\r\n\tIn sum, the book presents a reflective analysis of the pedagogical hubs for a changing world, considering the most fundamental areas of the current contingencies in education.
",isbn:"978-1-83968-793-8",printIsbn:"978-1-83968-792-1",pdfIsbn:"978-1-83968-794-5",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"b01f9136149277b7e4cbc1e52bce78ec",bookSignature:"Dr. María Jose Hernandez-Serrano",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10229.jpg",keywords:"Teacher Digital Competences, Flipped Learning, Online Resources Design, Neuroscientific Literacy (Myths), Emotions and Learning, Multisensory Stimulation, Citizen Skills, Violence Prevention, Moral Development, Universal Design for Learning, Sensitizing on Diversity, Supportive Strategies",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 14th 2020",dateEndSecondStepPublish:"October 12th 2020",dateEndThirdStepPublish:"December 11th 2020",dateEndFourthStepPublish:"March 1st 2021",dateEndFifthStepPublish:"April 30th 2021",remainingDaysToSecondStep:"3 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Dr. Phil. Maria Jose Hernandez Serrano is a tenured lecturer in the Department of Theory and History of Education at the University of Salamanca, where she currently teaches on Teacher Education. She graduated in Social Education (2000) and Psycho-Pedagogy (2003) at the University of Salamanca. Then, she obtained her European Ph.D. in Education and Training in Virtual Environments by research with the University of Manchester, UK (2009).",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"187893",title:"Dr.",name:"María Jose",middleName:null,surname:"Hernandez-Serrano",slug:"maria-jose-hernandez-serrano",fullName:"María Jose Hernandez-Serrano",profilePictureURL:"https://mts.intechopen.com/storage/users/187893/images/system/187893.jpg",biography:"DPhil Maria Jose Hernandez Serrano is a tenured Lecturer in the Department of Theory and History of Education at the University of Salamanca (Spain), where she currently teaches on Teacher Education. She graduated in Social Education (2000) and Psycho-Pedagogy (2003) at the University of Salamanca. Then, she obtained her European Ph.D. on Education and Training in Virtual Environments by research with the University of Manchester, UK (2009). She obtained a Visiting Scholar Postdoctoral Grant (of the British Academy, UK) at the Oxford Internet Institute of the University of Oxford (2011) and was granted with a postdoctoral research (in 2021) at London Birbeck University.\n \nShe is author of more than 20 research papers, and more than 35 book chapters (H Index 10). She is interested in the study of the educational process and the analysis of cognitive and affective processes in the context of neuroeducation and neurotechnologies, along with the study of social contingencies affecting the educational institutions and requiring new skills for educators.\n\nHer publications are mainly of the educational process mediated by technologies and digital competences. Currently, her new research interests are: the transdisciplinary application of the brain-based research to the educational context and virtual environments, and the neuropedagogical implications of the technologies on the development of the brain in younger students. Also, she is interested in the promotion of creative and critical uses of digital technologies, the emerging uses of social media and transmedia, and the informal learning through technologies.\n\nShe is a member of several research Networks and Scientific Committees in international journals on Educational Technologies and Educommunication, and collaborates as a reviewer in several prestigious journals (see public profile in Publons).\n\nUntil March 2010 she was in charge of the Adult University of Salamanca, by coordinating teaching activities of more than a thousand adult students. She currently is, since 2014, the Secretary of the Department of Theory and History of Education. Since 2015 she collaborates with the Council Educational Program by training teachers and families in the translation of advances from educational neuroscience.",institutionString:"University of Salamanca",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Salamanca",institutionURL:null,country:{name:"Spain"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"23",title:"Social Sciences",slug:"social-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"301331",firstName:"Mia",lastName:"Vulovic",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/301331/images/8498_n.jpg",email:"mia.v@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6942",title:"Global Social Work",subtitle:"Cutting Edge Issues and Critical Reflections",isOpenForSubmission:!1,hash:"222c8a66edfc7a4a6537af7565bcb3de",slug:"global-social-work-cutting-edge-issues-and-critical-reflections",bookSignature:"Bala Raju Nikku",coverURL:"https://cdn.intechopen.com/books/images_new/6942.jpg",editedByType:"Edited by",editors:[{id:"263576",title:"Dr.",name:"Bala",surname:"Nikku",slug:"bala-nikku",fullName:"Bala Nikku"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"17760",title:"Approaches in Gene Therapy of Cancer and Cardiovascular Diseases",doi:"10.5772/18280",slug:"approaches-in-gene-therapy-of-cancer-and-cardiovascular-diseases",body:'In this chapter we will focus on few topics. First, we summarize and discuss angiogenic gene therapy of cancer and cardiovascular diseases, with RNA interference in a separate section. Second, we briefly review delivering systems in gene therapy, their advatages and limitations and further focus on bacterial vectors. Last, we summarize antioxidant gene therapy of cardiovascular diseases and hypertension.
Considering the fact that the fundamental discoveries and new findings in medicine are being crystallized on genetic and genomic levels, gene therapy is one of the potential mechanisms for therapeutic intervention. Gene therapy in a broad sense, i.e. all the therapeutic strategies employing nucleic acids as carriers of genetic information, found its utilization in most areas of medicine, including angiogenesis research. Similarly to classical “non-gene“ therapy, the research in gene therapy is happening on the preclinical level using appropriate animal models, with cancer and cardiovascular diseases being the most abundant indications. There are several different strategies known. Besides the delivery of therapeutic gene (replacement of the mutated gene by a functional one or delivery of the gene because of lack of the gene product), novel strategies are also being widely used based on blocking the function of a specific gene by application of RNA interference inducing sequences, antisense inhibition etc.
One of the key advantages of gene approaches is the endogenous production of the therapeutic molecule. Furthermore, targeted gene delivery specifically into the target tissue or only to a certain cell type can dramatically decrease the likelihood of adverse effects. Along with the development of new vectors and regulatory systems, the ability to control the expression of therapeutic gene in time and space is being improved. This is of great importance in affecting such complex and complicated processes as angiogenesis. Currently, almost three quarters of indications addressed by gene therapy clinical trials are represented by cancer and cardiovascular diseases
After birth, angiogenesis still contributes to organ growth. However, in adults, the majority of blood vessels remains in quiescence with the most active angiogenesis during menstruation cycle in the uterus and pregnancy in the placenta. In spite of this, endothelial cells do preserve the ability to quickly proliferate and react to physiological stimulus such as hypoxia and inflammation.
If the stimulus is too excessive, the fine balance between stimulants and inhibitors can be disrupted and thus lead to so-called “angiogenic switch”. The best described pathological states with dysregulated angiogenesis include cancer, cardiovascular disorders, inflammatory eye disorders as well as many other processes such as obesity, metabolic diseases, asthma, diabetes mellitus, cirrhosis, sclerosis multiplex, rheumatoid arthritis, macular degeneration, psoriasis, atherosclerosis, restenosis, diabetic retinopathy, endometriosis, bacterial infections and autoimmune diseases (Cao, 2010; Webb & Vande Woude, 2000).
Gene therapy-based angiogenesis inhibiting strategies have gained much attention thanks to their advantages over the conventional antiangiogenic treatments. Given that effective inhibition of pathological angiogenesis requires long term treatment, gene therapy may be of importance for selective gene transfer to the affected areas and prolonged expression of therapeutic genes. Apart from that, gene therapy provides a possibility to circumvent the issues associated with recombinant proteins production, stability and solubility. Gene transfer allows for appropriate folding and stability of encoded proteins in vivo in the natural environment. An interesting advantage is also the ability to selectively target the gene transfer into certain tissues enabling localized expression and high regional drug concentration without increasing systemic levels. One of the key justifications for using gene therapy is also an insufficient efficiency of “non-gene“ therapies based on inhibition of VEGF and other growth factors signal pathways in humans (Gridelli et al., 2007). The most commonly used gene therapy approach in cancer is so called suicide cytotoxic therapy using thimidin kinase or other chemosensitizing genes that allow the conversion of inactive prodrug (ganciclovir) into a cytotoxic product (Both, 2009).
Antiangiogenic gene therapy of cancer has been tested on a preclinical level in various carcinogenesis models. Most of the studies performed so far have used viral vectors (adenoviruses, retroviruses, lentiviruses, adeno-associated viruses, herpes simplex viruses) encoding endogenous angiogenesis inhibitor genes such as cytokines/chemokines (IFN-α, IFN-β, IFN-γ, CXCL10, IL-12, IL-18, TNF-α), VEGF blockers (sFlt-1, Flk-1), proteolytic fragments (angiostatin, endostatin, vasostatin, tumstatin) and others (Persano et al., 2007). For example, in a colorectal cancer model an adenovirus-based therapy using genes encoding IFN-β (Tada et al., 2001) and endostatin (Oliner et al., 2004) as well as plasmids encoding Flk-1 (W.J. Kim et al., 2006) and tumstatin (Yao et al., 2005) have been successfully applied. In a model of malignant melanoma, retrovirus vectors carrying gene encoding CXCL10 (Feldman et al., 2002) and plasmids encoding vasostatin (Jazowiecka-Rakus et al., 2006) and MCP-1 (Koga et al., 2008) genes have been successfully used, all exerting a clear antiangiogenic effect. Recently, a systemically available antiangiogenic gene therapy using adenovirus bearing soluble VEGF receptor gene has been proven to be effective in suppressing tumor growth in various oral cancer cell line xenografts in mice (Okada et al., 2010).
