow startability. Taylor-Maccoll equations and Busemann flow are presented as the basis for constructing modular Busemann intakes. The first-order Taylor-Maccoll equations are recast with Mach number components as dependent variables. These equations illustrate the free-standing conical shock, the axisymmetric centered compression fan, characteristics, surface curvature and inflection point, surface pressure gradient, surface Mach number gradient and gradients at conical shock waves. A chart is presented for assessing the performance of the Busemann-flow-based intake on the basis of its capability to reduce Mach number and its efficiency as measured by total pressure recovery. Experimental results indicate that viscous effects cause the total pressure recovery to drop from near 1 to 0.5 for a Busemann intake at Mach 8 and 30 km flight altitude.
\nWavecatching (streamline tracing), morphing and foreshortening, as attempts at conditioning and improving the performance of the basic Busemann intake flow, are presented to show that (a) wavecatching is a useful technique to create modular startable intakes; (b) morphing is useful in integrating the intake shape with other geometric requirements of the airframe and combustor; (c) foreshortening leads to minor gains in intake performance but large weight savings; (d) small amounts of leading edge blunting cause large changes in the intake’s shock structure.
\nA novel, strong shock method is presented, that uses strong-shock boundary conditions for designing spontaneously startable, modular Busemann intakes of high performance. This analytical approach allows pre-determination of Busemann intake startability; offering great simplicity in the search for flowpath surface shapes that yield startable intakes with high compression, high efficiency and supersonic exit flows. This improved startability is made possible by the wavecatcher’s ability to spill mass flow during external compression combined with the moderate contraction of the internal flowpath.
\nBusemann flow contains unique fluid mechanical features: (a) a flow passage from a uniform, high Mach number flow, to another uniform, lower Mach number flow; (b) internal, convergent flow with an inflected surface; (c) conical flow where high gradients are near the center line and milder gradients are at the walls; (d) an axisymmetric and conically symmetric centered compression fan; (e) a free-standing conical shock, bounding irrotational flow; (f) the last two features combining to preserve conical flow throughout. These are unique and fortuitous virtues, being significant in making the Busemann streamtube and its flow characteristics useful as a basis for designing high performance air intakes for hypersonic airbreathing engines.
\nMost CFD calculations were done by E.V. Timofeev, R.B. Tahir and Hideaki Ogawa. G. Emanuel provided useful comments. Many thanks.
\nIntechOpen's Authorship Policy is based on ICMJE criteria for authorship. An Author, one must:
',metaTitle:"Authorship Policy",metaDescription:"IN TECH's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, one must:",metaKeywords:null,canonicalURL:"/page/authorship-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"All contributors who meet these criteria are listed as Authors. Their exact contributions should be described in the manuscript at the time of submission.
\\n\\nConversely, all contributors who do not meet these criteria should be listed in the Acknowledgments section of the manuscript, along with a short description of their specific contributions.
\\n\\nCHANGES IN AUTHORSHIP
\\n\\nIf it is felt necessary to make changes to the list of Authors after a manuscript has been submitted or published, it is the responsibility of the Author concerned to provide a valid reason to amend the published list. Additionally, all listed Authors must verify and approve the proposed changes in order for any amendments to be made.
\\n\\nAFFILIATION
\\n\\nAuthors are responsible for ensuring all addresses and emails provided are correct. Under affiliation(s) all Authors should indicate where the research was conducted. Please note that no changes to the affiliation(s) can be made after the chapter has been published.
\\n\\nPolicy last updated: 2017-05-29
\\n"}]'},components:[{type:"htmlEditorComponent",content:"All contributors who meet these criteria are listed as Authors. Their exact contributions should be described in the manuscript at the time of submission.
\n\nConversely, all contributors who do not meet these criteria should be listed in the Acknowledgments section of the manuscript, along with a short description of their specific contributions.
\n\nCHANGES IN AUTHORSHIP
\n\nIf it is felt necessary to make changes to the list of Authors after a manuscript has been submitted or published, it is the responsibility of the Author concerned to provide a valid reason to amend the published list. Additionally, all listed Authors must verify and approve the proposed changes in order for any amendments to be made.
