Growth and biomass increases (percentage increased over control) of horticulture and forestry crops treated with bio-inoculants.
\r\n\tNearly 25% - 30% of the world population is affected by neurological diseases exerting a hard financial strain on the healthcare system. The costs are estimated at around $800 billion annualy, expected to exponentially increase as the elders, at high risk of debilitating neurological diseases, will double by 2050. A varied spectrum of neuroprotective strategies has been suggested, including combined antioxidative-anti-inflammatory treatments, ozone autohemotherapy, hypothermia, cell therapy, the administration of neurotrophic factors, hemofiltration, and others. Distressingly, none of the currently available neuroprotective approaches has so far proven to prolong either life span or the cardinal symptoms of the patients suffering from brain injury. Last but not least, translational studies are still lacking.
\r\n\r\n\tThe book aims to revisit, discuss, and compile some promising current approaches in neuroprotection along with the current goals and prospects.
",isbn:"978-1-83880-440-4",printIsbn:"978-1-83880-439-8",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"10acd587ca2c942616bfc09c4b79df39",bookSignature:"Dr. Matilde Otero-Losada, Dr. Francisco Capani and Dr. Santiago Perez Lloret",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/8087.jpg",keywords:"IKKβ/NF-κB pathway, neuroendocrine studies, anti-inflammatory agents, Bipolar disorder, oxidative metabolism, metabolic syndrome, Parkinson's disease, Alzheimer's disease, neurotrophins, growth factors, ATP-mediated calcium signalling, glutathione peroxidase",numberOfDownloads:162,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 10th 2019",dateEndSecondStepPublish:"October 1st 2019",dateEndThirdStepPublish:"November 30th 2019",dateEndFourthStepPublish:"February 18th 2020",dateEndFifthStepPublish:"April 18th 2020",remainingDaysToSecondStep:"2 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,editors:[{id:"193560",title:"Dr.",name:"Matilde",middleName:null,surname:"Otero-Losada",slug:"matilde-otero-losada",fullName:"Matilde Otero-Losada",profilePictureURL:"https://mts.intechopen.com/storage/users/193560/images/system/193560.jpeg",biography:"Dr. Matilde Otero-Losada graduated at the School of Pharmacy and Biochemistry, University of Buenos Aires (UBA) Argentina; pursued her studies in Neuropharmacology getting her Sci.D. in Neuropharmacology (UBA, Argentina); and completing her Ph.D. in Psychiatry at the Wolverhampton University, WLV, UK. \r\nHer following studies in Psychometrics and Statistical Methods, Radioisotopes and Radiochemistry, Signal Processing and Microcomputers, took her to the University of California San Diego (UCSD) for training in human Psychophysics. \r\nBack in Argentina, she carried on studying smell, taste and trigeminal perception at the Hospital de Clínicas, UBA. \r\nShe focused on the study of metabolic syndrome, soft drinks and cardiovascular-renal morbidity for the last ten years, and in the last two years she is back to her roots: Neurosciences. \r\nWith over 90 papers published in prestigious journals indexed in PubMed, Embase and Scopus and book chapters authored, as Senior Researcher of the National Research Council (Argentina), she customarily reviews manuscripts and is acknowledged for her scientific writing, and editing capacities.",institutionString:"University of Buenos Aires",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:null}],coeditorOne:{id:"120703",title:"Dr.",name:"Francisco",middleName:null,surname:"Capani",slug:"francisco-capani",fullName:"Francisco Capani",profilePictureURL:"https://mts.intechopen.com/storage/users/120703/images/system/120703.jpeg",biography:"Dr. Francisco Capani graduated at the School of Medicine, University of Buenos Aires, (UBA) Argentina and completed his doctoral studies in Neurosciences at the Institute of Cell Biology and Neuroscience Prof E. De Robertis, School of Medicine (UBA), Argentina. Then he moved abroad to perform his postdoctoral studies at the University of California San Diego (UCSD-NCMIR) and the Karolinska Institute, Department of Neuroscience. Over an eight-year period, his research focused on synaptic organization, combining electron tomography, 3-D reconstruction, and correlative light and electron microscopy techniques. Upon his return to Argentina in 2006, he devoted to study the mechanisms involved in the pathophysiology of the perinatal asphyxia supported by his broad experience in electron microscopy. He has published 101 papers in recognized journals and has been invited assisting in a speaker capacity to several international conferences.",institutionString:"University of Buenos Aires",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Buenos Aires",institutionURL:null,country:{name:"Argentina"}}},coeditorTwo:{id:"168475",title:"Dr.",name:"Santiago Perez",middleName:null,surname:"Lloret",slug:"santiago-perez-lloret",fullName:"Santiago Perez Lloret",profilePictureURL:"https://mts.intechopen.com/storage/users/168475/images/system/168475.jpeg",biography:"Dr. Santiago Perez Lloret is a leading expert in neurophysiology and neuropharmacology with more 90 papers published in international medical journals (H-index= 29). He has been recently awarded Top 1% reviewer in neurosciences (Publons.com). After obtaining his MD and PhD, he pursued master courses in pharmacoepidemiology, clinical pharmacology and biostatistics at the Universities of Bordeaux and Paris. Dr. Perez Lloret is Assistant professor of Neurophysiology at the Medicine School of the Buenos Aires University and Associate Researcher at the Cardiology Research Institute, University of Buenos Aires, National Research Council. He is member of the International Parkinson’s Disease and Movement Disorder Society (MDS), where he is Co-editor of the Webpage and collaborates in several committees, including the Educational and the Evidence-based Medicine Committees.",institutionString:"University of Buenos Aires",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Buenos Aires",institutionURL:null,country:{name:"Argentina"}}},coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:[{id:"69122",title:"Lifestyle Factors, Mitochondrial Dynamics, and Neuroprotection",slug:"lifestyle-factors-mitochondrial-dynamics-and-neuroprotection",totalDownloads:83,totalCrossrefCites:0,authors:[null]},{id:"69463",title:"Polyphenols as Potential Therapeutic Drugs in Neurodegeneration",slug:"polyphenols-as-potential-therapeutic-drugs-in-neurodegeneration",totalDownloads:36,totalCrossrefCites:0,authors:[null]},{id:"69376",title:"Trends in Neuroprotective Strategies after Spinal Cord Injury: State of the Art",slug:"trends-in-neuroprotective-strategies-after-spinal-cord-injury-state-of-the-art",totalDownloads:35,totalCrossrefCites:0,authors:[null]},{id:"70228",title:"Aptamers and Possible Effects on Neurodegeneration",slug:"aptamers-and-possible-effects-on-neurodegeneration",totalDownloads:10,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"301331",firstName:"Mia",lastName:"Vulovic",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/301331/images/8498_n.jpg",email:"mia.v@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"René Mauricio",surname:"Barría",slug:"rene-mauricio-barria",fullName:"René Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3794",title:"Swarm Intelligence",subtitle:"Focus on Ant and Particle Swarm Optimization",isOpenForSubmission:!1,hash:"5332a71035a274ecbf1c308df633a8ed",slug:"swarm_intelligence_focus_on_ant_and_particle_swarm_optimization",bookSignature:"Felix T.S. Chan and Manoj Kumar Tiwari",coverURL:"https://cdn.intechopen.com/books/images_new/3794.jpg",editedByType:"Edited by",editors:[{id:"252210",title:"Dr.",name:"Felix",surname:"Chan",slug:"felix-chan",fullName:"Felix Chan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"56344",title:"Radon Monitoring in the Environment",doi:"10.5772/intechopen.69902",slug:"radon-monitoring-in-the-environment",body:'Radon is a radioactive noble gas that does not chemically react with other elements. However, it can change the physical properties of the surrounding medium. Radon (222Rn), which is one of the daughters of uranium (238U), represents the most essential isotope, with a half-life of 3.825 days. Its half-life allows it to migrate long enough to travel long distances and accumulate into the indoor environment. Radon (222Rn) and its short-lived decay products (218Po, 214Pb, 214Bi and 214Po) in dwellings are recognized as the main sources of public exposure from the natural radioactivity, contributing to nearly 50% of the global mean effective dose to the public [1]. The interest in studying radon behaviour is mainly due to the fact that it can accumulate indoors and in case of entering into the body can have serious damage to the human respiratory and gastrointestinal systems. The human respiratory tract due to radiation, radon and its daughter nucleus after entering the body is exposed to the most damage, producing an increased risk to the population. Therefore, after smoking, the second factor of lung cancer is radon [2]. The associated health risks due to inhalation and ingestion of radon and its progeny when present in enhanced levels in an indoor environment, water and soils surrounding a human dwelling have been well documented [3–7]. The radon concentration is usually depending on many parameters: including the radium content in the soil, meteorological parameters and the radon emanating from various soils and rocks [8, 9].
The radon concentration in the ground depends on the radium content of the soil and the emanation power of soils and rocks [10]. Among many factors affecting radon exhalation, one of the most important is radium content of the bedrock or soil. However, radon exposure shows an extreme variation from location to location and depends primarily on the exhalation rate of radon from the soil. It was recorded that radon exhalation rate studies are important for understanding the relative contribution of the material to the total radon concentration found inside the dwellings [11–13]. Radon and its daughters are emitted from building materials; one source of radon in houses is the building materials. The radon exhalation rate studies for building material samples are important for understanding the relative contribution of the material to the total radon concentration found inside the dwellings. It was shown that the radon exhalation rate decreases with the building age [14–16].
Radon contained in water is to some extent transferred into room air as a result of agitation or heating [17, 18]. UNSCEAR 2000 reported that radon concentration as a rule is much lower in surface water than in groundwater; radon concentrations in groundwater are expected to be 40 Bq L−1; the mean dose from radon in water from inhalation was 0.025 mSv y−1 and 0.002 mSv when swallowed [1]. According to the WHO, the mean of the radon concentrations in tap water from surface waters equals 0.4 Bq L−1 and in well water is 20 Bq L−1 [19]. The release of radon from water to air depends upon circumstance in which the water is used, as the degassed fraction increases considerably with temperature. A recent report of large radon concentration in drinking water has added a new element of deep concern to the problem of environmental health hazards [20–22]. Measurements of radon concentration in water have mostly been undertaken in regions where high levels were suspected. It was tentatively estimated in the UNSCEAR 1982 Report (Annex D, Paragraph 163) that between 1 and 10% of the world’s population consumes water containing radon concentrations of the order of 100 Bq L−1 or higher, drawn from relatively deep wells. For the remainder, who consume water from aquifers of surface sources, the weighted world average concentration is probably less than 1 kBq m−3 [23]. The International Commission for Radiological Protection has suggested that areas where 1% or more of the building have indoor radon concentration 10 times higher than that of national average should be considered as “radon prone” areas. It is also recommended that radon concentration value ranges 500–1500 and 200–600 Bq m−3 for work places and dwellings, respectively; those concentrations do not pose a significant risk for workers [2]. Therefore, it is desirable not only to measure the radon but also to find out the sources of radon especially in the houses [4]. Other sources such as natural gas also contribute towards radon activity in dwellings, which depends upon their origin and the rate of consumption.
The studies of indoor radon levels have been conducted with long- and short-term methods in order to assess the indoor radon problems [24–26]. Indoor radon is influenced by many sources, such as soil, building materials, water and natural gas. A correct calibration procedure is paramount for good accuracy of results. Hence, precalibrated techniques either passive or active were used to study indoor radon-222 concentrations. These techniques were used in monitoring radon concentration through the entire environment [27, 28]. For such techniques as the solid state nuclear track detectors (SSNTDs), track density could be determined and then converted into activity concentration CRn (Bq m−3) using the following equation [29]:
where ρRn is the track density (tracks per cm2), KRn is the calibration constant, which must be previously determined in tracks cm−2 h−1 per (Bq m−3) and t is the exposure time.
The quantity of radon in the earth is very small and amounts to about 4 × 10−7% by weight. The main source of radon outdoors is the radium in the earth crust; at least 80% of the radon emitted into the atmosphere comes from the top few metres of the ground [30, 31]. The concentration of uranium and radium in the ground varies with types of rocks and minerals. The world average concentration for soils is about 24 Bq kg−1 for uranium-238. The concentration of radium in rocks and soil is often (but not always) the same as that of uranium.
The emanation of radon atoms from a material is the process by which the radon atoms escape from a quantity of the material. The mechanisms of radon release from rock, soil and other materials are not very well understood and are probably not the same. It was reported that the emanation rate of radon is influenced by the condition of soil and its porosity, moisture content, temperature and atmospheric pressure [23, 32]. If the moisture content is very low, then the radon release is decreased by the effect of re-adsorption of the radon atoms on surfaces in the pores. On the other hand, if the moisture content increases slightly, the radon release increases up to a certain moisture content, above which the release of radon decreased again owing to the decreasing diffusion rate in water-filled pores [33]. It was found that the emanation of radon from soil depends not only on the 238U and 226Ra concentration but also on the nature of the host mineralogy and the permeability of the host rock and the soil. It was found that the effect of paint, in general, is to reduce the radon emanation from the brick surfaces, which increases the radon concentration inside the brick. The emanation of radon increases from the unpainted area of the brick due to the increase of radon concentration inside it. It was also found that the radon emanation increases from brick covered with gypsum and plaster; therefore, the internal finish can increase the radon concentration inside houses [34].