Several studies have been performed using gene delivery of endogenous angiogenesis inhibitor endostatin. A liposome-encapsulated adenovirus encoding endostatin was applied in therapy of ovarian cancer (Yang et al., 2010). Systemic administration was well-tolerated and resulted in marked suppression of tumor growth, which was associated with a decreased number of micro-vessels and increased apoptosis of tumor cells. An interesting novel therapeutic approach for pancreatic cancer has been employed in a study using vaccinia virus encoding the endostatin-angiostatin fusion gene (Tysome et al., 2009). Besides high selectivity of the used vector, inhibition of angiogenesis and a clear antitumor potency has been observed. In another study, combined antiangiogenic and proapoptotic gene therapy involving endostatin and sTRIAL (soluble tumor necrosis factor-related apoptosis-inducing ligand) effectively suppressed hepatocellular carcinoma growth and angiogenesis in nude mice (Zhang et al., 2009). At last, adenovirus-mediated endostatin gene delivery combined with cisplatin treatment was effective in a lung cancer murine model (Ning et al., 2008). These studies represent a future direction in cancer research in which instead of targeting a single molecule, a combinatorial approach targeting multiple factors and/or an additional therapeutic approach is applied to cover multiple pathways of cancer progression.
Despite a relatively high number of clinical studies using cancer gene therapy, specifically antiangiogenic gene therapy has only been exploited in a few studies. Intratumoral injection of adenovirus encoding immunostimulatory cytokine IL-12 has been tested in patients with advanced gastrointestinal cancer (liver, colorectal, pancreatic tumors) in phase I study (Sangro et al., 2004). Therapy was well tolerated, although only a moderate antitumor effect was observed. In another study, plasmid bearing IL-12 gene was applied to patients with malignant melanoma (Heinzerling et al., 2005). In two out of nine patients, the disease was stabilized for period of over three years and a complete remission was achieved in one patient. In these patients, a localized reduction in angiogenesis has been proven by immunohistochemistry. However, the rest of the patients showed only temporal response to the therapy. A recent phase I clinical trial of IL-12 plasmid/lipopolymer complexes has also shown a clinical benefit in treatment of recurrent ovarian cancer without adverse events (Anwer et al., 2010). In a different phase I study, adenovirus vector carrying IFN-β gene has been used in therapy of malignant pleural mesothelioma (Sterman et al., 2007). In all the above-mentioned studies, however, inhibition of angiogenesis was not the primary goal, yet a part of the antitumor effect.
In view of the many advances in explaining the molecular mechanisms of angiogenesis high hopes were put in gene therapy. However, in the clinical studies with genes encoding for individual proangiogenic growth factors (similar to recombinant proteins) only moderate success has been observed so far, thus creating a space for development of new vectors and alternative approaches (Vincent et al., 2007).
Progress in the field of gene therapy for cardiovascular disease has been modest; one of the key reasons for this limited progress is the lack of gene delivery systems for localizing gene therapy to specific sites to optimize transgene expression and efficacy. However, progress toward the site-specific delivery of cardiovascular gene therapy is still ongoing and promising novel approaches are being tested (Fishbein et al., 2010).
A lot of studies have been performed on a preclinical level with very promising results. Angiogenic gene therapy using intramuscular injection of plasmids encoding VEGF and plasminogen activator has been applied in a mouse model of myocardial infarction (ligation of coronary artery) and hind limb ischemia (ligation of arteria femoralis) (Traktuev et al., 2007). Authors were able to detect functionally significant angiogenesis that clearly improved the pathological consequences of disease induction. The model of hind limb ischemia is actually a commonly used model to prove the efficiency of proangiogenic viral and non-viral gene delivery in ischemic disease (Schgoer et al., 2009). Bosch-Marce et al., have used this model to test adenovirus vector carrying the gene encoding for constitutively active HIF-1α, resulting in a sufficient induction of reperfusion of the affected areas even in older animals (Bosch-Marce et al., 2007). These results suggest that the HIF-1α activity is necessary and sufficient for mobilization of angiogenic cells and that gene therapy using HIF-1α gene can compensate the pathological effects of ageing. Gene therapy using gene encoding VEGF has further shown a clear beneficial effect in a rat model of myocardial infarction (Tang et al., 2010). In a mouse model of myocardial infarction, the ultrasound-targeted gene delivery of VEGF or stem cell factor resulted in increased vascular density and improved myocardial perfusion and ventricular function (Fujii et al., 2009). Yockman et al., used an ischemia-inducible plasmid construct expressing VEGF to treat myocardial ischemia and infarction (Yockman et al., 2009). Ischemia-inducible system was superior to constitutively expressed gene construct in reducing the infarct size. A different regulation system for VEGF gene delivery based on tetracycline-inducible AAV-based vector has been employed by Tafuro et al., in a hind limb ischemia model (Tafuro et al., 2009). These results clearly indicate that the fine tuning of VEGF expression is required to achieve the formation of a stable vasculature able to sustain functional neovascularization. Hypothesizing that the transient nature of VEGF gene expression provokes instability of neovasculature, Olea et al., compared single vs. repeated transfection in a rabbit model of hind limb ischemia by injecting a plasmid encoding human VEGF165 (Olea et al., 2009). Repeated, but not single, VEGF gene transfection resulted in increased microvasculature, which in turn afforded effective protection against ischemic muscle damage. Pajusola et al., have compared the virus vector-mediated delivery of genes encoding VEGF and HIF-1α into the muscle of mice (Pajusola et al., 2005). Results of this study show that HIF-1α gene therapy is able to ensure increased expression of numerous proangiogenic molecules and, thus, can circumvent the shortcomings associated with overexpression of a single growth factor. A rationale for combination proangiogenic therapy has been provided in two studies, in which a synergistic effect of concurrent application of plasmids encoding FGF-2 and PDGF-BB by intramuscular injection was observed in a rabbit/rodent hind limb ischemia model (Li et al., 2010).
Results from several interesting clinical studies have been published recently. In a phase I study testing the safety of intramuscular injection of VEGF-encoding plasmid vector in 9 patients suffering from serious peripheral arterial disease of the lower extremities a significant improvement in most of the measured parameters has been observed regardless of the dose (Kim et al., 2004). However, the serum VEGF levels were not elevated and the control group was missing in that study. Interestingly, no significant improvement in primary and secondary endpoints between groups was achieved in two recent multicenter, double-blind, placebo-controlled phase II trials exploring intramuscular application of plasmid encoding angiogenic factors (Grossman et al., 2007; Rajagopalan et al., 2003). Authors of Euroinject One phase II trial analyzed the effect of gene transfer using plasmid encoding VEGF165 gene on myocardial perfusion, left ventricle function and clinical symptoms in 80 patients suffering from stable severe ischemic heart disease (Kastrup et al., 2005). A direct intramyocardial injection of plasmid did not improve the study endpoints compared to placebo, although a regional improvement in ventricle wall movement was achieved. Results thus show the safety of direct intramyocardial injection, but not the efficiency. In the REVASC trial, a total of 67 patients with ischemic heart disease and severe angina pectoris were enrolled to the study (Stewart et al., 2006). Here, the intramyocardial injection of replication-deficient adenovirus vector bearing VEGF121 gene significantly ameliorated the primary endpoint (exercise time needed for 1mm ST segment depression) as well as overall exercise time and exercise time to moderate angina after 26 weeks of therapy in patients with exercise-induced ischemia. On the other hand, in a recent double-blind, placebo-controlled study VEGF gene therapy failed to improve perfusion of ischemic myocardium in patients with advanced coronary artery disease (Stewart et al., 2009). Further, intramuscular injection of plasmid with VEGF gene was compared against placebo (saline) in 54 diabetic patients suffering from severe peripheral arterial disease (Kusumanto et al., 2006). Although a significant improvement of some of the parameters (hemodynamic status, skin ulcerations) has been achieved, the primary endpoint of this study – amputation of lower extremity after 100 days – stayed unchanged. Moreover, long-term safety of VEGF gene therapy has been proven in an eight-year safety follow-up of coronary artery disease patients after intracoronary VEGF gene transfer (Hedman et al., 2009). Local intracoronary VEGF gene delivery is, thus, considered safe and does not increase the risk of major adverse cardiovascular events, arrhythmias, cancer, diabetes or other disease.