\n\nAFFILIATION
\n\nAuthors are responsible for ensuring all addresses and emails provided are correct. Under affiliation(s) all Authors should indicate where the research was conducted. Please note that no changes to the affiliation(s) can be made after the chapter has been published.
\n\nPolicy last updated: 2017-05-29
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5698},{group:"region",caption:"Middle and South America",value:2,count:5172},{group:"region",caption:"Africa",value:3,count:1689},{group:"region",caption:"Asia",value:4,count:10243},{group:"region",caption:"Australia and Oceania",value:5,count:888},{group:"region",caption:"Europe",value:6,count:15647}],offset:12,limit:12,total:117315},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"9496",title:"Dyslipidemia",subtitle:null,isOpenForSubmission:!0,hash:"1d1174ff4ed8ad553c944e99add28154",slug:null,bookSignature:"Dr. Wilbert S. Aronow",coverURL:"https://cdn.intechopen.com/books/images_new/9496.jpg",editedByType:null,editors:[{id:"164597",title:"Dr.",name:"Wilbert S.",surname:"Aronow",slug:"wilbert-s.-aronow",fullName:"Wilbert S. Aronow"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10585",title:"Interleukin",subtitle:null,isOpenForSubmission:!0,hash:"6d4ebb087fdb199287bc765704246b60",slug:null,bookSignature:"Ph.D. Payam Behzadi",coverURL:"https://cdn.intechopen.com/books/images_new/10585.jpg",editedByType:null,editors:[{id:"45803",title:"Ph.D.",name:"Payam",surname:"Behzadi",slug:"payam-behzadi",fullName:"Payam Behzadi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10300",title:"Breast Cancer",subtitle:null,isOpenForSubmission:!0,hash:"bcf3738b16b0a4de6066853ab38b801c",slug:null,bookSignature:"Dr. Mani T. Valarmathi",coverURL:"https://cdn.intechopen.com/books/images_new/10300.jpg",editedByType:null,editors:[{id:"69697",title:"Dr.",name:"Mani T.",surname:"Valarmathi",slug:"mani-t.-valarmathi",fullName:"Mani T. Valarmathi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9589",title:"Depigmentation as a Disease or Therapeutic Goal",subtitle:null,isOpenForSubmission:!0,hash:"3e1efdb1fc8c403c402da09b242496c6",slug:null,bookSignature:"Dr. Tae-Heung Kim",coverURL:"https://cdn.intechopen.com/books/images_new/9589.jpg",editedByType:null,editors:[{id:"121353",title:"Dr.",name:"Tae-Heung",surname:"Kim",slug:"tae-heung-kim",fullName:"Tae-Heung Kim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9608",title:"Myasthenia Gravis",subtitle:null,isOpenForSubmission:!0,hash:"db6c84e3aa58f3873e1298add7042c44",slug:null,bookSignature:"Dr. Nizar Souayah",coverURL:"https://cdn.intechopen.com/books/images_new/9608.jpg",editedByType:null,editors:[{id:"162634",title:"Dr.",name:"Nizar",surname:"Souayah",slug:"nizar-souayah",fullName:"Nizar Souayah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8485",title:"Weather Forecasting",subtitle:null,isOpenForSubmission:!0,hash:"eadbd6f9c26be844062ce5cd3b3eb573",slug:null,bookSignature:"Associate Prof. Muhammad Saifullah",coverURL:"https://cdn.intechopen.com/books/images_new/8485.jpg",editedByType:null,editors:[{id:"320968",title:"Associate Prof.",name:"Muhammad",surname:"Saifullah",slug:"muhammad-saifullah",fullName:"Muhammad Saifullah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10542",title:"Molecular Epidemiology Study of Mycobacterium Tuberculosis Complex",subtitle:null,isOpenForSubmission:!0,hash:"29279e34f971687dc28de62534335ac4",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10542.