Diffusion is identified as the principal method by which radon is transferred into and out of the basement modules and appears to be relatively independent of insulating materials and vapour retarder. It was found that the variability of radon and correlations with differential pressure gradients may be related to air current in block walls and soil that interrupted radon diffusion inward. Once radon has entered the air or water surrounding the emanating radium-bearing particle, it is transported by diffusion, earth mechanical and convective flow, percolating of rainwater and flow of groundwater. It was shown that there is insufficient evidence to accept the pressure-driven mechanism as the dominant mechanism of radon infiltration in homes, and thermo-diffusion gas flow in clay and concrete can greatly exceed the pressure-driven flow [35].
The radon emanation and exhalation rates in soil vary from place to another due to differences in radium concentration and soil parameters, such as moisture content, porosity, permeability and grain size. The moisture content of the soil is defined as the mass of water in the soil expressed as a fraction of the dry weight of the solids forming the soil matrix [36, 37]:
where W1 and W2 are the masses of the wet and dry samples.
The porosity p of any porous material is a measurement of the total pore space that can be occupied by water in that material and can be expressed as % given by [36]
where Vd and Vw are the volume of dry and wet samples:
The diffusion equation of radon through soil, with an assumption that the medium is without source, is given by [36]
where C is the concentration of the gas, λ is the decay constant of the gas in s−1, De is the effective diffusion coefficient of the gas in the porous medium in cm2 s−1 and p is the porosity of the medium.
The solution of Eq. (6) is
where C(x) is the concentration of radon at any time t at a distance x, Co is the concentration of the radon in the source and De = D × p where D is the diffusion coefficient. Relations between the radon concentration in soil and the indoor radon concentration are rather complicated. Nevertheless, the data on radon concentration in the soil is the starting point for the assessment of the expected radon on the constructed building. It was shown that the most relevant soil parameters on the radon flux at the top of the crack are, in this case, effective diffusion coefficient, soil gas permeability and deep soil radon concentration [38, 39]. Radon concentration from an infinite column of soil as a function of distance z into soil is given by [40]
where
Radon emitted from building materials. The natural building materials with higher radium content are of large concern. The type of aggregate material, water and natural gas contribute significantly in an indoor concentration levels. This may depend on the consumption rate and the origin of the source. Measurements of radon exhalation rates could be done by both active and passive techniques [7].
For the purposes of calculating 222Rn concentration and radon exhalation rate, when the study was conducted by using the passive diffusion dosimeter, the surface exhalation rate of radon Ex (Bq m−2 h−1) is determined by Eq. (9), as [12, 13]
The mass exhalation rate of radon EM (mBq kg−1 h−1) is determined by using the following (Eq. (10)) [7, 13]
where C is the calculated integrated radon exposure as measured by SSNTDs in (Bq m−3 h), T is the exposed period of the detector (hours), V is volume (m3), λ is the decay constant of radon (h−1), A is the surface area (m2) and M is the sample’s mass (kg).
Radon and radium in water are exposed by either ingestion from the daily consumption of water or by inhalation through the daily routine use of water. They constitute a health risk for inhabitants [5, 41]. Due to clathrate behaviour, the solubility of radon decreases with temperature, but temperature dependence is much stronger for heavier gases. Radon can be transported by groundwater to far larger distances than by diffusion process in a short time [42].
The radon activity density in water Cw was calculated using the formula [43, 44]
where λ is the decay constant of radon-222, h is the distance from the surface of water in the sample can to the detector, t is the exposure time of the sample and L is the depth of the sample.
The time elapsed for the sample collection and analysis is corrected using the following equation:
where CW is the measured concentration, C0 initial concentration (to be calculate) after the decay correction and t is the time elapsed since collection (days), λ = 0.181, t1/2 = 3.83 days.
The dispersion of radon in air is influenced by the vertical temperature gradient, the direction and strength of the wind and the air turbulence [45]. The dispersion of radon daughters is also influenced by precipitation and washout ratios. The radon progeny concentrations and washout ratios are inversely correlated with low precipitation intensities [46]. It was found that the correlation between radon concentration and wind speed shows a broad inverse correlation. The explanation of this correlation is the dispersion of radon in a larger volume due to vertical mixing under stable atmospheric conditions and the dural variations. It was also found that the effect of turbulence drops the radon concentration using a mixing fan [47].
Sources of radon of local interest include the tailings from uranium mining, milling and geothermal power stations. The radon exhalation rate from tailings depends on the radon content of the tailings, the emanation factor and the land reclamation [48]. The required uranium is mined in the form of uranium oxides; the richer ores contain some 1–4 kg uranium per 1000 kg of ore [49]. Mining of all kinds affects the environment negatively. In the area of mining, the specific concerns are the occupational radiation exposure of miners and population living in the vicinity of the mining area. Miners are exposed to airborne radon and its short-lived decay products, alpha emitters and gamma dose rate. Radon emanation from a uranium mine is an important pathway for public radiation exposure [50]. The tailings consist of residues with still enough uranium to produce radon gas escaping into the surroundings; in fact 85% of the radioactive materials of the ore are still in tailings [49].
In nature, the sources of oil and gas are sedimentary rocks, namely, sands, sandstone, grills, limestone and dolomites. The sedimentary and igneous rocks also contain trace amounts of uranium-238 in varying quantities which is the source of radon [23]. With the oil exploration, 238U may also be extracted, which is present in crude oil and natural gas.
Facilities producing natural gas and condensate are mainly affected by radon and one of its decay product polonium-210, with half-life of 138.4 days. The boiling point of radon is approximately 62°C, and it will tend to follow gases of similar boiling point (ethane and propane) through the separation circuits. Radon will progress through the facility in the gas stream, by its decay products, which tend to plate-out on pipelines and vessel surfaces. The 138.4-day half-life of polonium-210 allowed this radionuclide to build to sometimes very high levels, which can only be detected by using alpha particle monitoring instruments. Radium and its decay products can also present in silt materials deposited in the separator, dehydration and drying units and condensate recovery vessels. Some facilities use a polonium treatment unit during condensate recovery to remove polonium isotopes, and the polonium concentrations in these units can become very high over a period of years of operation [51].
In oil production both radon gas and its direct precursor radium-226 can be a problem. Radon in the stream will be separated by the gas scrubbers. The problem is similar to the gas plant, in that polonium-210 will plate-out on an available surfaces. However, radium-226 can also be present as a dissolved solid and will act with another chemical in the liquid phase, to form insoluble compounds, which are deposited as a scale in pipe work and vessels. This scale can be detected by gamma radiation monitors externally but may be misleading with alpha radiation, because of the deposition of polonium-210 from radon. Scale can be presented in all areas of the process plant and will gradually increase with time. In some cases, the radioactivity of scales and silts is high enough to warrant that they be deposited of low specific activity radioactive wastes [51].
Regarding radiation dose to the public, due to waterborne radon, it is believed that waterborne radon may cause higher risk than all other contaminants in water. Therefore, radon in water is a source of radiation dose to stomach and lungs. The annual effective doses for ingestion and inhalation were calculated according to parameters introduced by UNSCEAR report [1].
The annual effective dose due to inhalation corresponding to the concentration of 1 Bq L−1 in tap water is 2.5 μSv y−1. In the UNSCEAR, 2000, report, the annual effective dose rate EEff could be calculated using the following (Eq. (1)):
The annual effective dose rate was also related to the average radon concentration CRn by the following expression [1, 7]:
where CRn is the radon concentration in Bq m−3, n is the fraction of time spent indoors, F is the equilibrium factor, 8760 is the hours per year and 170 is the hours per working month. For purposes of the effective dose equivalent estimation, a conversion factor of 6.3 mSv WLM−1 should be used [1].
The annual effective dose to an individual consumer due to intake of radon from drinking water is evaluated using the relationship [3]:
where Ew is measured in (Sv y−1), Cw is the concentration of radon in water (Bq L−1), CRw is the annual consumption of water (L y−1) and Dcw is the dose conversion factor for radon (Sv Bq−1). Following exposure of radon from consumed water, annual effective doses (μSv y−1) and effective doses per litre (nSv L−1) could be calculated [3].
The relative risk of lung cancer (RRLC) due to indoor exposure to radon should be calculated by using the following formula [29, 52]:
A wide range of techniques for the detection and quantification of radon and its daughters have been developed over the last few years. There is no a single technique that can meet all the requirements of the different types of the radon measurements. The choice of the most appropriate one depends on the particular information needed, the type of radon surveys and the cost of the apparatus. For example, a large number of long-term integrated measurements are needed for the measurements of the population exposure to radon, while continuous radon monitoring is required to study the dependence of the soil radon on the environmental and geophysical parameters.
Short-term measurements (from a few days to 1 month) are particularly for screening surveys to identify houses with high radon concentrations and to investigate the geographical variations. When such short-term measurements are employed for the assessment of radon exposure in dwellings, particular care is needed to define a protocol of exposure. To this end, activated charcoals, electret ion chambers (EICs) and solid state nuclear track detectors (SSNTDs) are the most attractive techniques.
Different attempts have been made to improve the response of activated charcoal devices, especially with the use of diffusion barrier to decrease the effect of humidity. With the electret ion chamber (EIC) devices, the most important limitation is their sensitivity to gamma radiation, which, however, can be easily corrected with any means including an additional radon proof electret ion chamber. SSNTDs are not efficiently sensitive for short-term measurements. This limitation is due essentially to the small area normally counted. Another alpha track detector, which is not sensitive to the plate-out, is polycarbonate and can be conveniently used as a bare detector [53].
The most representative measurements of the true exposure of radon gas in any environment are the long-term (up to 1 year) integrating types of measurements.
The most commonly used detectors are, respectively, SSNTDs and electrets. These detectors are used as bare detectors or in combination with closed radon samplers. The most established geometry for a closed radon sampler consists in a chamber with a porous filter such as fibre glass, a non-wetting cloth or a micropore paper filter [54] and one or more SSNTDs. These filters, which are used to stop external radon daughters, do not discriminate thoron gas and water vapour.
The measurements of radon/radon daughters by passive techniques are based on the detection of their radioactive decay.
There are different ways to define active and passive types of radon measurement systems. The classification, which seems to avoid any possible confusion, is reported in the following:
The sampling of radon/radon daughters is made by forced sampling through the use of power supply (pumps).
The sampling of radon/radon daughters is based on the natural diffusion without any power supply. Another important classification can be introduced according to the type of radiation detector used:
Detectors with real-time response (typically scintillators and semiconductors).
Detectors with no real-time response (e.g. track-etched detectors, activated charcoal and electrets).
In practice a radon/radon daughter monitor may be formed by any possible combination of active or passive sampling systems and real-time or no real-time detectors.
Radon measurement techniques are performed for different applications. The radon concentration in air is highly dependent on several factors, mainly the air ventilation. The various detectors one can put in a bore hole for radon concentration measurements are essentially solid state nuclear track detectors, daughter collectors such as alpha card, electret detectors and thermoluminescent phosphors and solid state electronic detectors such as photodiode and gas absorber like activated charcoal [55].
Passive sampling can be combined with real-time detectors for direct (not integrated) or continuous measurements. For example, in the continuous passive radon detectors, radon diffuses through a filter in a ZnS (Ag)-coated cell optically coupled with a photomultiplier tube. Passive sampling is followed by electrostatic collection in combination with scintillation discs and photomultiplier tube or silicon surface barrier detectors [56].
Within the silicon technology several new devices, such as random access memories (RAMs), photodiodes or charged coupled devices (CCDs), although developed for different applications, can be conveniently used for alpha particle detection and for radon monitoring. The low power requirements, the low cost and the high reliability of these devices make them uniquely interesting for passive radon monitoring [57].
Radon gas can be collected by adsorption on activated charcoal and then measured using gamma detectors or liquid scintillation technique passive detectors as thermoluminescent detector (TLD) can also be used in combination with activated charcoal. Short-term integrating monitoring using activated charcoal has been extensively employed in large surveys [58].
In this system radon is sampled by diffusion in a chamber, and its daughters are collected by an electrostatic field on aluminized Mylar film facing the scintillation disc of ZnS (Ag). The alpha particle that induced the scintillations is registered by photographic films, a similar passive system referred to as Environmental Gamma Ray and Radon Detector (EGARD) has been reported by Maiello and Harley [59], in which system the radon daughters are collected through an electret-induced electric field and registered by a thermoluminescent detector (TLD).
Totally passive devices can successfully be obtained for radon-only measurements in which radon diffuses through a filter or a membrane in a detector housing, and the radiations from the radon daughter produced are directly registered by passive type of detectors.
Different types of passive detectors can be used such as thermoluminescent materials, electret devices and solid state nuclear track detectors (SSNTDs). With respect to large-scale surveys, SSNTDs have the most favourable characteristics for radon measurements and their applications. The most often used track detectors available for the registration of alpha particle are essentially cellulose nitrate (typically the red-dyed LR-115), bisphenol-a poly carbonate (Makrofol or Lexan) and allyl diglycol carbonate (CR-39). CR-39 nuclear track detector method is based on letting air diffuses in a holder where alpha particles are detected by means of a solid state nuclear tack detector [60].
Basically, solid state nuclear track detectors (SSNTDs) work as follows:
The passage of heavily ionizing particles, such as alphas, through most insulating solids creates narrow paths of intense damage on an atomic scale. These damage trails may be enlarged until they can be seen under an optical microscope, by chemical treatment that rapidly and preferentially removes the damaged material. It removes less rapidly the surrounding undamaged matrix in such a manner as to enlarge the etched tracks that mark and characterize the site of the original damaged region [61]. SSNTDs are sensitive to alpha particles but totally insensitive to beta and gamma rays. They do not require energy to be operated and unaffected by humidity, low temperature, moderate heating and light. After irradiation, SSNTDs are chemically processed, and the determination of the number of particles that have impinged the detector can be performed by various means. The most common is the counting of the tracks under an optical microscope, but many other techniques have been devised [61].