So far the only clinical study testing the delivery of HIF-1α gene was a randomized, double-blind, placebo-controlled phase I trial enrolling 34 patients with peripheral arterial disease (Rajagopalan et al., 2007). Treatment based on direct intramuscular administration of adenovirus vector carrying the HIF-1α gene was well tolerated and provided relief of rest pain one year after the therapy, supporting the necessity for more clinical trials.
The second generation of angiogenic gene therapeutics is represented by constructs enabling the expression of two or more proangiogenic cytokines. Analogous to gene therapy using the master regulatory gene HIF-1α, these “multivalent” approaches may provide a benefit against the classical “monovalent” ones (Vincent et al., 2007).
Overall, we might conclude that only slight clinical benefit of gene therapy in cardiovascular diseases has been observed so far on the level of multicenter, randomized, placebo-controlled clinical trials. This finding, however, is in direct contrast to promising and convincing results from preclinical studies and, thus, further stimulates searching for new and alternative approaches in experimental as well as clinical settings. New viruses have been introduced and new results have been collected from preclinical and clinical studies. Recent results from preclinical developments and clinical trials have been reviewed (Karvinen & Yla-Herttuala, 2010).
Since the first discoveries of RNA interference mechanism (RNAi) 13 years ago, much new information has shown up and a new age of gene therapy, in broad sense, has actually begun. This molecular phenomenon found its usage, besides in functional genetic studies, also in therapy based on silencing the expression of disease-causing genes (so called gene knock-down).
One of the main obstacles in achieving in vivo gene silencing using RNAi is the means of delivery. The siRNA molecules are, if present outside the cell, unstable and are subject to rapid degradation. Therefore, they are being chemically modified or incorporated into vectors like in the case of classical gene delivery. Within such a vector siRNA are encoded as so called short hairpin RNA (shRNA) that are expressed inside the target cell.
One of the break-through experiments was based on intravenous administration of chemically modified siRNA against endogenous apolipoprotein B (apoB) in mice leading to apoB mRNA silencing in liver and jejunum as well as decrease in plasma levels of apoB and overall cholesterol (Soutschek et al., 2004). These siRNA even reduced the expression of human apoB in transgenic mice, and the results further extended the potential of RNAi-based therapy of not only cardiovascular diseases.
Several studies have been performed to test the efficiency of RNAi in therapy/prevention of cardiovascular diseases. It is known that activation of NFkappaB pathway can be associated with development of cardiac hypertrophy and its transition to heart failure. Intramyocardial delivery of shRNA against NFkappaB in lentiviral vector has led to regression of cardiac hypertrophy in transgenic mice, suggesting the potential role of NFkappaB as a therapeutic target in prevention of hypertrophy/heart failure (Gupta et al., 2008). Similar results have been observed in a model of pressure-induced hypertrophy using systemic administration of siRNA against focal adhesion kinase (FAK), which acts as one of the hypertrophy mediators (Clemente et al., 2007). In the work of Jiang et al., it was even proven that RNAi against HIF-1α inhibits the formation of foam cells in vitro, indicating that induction of HIF-1α by atherogenic factors may be a key step in coordinating the cellular processes leading to atherosclerotic lesions (Jiang et al., 2007). An alternative approach was tested in a study of Natarajan et al., that, instead of using constitutively active HIF-1α, reduced the activity of HIF-1α prolyl hydroxylases by RNA interference (Natarajan et al., 2006). Small interfering RNAs (siRNA) managed not only to activate HIF-1α signaling in vitro, but also rescued the endangered myocardium in a mouse model of overall ischemia. Thus, the authors proved that indirect activation of HIF-1α signaling is not only possible, but also efficient. In another study the systemic administration of siRNA against β1-adrenergic receptors has been proven to be specific for β1 receptors expression without influencing β2 receptors (Arnold et al., 2007). This therapy significantly reduced the hypertrophy and the blood pressure in spontaneously hypertensive rats. Moreover, preventive application of β1-specific siRNA 3 days before myocardial infarction improved the heart function and reduced cardiomyocyte apoptosis.
Antiangiogenic therapy using RNAi has found its broad experimental application (Hadj-Slimane et al., 2007). Silencing of HIF-1α by RNAi leads to transient stasis or regression of tumors in vivo and silencing in early stage tumors is more effective than in stable tumors (Li et al., 2005). In addition, siRNA against HIF-1α inhibit the expression of this transcription factor in cancer cells and in endothelial progenitor cells even in hypoxic conditions, when it is naturally activated. At the same time, differentiation, proliferation and migration of these cells are also inhibited. Effectiveness of anticancer therapy using siRNA against VEGF (naked or within a vector) has been proven to be effective in vitro and in vivo in a number of cancer models. Furthermore, a combination of oncolytic virus therapy and VEGF specific-siRNA has also been proven to be effective in vitro and in vivo (Yoo et al., 2007). Based on different physiological roles of VEGF family members, a combination therapy with siRNA vectors against VEGF-A and VEGF-C was used to suppress lymph node and metastasis in a mouse metastatic breast cancer model (Shibata et al., 2008). Another combined approach has been successfully used by Chen et al., in therapy of laryngeal squamous cell carcinoma by concurrent application of plasmids encoding siRNA against VEGF, hTERT and Bcl-xl (Chen et al., 2008).
One of the most important papers in recent years was the study of Kleinman et al., who have reported a sequence- and target-independent angiogenesis suppression by siRNA via toll-like receptor 3 (TLR3) (Kleinman et al., 2008). Here, the non-targeted siRNA suppressed dermal neovascularization in mice as effectively as VEGF siRNA. The effect was mediated through cell surface TLR3, its adaptor TRIF and induction of IFNgamma and IL-12. These results suggest that all siRNA-based RNAi strategies activating TLR3 have to face non-specificity, which, however, does not have to be considered a disadvantage. Even though a specific silencing is desired, a different approach/vector should be used to avoid activating of TLR3 pathway. Bacterial vectors are characterized by cellular entry into the host cell, where they can mediate their therapeutic effects. Thus, bacteria can represent an ideal system for delivery of RNAi.
Apart from RNAi, another big area of small RNA-related research that is gaining much more attention these days is the microRNA research. More importantly, microRNA have been found to play a key role in regulation of angiogenesis, both in cancer and ischemic diseases, indicating that the development of clinically relevant therapies can be expected in a short time period (Fasanaro et al., 2010).
Vectors for transfer of therapeutic sequences into target cells can be divided into three basic groups: viral, non-viral (naked DNA) and bacterial. Each of these groups has different research and therapeutic indications, and features specific pros and cons (Gardlik et al., 2005\n\t\t\t\tChailertvanitkul and Pouton, 2010). Currently, the most frequently used vectors in gene therapy clinical trials include: adenoviruses (400 clinical trials; 23,8%), retroviruses (344 clinical trials; 20,5%), naked/plasmid DNA (304 clinical trials; 17,7%), adeno-associated viruses (75 clinical trials; 4,5%) and others (John Wiley & Sons, 2010).
Adenoviruses are the most commonly used gene-delivery vectors due to the efficiency of their in vivo gene transfer their ability to deliver double-stranded DNA to the nucleus efficiently. In addition, their large genome allows for extensive modification and incorporation of therapeutic genes. Since 1993, about 300 protocols using an adenoviral vector have been performed, although they have yet to be proven effective in clinical trials.
By 2009 over 350 protocols had been approved for clinical trials of gene therapy using attenuated adenoviral vectors, 210 of which were open, but only 5 of which were Phase III trials (for details see the Clinical Trials Worldwide Database at
The adenovirus-based vector has been continuously improved by modification of the adenoviral genome and capsid, and novel adenovirus-delivery systems have been recently proposed (Shirakawa, 2008). Since their first clinical trial 20 years ago, retroviral vectors have now been used in more than 350 gene-therapy studies. Retroviral vectors are particularly suited for gene-correction of cells due to long-term and stable expression of the transferred transgene(s), and also because little effort is required for their cloning and production. Despite several unsuccessful attempts using retroviral therapeutics, a new generation of vectors with improved genome integration and safety characteristics are now available, making them a useful tool for several gene therapy applications (Maier et al., 2010). On contrary, adeno-associated vectors (AAV) are characterized by low frequency of random integration into the genome and moderate immune response. This makes AAV an attractive platform for vector design. Like in most other vector systems, the tropism of AAV vectors limits their utility for certain tissues especially upon systemic application. However, the tropism can be modified by targeted capsid modification and the use of different serotypes, thus making them a good cell-type specific delivery system (Michelfelder & Trepel, 2009).