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10552",title:"Montmorillonite",subtitle:null,isOpenForSubmission:!0,hash:"c4a279761f0bb046af95ecd32ab09e51",slug:null,bookSignature:"Prof. Faheem Uddin",coverURL:"https://cdn.intechopen.com/books/images_new/10552.jpg",editedByType:null,editors:[{id:"228107",title:"Prof.",name:"Faheem",surname:"Uddin",slug:"faheem-uddin",fullName:"Faheem Uddin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10281",title:"Nanopores",subtitle:null,isOpenForSubmission:!0,hash:"73c465d2d70f8deca04b05d7ecae26c4",slug:null,bookSignature:"Dr. Sadia Ameen, Dr. M. Shaheer Akhtar and Prof. Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/10281.jpg",editedByType:null,editors:[{id:"52613",title:"Dr.",name:"Sadia",surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10304",title:"Giant-Cell Arteritis",subtitle:null,isOpenForSubmission:!0,hash:"b144271ebc5d331aab73de18a7f9f4f5",slug:null,bookSignature:"Dr. Imtiaz A. Chaudhry",coverURL:"https://cdn.intechopen.com/books/images_new/10304.jpg",editedByType:null,editors:[{id:"66603",title:"Dr.",name:"Imtiaz",surname:"Chaudhry",slug:"imtiaz-chaudhry",fullName:"Imtiaz Chaudhry"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10539",title:"Ginseng in Medicine",subtitle:null,isOpenForSubmission:!0,hash:"5f388543a066b617d2c52bd4c027c272",slug:null,bookSignature:"Prof. Christophe Hano and Dr. Jen-Tsung Chen",coverURL:"https://cdn.intechopen.com/books/images_new/10539.jpg",editedByType:null,editors:[{id:"313856",title:"Prof.",name:"Christophe",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10482",title:"Human Teeth – Structure and Composition of Dental Hard Tissues and Developmental Dental Defects",subtitle:null,isOpenForSubmission:!0,hash:"82a91346a98d34805e30511d6504bd4c",slug:null,bookSignature:"Dr. Ana Gil De Bona and Dr. Hakan Karaaslan",coverURL:"https://cdn.intechopen.com/books/images_new/10482.jpg",editedByType:null,editors:[{id:"203919",title:"Dr.",name:"Ana",surname:"Gil De Bona",slug:"ana-gil-de-bona",fullName:"Ana Gil De Bona"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:18},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:11},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:62},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:164},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5141},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1005",title:"Clinical Pathology",slug:"clinical-pathology",parent:{title:"Diagnostics",slug:"diagnostics"},numberOfBooks:2,numberOfAuthorsAndEditors:69,numberOfWosCitations:28,numberOfCrossrefCitations:13,numberOfDimensionsCitations:40,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"clinical-pathology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7905",title:"Saliva and Salivary Diagnostics",subtitle:null,isOpenForSubmission:!1,hash:"ae7cd7860043968aa88daae89795a591",slug:"saliva-and-salivary-diagnostics",bookSignature:"Sridharan Gokul",coverURL:"https://cdn.intechopen.com/books/images_new/7905.