According to its producer alpha nuclear, the alpha card system is a passive radon detecting method, which provides a sensitive measure of radon in gaseous state. The card is deposited in the ground, suspended in an inverted cup. It is left in place from 12 h up to several days. After entering the volume of detection, the radon decays away, and its daughters make an active deposit on a thin membrane. The alpha card is then recovered and read. The reading device contains two silicon detectors, sensitive to alpha particles only, facing one another and between which the card is inserted. In this manner a good counting efficiency is achieved. The reader is small, portable equipment that can be used in the field.
One of the most recent techniques is the electret radon monitor. The electret dosimeter offers several advantages: its ability to store information over a relatively long period, its independence of the humidity in its environment and its easiness of reading. But its response curve does not cover efficiently the very low or very high doses, and also it is sensitive to gamma radiation background, which in some cases induces significant error or even precludes their uses.
The adsorption of radon could be measured in an activated charcoal using a plastic can. The dosimeter should be replaced in the location where measurement is intended, lid open and left in place for 4–12 days. It is then retrieved and the lid closed and brought to the lab where the gamma activity is determined.
Based upon the principle of light emission after heating, several thermoluminescent dosimeters (TLDs) have been constructed and improved. The idea of detecting radon by using these dosimeters is depending on the ability of recording the alpha activity of the radon daughters. After a suitable exposition, the TLD is recovered and “read” in a TLD reader [62].
Electronic detectors for radon measurements in the soil are not widely used because they usually require energy and also they are rather expensive and fragile. One may mention the alpha-metre manufactured by Alpha Nuclear Company; the active part of the equipment is a Si (Li) detector associated with a counter unit. The counting is directly displayed on the instrument.
Using photodiode simple equipment that can be operated on pen-type batteries for a year has been developed. The detector does not require a polarization voltage, and the simplifying electronics is a very low consumption setup. Data are stored in memory cards of a microcomputer. The main advantage of electronic equipment of this type is that they allow dynamic studies of low term variations on the radon concentration [63].
Filtered air is pumped into an electrostatic chamber in which the negative electrode is made of a thin conductive Mylar foil placed on a ZnS scintillator for alpha particle detection. Three hours after the end of sampling, the alpha particles emitted by radon and radon daughters are counted [63].
A known volume of air is forced through a filter. The radon daughter’s concentration in the air sample is measured through alpha spectrometry on the filter using a solid state detector [63].
Air diffuses in a canister where radon gas is adsorbed by active carbon. Sampling lasts 2–4 days; later the gamma rays emitted by the radon progeny captured into the active carbon are counted by means of scintillation detector (ROLS, 4300E USA).
Glass or transparent plastic holders (cells) internally coated with ZnS are used. Just before sampling the cell is evacuated. Then, the air to be sampled is filtered and let into the cell. After at least 3 h delay, the cell is placed in optical contact with a photomultiplier and alpha particles emitted by radon, and its daughters are counted. The sensitivity of the system is about 4 Bq m−3 [55].
This method is based on two successive counting of alpha particles from a glass fibre filter through which a known air volume has been previously aspirated. This technique supplies the measure of the potential alpha energy concentration [63].
Methods and instrumentation may be classified on the basis of the type of monitoring as grab sampling and continuous and time-integrating monitoring.
The scintillation cell technique is one of the most widely used in various applications. The device consists essentially of a container with a transparent bottom coated internally with silver-activated zinc sulphide phosphor. The bottom is coupled to a photomultiplier tube and counting device. Cells sizes ranges from 0.10 to 2.0 L. The scintillation flasks can be filled either by evacuation or by airflow using a pump.
The lower level of detection (LLD) depends on several parameters, such as the size of flasks, type of material and counting intervals. For typical devices a sensitivity of 3.7 Bq m−3 is reported [63].
Ionization chambers are very complex laboratory instrument essentially used in laboratory as highly accurate measurement systems, which are directly traceable to reference standards. An ionization chamber consists of two conductors with a glass-filled space and an electric field applied between them. Pulses from collector are fed into the preamplifier and from here to a linear amplifier and scalar. The collector anode is connected to a device sensitive to voltage changes. The instrument can be operated either by alpha pulse counting or by ionization current measurement. Special techniques are used for filling the counter with filtered air to remove atmospheric aerosols including radon daughter products. Flow-through ionization chambers can be used for both laboratory applications, and as field instruments, sealed ionization chambers are essentially laboratory instruments. Samples are collected in the field and returned for laboratory assay where they are transferred ionization chambers for counting. To test performance and efficiency of the instruments, including the filling apparatus, a sample of radon is drawn from a standard source of 226Ra. The theoretical sensitivity is of the order of 10–4 A Bq−1 at equilibrium Rn/RnD [63].
The device consists of a cylindrical tube, which is fitted to both ends with filter holders and a pump to draw air. The first filter allows entering only radon and other atmospheric gases. The exit filter collects on the inside radon daughters formed within the chamber.
The activity of the outlet filter, which is proportional to the radon concentration in air, is measured by alpha counting devices: ZnS (Ag) scintillation detectors or solid state barrier detectors. The two-filter technique can be used for short-term sampling in workplaces or for continuous outdoor monitoring of very low levels of radon concentrations [63].
Continuous monitoring of radon concentration is used both for research and radioprotection purposes. The main applications concern diagnostic of radon sources for remedial actions, the measurement of variations of ambient radon concentration and soil gas radon levels. Two different methods of sampling are generally used.
The diffusion radon monitor is a device that does not require power supply for sampling, but makes use of electronic circuitry for counting alpha particles. Radon gas enters into the volume of the instrument by molecular diffusion through a filtering device.
Radon progeny resulting from the decay of radon within the sensitive volume is counted by scintillation or a surface barrier detector. To improve sensitivity RnD atoms can be focused of the detector surface with an electrostatic collector. The efficiency of the electrostatic collection depends on particle motilities, which are reduced by the aggregation of water molecules around the ions in the humid atmosphere. Beds of silica gel are used to make these devices independent of the moisture content of the air [63].
Air is drawn continuously through double stopcock scintillation flask by an air pump. The total counts registered in a given interval are a function of the radon concentration, the activity of daughters collected during the interval and the activity of RnD collected during previous intervals. This effect is of particular importance in the presence of rapid variation of radon concentration. With changing radon concentration, the radon progeny build-up inside the scintillation flasks should be taken into consideration during the calibration. This effect requires a correction if instruments are calibrated with steady-state radon concentrations. Calibration factors could overestimate or underestimate real radon concentrations. A special device based on a solid state barrier detector was developed for monitoring fast changes of radon concentrations [64].
The time-integrating monitors measure the average radon concentration during the exposure period. Various devices have been developed based on the diffusion of radon into a sensitive volume through a filtering device and the measurement of radiations emitted by radon and its progeny using as active counting devices either scintillation ZnS (Ag) or silicon surface barrier detector [65].
Plastic track detectors, viz. cellulose nitrate films (LR-115 type 2) manufactured by Kodak-Pathe, France, and CR-39 sheets (Pershore Moulding Co., UK), are very sensitive for recording alpha particle tracks produced by radon. Plastic track detectors are capable of recording average value of radon isotopes over relatively longer periods (weeks to months) but are insensitive to transient variations that last only several hours or less.
Track-etch technique is quite appropriate for radon detection in the soil gas because of its negligible background of spurious signals, low cost, ruggedness and nature as an integrating measurement. The detector assembly rests in the vertical position near the bottom of auger hole and radon decay alpha particles impinge on the detector films leaving their radiation damage trials. LR-115 films could be collected after a week or month, as the case may be, and etched in a constant temperature bath using 2.5 N NaOH solutions for 2 h at 60°C. Alpha tracks are revealed as circular or conical spots, which become etched-through holes after prolonged etching. The track spots or holes would be counted using a binocular microscope under a suitable magnification. The measured track density is assumed to be proportional to the average radon content in soil gas [66].
Radon emanometer (type RMS-10) is used to measure the instantaneous radon concentration in the soil gas. The apparatus consists of an alpha counting scintillation assembly with inverted bell-shaped alpha detector, a hand-operated rubber pump and a soil-gas probe. The probe is metallic tube about 4 cm diameter, with perforations at the lower end and a rubber capping at the top to seal it pneumatically in an auger hole. It has inlet and outlet tubes for the circulation of the soil gas. The hand-operated rubber pump is used to circulate the soil gas into the scintillation chamber. The alpha particles emanating from the radon impact the ZnS (Ag) scintillators creating an energy impulse in the form of light quanta, which are recorded by scintillation assembly [67].
Alpha metre-400 is designed to measure near surface radon gas fluctuations. It consists of silicon-diffused junction for detection of alpha particles and gives sufficient counts over 24 h exposures in most of the soils. The detector unit is placed inside a covered auger hole about 60 cm in depth. The detector is separated from the soil surface at the bottom of hole by a 6.4 cm gap, which shields the detector from the impact of the direct alpha particles emanated by radon isotopes and their alpha emitting daughters [68].
Radon emanometry technique has been used for groundwater radon measurements. The radon content is determined by measuring radon-generated alpha activity in discrete water samples collected once a day from the monitored wells and natural springs.
Radon measurement of groundwater samples could be used by radon-in-air monitor RAD-7. The monitor is used to determine radon-in-air activity concentrations by detecting the alpha-decaying radon daughters (Po-218 and Po-214) using a passivated implanted planar silicon detector (PIPS). At the end of the run, the RAD7 prints out a summary, showing the average radon reading [21].
From our study we can conclude that, we have mentioned the most important information about radon throughout the environment, the health importance of prompt radon daughters, the radon problem, the risk of lung cancer and the radon measuring techniques. Then we discussed the main sources of radon in the environment (indoor, soil, building materials, water, etc.) and the techniques used for measuring radon in the environment including long-term and short-term radon measurements and active and passive measurements; then we summarizes the methods of measurements of radon gas concentration, physical basis of radon gas measuring techniques, sampling methods for the measurement of radon in the air, time integrated radon monitors, radon monitoring in soil, radon monitoring in groundwater and passive diffusion radon dosimeters (CR-39). This chapter presents the essential and important information in a concise manner in order to clarify the importance of radon gas in the environment.
Plants are being an important component of socio-economic condition of human life and culture. Ever since the beginning, tree crops have furnished use with three of life’s essentials, wood, food and oxygen. Besides these, they provide additional necessities to human being such as shelter, fuel wood, fodder for livestock, ethno medicine, architectural, agriculture implements, building construction tools, sound and wind barriers, soil improvement through litter production and nitrogen fixation in association with Rhizobium and Frankia. Many drugs which derived from plants generally have been replaced by more potent synthetic ones and trees remain a source for some drug ingredients for pharmaceutical industry. They play an important role in ecosystem services through carbon sequestration, improving air quality, climate amelioration, and conservation of water and supporting wildlife. They also reduce the atmospheric temperature and the impact of greenhouse gases by maintaining low levels of carbon dioxide.
Plant growth and productivity is generally regulated by the availability of soil nutrients. One of the major efforts to increase the plant productivity is through management of nutrients, which can be achieved by application of fertilizers. However, application of chemical fertilizers is not eco-friendly and economically viable in current scenario. Other alternative method is supplement of bio-inoculants (bio-fertilizers) for sustainable development of horticulture and forestry crops. Bio-inoculants are plant growth promoting beneficial microorganisms such as the species of Azospirillum, Azotobacter, Bacillus, Ecto and Endo-mycorrhizal fungi, Frankia, Pseudomonas, Rhizobium, Trichoderma, etc. Such microorganisms accelerate certain microbial process to augment the extent of availability of nutrients in the form, which can be assimilated by plants and also maintain the plant health by controlling diseases.
Various types of microorganisms inhabit air, water and soil. They play an important role in restoring the physical, chemical and biological property of soil. Rhizosphere ecology and microbial interactions are responsible for key environmental processes, such as the bio-geo chemical cycling of nutrients, organic matter and maintenance of plant health and soil quality [1]. Among the microbial population, both beneficial and harmful bacteria as well as fungal species were found, but the microbial population was low when compared to rhizosphere soil [2].
Rhizosphere is the physical location in soil where plants and microorganisms interact. The interest in the rhizosphere microbiology derives from the ability of the soil microbiota to influence plant growth and vice versa. The presence of microorganisms in the rhizosphere will increase root exudation and it was found that 5–10% of the fixed carbon was exudates from the root under sterile condition, on the introduction of beneficial microorganisms, root exudation rate increases by 12–18%. The interaction between bacteria and fungi associated with plant roots may be beneficial, harmful or sometimes neutral for the plant, and effect of a particular bacterial species may very as a consequence of soil environmental conditions [3]. The beneficial microbes can be divided into two major types based on the living nature; free living (that live in soil) and symbiotic relationship with the plant root nodule of legume and actinomycete plants [4].
Bio-inoculants are beneficial microorganisms for nutrient management, plant growth and are eco-friendly and natural inputs providing alternate source of plant nutrients, thus increasing farm income by providing extra yields and reducing input cost also. Bio-inoculants increase crop yield by 20–30%, replace chemical N and P by 25%, stimulate plant growth, enhance soil biodiversity, restore natural fertility and provide protection against drought and some soil borne plant pathogens. The role of bio-inoculants has already been proved extensively in enhancing the mineralization processes of organic matter and helping the release of nutrients, utility of soil organic matter contents and cations exchange capacity [5] and therefore, bio-inoculants are gaining importance in agriculture for the past few decades. However, the scientific exploitation of bio-inoculants in horticulture and forestry is scanty in developing countries like India.