Another group of delivery systems includes bacterial vectors (Gardlik et al., 2005). Owing to the specific ability of some bacterial strains to colonize hypoxic areas, bacteria found their primary application mainly in cancer therapy (Gardlik & Fruehauf, 2010). A number of experimental studies have been published to date and several clinical studies employing bacterial therapies are currently ongoing. Apart from live bacterial delivery systems, empty envelopes of Gram negative bacteria, so called bacterial ghosts are also being explored as a potential tool for gene delivery (Kudela et al., 2010). In the upcoming sections we specifically focus on modulation of angiogenesis-related events using bacterial vectors.
The first attempts at using bacteria for therapeutic purposes were made more than 40 years ago. At this time, it was discovered that bacteria could predominantly replicate in solid tumors (Moese & Moese, 1964). However, the first indications of this phenomenon date back to 19th century. These findings remained largely unexplored until the turn of 20th century, when oncolytic bacteria capable of lysing host cells were first studied by various research groups (Theys et al., 2001; Yazawa et al., 2000).
Despite recent progress, only a few recent studies on bacterial tumor therapy have focused on antiangiogenic therapy. Although effects on the vasculature were observed in most of these studies, these changes seemed to be a consequence mainly of bacteria-mediated therapy. Bacteria-mediated antiangiogenesis tumor therapy, however, is a reasonable approach given that solid tumors are often characterized by increased vascularization. Herein we summarize latest research on cancer therapy using genetically modified bacteria with particular emphasis on the potential of blocking tumor angiogenesis.
Pronounced angiogenesis is one of the hallmarks of solid tumors. Therefore, in order to search for more efficient anticancer drugs efforts are being made to block tumor angiogenesis. Despite notable successes achieved in studies using oncolytic bacteria for cancer treatment, bacteriolytic therapy in and of itself is often insufficient for complete eradication of experimental tumors (Agrawal et al., 2004). The idea of using combined therapy with bacteria and angiogenesis inhibition has therefore been suggested.
Below are reviewed four different approaches for using modified bacteria as anticancer therapeutics – bactofection, DNA vaccination, alternative gene therapy and bactoference – with a focus on angiogenesis suppression (Figure 1).
Antitumor effect of bacteria colonizing tumor tissue. Auxotrophic bacteria specifically colonize tumors with necrotic and hypoxic areas (panel on the left). The anticancer effect of bacteria can be exerted in four different ways: (a) Bactofection – after escaping the vessel and entering the target cell, bacteria disrupt and release a plasmid vector encoding the therapeutic gene. The plasmid is transferred into the cell nucleus and the therapeutic protein is expressed by the host cell’s expression system (blue square symbol). (b) DNA vaccination – bacteria deliver therapeutic plasmid into the host cell in a similar way as in bactofection. The host cell may in this case be an antigen presenting cell. The plasmid encodes a tumor cell-expressed antigen to help prime a T-cell response against the tumor antigen which is present on the surface of tumor cells leading to induction of humoral and cellular immune response against the tumor. (c) Bacterial protein delivery – bacteria, either in extracellular environment or inside tumor cells, express the therapeutic gene directly and serve as protein delivery vehicles (red square symbol). (d) Bacterial delivery of RNA interference – bacteria deliver plasmid encoding shRNAs or express the shRNAs to induce RNA interference against an oncogene or a tumor-expressed factor.
The use of bacteria as a vector for the delivery of therapeutic genes to target cells is known as bactofection, and several studies have used this approach to deliver genes encoding antiangiogenic molecules to tumor cells in vivo. A study was made using Salmonella choleraesuis strain bearing gene encoding endostatin on eukaryotic expression plasmid (Lee et al., 2004). The expression of endostatin was targeted exclusively to tumor tissues colonized by bacteria and significant inhibition of tumor growth (40-70%) with decreased intratumoral microvessel density and reduced expression of vascular endothelial growth factor (VEGF) was observed. Bactofection using auxotrophic salmonellae as vectors has also been effectively employed for therapy of experimental tumor models using expression plasmids carrying various cytokine genes such as IL-12 and GM-CSF (Yuhua et al., 2001), IL-4 and IL-18 (Agorio et al., 2007) or other molecules playing role in angiogenesis, such as Flt3 ligand (Yoon et al., 2007). Further, a dual tumoricidal and antiangiogenic effect of S. choleraesuis carrying an expression plasmid containing the thrombospondin-1 gene under control of eukaryotic promoter was observed in a murine model of malignant melanoma (Lee et al., 2005). A potential limitation of bactofection for cancer therapy is the fact that the effector molecule will likely be expressed exclusively in cells infected by bacteria, leaving a potentially large population of tumor cells untreated. However, if the product of the transgene is secreted outside the target cell, it may still have a therapeutic effect on non-infected tumor cells.
It is known that bactofection of plasmids encoding a tumor-expressed antigens can lead to induction of humoral and cellular immune response in the host thereby providing protective defense against tumors (R. Xiang et al., 2000). This approach, termed DNA vaccination, has been successfully implemented for antiangiogenic therapy. Oral antiangiogenic bacterial vaccines directed against VEGFR-2 were proven to be efficacious in animal models of malignant melanoma, colorectal carcinoma and lung cancer (Niethammer et al., 2002) as well as non-cancer diseases like stromal keratitis (Kim et al., 2006) and atherosclerosis (Petrovan et al., 2007). Furthermore, salmonella-mediated vaccination against murine VEGFR-2 has been successfully combined with classical gene therapy for the treatment of malignant melanoma (Lu et al., 2008). Bacterial vaccines directed against the apoptosis inhibitor survivin (Xiang et al., 2005) and the TGF-β1 co-receptor endoglin (Lee et al., 2006) also proved to be effective in inhibition of tumor angiogenesis. Taken together, these findings underscore the key role of angiogenesis in cancer as well as other diseases and, at the same time, highlight the complexity of this essential process.
Another means of using bacteria for gene therapy is the so-called alternative gene therapy (AGT) approach, which is also known as bacterial protein delivery (Palffy et al., 2006). It is based on transfer of bacterially expressed therapeutic proteins to the host organism using genetically modified (transformed) bacteria. As with bactofection, AGT is mostly used for treatment of tumors and employs primarily oncolytic and tumor-colonizing bacterial strains of Clostridia, Bifidobacteria or Salmonellae (Theys et al., 2001; Zheng et al., 2000). Li et al., successfully used Bifidobacterium adolescentis as a vector for the expression of endostatin within tumors (Li et al., 2003). These authors showed a strong inhibition of angiogenesis was able to significantly to inhibit local tumor growth. In another study, Bifidobacterium longum was shown to efficiently deliver the antiangiogenic protein endostatin to murine liver tumors, and induce antitumor activity (Fu et al., 2005). Furthermore, the antitumor effect was enhanced by co-administration of the same bacterial strain expressing tumor necrosis factor-related apoptosis inducing ligand (TRAIL) (Hu et al., 2009). These findings emphasize the need for combination therapy, in which multiple antitumor pathways are inhibited. In situ production of cytokines by bacteria represents a cost-effective and safe alternative mainly to systemic administration which can be associated with unwanted side-effects. However, in recent study employing Listeria monocytogenes as a vehicle for tumor specific gene and protein delivery, bactofection proved to be more efficient than AGT (Stritzker et al., 2008).
Interestingly, previously unknown antiangiogenic effects have recently been discovered for a variety of molecules involved in the immune response and cellular apoptosis mainly due to extensive ongoing research in the field of cancer therapy. Bacteria in gene therapy, differences between bactofection and AGT, advantages and disadvantages as well as specific application of both approaches are discussed in detail in our review article (Palffy et al., 2006).
In spite of great success in a preclinical setting, the application of bacteria for human tumor therapy has not been particularly efficacious, although this approach was well tolerated in most studies (Cunningham & Nemunaitis, 2001; Nemunaitis et al., 2003; Toso et al., 2002). In light of above-mentioned findings, however, we would suggest that angiogenesis would be a meaningful target for further experimental and clinical studies of bacteria-mediated anticancer therapy, particularly if used in conjunction with oncolytic strains of bacteria.
A promising new approach for bacteria-mediated anticancer therapy is the combination of two distinct methodologies: bacteriotherapy and RNA interference. Bacteria that have engineered to produce and deliver short interfering RNA (siRNA) represent a novel tool for the efficient induction of RNA interference (RNAi) in host cells. This concept herein termed “bactoference” was first tested at the in vitro level in 2005 by Zhao et al., (Zhao et al., 2005). These authors showed that siRNAs produced by invasive E. coli strain could induce RNAi against in mammalian cell cultures. The first in vivo demonstration of bactoference was provided by Xiang et al., who showed that invasive E. coli capable of producing beta-catenin shRNA could induce RNAi in colonic epithelial cells and colonic tumors xenografted into nude mice (Xiang et al., 2006). To date, however, bactoference has not been used to directly target angiogenesis, although some of the targets explored (beta-catenin, STAT3 and bcl-2) are known to augment angiogenesis via their effects on the expression of various proangiogenic factors. Thus, antitumor effects of knocking down these targets may, in part, be related to suppression of blood vessel formation. However, a number of studies using “non-bacterial” application of siRNA against VEGF (Jia et al., 2007), HIF-1α (Jiang et al., 2006) and other angiogenesis-related molecules indicates that inhibition of endothelial cell proliferation and new blood vessel formation is a viable target for RNAi-based treatment of cancer as well as other diseases.