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1959",title:"Biomarker",subtitle:null,isOpenForSubmission:!1,hash:"3fa6155a28277c6ce2e169f338c9bbcf",slug:"biomarker",bookSignature:"Tapan Kumar Khan",coverURL:"https://cdn.intechopen.com/books/images_new/1959.jpg",editedByType:"Edited by",editors:[{id:"113568",title:"Prof.",name:"Tapan",middleName:"Kumar",surname:"Khan",slug:"tapan-khan",fullName:"Tapan Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,mostCitedChapters:[{id:"36390",doi:"10.5772/38822",title:"Potential Muscle Biomarkers of Chronic Myalgia in Humans - A Systematic Review of Microdialysis Studies",slug:"potential-muscle-biomarkers-of-chronic-myalgia-in-humans-a-systematic-review-of-microdialysis-studie",totalDownloads:1709,totalCrossrefCites:6,totalDimensionsCites:16,book:{slug:"biomarker",title:"Biomarker",fullTitle:"Biomarker"},signatures:"Björn Gerdle and Britt Larsson",authors:[{id:"119711",title:"Prof.",name:"Bjorn",middleName:null,surname:"Gerdle",slug:"bjorn-gerdle",fullName:"Bjorn Gerdle"},{id:"138423",title:"Prof.",name:"Britt",middleName:null,surname:"Larsson",slug:"britt-larsson",fullName:"Britt Larsson"}]},{id:"36394",doi:"10.5772/36750",title:"8-Nitroguanine, a Potential Biomarker to Evaluate the Risk of Inflammation-Related Carcinogenesis",slug:"8-nitroguanine-a-potential-biomarker-to-evaluate-the-risk-of-inflammation-related-carcinogenesis",totalDownloads:1782,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"biomarker",title:"Biomarker",fullTitle:"Biomarker"},signatures:"Ning Ma, Mariko Murata, Shiho Ohnishi, Raynoo Thanan, Yusuke Hiraku and Shosuke Kawanishi",authors:[{id:"71918",title:"Dr.",name:"Yusuke",middleName:null,surname:"Hiraku",slug:"yusuke-hiraku",fullName:"Yusuke Hiraku"},{id:"109629",title:"Prof.",name:"Ning",middleName:null,surname:"Ma",slug:"ning-ma",fullName:"Ning Ma"},{id:"120432",title:"Dr.",name:"Shiho",middleName:null,surname:"Ohnishi",slug:"shiho-ohnishi",fullName:"Shiho Ohnishi"},{id:"120433",title:"Prof.",name:"Mariko",middleName:null,surname:"Murata",slug:"mariko-murata",fullName:"Mariko Murata"},{id:"120434",title:"Prof.",name:"Shosuke",middleName:null,surname:"Kawanishi",slug:"shosuke-kawanishi",fullName:"Shosuke Kawanishi"},{id:"121961",title:"Dr.",name:"Raynoo",middleName:null,surname:"Thanan",slug:"raynoo-thanan",fullName:"Raynoo Thanan"}]},{id:"36392",doi:"10.5772/36793",title:"Biomarkers and Therapeutic Drug Monitoring in Psychiatry",slug:"biomarkers-and-therapeutic-drug-monitoring-in-psychiatry",totalDownloads:1709,totalCrossrefCites:1,totalDimensionsCites:5,book:{slug:"biomarker",title:"Biomarker",fullTitle:"Biomarker"},signatures:"R. Lozano, R. Marin, A. Pascual, MJ. Santacruz, A. Lozano and F. Sebastian",authors:[{id:"109838",title:"Dr.",name:"Roberto",middleName:null,surname:"Lozano Ortiz",slug:"roberto-lozano-ortiz",fullName:"Roberto Lozano Ortiz"},{id:"115991",title:"Dr.",name:"Reyes",middleName:null,surname:"Marin",slug:"reyes-marin",fullName:"Reyes Marin"},{id:"115992",title:"Dr.",name:"Asuncion",middleName:null,surname:"Pascual",slug:"asuncion-pascual",fullName:"Asuncion Pascual"},{id:"115993",title:"Ms.",name:"Francisca",middleName:null,surname:"Sebastian",slug:"francisca-sebastian",fullName:"Francisca Sebastian"},{id:"115994",title:"Ms.",name:"Maria Jesus",middleName:null,surname:"Santacruz",slug:"maria-jesus-santacruz",fullName:"Maria Jesus Santacruz"}]}],mostDownloadedChaptersLast30Days:[{id:"66233",title:"Functions of Saliva",slug:"functions-of-saliva",totalDownloads:986,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"saliva-and-salivary-diagnostics",title:"Saliva and Salivary Diagnostics",fullTitle:"Saliva and Salivary Diagnostics"},signatures:"Narendra