Nitrogen fixing symbiotic microorganisms (Rhizobium and Frankia)
Nitrogen fixing non-symbiotic microorganisms (Azospirillum, Azotobacter and blue-green algae)
Phosphate solubilizing microorganisms (Arthrobacter, Pseudomonas, Bacillus, Aspergillus)
Phosphate mobilizing microorganisms (Ecto and Endo—Mycorrhizal fungi)
Potash mobilizer (Bacillus sp., Pseudomonas sp.)
Sulfur uptake (Pseudomonas, Klebsiella, Salmonella, Enterobacter, Serratia and Thiobacillus)
Zinc solubilizer (Bacillus subtilis, Thiobacillus thiooxidans and Saccharomyces sp.)
Iron uptake (Pseudomonas fluorescens)
Plant growth promoters (Pseudomonas sp., Bacillus sp., Serratia sp.)
Plant growth promoting rhizobacteria are group of bacteria that actively colonize roots and increase plant growth and yield [6]. It enhances plant growth and productivity by synthesizing phytohormones, increasing the availability and facilitating the uptake of nutrients by decreasing heavy metal toxicity in the plants, antagonizing the plant pathogens [7]. The mechanisms by which PGPR promote growth are not fully understood [8], against phytopathogenic microorganisms by production of siderophores, the synthesis of antibiotics, enzymes and fungicidal compounds [9] and also solubilization of mineral phosphates and other nutrients [10].
Azospirillum species are free-living N2-fixing bacteria commonly found in soils and in association with roots of agriculture, horticulture and forestry species [11]. Azospirillum are known to act as plant growth promoting rhizobacteria (PGPR) and stimulate plant growth directly either by synthesizing phytohormones or by promoting improved N nutrition through biological nitrogen fixation (BNF). PGPR also produce several the growth promoting substances including IAA, GA3, Zeatin and ABA [12]. Presently there are seven species have been identified in this genus, A. amazonense [13], A. brasilense, A. lipoferum, [14], A. doebereinerae [15], A. halopraeferens [16], A. irakense [17] and A. largimobile [18].
Applications of plants with Azospirillum have promoted plant growth of agronomically important field crops by 10–30% in the field experiment [19, 20]. Nursery experiments proved that the inoculation of tree cops with Azospirillum could result in significant changes in various growth parameters, particularly shoot and root growth, biomass, nutrient uptake, tissue nitrogen content, leaf size of several shola tree species [21] and Casuarina equisetifolia [22, 23], C. cunninghamiana Mig. [24], Moringa oleifera [25], Acacia nilotica [26], Azadirachta indica [37], Delonix regia [28], Erythrina indica [29], Feronia elephantum [30], Jatropha curcas [31]. Two years old Casuarina equisetifolia plants treated with bio-inoculants in field condition improve the growth of plants by 90% over uninoculated control [32]. Azospirillum lipoferum treated with Jatropha curcas under field conditions has increased the shoot length by 44.85% and primary and secondary root length by 39.3 and 37.5% respectively. Similarly, the root and shoot biomass also increased by 24.01 and 15.04% leaf area by 28.57% increase over control and the other Azospirillum species such as A. brasilense, A. haloference and A. amazonense [33]. The stimulatory effect exerted by Azospirillum has been attributed to several mechanisms including secretion of phytohormones (auxins and gibberellins), biological nitrogen fixation, and enhancement of mineral uptake of plants [8] due to the ability of synthesis of in vitro phyto-hormones such as IAA, gibberellins, cytokinin [34, 35] and produced by ethylene [36].
Plants inoculated with A. brasilense were always characterized by a higher chlorophyll concentration. Inoculation of crops caused a statistically significant increase of chlorophyll content in the case of oats in 1996 (15%) and wheat in 1997 (15%). Chlorophyll appeared to be a sensitive indicator of inoculation effect, which was also supported by Bashan et al. [37]. A. lipoferum inoculated Jatropha curcas seedlings has increase in level of chlorophyll a, b and carotene and such increase was maximum by 31.98, 14.5 and 18.9% and protein content (37.35%) amino acid (26.33), lipids (8.9) and carbohydrates (9.37) when compare to control plant under field conditions [31]. The total chlorophyll and soluble protein content was found to be higher in the Moringa oleifera seedlings inoculated with A. brasilense [25].
The genus Pseudomonas is one of the most diverse gram-negative non-spore forming, motile, rod shaped bacteria with an important metabolic versatility and pathogenicity [38]. Morphologically this genus is straight or slightly curved rods and produced yellowish green pigment in King’s B. Medium. Plant growth promoting rhizobacteria consisting of primarily Pseudomonas fluorescens and P. putida were identified as important organisms with ability for plant growth promotion and effective disease management properties. The population density of fluorescent pseudomonas in the rhizosphere in usually reduced by AM fungi colonization [34, 39, 40]. Many strains of genus Pseudomonas possess the capability to promote plant growth [41], due to their 1-aminocyclopropane-I carboxylate deaminase activity, indole acetic acid (IAA) and siderophore production [42], PGPR can exert a beneficial effects on plant growth by suppressing soil borne pathogens [43], improving mineral nutrition [44] and phytohormone synthesis [45].
The symbiotic association between fungus and root systems of higher plants is called mycorrhiza, which literally means root fungus. Ectomycorrhizae and entomycorrhizae or arbuscular mycorrhizae (AM) are playing important role in phosphorus and micronutrients uptake by tree species. The AM fungi association is endotrophic, and has previously been referred to as vesicular-arbuscular mycorrhiza (VAM), this name has been dropped since 1997 in favor of AM fungi, because all fungi are not produced vesicles [46]. Arbuscular mycorrhizal fungi belong to the division Zygomycetes and order Glomales. There are six genera of AM fungi have been identified and are Glomus, Gigaspora, Aculospora, Scutellospora, Entrophosphora, and Sclerocystis. Acaulospora and Scutellospora belong to Gigasporaceae; Glomus and Sclerocystis belong to Glomaceae [47]. Arbuscular mycorrhizal fungi (AMF), belonging to the phylum Glomeromycota, are obligate symbiotic fungi forming mutualistic associations with the roots of most of the tropical plants. Increased access to low-mobility soil mineral nutrients has been considered to be main beneficial effect of AMF on their host plants [48]. In addition, they have been shown to improve the uptake of Zn, Cu, S, Mg, Ca, K and other nutrients [49]. The AM fungal mycelia have been reported to stabilize soil through the formation of soil aggregated [50].
Arbuscular mycorrhizal (AM) fungi are the most widespread type and ecologically important root fungal that form symbiosis with 80% of land plant species which depend upon them for growth [51]. AM fungal symbiosis is characterized by fungal penetration of root cortical cells forming microscopic branched structures called arbuscules that increase that increase efficiency of plant-fungus metabolite exchange [48]. These microsymbionts occur widely under various environmental conditions with beneficial effects on soil structure improvement [52, 53] and have great importance due to their higher capacity to increase growth and yield through efficient nutrient uptake in infertile soils, water uptake and drought resistance in plants [54].
The interaction between Pseudomonas and the arbuscular mycorrhizal fungus, Glomus clarum NT4 on spring wheat grown under gnotobiotic condition was investigated [55]. Although plant growth responses varied, positive response to Pseudomonad inoculants was obtained. Shoot biomass enhancement ranged from 16 to 48%, whereas enhancement ranged from 82 to 137% for roots. Typically, dual inoculation positively influenced the magnitude of response associated with any organism applied alone.
The highest mycorrhizal root colonization and number of AM fungal spores, and pseudomonas population were observed when G. fasciculatum and P. monteilii were coinoculated on to Coleus forskohlii plants [56] under organic field condition. Negative effects of Glomus intraradices on population of PGPR, P. fluorescens DF57 were shown by Ravnskov et al. [57] and suggested that competition for inorganic nutrients might explain the effect, since the mechanism did not require cell-to-cell contact. Marschner et al. [58, 59] suggested that similar negative effects of Glomus intraradices on P. fluorescens 2-79RL might be due to mycorrhizal induced decreases in root exudation, affecting the composition of the rhizosphere soil solution. P. fluorescens 92rk and P190r, and G. mosseae BEG12, inoculated alone, promoted tomato plant growth. Plant growth promotion by florescent pseudomonads has been ascribed to the suppression of phytopathogenic soil-borne microorganisms [43, 60]. Moreover, co-inoculation of three microorganisms showed synergistic effects compared with single inoculated plants and reports demonstrate additive effects on plants on plant growth of AMF and rhizobacteria [61, 62].
The occurrence of AM spores depends upon the environmental conditions, plant species and soil type. There are two different types of AM spores such as Acaulospora and Glomus were observed in non-rhizosphere soil. Among the two different AM spore, Glomus was the dominant one. Spore density was very low 8 spore/100 g of soil [63, 64]. Analysis of root colonization was higher in mycorrhizal than non- mycorrhizal plants. Santhaguru et al. [65] reported that VAM infection was 100% in Albizia amara, Peltophorum pterocarpum and Pongamia glabra, 80% in Derris scandens 78% in Erythrina variegata, 18% in Pterlobium and16% in Prosopis chilensis. However, there is no VAM fungi infection in five plant species viz. Albizia lebbeck, Bauhinia tomentosa, Cassia, Prosopis juliflora and Tamarindus indica at Alagar Hills of Tamil Nadu, India. Similarly, AM Fungi colonized with several tree species semi-arid zone of South India, 1, 2 and 3 years old Casuarina equisetifolia [2], Leucaena leucocephala [66], Feronia elephantum with AM fungi (Glomus fasciculatum), Samanea saman [67]. Similarly, 16 different species of Arbuscular mycorrhizal fungi were isolated from rhizosphere of teak (Tectona grandis) among these Glomus and Aculospora found in dominant species and seedlings inoculated with combination of Arbuscular fungi had good quality seedlings and increased shoot height compared to with individual AM fungus in Tectona grandis [68].
Leucaena leucocephala seedlings were inoculated with different types of vesicular-arbuscular mycorrhizal fungi found that the collar diameter increment of between 18 and 123% [66]. Similarly, Pterocarpus indicus inoculated with vesicular-arbuscular mycorrhizal fungi improve the shoot diameter [69], root collar diameter in sweet gum seedlings by 268% [70]. Feronia elephantum with AM fungi (Glomus fasciculatum) increase the plant growth especially root length and was recorded the root length increment was up to 84% [30]. Similarly shoot length was higher in Samanea saman [67] Mycorrhiza colonization also protect the roots from the soil pathogens [71]. AM fungi significantly increase the net photosynthesis by increasing total chlorophyll and carotenoid contents ultimately increasing carbohydrate accumulation. The chlorophyll content, fresh weight and leaf area are higher in mycorrhizal plants than in non-mycorrhizal plants but differences are significant only under draught stress conditions [72]. In mycorrhizal infected groundnut roots, high concentrations of ortho-hydroxy phenols were present. This type of phenols has been known to play an important role in plant disease resistance [73]. Inoculation of AM fungi is enhancing the plant quality by stimulating the synthesis of secondary metabolites which can be important for plant tolerance to abiotic and biotic stresses [74]. According to Morandi et al. [75] the Phenolic substances, such as phytotoxins are synthesized when the root is infected by a pathogen. They are non-specific toxic substances, which can be considered to play a role in disease resistance. Kapoor et al. [76] observed a significant increase in the density of glandular trichomes in the medicinal plant Artemisia annua following inoculation with the AM fungi G. macrocarpum and G. fasciculatum contributing to enhance artemisinin content in the plants.
The chlorophyll a, chlorophyll b, total chlorophyll and Carotenoid contents increased in mycorrhizal seedlings compared with non-mycorrhizal tree seedlings of Cassia siamea, Delonix regia, Erythrina variegata, Samanea saman and Sterculia foetida [77]. A significant enhancement in biochemical parameters like total chlorophyll content, soluble protein and NRase activity in Pongamia pinnata seedling 10.7, 48.5 and 43.6% increase over control with the combined inoculation of Rhizobium, Phosphobacteria and AM fungi [78]. Similarly, an increase in chlorophyll content and soluble protein was observed in Ziziphus mauritiana when inoculated with AM fungi [79] and Dalbergia sissoo inoculated with Rhizobium and mycorrhizae [80] and in Shola species inoculated with Azospirillum + Phosphobacteria and AM fungi [22]. Eucalyptus seedlings inoculated with mixed Glomus mosseae, Trichoderma viride and Glomus fasciculatum increases the phosphorous content of shoot and root over control. Then increased rate of P uptake and inflow in roots is regarded as the major contribution of AM infection [81]. The AM colonization increased initially up to 45 days but decreased thereafter [82].
The fundamental importance of the mycorrhizal associations in restoration and to improve the revegetation is well recognized [83]. Arbuscular mycorrhiza colonized plants showed significant increment in height, biomass production and girth as compared to non mycorrhizal plats. Growth, biomass and P uptake were higher were higher on dual inoculation of G. fasciculatum and G. macrocarpum as compared to uninoculated tree species under both nursery and field condition. Tropical trees inoculated with AM fungi have shown increased nutrient uptake and growth, withstanding the transplant stock, hostile conditions like drought resistance and survival of Acacia holosericea [84]. Casuarina equisetifolia seedlings inoculated with AM (Glomus fasciculatum) increased shoot and root biomass [23, 24], Eucalyptus tereticornis [85] Tectona grandis [68] Santalum album, Acacia auriculiformis, Grevillea robusta, Eucalyptus camaldulensis, Bombax ceiba [86, 87] and Albizia lebbeck [88].