Reactive oxygen and nitrogen species may remodel the extracellular matrix and blood vessels, cause endothelial dysfunction, induce apoptosis, exacerbate inflammatory reaction, regulate cell proliferation and key signal transduction pathways, and inhibit histone deacetylase activity involved in hypertension (Cohen and Tong, 2010; Fostermann, 2010).
Overproduction of reactive oxygen species plays an important role in a number of cardiovascular pathologies, including hypertension, atherosclerosis, myocardial infarction, ischemia/reperfusion injury, and restenosis after angioplasty.
In this section we focus on gene therapy research using experimental models of cardiovascular diseases and hypertension.
There are at least two major strategies of modulation of nitric oxide (NO) levels in hypertension and cardiovascular diseases: (i) modulation of NO levels by NO synthase (NOS) stimulation, increase in NO bioavailability, administration of NO donors or precursors, and NOS gene incorporation; (ii) scavenging of superoxide and suppression of oxidative stress by activation of antioxidant gene expression or by suppression of selected genes via knock-out or RNA silencing (Dovinova, Gardlik et al., 2009).
NO reacts with superoxide at a rate three times faster than the dismutation of superoxide by superoxide dismutase (SOD). Because of the efficiency of the reaction, the local concentration of SOD is a key determinant of bioactivity (the biological half-life) of NO. Individual SOD isoform in different cell compartments (cytosol, mitochondria, extracellular space) protects against superoxide-mediated cytotoxicity and functioning as a signaling molecule (Mendez, 2005). SOD enzymes therefore play an important role in cardiovascular tissue by protecting NO against oxidative inactivation by superoxide and they are important in vasodilatation and in the protection of NO bioactivity in blood vessel walls (Gongora & Harrison, 2008).
Gene transduction of individual SOD genes (Chu et al., 2003; Zimmerman et al., 2004; Dovinova et al., 2008; Kamezaki et al., 2008) or combination of both SOD and NOS transgenes (Kung et al., 2008,) has positive influence on experimental hypertension. This protective effect is the end results of an increase in tissue level of NO and the decreases in oxidative stress (Chan et al., 2006) and peroxynitrite production (a cytotoxic molecule generated by reaction between superoxide and NO) (Kishi et al., 2004). The SOD genes are the first natural antioxidant defenses of an aerobic cellular system. The following subsection deals with gene therapies by individual SOD isoforms (alone or combined with other genes) and about their influence on the mechanisms of the cardiovascular disease.
The connection between the influence of angiotensin II (Ang II) and the increased superoxide production by activation of NAPDH oxidase has been observed in animal studies (Paravicini and Touyz, 2004; Zimmerman et al., 2004, Chan et al., 2005) and patients with cardiovascular complications (Yokoyama et al., 2000). Peripheral angiotensin II exerts potent effects on blood pressure and cardiovascular function through its actions on neurons located in specialized brain regions called the circumventricular organs, in particular the subfornical organ (SFO). Zimmerman et al., (2004) reported that following peripheral infusion of Ang II at initially subpressor doses, there was a gradually developing hypertension paralleled by an increase in superoxide production in the SFO. Using the adenoviral vectors for in vivo gene delivery, they found that both the superoxide production and the hypertension were prevented by an overexpression of CuZnSOD (also known as SOD1) in the SFO, whereas ECSOD (also known as SOD3) was ineffective. Ang II receptors are also highly expressed in brain stem cardiovascular centers, including the rostral ventrolateral medulla (RVLM) and nucleus tractus solitarii (NTS). Activation of Ang II receptors in the RVLM (Gao et al., 2004; Kishi et al., 2004; Chan et al., 2005) or NTS (Hirooka, 2008) promotes neurogenic hypertension. This induced hypertension can also be prevented by protection against oxidative stress via treatment with in situ gene transduction of SOD1 (Chan et al., 2006). Using a gene therapy based on SOD1 gene transduction by a bacterial gene delivery system it was found that such application decreases the blood pressure, regulates SOD and NOS activities, and decreases oxidative stress response (Dovinova et al., 2008).
The overexpression of cytoplasm-targeted superoxide dismutase via an adenoviral vector (AdSOD1) efficiently scavenges angiotensin-II–induced increases in intracellular superoxide, markedly attenuates the increase in [Ca2+]i and suggests a potential intracellular signaling mechanism involved in Ang II–mediated oxidant regulation of central neural control of blood pressure (Zimmerman et al., 2005).Genetically-altered mice and rats have been generated which overexpress SOD1. Compared with nontransgenic controls, mRNA for CuZn-SOD1 and SOD activity are increased several-fold in the vascular and non-vascular tissues, decreased vascular superoxide levels in atherosclerosis and diabetes to improve endothelial function and to protect in a model of fluid percussion injury that produces impairment of autoregulation (Faraci & Didion, 2004)
Downregulation of antioxidant gene expression and enzyme activity may underlie the augmented levels of superoxide and hydrogen peroxide in the RVLM, leading to oxidative stress and hypertension in the spontaneously hypertensive rats (SHR). A causative relationship between biochemical correlates of oxidative stress and neurological hypertension was established after a gene transfer by microinjection of adenovirus encoding SOD1 and MnSOD (also known as SOD2) or catalase (CAT) into brain (RVLM), which promoted a long-term reduction of blood pressure in SHR (Chan et al., 2006).
Mitochondrial dysfunction is a prominent feature of most cardiovascular diseases and hypertension and is associated with the deterioration of mitochondrial energy production in several organs such as the liver, the heart and the brain (Chan et al., 2009a, b). In the myocardium of the SHR, the evidence that points to the occurrence of mitochondrial dysfunction includes the decrease of cytochrome oxidase activity, ATP production, and inorganic phosphate translocator activity (de Cavanagh et al., 2006). Attenuated intracellular ATP content, results in a long-term maintenance of elevated blood pressure by increasing in sympathetic outflow, whereas augmented ROS production following mitochondrial dysfunction lowers the capacity of the NO-dependent vascular relaxation. The stationary elevated blood pressure in chronic arterial hypertension should be regarded as a compensatory response to decreased mitochondrial ATP synthesis (Postnov et al., 2007). Depletion of p22phox subunit of NADPH oxidase with small interfering RNA inhibited Ang II–mediated mitochondrial ROS production. Ang II depletes mitochondrial glutathione, increases state 4 and decreased state 3 respirations, and diminishes the mitochondrial respiratory control ratio. It also prevents the Ang II–induced decrease in endothelial NO and mitochondrial membrane potential. Therefore, Ang II induces mitochondrial dysfunction via a protein kinase C–dependent pathway by activating the endothelial cell NADPH oxidase and formation of peroxynitrite. Furthermore, mitochondrial dysfunction in response to Ang II modulates endothelial NO and superoxide generation, which in turn has ramifications for the development of an endothelial dysfunction (Doughan et al., 2008). In the brain stem cardiovascular neurons in the RVLM, mitochondrial superoxide mediates the rebound hypertension induced by the eNOS transgene in SHR (Kung et al., 2008).
Mice lacking iNOS(-/-) exhibits extensive cytoplasmic swelling and degeneration of mitochondria, decrease in the resting indices of cardiac function as well as an impairment in the positive inotropic actions of isoproterenol following treatment with adriamycin compared to nTg mice. Cardiac troponin, creatine phosphokinase, and lactate dehydrogenase levels are significantly increased after adriamycin treatment in iNOS(-/-) mice However, when iNOS(-/-) mice are crossed with SOD2 overexpressing animals, mitochondrial injury is ameliorated to the level of the wild type (Cole, 2006). Mice completely deficient in Mn-SOD die within a few weeks after birth and exhibit a variety of phenotypes (depending on the genetic background) including neurodegeneration, cardiac abnormalities, and extensive mitochondrial damage (Faraci & Didion, 2004)
In Ang II-induced neurogenic hypertension or in SHR, mitochondrial electron transport capacity in the RVLM is reduced, accompanied by an increase in generation of mitochondrial superoxide and hydrogen peroxide (Chan et al., 2009a). Overexpression of SOD2 ameliorates mitochondrial oxidative stress and the induced antihypertension.