Maddu",authors:[{id:"272889",title:"Dr.",name:"Narendra",middleName:null,surname:"Maddu",slug:"narendra-maddu",fullName:"Narendra Maddu"}]},{id:"67299",title:"Salivary Diagnostics in Oral Diseases",slug:"salivary-diagnostics-in-oral-diseases",totalDownloads:512,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"saliva-and-salivary-diagnostics",title:"Saliva and Salivary Diagnostics",fullTitle:"Saliva and Salivary Diagnostics"},signatures:"Manohar Bhat and Devikripa Bhat",authors:[{id:"280750",title:"Dr.",name:"Manohara",middleName:null,surname:"Bhat",slug:"manohara-bhat",fullName:"Manohara Bhat"},{id:"296530",title:"Dr.",name:"Devikripa",middleName:null,surname:"Bhat",slug:"devikripa-bhat",fullName:"Devikripa Bhat"}]},{id:"66416",title:"Salivary Diagnostics",slug:"salivary-diagnostics-1",totalDownloads:426,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"saliva-and-salivary-diagnostics",title:"Saliva and Salivary Diagnostics",fullTitle:"Saliva and Salivary Diagnostics"},signatures:"Varsha Pathiyil and Rahul Udayasankar",authors:[{id:"281226",title:"Dr.",name:"Varsha",middleName:null,surname:"Pathiyil",slug:"varsha-pathiyil",fullName:"Varsha Pathiyil"},{id:"290603",title:"Dr.",name:"Rahul",middleName:null,surname:"Udayasankar",slug:"rahul-udayasankar",fullName:"Rahul Udayasankar"}]},{id:"36391",title:"Genotoxicity Biomarkers: Application in Histopathology Laboratories",slug:"genotoxicity-biomarkers-application-in-histopathology-laboratories",totalDownloads:2078,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"biomarker",title:"Biomarker",fullTitle:"Biomarker"},signatures:"Carina Ladeira, Susana Viegas, Elisabete Carolino, Manuel Carmo Gomes and Miguel Brito",authors:[{id:"109595",title:"Prof.",name:"Susana",middleName:null,surname:"Viegas",slug:"susana-viegas",fullName:"Susana Viegas"},{id:"110391",title:"Ph.D.",name:"Carina",middleName:null,surname:"Ladeira",slug:"carina-ladeira",fullName:"Carina Ladeira"},{id:"110393",title:"Prof.",name:"Miguel",middleName:null,surname:"Brito",slug:"miguel-brito",fullName:"Miguel Brito"},{id:"117579",title:"Prof.",name:"Elisabete",middleName:null,surname:"Carolino",slug:"elisabete-carolino",fullName:"Elisabete Carolino"},{id:"117581",title:"Prof.",name:"Manuel",middleName:null,surname:"Carmo Gomes",slug:"manuel-carmo-gomes",fullName:"Manuel Carmo Gomes"}]},{id:"67113",title:"Introductory Chapter: Saliva - The Future of Disease Diagnostics",slug:"introductory-chapter-saliva-the-future-of-disease-diagnostics",totalDownloads:249,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"saliva-and-salivary-diagnostics",title:"Saliva and Salivary Diagnostics",fullTitle:"Saliva and Salivary Diagnostics"},signatures:"Gokul Sridharan",authors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}]},{id:"36394",title:"8-Nitroguanine, a Potential Biomarker to Evaluate the Risk of Inflammation-Related Carcinogenesis",slug:"8-nitroguanine-a-potential-biomarker-to-evaluate-the-risk-of-inflammation-related-carcinogenesis",totalDownloads:1782,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"biomarker",title:"Biomarker",fullTitle:"Biomarker"},signatures:"Ning Ma, Mariko Murata, Shiho Ohnishi, Raynoo Thanan, Yusuke Hiraku and Shosuke Kawanishi",authors:[{id:"71918",title:"Dr.",name:"Yusuke",middleName:null,surname:"Hiraku",slug:"yusuke-hiraku",fullName:"Yusuke Hiraku"},{id:"109629",title:"Prof.",name:"Ning",middleName:null,surname:"Ma",slug:"ning-ma",fullName:"Ning