Inoculation with Glomus mosseae and G. fasciculatum along with other nitrogen fixing and phosphate solubilizing organism improved the quality and growth of neem seedlings, owing to greater absorption of nutrients, under nursery conditions in unsterilized soil [89], AM fungus (G. fasciculatum) and Rhizobium treated Acacia nilotica seedlings recorded an increase in shoot and root biomass [90]. Beneficial effects of AMF, such as growth promotion, increased root branching, lengths of lateral roots, specific root length and root diameter [91], protection against pathogens [92] and tolerance to abiotic stresses [93], could be due to positive interactions between mycorrhizae and associated microorganisms such as Pseudomonas, Arthrobacter and Burkholderia in a particular environment [94].
Combined inoculation of Glomus fasciculatum and Rhizobium on the growth of Prosopis juliflora seedlings showed better growth on shoot length and biomass. It was found that G. fasciculatum, Scutellospora sp., G. leptotichum and G. mossease were most efficient for Dalbergia sissoo, Acacia auriculiformis, A. nilotica and Dalbergia latifolia, respectively, and increase in plant biomass and height was to the extent of 34 and 24%, respectively, in Dalbergia sissoo, 126 and 50% in A. auriculiformis, 48 and 24% in Dalbergia latifolia and 100 and 112% in Acacia nilotica [95].
The genus Trichoderma is the most common fungi found in all climatic condition. It can be isolated in all type of soil. It is also found in plant root, rotting wood, plant litter and seed. Fungi of the genus Trichoderma are important biocontrol agents (BCAs) of several soil borne phytopathogens. Trichoderma use different mechanisms for the control of phytopathogens which include mycoparasitism, competition for space and nutrients, secretion of antibiotics and fungal cell wall degrading enzymes. In addition, Trichoderma could have a stimulatory effect on plant growth 48 as a result of modification of soil conditions.
Shoot length and fresh weight were more in Eucalyptus saligna seedlings inoculated with Trichoderma viride. The greater height and fresh weight of Acacia nilotica inoculated with Trichoderma due to the Trichoderma species produce growth hormones which result in better growth of shoots. Trichoderma sp. co-inoculated with Azotobacter sp. and Bacillus megaterium showed a significant increase on the growth of Teak and Indian red wood under nursery condition [96]. The growth promoting substances are known to cause enhanced cell division and root development [97]. Similarly, many strains of Bacillus pseudomonas and Trichoderma have been implicated in improvement of overall growth of many crop plants [98].
Rhizobium belongs to family Rhizobiaceae and the bacteria have the ability to reduce N2 and thereby “fix” atmospheric nitrogen using the enzyme nitrogenase. It colonizes the roots of species legumes to form tumor like growths called root nodules, which act as biofactories of ammonia production (Figure 1). The process of biological nitrogen fixation was discovered the Dutch microbiologist Martinus Beijerinck. Rhizobia (e.g., Rhizobium, Mesorhizobium, Sinorhizobium) fix atmospheric nitrogen or dinitrogen, N2 into inorganic nitrogen compounds such as ammonium, NH4, Which is then incorporated into amino acids, which can be utilized by the plant. Plants cannot fix nitrogen on their own, but need it in one form or another to make amino acids and protein. Because legumes form nodules with rhizobia, they have high levels of nitrogen available to them. Rhizobium is a soil habitat bacterium, which is able to colonize the legume roots and fixes the atmospheric nitrogen. Rhizobium associated with nodulated legume trees have an outstanding potential for fixing atmospheric nitrogen (Sesbania cannabina and Leucaena leucocephala) can fix up to 75–584 kg N ha−1 yr−1 [99]. In recent year use of Rhizobium culture has been routinely recommended as an input in legume tree species cultivation. Rhizobium helps to boost up the tree growth by insoluble nutrients available for plant. Seedling treated with Rhizobium biofertilizer found to remarkable increase in growth and nodulation of D. sissoo [100], A. nilotica [26] Albizzia sp. [101].
(a) Rhizobium root nodule, (b) Frankia root nodule, (c) AM fungi infection, (d) AM fungi spore, (e) phosphate solobilizing bacteria Bacillus sp., (f) Paenibacillus polymyxa, (g) Azospirillum brasilense.
High nitrogen yield was estimated in the Pongamia pinnata seedling inoculated with Rhizobium + Phosphobacteria + VAM fungi [78]. Increased N content in the plant sample of various tree seedling, co-inoculated with different biofertilizers [102]. Similarly increase in biomass production due to VAM fungi inoculation with Acacia sp. [103] and in Albizzia sp. [104]. Rhizobium inoculation + PSB with 25% N significantly increase the average 53 nodule no./seedling was followed by only Rhizobium with 25% N (38 nodule/seedling) inoculation in Acacia nilotica shoot length increased from 58.50 to 78.75 cm, collar diameter from 5.05 to 6.15 mm and nodulation increased 0.071 to 0.342 g/seedling [105].
Dual inoculation of Azospirillum and Rhizobium with legume plant has been found to increase plant-growth when compared with single inoculations. Azospirillum is considered a helper bacteria to Rhizobium by stimulating nodulation, nodule function, and possibly plant metabolism. Similarly, phytohormones produced by Azospirillum promoted epidermal-cell differentiation in root hairs that increased the number of potential sites for rhizobial infection and more nodule development [106]. Dual inoculation of AM fungi with Rhizobium improved nodulation, plant dry weight, N and P contents of Leucaena leucocephala in a P deficient soil compared to single inoculation with either organism [107] .
Azotobacter is a free living (non-symbiotic), aerobic, nitrogen fixing organism and these gram negative bacteria belongs to family Azotobacteriaceae. There are seven species of Azotobacter viz. A. beijerinckii, A. chroococcum, A. vinelandii, A. paspali, A. agilis, A. insignis and A. macrocytogenes. A. chroococcum appeared more in acidic soils and arable soils while A. beijerinckii in neutral and alkali soils. Apart from nitrogen, this organism is capable of producing antibacterial and antifungal compounds, hormones and siderophore [108]. Individual or combined inoculations stimulated the plant growth and significantly increased the concentrations of indole 3-acetic acid (IAA), P, Mg, N, and total soluble sugars in agri crop. Bioinoculants co-inoculation of nitrogen fixing organism Azotobacter and phosphate solubilizing microorganisms Bacillus megaterium showed a significant increase on the growth of teak and India red wood under nursery condition [96].
Azotobacter inoculated strawberry plants attained maximum height (24.92 cm) more number of leaves per plant (26.29), more leaf area (96.12 cm2), number of runners per plant (18.70), heavier fruit (10.02gm), more fruit length (35.9 mm), and more fruit breadth (22.91 mm) as compared to all other treatment [109]. Similarly, combined application of manure + Azotobacter + wood ash + phosphorous solubilizing bacteria + oil cake improved significantly fruit diameter (3.11 cm), length (3.95 cm), volume (20.397 cm3), weight (11.11 g), total sugars (7.95%), total soluble solids (9.01’B), acidity (0.857), TSS:acidity ratio (11:12) and yield (238.95 g/plant) [110].
Frankia is a genus of Actinomycetes, belongs to family Frankiaceae and an ability to fix the atmospheric nitrogen in symbiotic association with Casuarina species in tropical and temperate environmental condition. These microorganisms usually invade root hairs of Casuarina and developing within cortical cells in lobes of the resultant nodules. Frankia are able to convert the nitrogen gas in the atmosphere into amino acids, which are the building blocks of proteins. Frankia exchange nitrogen for carbohydrates from the plant. As the plant drop organic matter, or when the plants die, the nitrogen from their tissues is made available to other plants and organisms. This process of accumulating atmospheric nitrogen in plants and recycling it through organic matter is the major source of nitrogen in tropical ecosystems. Various agroforestry practices such as alley cropping, improved fallow, and green manure/cover cropping exploit this natural fertility process by using nitrogen fixing plants.
Casuarina equisetifolia seedling inoculated with Frankia strains showed improved growth, biomass and tissue N content over control seedlings [24, 111, 112]. Nitrogenase activity of Frankia strains were significantly (p ˂ 0.05) and negatively correlated with a tissue N content [111]. Similarly, under nursery experiments, the growth and biomass of C. equisetifolia rooted stem cuttings inoculated with Frankia showed three times higher growth and biomass than uninoculated control and improved growth in height (8.8 m), stem girth (9.6 cm) and tissue nitrogen content (3.3 mg/g) than uninoculated controls in field condition [112]. Frankia inoculated Casuarina seedlings planted in farm forestry improve the tree growth and biomass in the field condition [2, 112] and improve the nutrient cycling of actinorrhizal plants through high amount of litter production and decomposition [113]. Combined inoculation of Azospirillum, Phosphobacteria, AM fungi and Frankia produced excellent growth and biomass of C. equisetifolia seedlings due to co-inoculation with Frankia through improved nitrogen fixation [22, 114] (Table 1).
Seed or nursery stage is best for application of bio-fertilizers. Suitable methods for forestry species is seed coating and inoculation in polythene bag. Two grams of carrier culture (10−8 cfu/g) can be applied in rhizosphere of seedlings in the polythene bags in the nursery.
Name of the species | Azospirillum/Azotobater | Frankia/Rhizobium | Phosphate solubilizing bacteria | AM fungi | Combination of bio-fertilizers | Reference | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CD | SL | BM | CD | SL | BM | CD | SL | BM | CD | SL | BM | CD | SL | BM | ||
Casuarina equisetifolia L. | 14.2 | 55 | 19.6 | 17.6 | 23 | 23 | 6.8 | 406 | 11 | 18 | 19.5 | 23 | 63.5 | 62.2 | 115.0 | [22] |
Acacia nilotica L. | 61.0 | 60 | 26 | 125 | 57 | 56 | NA | NA | NA | 96 | 60 | 48 | 236.3 | 131.2 | 156.8 | [26] |
Azadirachta indica (A) Juss | 1.1 | 2.34 | 3.2 | NA | NA | NA | NA | 5.5 | 3.74 | 0.7 | 7.08 | 5.4 | 0.67 | 16.0 | 7.49 | [27] |
Moringa oleifera L. | 75 | 22 | 276 | NA | NA | NA | 5.04 | 6 | 17 | NA | NA | NA | 5.6 | 11.7 | 176.5 | [25] |
Mangifera indica (L.) Delile | 12.0/13.3 | 12.7/ 13.7 | — | NA | NA | NA | NA | NA | NA | 14.73 | 14.5 | NA | 11.8 | 12.9 | NA | [117] |
Delonix regia (Hook.) Raf. | 5.8/4.2 | 5.2/ 4.3 | 17.8/5.8 | NA | NA | NA | NA | NA | NA | 3.5 | 2.42 | 0.9 | 13.0 | 7.9 | 21.2 | [28] |
Tectona grandis L.f. | −−/69.8 | −−/ 0.65 | −−/28.2 | NA | NA | NA | 31.7 | 0.65 | 106.8 | 6.3 | 7.2 | 37.4 | 114.3 | 26.8 | 258.9 | [116] |
Samanea saman(Jacq.) Merr. | 60.0 | 20.6 | 35.8 | NA | NA | NA | 54.4 | 6.68 | 19.5 | 78.9 | 16.9 | 30.9 | 108.6 | 46.9 | 74.9 | [67] |
Feronia elephantum L. | 71.4 | 39.5 | 55.5 | NA | NA | NA | 48.8 | 6.68 | 15.9 | 82.9 | 20.7 | 41.7 | 122.8 | 47.0 | 92.4 | [30] |
Gmelina arborea (Roxb.) | 11.6 | 13.9 | 38.8 | NA | NA | NA | 11.9 | 8.8 | 27.5 | 11.9 | 9.43 | 63.4 | 25.6 | 21.9 | 166.4 | [118] |
Growth and biomass increases (percentage increased over control) of horticulture and forestry crops treated with bio-inoculants.
CD, collar diameter; SL, shoot length; BM, biomass; NA, not applicable.
Inoculation requirement varies from the size of the seeds. Normally 200 g of lignite/peat soil based culture (108 cfu/g) is need for every 8–10 kg of seeds of the tree species. A slurry is formed by mixing the inoculant with cooled rice gruel (250 ml). The required quantity of seeds is added in the slurry and mixed thoroughly so that each seed is coated with the black colored inoculant. The treated seeds are then shade dried for 30 min and sown.
Two hundred grams of lignite based carrier culture of Rhizobium or Azospirillum (108 cfu/g) is required for 4 m × 1 m mother bed. It has to be spread uniformly and mixed thoroughly before sowing of seeds.
Ten percent sugar or gum arabic solution or rice porridge is to be prepared to serve as a sticker for culture cells applied to seeds. This solution is to be sprinkled on required seeds and then the seeds spread on a polythene sheet and mixed uniformly. The peat based culture is sprinkled uniformly over the sticker-coated seeds and mixed simultaneously. After treatment the seeds are air dried in 1 h then the seed can be dipped in nursery mother bed.
In case of transplanted seedlings, the seedlings from the nursery beds are uprooted and tipped in a suspension of biofertilizers before planting.
Two gram of lignite based culture (108 cfu/g) is added to rhizosphere of the seedlings a week after transplanting. In the case of AM 5 g of vermiculate based culture can be used. The cultures may be mixed together and applied near the root zone. If necessary, the inoculant may be made bulk by mixing with the finely powered farm yard manure or sand for easy application.
Ten grams of lignite based culture (108 cfu/g) is required per seedling which are to be planted in the field directly from the mother bed, in the form of naked root seedlings. Otherwise, 200 g of lignite based culture can be mixed with 10 l of water, and roots of seedlings can be dipped in it before planting.