The degree of hypertrophy, ventricular dilatation, and myocardial fibrosis was markedly increased in mice lacking extracellular SOD (SOD3) and gene transfer of cDNA encoding membrane-bound SOD3 reduces vascular superoxide levels as well as arterial pressure in SHR (Chu et al., 2009). A deficiency in SOD3 does not alter the baseline blood pressure but increases the arterial pressure in models of hypertension that are greater in SOD3–deficient mice than in controls. Studies using overexpression strategies have revealed protective effects of SOD3 on blood vessels. Gene transfer of SOD3 reduced vascular superoxide levels during atherosclerosis in SHR. Effects of overexpression of SOD3 using this approach on endothelial function have varied (Faraci & Didion, 2004).
Depletion of NADPH oxidase subunits with small interfering RNAs - another approach in gene therapy - inhibits ROS production and, thus, has the potential to reduce blood pressure. Silencing of p22phox component of NADPH oxidase in vivo by RNAi resulted in reduced ROS and mean atrial pressure in angiotensin II-induced hypertension in rats (Modlinger et al., 2006). Knock-down of several molecular targets by silencing of matrix metalloproteinase-7 (Wang et al., 2009), angiotensin-converting enzyme (He et al., 2009) or β1-adrenergic receptor (Arnold et al., 2007) using systemic RNAi results in attenuation of hypertension and stops the development of cardiac hypertrophy in SHR.
Modulation of angiogenesis is of great importance from experimental, pathophysiological and especially clinical point of view. However, further research is needed to fully delineate the most effective way to target angiogenesis for treatment of cancer and cardiovascular diseases. The application of new approaches using bacteria for the transfer of therapeutic genes or the production of therapeutic protein or small RNAs has the potential to significantly advance cancer gene therapy. Recent studies indicate that treatments targeting a single molecule/pathway, even if it has pleiotropic effects, are unlikely to be completely effective; however, if the natural anti-tumor activity inherent to some anaerobic bacteria strains can be successfully combined with their ability to deliver agents targeting tumor angiogenesis, apoptosis or the immune system, this will represent a significant step toward reaching this important goal.
This chapter summarizes the preclinical and clinical studies and the use of animal models to provide evidence for potential benefit from angiogenic and antioxidant gene therapy. Gene therapy with the use of antioxidant genes may offer a promising approach for treatment of cancer and cardiovascular diseases in patients not suitable for conventional therapies.
However, one must realize that in animal models before the experimental data can be translated to clinical trials, shortcomings of antioxidant gene therapy, for example the limited duration of transgene expression, low efficacy of the transgene expression in the target organs or tissues, and potential immune responses to the transgenes, must be resolved. Specifically related to the use of antioxidant enzymes in gene therapy is the fact that reactive oxygen species not only mediate pathological events but are also required for normal cell signaling. This double-edged sword nature of the reactive oxygen species in regulation of cellular phenotypes under physiological and pathological conditions poses challenges to the application of gene therapy for early treatment of disease condition.
This work is supported by grant SAS-NSC JRP 2010/1, Slovakia and NSC100-2923-B075B-001-MY3 (JYHC) from the National Science Council, Taiwan.
Avian Influenza (AI) is influenza A virus of avian origin, which may cause disease in domestic and wild birds and in some cases can infect mammalian species, including humans. The highly pathogenic variant (HPAI) has spread to more than 60 countries in Africa, Asia, Australia, Europe and North and South America only within decades. The disease has continuously involved in detrimental impact to poultry farms despite global efforts towards control and eradication. The Indonesian lineage has attracted human health community for its zoonotic attribute by demonstrating the capacity for causing three family cluster cases (West Java, Banten and North Sumatera) with one of them being the largest case in human AI history [1, 2, 3]. However, surveillance of H5N1 antibody in poultry farmers from human H5N1 outbreak areas was reported and not detected [4].
\nMolecular identification on samples obtained during surveillance for H5N1 virus in municipal of Muntilan, Center Java, conducted by Regional Influenza Working Group, after suspected human H5N1 infection announced in 2005, were able to identify H5N1 virus in pet animals and fish pond in the housing areas. However, virus sequences are not available. The number of human deaths in Indonesia were outgrowing to 150 by 2011 (Figure 1) [2, 5, 6, 7] with 46% reported to have direct contact with infected poultry [7]. Although, to date the virus demonstrated inefficient person-to-person transmission, ongoing outbreaks in poultry pose warning to possibly establish human reassortant Avian Influenza virus [8]. New outbreaks of H5N1 in 2014 in Cambodia, China, India, Korea, Lybia, Russia and Vietnam have shown high adaptability in a heterogeneous ecosystem, requiring urgent need for reliable surveillance tool to improved strategies to control and eradicate this enzootic disease.
\nNumber of human Avian Influenza A (H5N1) cases by reporting country and month of onset (Taken from the World Health Organisation. Influenza at human-animal interface. Summary and assessment as of 1 May 2015 https://www.who.int/influenza/human_animal_interface/Influenza_Summary_IRA_HA_interface_1_May_2015.pdf).
Part of the HA protein that binds to the host receptor [called the receptor binding site (RBS)] has a unique amino acid arrangement which contributes to viral specificity to the host [9].
\nInfection occurs when the viral ligand binds to a glycoprotein or glycolipid receptors on the cell surface possessing sialylgalactose terminal group [Neu5Ac (α2-3) Gal] or [Neu5Ac (α2-6) Gal]. Influenza virus of 226Gln and 228Gly avian origin prefers to bind to [Neu5Ac (α2-3) Gal], while influenza virus of 226Leu and 228Ser human origin binds specifically to [Neu5Ac (α2-6) Gal] [9, 10]. The fact the epithelial cells of human respiratory tract mainly contain [Neu5Ac (α2-6) Gal], while the majority in chicken is [Neu5Ac (α2-3) Gal], has provided an explanation the avian origin virus cannot readily infect humans. The shift in host specificity is possible due to the changes in amino acids in RBS through genetic mutations. Experimentally substituting an amino acid of Ser228Gly in addition to Leu226Gln of human origin virus has supported viral replication in duck intestines [11]. Although, solely mutation event of single amino acid in RBS was adequately altering binding specificity to the receptor [12, 13]. Amino acid substitution Ser227Asn in highly pathogenic avian influenza virus (HPAIV) H5N1 of Asia strain decreases its affinity for the receptor [Neu5Ac (α2-3) Gal] and gives the virus ability to bind to [Neu5Ac (α2-6) Gal] moderately. This indicates that mutations in RBS are capable to induce cross-species transmission without genetic reassortment [14].
\nA genetic rearrangement between influenza viruses of avian origin and influenza viruses from mammals has the potential to emerge new pandemic influenza virus strains in humans. Classical genetic reassortment model has settled pigs as mixing vessel to both viruses. The basis of the model is the specificity of the influenza virus strain to the host cell surface receptors [15, 16].
\nThe emergence of four influenza pandemics, 1918 (H1N1), 1957 (H2N2), 1968 (H3N2), and 1977 (H1N1) was not due to genetic reassortment in pigs. The specificities of the receptors in haemagglutinin gene of 1918 virus vary between strains. Isolates A/South Caroline/1/18 tend to bind to [Neu5Ac (α2-6) Gal] receptors, while isolates A/New York/1/18 have the ability to bind both [Neu5Ac (α2-6) Gal] and [Neu5Ac (α2-3) Gal] receptors. Compared to the H1 virus from avian origin in general, isolates A/New York/1/18 differ only in amino acid 190. The viral HA mutation in this position from Asp to Glu decreases the ability of the virus to bind to the [Neu5Ac (α2-6) Gal] receptor and increases preference to the [Neu5Ac (α2-3) Gal] (avian receptor) [13]. The avian influenza virus that caused the outbreak in Asia in 2003–2004 did not show such characteristics. Some viruses isolated from Vietnam, Thailand, Hong Kong and Indonesia, both from human and avian, show similarities in amino acid sequences in the RBS area and have a preference for binding to [Neu5Ac (α2-3) Gal] (avian receptors) [12, 17, 18, 19].
\nHighly Pathogenic Avian Influenza (HPAI) has been a major problem for poultry industry in Indonesia till today. Since first announced in 2003–2004 (Figure 2), H5N1 outbreak was rapidly spread to most provinces, before abated by the end of 2007, after causing death to more than 16 million poultry [2, 5, 7]. In April 2011, a new outbreak was reported from Gorontalo, leaving only one province free of disease [20].
\nH5N1 Avian Influenza poultry epidemic in Indonesia. (Map by Free Vector Maps. https://freevectormaps.com/indonesia/ID-EPS-01-0003).
Phylogenetic analysis of Indonesian 2.1. clade virus indicated direct precursor-descendant link to viruses of genotype Z, isolated from Hunan province, China in 2002, presumably as single introduction. However, the spread and transmission from Hunan to Indonesia remained unclear [21, 22].