Ma"},{id:"120432",title:"Dr.",name:"Shiho",middleName:null,surname:"Ohnishi",slug:"shiho-ohnishi",fullName:"Shiho Ohnishi"},{id:"120433",title:"Prof.",name:"Mariko",middleName:null,surname:"Murata",slug:"mariko-murata",fullName:"Mariko Murata"},{id:"120434",title:"Prof.",name:"Shosuke",middleName:null,surname:"Kawanishi",slug:"shosuke-kawanishi",fullName:"Shosuke Kawanishi"},{id:"121961",title:"Dr.",name:"Raynoo",middleName:null,surname:"Thanan",slug:"raynoo-thanan",fullName:"Raynoo Thanan"}]},{id:"66564",title:"Salivary Biomarkers to Assess Breast Cancer Diagnosis and Progression: Are We There Yet?",slug:"salivary-biomarkers-to-assess-breast-cancer-diagnosis-and-progression-are-we-there-yet-",totalDownloads:381,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"saliva-and-salivary-diagnostics",title:"Saliva and Salivary Diagnostics",fullTitle:"Saliva and Salivary Diagnostics"},signatures:"Charles F. Streckfus",authors:[{id:"29033",title:"Prof.",name:"Charles",middleName:"F.",surname:"Streckfus",slug:"charles-streckfus",fullName:"Charles Streckfus"}]},{id:"36396",title:"Salivary Hormones, Immunes and Other Secretory Substances as Possible Stress Biomarker",slug:"salivary-hormones-immunes-and-other-secretory-substances-as-possible-stress-biomarker",totalDownloads:1563,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"biomarker",title:"Biomarker",fullTitle:"Biomarker"},signatures:"Shusaku Nomura",authors:[{id:"100031",title:"Prof.",name:"Shusaku",middleName:null,surname:"Nomura",slug:"shusaku-nomura",fullName:"Shusaku Nomura"}]},{id:"67237",title:"Advantages of Salivary DNA in Human Identification",slug:"advantages-of-salivary-dna-in-human-identification",totalDownloads:297,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"saliva-and-salivary-diagnostics",title:"Saliva and Salivary Diagnostics",fullTitle:"Saliva and Salivary Diagnostics"},signatures:"Raluca Dumache, Veronica Ciocan, Camelia Muresan, Ramona Parvanescu and Alexandra Enache",authors:[{id:"179199",title:"Dr.",name:"Raluca",middleName:null,surname:"Dumache",slug:"raluca-dumache",fullName:"Raluca Dumache"},{id:"181860",title:"Prof.",name:"Alexandra",middleName:null,surname:"Enache",slug:"alexandra-enache",fullName:"Alexandra Enache"},{id:"195502",title:"Dr.",name:"Veronica",middleName:null,surname:"Ciocan",slug:"veronica-ciocan",fullName:"Veronica Ciocan"},{id:"298285",title:"Dr.",name:"Camelia",middleName:null,surname:"Muresan",slug:"camelia-muresan",fullName:"Camelia Muresan"},{id:"298644",title:"Dr.",name:"Ramona",middleName:null,surname:"Parvanescu",slug:"ramona-parvanescu",fullName:"Ramona Parvanescu"}]},{id:"36388",title:"Inorganic Signatures of Physiology: The X-Ray Fluorescence Microscopy Revolution",slug:"inorganic-signatures-of-physiology-the-x-ray-fluorescence-microscopy-revolution",totalDownloads:1619,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"biomarker",title:"Biomarker",fullTitle:"Biomarker"},signatures:"Lydia Finney",authors:[{id:"109543",title:"Dr.",name:"Lydia",middleName:null,surname:"Finney",slug:"lydia-finney",fullName:"Lydia Finney"}]}],onlineFirstChaptersFilter:{topicSlug:"clinical-pathology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/54973/emilio-de-la-concha",hash:"",query:{},params:{id:"54973",slug:"emilio-de-la-concha"},fullPath:"/profiles/54973/emilio-de-la-concha",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()