Biofertilizers have number of advantages than synthetic fertilizers. Bio fertilizers can facilitate not only supply of nutrients, but also produces vitamins and plant growth hormones. They prevent soil erosion by producing capsular polysaccharides and also control plant pathogens.
Biofertilizers, will be isolated from the rhizosphere soil of host plant hence huge amount need not be spent for mother culture. It can be cultivated under normal laboratory condition using conventional media and fermentors within short span of time. Production method is very simple and production cost is cheaper than chemical fertilizers.
Chemical fertilizers are required in huge quantity for land application. The physical optimum levels for getting the maximum grain yield for the medium duration rice hybrid CORH2 was found to be 151:66:57 kg N, P2O5 and K2O ha−1 [115]. But in case of biofertilizers, 1 g of carrier based inoculum of Azospirillum and phosphobacterium contain with a population load of 10−9 and 10−8 and approximately 12,500 infective propagule/10 g of soil [22]. Hence, very less quantity is sufficient and it may get multiplied into many fold as the optimum environmental conditions in the nursery and field. As the propagules multiply in the field they need not be applied repeatedly.
It helps to improve the seed germination and induces the healthy seed emergence due to production of growth promoting hormones, gibberellins and cytokinin-like biologically active substances. Biofertilizers promote better root formation in trees for efficient absorption and assimilation of water and nutrients.
Biofertilizers are involved in the litter decomposition and the breakdown of minerals into available form to plants. It directly facilitates the function of rhizoids in terms of absorption and translocation of minerals and water.
Biofertilizers do not pollute the soil, whereas excess application of chemical fertilizers creates soil pollution. Biofertilizers are effective in promoting and maintaining the soil fertility which helps a better balance in the plantation forest ecosystem in terms of nutrient availability and cycling of nutrients.
Due to the strong colonization of biocontrol microorganism and their secretory substances, the tree plants cultivated under this pattern will exhibit a strong resistance against an array of infectious disease caused by plant pathogens.
Apart from the advantages, biofertilizers have certain limitations. Lack of awareness on benefits of bio inoculants among the farmers and tree growers. Adequate availability and quality assurance of bioinoculants are being the limiting factors. Competition between native and introduced microbial population in the cultivated field also identified as a limiting factor. Hence, a preliminary analysis on the cultivable land about the native microflora, physico-chemical parameters is essential to overcome such limitations.
Bio-inoculants are renewable, cost effective, eco-friendly and economically viable population of beneficial microorganisms providing an alternate source of plant nutrients, thus increasing farm income by providing extra yields and reducing input cost. Bio-inoculants increase crop yield by 20–30%, replace synthetic fertilizers of N & P by 25%. Stimulate plant growth, activate soil biologically, restore natural fertility and provide protection against drought and some soil borne plant pathogens. Application of Bio-fertilizers in combined form in Horticulture and Forestry will play an important role in improving the soil fertility by supply of macro and micronutrients, organic carbon, accumulation of soil enzymes, suppression of plant pathogen by bioactive substances. This will have direct impact on socio-economy of tree growing farmers, maintain sustainability in natural soil ecosystem, wood and food crops availability in future. Therefore, the development of more efficient and sustainable agriculture strategies, guarantied food supply for an expanding world population and minimizing damage to the environment is one of the greatest challenges for humankind today. It is inferred that under appropriate management, the use of more efficient bioinoculants, co-inoculation with other bioinoculants lead to an increased growth and biomass of tree species in nutrient impoverished soil.
All Works published by IntechOpen prior to October 2011 are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license (CC BY-BC-SA 3.0). Works published after October 2011 are licensed under a Creative Commons Attribution 3.0 Unported license (CC BY 3.0), the latter allowing for the broadest possible reuse of published material.
",metaTitle:"Translation Policy",metaDescription:"Translation of Works - Book Chapters",metaKeywords:null,canonicalURL:"/page/translation-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"All Works licensed under CC BY-BC-SA 3.0 can be freely translated and used for non-commercial purposes. Works licensed under CC BY 3.0 license can be freely translated and used for both commercial and non-commercial purposes.
\\n\\nAll translated Chapters have to be properly attributed in accordance with the requirements included in IntechOpen's Attribution Policy. Besides proper attribution translated sections of Works must include the following sentence: "This is an unofficial translation of a work published by IntechOpen. The publisher has not endorsed this translation".
\\n\\nAll rights to Books and other compilations are reserved by IntechOpen. The copyright to Books and other compilations is subject to a Copyright separate from any that exists in the included Works.
\\n\\nA Book in its entirety, or a significant part of a Book, cannot be translated freely without specific written consent by the publisher. Requests for permission can be made at permissions@intechopen.com.
\\n\\nPolicy last updated: 2016-06-09
\\n"}]'},components:[{type:"htmlEditorComponent",content:'All Works licensed under CC BY-BC-SA 3.0 can be freely translated and used for non-commercial purposes. Works licensed under CC BY 3.0 license can be freely translated and used for both commercial and non-commercial purposes.
\n\nAll translated Chapters have to be properly attributed in accordance with the requirements included in IntechOpen's Attribution Policy. Besides proper attribution translated sections of Works must include the following sentence: "This is an unofficial translation of a work published by IntechOpen. The publisher has not endorsed this translation".
\n\nAll rights to Books and other compilations are reserved by IntechOpen. The copyright to Books and other compilations is subject to a Copyright separate from any that exists in the included Works.
\n\nA Book in its entirety, or a significant part of a Book, cannot be translated freely without specific written consent by the publisher. Requests for permission can be made at permissions@intechopen.com.
\n\nPolicy last updated: 2016-06-09
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:null},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5313},{group:"region",caption:"Middle and South America",value:2,count:4819},{group:"region",caption:"Africa",value:3,count:1468},{group:"region",caption:"Asia",value:4,count:9362},{group:"region",caption:"Australia and Oceania",value:5,count:837},{group:"region",caption:"Europe",value:6,count:14778}],offset:12,limit:12,total:108153},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"11"},books:[{type:"book",id:"6837",title:"Lithium-ion Batteries - Thin Film for Energy Materials and Devices",subtitle:null,isOpenForSubmission:!0,hash:"ea7789260b319b9a4b472257f57bfeb5",slug:null,bookSignature:"Prof. Mitsunobu Sato, Dr. Li Lu and Dr. Hiroki Nagai",coverURL:"https://cdn.intechopen.com/books/images_new/6837.jpg",editedByType:null,editors:[{id:"179615",title:"Prof.",name:"Mitsunobu",surname:"Sato",slug:"mitsunobu-sato",fullName:"Mitsunobu Sato"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6842",title:"Aerosols",subtitle:null,isOpenForSubmission:!0,hash:"efe043290c576559ee15f293bc924f65",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/6842.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7030",title:"Satellite Systems - Design, Modeling, Simulation and Analysis",subtitle:null,isOpenForSubmission:!0,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:null,bookSignature:"Dr. Tien Manh Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editedByType:null,editors:[{id:"210657",title:"Dr.",name:"Tien",surname:"Nguyen",slug:"tien-nguyen",fullName:"Tien Nguyen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7395",title:"Atmospheric Pressure Plasma",subtitle:null,isOpenForSubmission:!0,hash:"6deb4387910df1691c5b8d0d3260cbd5",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/7395.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7416",title:"Compound Engine",subtitle:null,isOpenForSubmission:!0,hash:"e7901967cd17843e83c855abd4014838",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/7416.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7638",title:"Massive Multiple-input Multiple-output Systems",subtitle:null,isOpenForSubmission:!0,hash:"f6e96802bc79d6b8b0bab9ad24980cbc",slug:null,bookSignature:"Dr. Sudhakar Radhakrishnan",coverURL:"https://cdn.intechopen.com/books/images_new/7638.jpg",editedByType:null,editors:[{id:"26327",title:"Dr.",name:"Sudhakar",surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7741",title:"Organic Field-Effect Transistors",subtitle:null,isOpenForSubmission:!0,hash:"787c5b02acbbf3f4efda634be5e6f3c0",slug:null,bookSignature:"Dr. Jonathan Sayago",coverURL:"https://cdn.intechopen.com/books/images_new/7741.jpg",editedByType:null,editors:[{id:"198513",title:"Dr.",name:"Jonathan",surname:"Sayago",slug:"jonathan-sayago",fullName:"Jonathan Sayago"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7771",title:"Dependability Engineering",subtitle:null,isOpenForSubmission:!0,hash:"37247080c87485c80a9fc393b2bdc50e",slug:null,bookSignature:"Dr. Leo Dimitrios Kounis",coverURL:"https://cdn.intechopen.com/books/images_new/7771.jpg",editedByType:null,editors:[{id:"111582",title:"Dr.",name:"Leo",surname:"Kounis",slug:"leo-kounis",fullName:"Leo Kounis"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7772",title:"Systems of Systems - Engineering, Modeling, Simulation and Analysis",subtitle:null,isOpenForSubmission:!0,hash:"677fbbd5fc2550e8be540f40c0969a62",slug:null,bookSignature:"Dr. Tien Manh Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7772.jpg",editedByType:null,editors:[{id:"210657",title:"Dr.",name:"Tien",surname:"Nguyen",slug:"tien-nguyen",fullName:"Tien Nguyen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7783",title:"Polyimide for Electronic and Electrical Engineering Applications",subtitle:null,isOpenForSubmission:!0,hash:"736e80c9bf791829c9a74ac05abb04b7",slug:null,bookSignature:"Dr. Sombel Diaham",coverURL:"https://cdn.intechopen.com/books/images_new/7783.jpg",editedByType:null,editors:[{id:"57115",title:"Dr.",name:"Sombel",surname:"Diaham",slug:"sombel-diaham",fullName:"Sombel Diaham"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8031",title:"Pavement Engineering",subtitle:null,isOpenForSubmission:!0,hash:"1d8ae1b3b3a208c2b16c1ff852e14207",slug:null,bookSignature:"Dr. Sameh Zaghloul",coverURL:"https://cdn.intechopen.com/books/images_new/8031.jpg",editedByType:null,editors:[{id:"269407",title:"Dr.",name:"Sameh",surname:"Zaghloul",slug:"sameh-zaghloul",fullName:"Sameh Zaghloul"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8084",title:"Mechanical Properties of Bamboo",subtitle:null,isOpenForSubmission:!0,hash:"93a82c83d0f81eace906cc1f99809495",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/8084.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:35},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:32},{group:"topic",caption:"Business, Management and Economics",value:7,count:9},{group:"topic",caption:"Chemistry",value:8,count:29},{group:"topic",caption:"Computer and Information Science",value:9,count:26},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:14},{group:"topic",caption:"Engineering",value:11,count:75},{group:"topic",caption:"Environmental Sciences",value:12,count:13},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:37},{group:"topic",caption:"Mathematics",value:15,count:14},{group:"topic",caption:"Medicine",value:16,count:137},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:5},{group:"topic",caption:"Neuroscience",value:18,count:6},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:8},{group:"topic",caption:"Physics",value:20,count:19},{group:"topic",caption:"Psychology",value:21,count:2},{group:"topic",caption:"Robotics",value:22,count:6},{group:"topic",caption:"Social Sciences",value:23,count:13},{group:"topic",caption:"Technology",value:24,count:10},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3},{group:"topic",caption:"Intelligent System",value:535,count:1}],offset:12,limit:12,total:109},popularBooks:{featuredBooks:[{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7614",title:"Fourier Transforms",subtitle:"Century of Digitalization and Increasing Expectations",isOpenForSubmission:!1,hash:"ff3501657ae983a3b42fef1f7058ac91",slug:"fourier-transforms-century-of-digitalization-and-increasing-expectations",bookSignature:"Goran S. Nikoli? and Dragana Z. Markovi?