\nUp to the year 2008, all Indonesian H5N1 viruses have been classified into clade 2.1, with three virus sublineages: 2.1.1, 2.1.2 and 2.1.3. The viruses within clade 2.1.1 were mainly isolated from HPAI-infected poultry during the outbreaks between 2003 and 2005. The clade 2.1.2 viruses were isolated from avian- and human-derived predominantly from Sumatra between 2004 and 2007, while clade 2.1.3 viruses discovered in 2004, were isolated either from birds or from humans. Interestingly, when clade 2.1.3 viruses have begun to predominate, the numbers of clade 2.1.1 and 2.1.2 isolates were subsequently declined. Although 2.1.3 viruses have spread and become endemic in many provinces in Indonesia, a new sublineage virus has emerged since 2004. In September 2012, several duck farms from Central Java have reported high mortality of AIV H5 subtype. Interestingly, the HA genes of the duck isolates were not related to long-established Indonesian clade 2.1 isolates but closely resembled clade 2.3.2.1 viruses, which recently were found in Vietnam, China and Hong Kong [23].
\nBali Island has reported only one human death because of Avian Influenza until 2017, although Bali is speculated as an ideal environment for influenza re-assortment: world-renowned tourism destination, suckling pigs, and fighting cocks tradition. Circulating A(H5N1) viruses obtained during surveillance of A(H5N1) viruses in Bali between 2009 and 2011 concluded clade 2.1 [24, 25]. Although incident of human death has occurred in Bali, the HA gene analysis at 226Q and 228G of chicken isolates yet showed binding preference to avian host. However, a single mutation finding at S137A has shown the potential of recognizing human receptor. Although evolution analysis of obtained isolates from Bali (A/Ck/Klungkung/T/2009 and A/Ck/Bali/Y/2009) is unable to determine due to lack of HA gene sequences of Indonesian isolate available in GenBank, phylogenetic analysis has clustered these isolates with the only Indonesian domestic cat virus (Figure 3). Consistent with the outbreak in Thailand, the HA gene of pigeon, chicken, tiger, and human isolates were closely related [26]. The potency of pigs as a mixing vessel for avian virus to adapt in human host is also unable to analyze due to the lack of available sequences in GenBank. However, the phylogenetic analysis of swine virus from Bali showed a close relation to other pig and chicken viruses within the corresponding year [27].
\nPhylogenetic tree analysis of A/Ck/Klungkung/T/2009 and A/Ck/Bali/Y/2009 A (H5N1) compared to other sequences of poultry, human, swine and human Indonesia available in GenBank. A/Goose/Guangdong/1997 was served as outgroup in rooted neighbour-joining calculation. The scale indicated 0.02 nt substitution per site. The analysis was performed using Geneious R.10 (Biomatters, Ltd).
Surveillance of A(H5N1) viruses in live bird markets (LBM) during 2012-2013 indicated that most viruses were HPAIV (H5N1), which were related to other clade 2.1.3.2a viruses. The surveillance also detected LPAIV A (H3N8) A/environment/West Java/KRW54/2012, which forms outlier with other LPAI H3 of Eurasian lineage. The A (H3N8) also demonstrated 90% nucleotide identical to A/Duck/Siberia/100/2001. Importantly, genetic reassortment among AIV isolates is occurred by contribution of internal and NA gene segments of LPAIV virus into HPAIV (H5N1) clade 2.1.3.2a virus. Three reassortant viruses (A/Muscovy Duck/East Java/SB29/2012, A/Muscovy Duck/East Java/LM47/ 2012 and A/Ck/East Java/BP21/2012) possessed PB2, PB1 and NS genes of LPAI virus, while the surface glycoproteins (HA and NA) and other internal genes (PA, NP and M) were contribution of HPAI A(H5N1) virus lineage. The experimental data of the reassortant HPAI A(H5N1) viruses showed slight attenuation possibly due to acquisition of LPAI internal genes to HPAI virus [8]. In 2017, the government of Indonesia has officially announced the introduction of enzootic H9N2 subtype; however, it is still poorly documented. The introduction of LPAIV A(H9N2) may possess new hidden endemic zoonotic threat. Chinese Centre for Diseases Control and Prevention has highlighted the role of H9N2 as “incubators” to facilitate new zoonotic human avian strain [28].
\nSince 2004, the Indonesian Government have been applying vaccination in poultry to control AIV H5N1 and simultaneously intensify biosecurity in poultry farm, conducting active diseases surveillance, application of stamping-out policy limited to endemic area and extensive to newly infected area, and improving public awareness of the disease [29, 30]. Although vaccine can be used as a prevention tool, it does not provide full protection or “sterilising immunity” [31]. Vaccine application for Avian Influenza in the field is recommended to allow to serologically differentiate vaccinated birds from infected (DIVA) [32, 33, 34]. Proposed strategy for DIVA by the use of sentinel chickens has been conducted in West Java [30, 35]. However, as possible, new infections in the flock may originate from these sentinel naive birds, which may acquire infection prior to being placed; this DIVA strategy has not received widespread acceptance in Indonesia. Several alternative strategies using viral protein for marker in chickens have been developed, that is, NS1 [36, 37], M2e [38, 39] and HA2 [40, 41].
\nThe pathological features of Avian Influenza infection in poultry since the first outbreak in Indonesia have undergone slight changes over time. The pathological changes are currently showing milder description compared to classical discovery in the middle of 2003. Avian Influenza viruses in poultry were reported to produce asymptomatic to mild upper respiratory infections, egg production loss to rapid fatal systemic disease [42].
\nPathogenicity attributes of AI virus were categorised as low pathogenic avian influenza virus (LPAIV) and highly pathogenic avian influenza viruses (HPAIV) [43, 44]. The low pathogenic variant (LPAI) in poultry describes signs of respiratory diseases [43, 45], while high pathogenic variant (HPAI) demonstrates severe systemic signs with necrotic and inflammatory lesions of skin, viscera and brain [46, 47, 48], although mortality may occur in the absence of clinical signs [42]. The degree of clinical manifestations and recovery rate of the birds are notably age-related. Older birds generally recover within a week, since the onset of clinical signs. Conversely, younger birds are suffering from severe respiratory symptoms as of reflecting in high mortality rates (40–97%). Furthermore, co-infection of other secondary pathogens also contribute to high mortality [45]. Low-pathogenic infection is typically demonstrating low mortality (<5%) accompanied by high morbidity (>50%) [44, 45], contrarily, infection by HPAI virus results in 100% mortality of susceptible poultry species [43, 48].
\nLow pathogenic variant AI demonstrates clinically mild to severe respiratory signs, i.e., coughing, sneezing, swollen infraorbital, excessive ocular and nasal discharge [43, 44]. Infected birds, in general show lethargy, mild weight loss, neurological signs, occasional diarrhoea and sudden drop in eggs production from 30 to 80% during acute phase [43, 44, 45, 49]. In humans, a high viral load in pharynx resulted in fatality [50].
\nPresented clinical signs of infected birds depend on the species and age of the host, virus strain and also the pathophysiological changes in the respiratory, digestive, urinary, nervous and reproductive systems [44, 51, 52]. Hence, avian influenza virus pathobiology varies among strains and the host species. Therefore, pathobiology characters of new avian influenza virus are important to control the outbreaks and understand the epidemiology of this disease [53].
\nClinical signs and pathological features of H5N1 in layer chickens from East Java, Central Java, West Java and Yogyakarta during 2003–2005 outbreaks have demonstrated depression, loss of appetite, neurologic disorder, respiratory disorder, egg production drop and diarrhoea [54]. These clinical signs were similar to previously described infections naturally or experimentally with highly pathogenic avian influenza virus in domestic poultry [44, 45, 51, 55, 56].
\nOn post-mortem examination of infected chicken showed severe subcutaneous haemorrhages, oedema in the wattles, head, neck, and the leg shanks appeared haemorrhages [55]. However, Mutinelli et al. [45] and Elbers et al. [57] also described peritonitis; haemorrhage, enlarged and hardened of pancreas; enlarged with whitish and dark brown haemorrhage of liver areas. In a few cases, proventriculus and ventriculus showed petechial haemorrhages [45, 55, 57], haemorrhages of comb and wattles, ecchymose haemorrhages in the skin of the breast and abdomen [47]. Similar lesions such as cyanotic wattles, swollen head and comb, haemorrhages in the skeletal muscles, abdominal fat, proventriculus and feet were also observed in chicken during 2003–2005 Avian Influenza outbreaks in Indonesia [54]. Furthermore, in layer chickens, haemorrhagic ovary and atrophy oviduct were also found [54, 56, 58]. Similar findings in mute and whooper swans infected by HPAI, was showing coalescent haemorrhages with necrosis in the pancreas [59, 60], kidney enlargement yet elastic without deposits of uric acid [45].