-Nikoli?",coverURL:"https://cdn.intechopen.com/books/images_new/7614.jpg",editors:[{id:"23261",title:"Prof.",name:"Goran",middleName:"S.",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7087",title:"Tendons",subtitle:null,isOpenForSubmission:!1,hash:"786abac0445c102d1399a1e727a2db7f",slug:"tendons",bookSignature:"Hasan Sözen",coverURL:"https://cdn.intechopen.com/books/images_new/7087.jpg",editors:[{id:"161402",title:"Dr.",name:"Hasan",middleName:null,surname:"Sözen",slug:"hasan-sozen",fullName:"Hasan Sözen"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,isOpenForSubmission:!1,hash:"61c627da05b2ace83056d11357bdf361",slug:"current-topics-in-neglected-tropical-diseases",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",editors:[{id:"131400",title:"Dr.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7610",title:"Renewable and Sustainable Composites",subtitle:null,isOpenForSubmission:!1,hash:"c2de26c3d329c54f093dc3f05417500a",slug:"renewable-and-sustainable-composites",bookSignature:"António B. Pereira and Fábio A. O. Fernandes",coverURL:"https://cdn.intechopen.com/books/images_new/7610.jpg",editors:[{id:"211131",title:"Prof.",name:"António",middleName:"Bastos",surname:"Pereira",slug:"antonio-pereira",fullName:"António Pereira"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8416",title:"Non-Equilibrium Particle Dynamics",subtitle:null,isOpenForSubmission:!1,hash:"2c3add7639dcd1cb442cb4313ea64e3a",slug:"non-equilibrium-particle-dynamics",bookSignature:"Albert S. Kim",coverURL:"https://cdn.intechopen.com/books/images_new/8416.jpg",editors:[{id:"21045",title:"Prof.",name:"Albert S.",middleName:null,surname:"Kim",slug:"albert-s.-kim",fullName:"Albert S. Kim"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8008",title:"Antioxidants",subtitle:null,isOpenForSubmission:!1,hash:"76361b4061e830906267933c1c670027",slug:"antioxidants",bookSignature:"Emad Shalaby",coverURL:"https://cdn.intechopen.com/books/images_new/8008.jpg",editors:[{id:"63600",title:"Prof.",name:"Emad",middleName:null,surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4392},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7614",title:"Fourier Transforms",subtitle:"Century of Digitalization and Increasing Expectations",isOpenForSubmission:!1,hash:"ff3501657ae983a3b42fef1f7058ac91",slug:"fourier-transforms-century-of-digitalization-and-increasing-expectations",bookSignature:"Goran S. Nikoli? and Dragana Z. Markovi?-Nikoli?",coverURL:"https://cdn.intechopen.com/books/images_new/7614.jpg",editors:[{id:"23261",title:"Prof.",name:"Goran",middleName:"S.",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7087",title:"Tendons",subtitle:null,isOpenForSubmission:!1,hash:"786abac0445c102d1399a1e727a2db7f",slug:"tendons",bookSignature:"Hasan Sözen",coverURL:"https://cdn.intechopen.com/books/images_new/7087.jpg",editors:[{id:"161402",title:"Dr.",name:"Hasan",middleName:null,surname:"Sözen",slug:"hasan-sozen",fullName:"Hasan Sözen"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,isOpenForSubmission:!1,hash:"61c627da05b2ace83056d11357bdf361",slug:"current-topics-in-neglected-tropical-diseases",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",editors:[{id:"131400",title:"Dr.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7610",title:"Renewable and Sustainable Composites",subtitle:null,isOpenForSubmission:!1,hash:"c2de26c3d329c54f093dc3f05417500a",slug:"renewable-and-sustainable-composites",bookSignature:"António B. Pereira and Fábio A. O. Fernandes",coverURL:"https://cdn.intechopen.com/books/images_new/7610.jpg",editors:[{id:"211131",title:"Prof.",name:"António",middleName:"Bastos",surname:"Pereira",slug:"antonio-pereira",fullName:"António Pereira"}],productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8463",title:"Pediatric Surgery, Flowcharts and Clinical Algorithms",subtitle:null,isOpenForSubmission:!1,hash:"23f39beea4d557b0ae424e2eaf82bf5e",slug:"pediatric-surgery-flowcharts-and-clinical-algorithms",bookSignature:"Sameh Shehata",coverURL:"https://cdn.intechopen.com/books/images_new/8463.jpg",editedByType:"Edited by",editors:[{id:"37518",title:"Prof.",name:"Sameh",middleName:null,surname:"Shehata",slug:"sameh-shehata",fullName:"Sameh Shehata"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7187",title:"Osteosarcoma",subtitle:"Diagnosis, Mechanisms, and Translational Developments",isOpenForSubmission:!1,hash:"89096359b754beb806eca4c6d8aacaba",slug:"osteosarcoma-diagnosis-mechanisms-and-translational-developments",bookSignature:"Matthew Gregory Cable and Robert Lawrence Randall",coverURL:"https://cdn.intechopen.com/books/images_new/7187.jpg",editedByType:"Edited by",editors:[{id:"265693",title:"Dr.",name:"Matthew Gregory",middleName:null,surname:"Cable",slug:"matthew-gregory-cable",fullName:"Matthew Gregory Cable"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editedByType:"Edited by",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editedByType:"Edited by",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"e7ea7e74ce7a7a8e5359629e07c68d31",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",editedByType:"Edited by",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8256",title:"Distillation",subtitle:"Modelling, Simulation and Optimization",isOpenForSubmission:!1,hash:"c76af109f83e14d915e5cb3949ae8b80",slug:"distillation-modelling-simulation-and-optimization",bookSignature:"Vilmar Steffen",coverURL:"https://cdn.intechopen.com/books/images_new/8256.jpg",editedByType:"Edited by",editors:[{id:"189035",title:"Dr.",name:"Vilmar",middleName:null,surname:"Steffen",slug:"vilmar-steffen",fullName:"Vilmar Steffen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7240",title:"Growing and Handling of Bacterial Cultures",subtitle:null,isOpenForSubmission:!1,hash:"a76c3ef7718c0b72d0128817cdcbe6e3",slug:"growing-and-handling-of-bacterial-cultures",bookSignature:"Madhusmita Mishra",coverURL:"https://cdn.intechopen.com/books/images_new/7240.jpg",editedByType:"Edited by",editors:[{id:"204267",title:"Dr.",name:"Madhusmita",middleName:null,surname:"Mishra",slug:"madhusmita-mishra",fullName:"Madhusmita Mishra"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editedByType:"Edited by",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editedByType:"Edited by",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editedByType:"Edited by",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1082",title:"Hemato-Oncology",slug:"medicine-oncology-hemato-oncology",parent:{title:"Oncology",slug:"medicine-oncology"},numberOfBooks:18,numberOfAuthorsAndEditors:633,numberOfWosCitations:144,numberOfCrossrefCitations:72,numberOfDimensionsCitations:208,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"medicine-oncology-hemato-oncology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editedByType:"Edited by",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7148",title:"Peripheral T-cell Lymphomas",subtitle:null,isOpenForSubmission:!1,hash:"6d80a51035b7432acf6007837213bf1a",slug:"peripheral-t-cell-lymphomas",bookSignature:"Pier Paolo Piccaluga",coverURL:"https://cdn.intechopen.com/books/images_new/7148.jpg",editedByType:"Edited by",editors:[{id:"76041",title:"Prof.",name:"Pier Paolo",middleName:null,surname:"Piccaluga",slug:"pier-paolo-piccaluga",fullName:"Pier Paolo Piccaluga"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4693",title:"Leukemias",subtitle:"Updates and New Insights",isOpenForSubmission:!1,hash:"712deeb184e239325a85dc8994162784",slug:"leukemias-updates-and-new-insights",bookSignature:"Margarita Guenova and Gueorgui Balatzenko",coverURL:"https://cdn.intechopen.com/books/images_new/4693.jpg",editedByType:"Edited by",editors:[{id:"52938",title:"Prof.",name:"Margarita",middleName:null,surname:"Guenova",slug:"margarita-guenova",fullName:"Margarita Guenova"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3260",title:"Leukemia",subtitle:null,isOpenForSubmission:!1,hash:"e335e57920a2bb992b243e14b22341f1",slug:"leukemia",bookSignature:"Margarita Guenova and Gueorgui Balatzenko",coverURL:"https://cdn.intechopen.com/books/images_new/3260.jpg",editedByType:"Edited by",editors:[{id:"52938",title:"Prof.",name:"Margarita",middleName:null,surname:"Guenova",slug:"margarita-guenova",fullName:"Margarita Guenova"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3292",title:"Clinical Epidemiology of Acute Lymphoblastic Leukemia",subtitle:"From the Molecules to the Clinic",isOpenForSubmission:!1,hash:"096a7b5fba63e475141912ac41b802b5",slug:"clinical-epidemiology-of-acute-lymphoblastic-leukemia-from-the-molecules-to-the-clinic",bookSignature:"Juan Manuel Mejia-Arangure",coverURL:"https://cdn.intechopen.com/books/images_new/3292.jpg",editedByType:"Edited by",editors:[{id:"31782",title:"Dr.",name:"Juan Manuel",middleName:null,surname:"Mejia-Arangure",slug:"juan-manuel-mejia-arangure",fullName:"Juan Manuel Mejia-Arangure"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3386",title:"Multiple Myeloma",subtitle:"A Quick Reflection on the Fast Progress",isOpenForSubmission:!1,hash:"e17fb4e84fd9ca172a59ea4fbffa9440",slug:"multiple-myeloma-a-quick-reflection-on-the-fast-progress",bookSignature:"Roman Hajek",coverURL:"https://cdn.intechopen.com/books/images_new/3386.jpg",editedByType:"Edited by",editors:[{id:"92830",title:"Prof.",name:"Roman",middleName:null,surname:"Hajek",slug:"roman-hajek",fullName:"Roman Hajek"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"557",title:"Basal Cell Carcinoma",subtitle:null,isOpenForSubmission:!1,hash:"dd0763df8ea7cbd071651b7752ddcebc",slug:"basal-cell-carcinoma",bookSignature:"Vishal Madan",coverURL:"https://cdn.intechopen.com/books/images_new/557.jpg",editedByType:"Edited by",editors:[{id:"68402",title:"Dr.",name:"Vishal",middleName:null,surname:"Madan",slug:"vishal-madan",fullName:"Vishal Madan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"826",title:"Tumor Angiogenesis",subtitle:null,isOpenForSubmission:!1,hash:"b7623895df0aba62ffdeed2e9588df06",slug:"tumor-angiogenesis",bookSignature:"Sophia Ran",coverURL:"https://cdn.intechopen.com/books/images_new/826.jpg",editedByType:"Edited by",editors:[{id:"79980",title:"Dr.",name:"Sophia",middleName:null,surname:"Ran",slug:"sophia-ran",fullName:"Sophia Ran"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"978",title:"Carcinogenesis, Diagnosis, and Molecular Targeted Treatment for Nasopharyngeal Carcinoma",subtitle:null,isOpenForSubmission:!1,hash:"ce089e617eeb0d21c7a57a58950ef71e",slug:"carcinogenesis-diagnosis-and-molecular-targeted-treatment-for-nasopharyngeal-carcinoma",bookSignature:"Shih-Shun Chen",coverURL:"https://cdn.intechopen.com/books/images_new/978.jpg",editedByType:"Edited by",editors:[{id:"83651",title:"Dr.",name:"Shih-Shun",middleName:null,surname:"Chen",slug:"shih-shun-chen",fullName:"Shih-Shun Chen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"946",title:"Advancements in Tumor Immunotherapy and Cancer Vaccines",subtitle:null,isOpenForSubmission:!1,hash:"aa9eb0c98931a6c6e516ecf1962f99a4",slug:"advancements-in-tumor-immunotherapy-and-cancer-vaccines",bookSignature:"Hilal Arnouk",coverURL:"https://cdn.intechopen.com/books/images_new/946.jpg",editedByType:"Edited by",editors:[{id:"76431",title:"Dr.",name:"Hilal",middleName:null,surname:"Arnouk",slug:"hilal-arnouk",fullName:"Hilal Arnouk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"732",title:"Multiple Myeloma",subtitle:"An Overview",isOpenForSubmission:!1,hash:"e7fcdb785cb4e7848e809fd2a8caf2b4",slug:"multiple-myeloma-an-overview",bookSignature:"Ajay Gupta",coverURL:"https://cdn.intechopen.com/books/images_new/732.jpg",editedByType:"Edited by",editors:[{id:"93784",title:"Dr.",name:"Ajay",middleName:null,surname:"Gupta",slug:"ajay-gupta",fullName:"Ajay Gupta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1953",title:"Myeloid Leukemia",subtitle:"Clinical Diagnosis and Treatment",isOpenForSubmission:!1,hash:"b4ca26bff5ca8033e1cf276ffa80d275",slug:"myeloid-leukemia-clinical-diagnosis-and-treatment",bookSignature:"Steffen Koschmieder and Utz Krug",coverURL:"https://cdn.intechopen.com/books/images_new/1953.jpg",editedByType:"Edited by",editors:[{id:"72872",title:"Dr",name:"Steffen",middleName:null,surname:"Koschmieder",slug:"steffen-koschmieder",fullName:"Steffen Koschmieder"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:18,mostCitedChapters:[{id:"26499",doi:"10.5772/31679",title:"Proteasome Inhibitors in the Treatment of Multiple Myeloma",slug:"targeting-the-proteasome-in-myeloma-current-achievements-and-future-prospects-",totalDownloads:2368,totalCrossrefCites:0,totalDimensionsCites:7,book:{slug:"multiple-myeloma-an-overview",title:"Multiple Myeloma",fullTitle:"Multiple Myeloma - An Overview"},signatures:"Lisa J. Crawford and Alexandra E. Irvine",authors:[{id:"88220",title:"Dr.",name:"Alexandra",middleName:null,surname:"Irvine",slug:"alexandra-irvine",fullName:"Alexandra Irvine"}]},{id:"25130",doi:"10.5772/21239",title:"Chemotherapy Toxicity in Patients with Acute Leukemia",slug:"chemotherapy-toxicity-in-patients-with-acute-leukemia",totalDownloads:5748,totalCrossrefCites:1,totalDimensionsCites:6,book:{slug:"acute-leukemia-the-scientist-s-perspective-and-challenge",title:"Acute Leukemia",fullTitle:"Acute Leukemia - The Scientist's Perspective and Challenge"},signatures:"Jose Manuel Vagace and Guillermo Gervasini",authors:[{id:"42389",title:"Prof.",name:"José Manuel",middleName:null,surname:"Vagace",slug:"jose-manuel-vagace",fullName:"José Manuel Vagace"},{id:"53697",title:"Prof.",name:"Guillermo",middleName:null,surname:"Gervasini",slug:"guillermo-gervasini",fullName:"Guillermo Gervasini"}]},{id:"23639",doi:"10.5772/28012",title:"Ophthalmological Manifestations in Acute Lymphoblastic Leukemia",slug:"ophthalmological-manifestations-in-acute-lymphoblastic-leukemia",totalDownloads:9074,totalCrossrefCites:3,totalDimensionsCites:6,book:{slug:"novel-aspects-in-acute-lymphoblastic-leukemia",title:"Novel Aspects in Acute Lymphoblastic Leukemia",fullTitle:"Novel Aspects in Acute Lymphoblastic Leukemia"},signatures:"Javier Mateo, Francisco J. Ascaso, Esther Núñez, Carlos Peiro, Gonzalo González and José A. Cristóbal",authors:[{id:"34180",title:"Prof.",name:"Francisco",middleName:"J.",surname:"Ascaso",slug:"francisco-ascaso",fullName:"Francisco Ascaso"},{id:"72421",title:"Dr.",name:"Javier",middleName:null,surname:"Mateo Gabas",slug:"javier-mateo-gabas",fullName:"Javier Mateo Gabas"},{id:"139398",title:"Dr.",name:"Esther",middleName:null,surname:"Nunez",slug:"esther-nunez",fullName:"Esther Nunez"},{id:"139399",title:"Dr.",name:"Carlos",middleName:null,surname:"Peiro",slug:"carlos-peiro",fullName:"Carlos Peiro"},{id:"139400",title:"Dr.",name:"Gonzalo",middleName:null,surname:"Gonzales",slug:"gonzalo-gonzales",fullName:"Gonzalo Gonzales"},{id:"139401",title:"Dr.",name:"Jose Angel",middleName:null,surname:"Cristobal",slug:"jose-angel-cristobal",fullName:"Jose Angel Cristobal"}]}],mostDownloadedChaptersLast30Days:[{id:"44045",title:"Pathophysiology of Acute Lymphoblastic Leukemia",slug:"pathophysiology-of-acute-lymphoblastic-leukemia",totalDownloads:4211,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"clinical-epidemiology-of-acute-lymphoblastic-leukemia-from-the-molecules-to-the-clinic",title:"Clinical Epidemiology of Acute Lymphoblastic Leukemia",fullTitle:"Clinical Epidemiology of Acute Lymphoblastic Leukemia - From the Molecules to the Clinic"},signatures:"M. P. Gallegos-Arreola, C. Borjas-Gutiérrez, G. M. Zúñiga-González, L. E. Figuera, A. M. Puebla-Pérez and J. R. García-González",authors:[{id:"72343",title:"Dr.",name:"Zùñiga",middleName:null,surname:"Guillermo",slug:"zuniga-guillermo",fullName:"Zùñiga Guillermo"},{id:"72358",title:"Dr.",name:"Puebla",middleName:null,surname:"Ana Maria",slug:"puebla-ana-maria",fullName:"Puebla Ana Maria"},{id:"146897",title:"Dr.",name:"Luis",middleName:null,surname:"Figuera",slug:"luis-figuera",fullName:"Luis Figuera"},{id:"155932",title:"Ph.D.",name:"Gallegos",middleName:null,surname:"Martha Patricia",slug:"gallegos-martha-patricia",fullName:"Gallegos Martha Patricia"},{id:"158893",title:"Dr.",name:"Borgas",middleName:null,surname:"Cesar",slug:"borgas-cesar",fullName:"Borgas Cesar"},{id:"158897",title:"Dr.",name:"Garcia",middleName:null,surname:"Juan Ramon",slug:"garcia-juan-ramon",fullName:"Garcia Juan Ramon"}]},{id:"66323",title:"Gamma-Delta T-cell Lymphoma: An Overview",slug:"gamma-delta-t-cell-lymphoma-an-overview",totalDownloads:873,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"peripheral-t-cell-lymphomas",title:"Peripheral T-cell Lymphomas",fullTitle:"Peripheral T-cell Lymphomas"},signatures:"Preethi Ramachandran, Alok Aggarwal and Jen Chin Wang",authors:[{id:"211188",title:"Prof.",name:"Jen Chin",middleName:null,surname:"Wang",slug:"jen-chin-wang",fullName:"Jen Chin Wang"},{id:"257153",title:"Dr.",name:"Preethi",middleName:null,surname:"Ramachandran",slug:"preethi-ramachandran",fullName:"Preethi Ramachandran"},{id:"298697",title:"Dr.",name:"Alok",middleName:null,surname:"Aggarwal",slug:"alok-aggarwal",fullName:"Alok Aggarwal"}]},{id:"44617",title:"Genetics of Acute Lymphoblastic Leukemia",slug:"genetics-of-acute-lymphoblastic-leukemia",totalDownloads:3615,totalCrossrefCites:0,totalDimensionsCites:3,book:{slug:"leukemia",title:"Leukemia",fullTitle:"Leukemia"},signatures:"Ruth Maribel Forero, María Hernández and Jesús María Hernández-\nRivas",authors:[{id:"73769",title:"Prof.",name:"Jesús-María",middleName:null,surname:"Hernández",slug:"jesus-maria-hernandez",fullName:"Jesús-María Hernández"}]},{id:"25114",title:"Classification of Acute Leukemia",slug:"classification-of-acute-leukemia",totalDownloads:38286,totalCrossrefCites:1,totalDimensionsCites:5,book:{slug:"acute-leukemia-the-scientist-s-perspective-and-challenge",title:"Acute Leukemia",fullTitle:"Acute Leukemia - The Scientist's Perspective and Challenge"},signatures:"Gamal Abdul-Hamid",authors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}]},{id:"44629",title:"Acute Leukemia Clinical Presentation",slug:"acute-leukemia-clinical-presentation",totalDownloads:5774,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"leukemia",title:"Leukemia",fullTitle:"Leukemia"},signatures:"Gamal Abdul Hamid",authors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}]},{id:"44135",title:"Acute Lymphoblastic Leukemia in Children",slug:"acute-lymphoblastic-leukemia-in-children",totalDownloads:2152,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"leukemia",title:"Leukemia",fullTitle:"Leukemia"},signatures:"Jelena Roganovic",authors:[{id:"43479",title:"Prof.",name:"Jelena",middleName:null,surname:"Roganovic",slug:"jelena-roganovic",fullName:"Jelena Roganovic"}]},{id:"44720",title:"Modern Therapy of Chronic Myeloid Leukemia",slug:"modern-therapy-of-chronic-myeloid-leukemia",totalDownloads:2648,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"leukemia",title:"Leukemia",fullTitle:"Leukemia"},signatures:"M.M. Zaharieva, G. Amudov, S.M. Konstantinov and M. L. Guenova",authors:[{id:"52938",title:"Prof.",name:"Margarita",middleName:null,surname:"Guenova",slug:"margarita-guenova",fullName:"Margarita Guenova"},{id:"166170",title:"Prof.",name:"Spiro",middleName:null,surname:"Konstantinov",slug:"spiro-konstantinov",fullName:"Spiro Konstantinov"},{id:"166172",title:"Dr.",name:"Maya",middleName:null,surname:"Zaharieva",slug:"maya-zaharieva",fullName:"Maya Zaharieva"},{id:"166457",title:"Dr.",name:"G.",middleName:null,surname:"Amudov",slug:"g.-amudov",fullName:"G. Amudov"}]},{id:"66436",title:"Precision Medicine Concepts in T-Cell Lymphoma",slug:"precision-medicine-concepts-in-t-cell-lymphoma",totalDownloads:197,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"peripheral-t-cell-lymphomas",title:"Peripheral T-cell Lymphomas",fullTitle:"Peripheral T-cell Lymphomas"},signatures:"Philipp Staber",authors:[{id:"257371",title:"Associate Prof.",name:"Philipp",middleName:null,surname:"Staber",slug:"philipp-staber",fullName:"Philipp Staber"}]},{id:"25115",title:"Diagnosis of Acute Leukemia in Under-Resourced Laboratories",slug:"diagnosis-of-acute-leukemia-in-under-resourced-laboratories",totalDownloads:6509,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"acute-leukemia-the-scientist-s-perspective-and-challenge",title:"Acute Leukemia",fullTitle:"Acute Leukemia - The Scientist's Perspective and Challenge"},signatures:"Abbas H. Abdulsalam",authors:[{id:"36244",title:"Dr.",name:"Abbas H.",middleName:"Hashim",surname:"Abdulsalam",slug:"abbas-h.-abdulsalam",fullName:"Abbas H. Abdulsalam"}]},{id:"49502",title:"Update on Non-M3 Acute Myeloid Leukemia — Etiology, Classification, Risk Stratification, Emergencies, Complications, Disease in Special Circumstances and Current and Future Therapeutics",slug:"update-on-non-m3-acute-myeloid-leukemia-etiology-classification-risk-stratification-emergencies-comp",totalDownloads:734,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"leukemias-updates-and-new-insights",title:"Leukemias",fullTitle:"Leukemias - Updates and New Insights"},signatures:"Khalid Ahmed Al-Anazi",authors:[{id:"37255",title:"Dr.",name:"Khalid Ahmed",middleName:null,surname:"Al-Anazi",slug:"khalid-ahmed-al-anazi",fullName:"Khalid Ahmed Al-Anazi"}]}],onlineFirstChaptersFilter:{topicSlug:"medicine-oncology-hemato-oncology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"6837",title:"Lithium-ion Batteries - Thin Film for Energy Materials and Devices",subtitle:null,isOpenForSubmission:!0,hash:"ea7789260b319b9a4b472257f57bfeb5",slug:null,bookSignature:"Prof. Mitsunobu Sato, Dr. Li Lu and Dr. Hiroki Nagai",coverURL:"https://cdn.intechopen.com/books/images_new/6837.jpg",editedByType:null,editors:[{id:"179615",title:"Prof.",name:"Mitsunobu",middleName:null,surname:"Sato",slug:"mitsunobu-sato",fullName:"Mitsunobu Sato"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9423",title:"Applications of Artificial Intelligence in Process Industry Automation, Heat and Power Generation and Smart Manufacturing",subtitle:null,isOpenForSubmission:!0,hash:"10ac8fb0bdbf61044395963028653d21",slug:null,bookSignature:"Prof. Konstantinos G. Kyprianidis and Prof. Erik Dahlquist",coverURL:"https://cdn.intechopen.com/books/images_new/9423.jpg",editedByType:null,editors:[{id:"35868",title:"Prof.",name:"Konstantinos",middleName:"G.",surname:"Kyprianidis",slug:"konstantinos-kyprianidis",fullName:"Konstantinos Kyprianidis"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9428",title:"New Trends in the Use of Artificial Intelligence for the Industry 4.0",subtitle:null,isOpenForSubmission:!0,hash:"9e089eec484ce8e9eb32198c2d8b34ea",slug:null,bookSignature:"Dr. Luis Romeral Martinez, Dr. Roque A. Osornio-Rios and Dr. Miguel Delgado Prieto",coverURL:"https://cdn.intechopen.com/books/images_new/9428.jpg",editedByType:null,editors:[{id:"86501",title:"Dr.",name:"Luis",middleName:null,surname:"Romeral Martinez",slug:"luis-romeral-martinez",fullName:"Luis Romeral Martinez"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10107",title:"Artificial Intelligence in Oncology Drug Discovery & Development",subtitle:null,isOpenForSubmission:!0,hash:"043c178c3668865ab7d35dcb2ceea794",slug:null,bookSignature:"Dr. John Cassidy and Dr. Belle Taylor",coverURL:"https://cdn.intechopen.com/books/images_new/10107.jpg",editedByType:null,editors:[{id:"244455",title:"Dr.",name:"John",middleName:null,surname:"Cassidy",slug:"john-cassidy",fullName:"John Cassidy"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8903",title:"Carbon Based Material for Environmental Protection and Remediation",subtitle:null,isOpenForSubmission:!0,hash:"19da699b370f320eca63ef2ba02f745d",slug:null,bookSignature:"Dr. Mattia Bartoli and Dr. Marco Frediani",coverURL:"https://cdn.intechopen.com/books/images_new/8903.jpg",editedByType:null,editors:[{id:"188999",title:"Dr.",name:"Mattia",middleName:null,surname:"Bartoli",slug:"mattia-bartoli",fullName:"Mattia Bartoli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10132",title:"Applied Computational Near-surface Geophysics - From Integral and Derivative Formulas to MATLAB Codes",subtitle:null,isOpenForSubmission:!0,hash:"38cdbbb671df620b36ee96af1d9a3a90",slug:null,bookSignature:"Dr. Afshin Aghayan",coverURL:"https://cdn.intechopen.com/books/images_new/10132.jpg",editedByType:null,editors:[{id:"311030",title:"Dr.",name:"Afshin",middleName:null,surname:"Aghayan",slug:"afshin-aghayan",fullName:"Afshin Aghayan"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10110",title:"Advances and Technologies in Building Construction and Structural Analysis",subtitle:null,isOpenForSubmission:!0,hash:"df2ad14bc5588577e8bf0b7ebcdafd9d",slug:null,bookSignature:"Dr. Ali Kaboli and Dr. Sara Shirowzhan",coverURL:"https://cdn.intechopen.com/books/images_new/10110.jpg",editedByType:null,editors:[{id:"309192",title:"Dr.",name:"Ali",middleName:null,surname:"Kaboli",slug:"ali-kaboli",fullName:"Ali Kaboli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10175",title:"Ethics in Emerging Technologies",subtitle:null,isOpenForSubmission:!0,hash:"9c92da249676e35e2f7476182aa94e84",slug:null,bookSignature:"Prof. Ali Hessami",coverURL:"https://cdn.intechopen.com/books/images_new/10175.jpg",editedByType:null,editors:[{id:"108303",title:"Prof.",name:"Ali",middleName:null,surname:"Hessami",slug:"ali-hessami",fullName:"Ali Hessami"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:16},humansInSpaceProgram:{},teamHumansInSpaceProgram:{},route:{name:"profile.detail",path:"/profiles/54147/maria-rosaria-colangelo",hash:"",query:{},params:{id:"54147",slug:"maria-rosaria-colangelo"},fullPath:"/profiles/54147/maria-rosaria-colangelo",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()