\nRecent case in layer chicken of 40 weeks from East Java (August, 2018) with cyanotic wattles (Figure 4), brain congestion (Figure 5), haemorrhages in the feet (Figure 6) and proventriculus (Figure 7), haemorrhages and adhesion between ovarian follicles (Figure 8), haemorrhage of abdominal fat (Figure 9), haemorrhage of pectoral muscles (Figure 10), swollen and oedematous kidney (Figure 11). The farm experienced 20% mortality rates within 3 weeks and the egg production dropped by 18% suddenly in 5 days. Vaccination for avian influenza H5 was done at 14 weeks of chick age. Molecular identification was confirming H5 subtype. In a few cases, virus can be isolated from properly vaccinated flock [61].
\nLatest cases of Avian Influenza: Cyanotic wattles (Courtesy: Dr. Sitarina Widyarini).
Latest cases of Avian Influenza: Brain congestion (Courtesy: Dr. Sitarina Widyarini).
Latest case of Avian Influenza: Haemorrhages feet (Courtesy: Dr. Sitarina Widyarini).
Latest case of Avian Influenza: Proventriculus Haemorrhages (Courtesy: Dr. Sitarina Widyarini).
Latest case of Avian Influenza: Ovarial Haemorrhages (Courtesy: Dr. Sitarina Widyarini).
Latest case of Avian Influenza: Abdominal fat haemorrhages (Courtesy: Dr. Sitarina Widyarini).
Latest case of Avian Influenza: Pectoral muscles haemorrhages (Courtesy: Dr. Sitarina Widyarini).
Latest case of Avian Influenza: Swollen and oedematous kidney (Courtesy: Dr. Sitarina Widyarini).
Histopathological findings of HPAIV-infected chicken and turkey were dominated by acute haemorrhages (skin, under serous membrane, mucosae and pectoral muscles), oedema (skin of head, neck, legs and lungs) and necrosis (skin, pancreas, spleen and heart) [42, 46, 49, 55, 62, 63, 64, 65, 66]. The comb and wattles showed markedly severe cellulitis associated with congestion, oedema and mild heterophilic infiltration in the dermis and subcutis [55]. Lymphocytic meningo-encephalitis and meningo-encephalomyelitis with multifocal gliosis, degeneration of neuron, necrosis and neuronophagia, as well as mild-to-moderate perivascular cuffs, with predominance of macrophages and lymphocytes in both grey and white matter in the majority of brain region [60, 67, 68]. Necrosis with focal lymphohistiocytic infiltration in the myocardium, focal necrosis in the pancreas and other organs (e.g. lungs, lymphatic organs and skeletal muscles) are defined as important histopathological lesions [58, 60, 68].
\nHistological lesions associated with the presence of viral antigen were observed in the tissue of infected chickens. Several studies have observed intranuclear and intracytoplasmic viral antigens distribution at surrounding tissues of parenchymal myofibres and capillary endothelium of the heart, hepatocytes and sinusoidal endothelium of the liver, pulmonary endothelium, pancreas, kidney, central nervous system, leukocytes of the Peyer’s patches, bursa, epithelium of the adrenal glands, renal tubules and pancreatic acini [44, 55, 69, 70].
\nVaccine application and stringent biosecurity practices helped to suppress the viral load in the flock. As consequences, the morbidity and mortality rate is suppressed, the presentation of clinical signs is milder although the gross pathology features remained consistent. The introduction of H9N2 has initiated the new threat. Egg production drop is today mainly observed as an indication of infection regardless of the virus subtype, although as the latest published active surveillance data (2012–2013) continued blaming H5N1. The masking effect of partial low-level herd immunity may be responsible for the phenomenon.
\nVirus isolated from chicken with both specific and non-specific lesion between 2003 and 2006 showed high pathogenic avian influenza virus based on molecular marker analysis. Although vaccination has been applied, full viral characterisation continues, evaluation of antibody protective response after vaccination and differentiation between vaccinated and infected birds is needed. Cartography surveillance of avian virus is importantly required to understand cross-immunity of latest strains to use as vaccine seeds. Antigen panel is a must in order to predict future outbreak. Enforcement on regulation for live birds market (LBM) is a must, considering massive human death in China of novel reassortant virus. In addition, wild bird migration from Asia to high densities poultry farms population in Java could increase reassortment rate of circulating virus. Furthermore, the finding of A(H3N8) may trigger novel reassortant virus strain with zoonotic potential. Although, human cluster, Tangerang and Karo, is required for further research since the cases occurred only between people with genetic relation.
\nThe authors would like to express the highest appreciation to Nugroho, DVM, MSc, (Rosa Farm, Blitar, East Java) for supplying the samples.
\nThe authors Khrisdiana Putri, Sitarina Widyarini, Sugiyono and Widya Asmara have no conflict of interest to declare.
Unsubscribe unsuccessful, no matching records found in our database.
",metaTitle:"Unsubscribe Unsuccessful",metaDescription:"Unsubscribe unsuccessful, no matching records found in our database.",metaKeywords:null,canonicalURL:"/page/unsubscribe-unsuccessful",contentRaw:'[{"type":"htmlEditorComponent","content":""}]'},components:[{type:"htmlEditorComponent",content:""}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5698},{group:"region",caption:"Middle and South America",value:2,count:5172},{group:"region",caption:"Africa",value:3,count:1689},{group:"region",caption:"Asia",value:4,count:10244},{group:"region",caption:"Australia and Oceania",value:5,count:888},{group:"region",caption:"Europe",value:6,count:15650}],offset:12,limit:12,total:117315},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"20"},books:[{type:"book",id:"10206",title:"Terahertz Technology",subtitle:null,isOpenForSubmission:!0,hash:"2cdb79bf6297623f1d6202ef11f099c4",slug:null,bookSignature:"Dr. Borwen You and Dr. Ja-Yu Lu",coverURL:"https://cdn.intechopen.com/books/images_new/10206.jpg",editedByType:null,editors:[{id:"191131",title:"Dr.",name:"Borwen",surname:"You",slug:"borwen-you",fullName:"Borwen You"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10575",title:"Magnetic Skyrmions",subtitle:null,isOpenForSubmission:!0,hash:"d93d7485e8a6a30d9e069aed78fdb355",slug:null,bookSignature:"Prof. Dipti Ranjan Sahu",coverURL:"https://cdn.intechopen.com/books/images_new/10575.jpg",editedByType:null,editors:[{id:"251855",title:"Prof.",name:"Dipti Ranjan",surname:"Sahu",slug:"dipti-ranjan-sahu",fullName:"Dipti Ranjan Sahu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10675",title:"Hydrostatics",subtitle:null,isOpenForSubmission:!0,hash:"c86c2fa9f835d4ad5e7efd8b01921866",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10675.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10957",title:"Liquid Crystals",subtitle:null,isOpenForSubmission:!0,hash:"b8dac1788dc54d12f8fc3d94a7e3e338",slug:null,bookSignature:"",coverURL:"//cdnintech.com/web/frontend/www/assets/cover.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:16},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:6},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:4},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:56},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:4},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5143},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"90",title:"Computer Science and Engineering",slug:"computer-science-and-engineering",parent:{title:"Computer and Information Science",slug:"computer-and-information-science"},numberOfBooks:33,numberOfAuthorsAndEditors:771,numberOfWosCitations:720,numberOfCrossrefCitations:637,numberOfDimensionsCitations:1179,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"computer-science-and-engineering",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8423",title:"Security and Privacy From a Legal, Ethical, and Technical Perspective",subtitle:null,isOpenForSubmission:!1,hash:"dc4f0b68a2f903e7bf1ec7fbe042dbf2",slug:"security-and-privacy-from-a-legal-ethical-and-technical-perspective",bookSignature:"Christos Kalloniatis and Carlos Travieso-Gonzalez",coverURL:"https://cdn.intechopen.com/books/images_new/8423.jpg",editedByType:"Edited by",editors:[{id:"219671",title:"Associate Prof.",name:"Christos",middleName:null,surname:"Kalloniatis",slug:"christos-kalloniatis",fullName:"Christos Kalloniatis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editedByType:"Edited by",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6958",title:"High Performance Parallel Computing",subtitle:null,isOpenForSubmission:!1,hash:"dd811128360e48c520a91871f0279659",slug:"high-performance-parallel-computing",bookSignature:"Satyadhyan Chickerur",coverURL:"https://cdn.intechopen.com/books/images_new/6958.jpg",editedByType:"Edited by",editors:[{id:"239076",title:"Dr.",name:"Satyadhyan",middleName:null,surname:"Chickerur",slug:"satyadhyan-chickerur",fullName:"Satyadhyan Chickerur"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6715",title:"Petri Nets in Science and Engineering",subtitle:null,isOpenForSubmission:!1,hash:"b0b98cd043ed2dc582d8365630929d33",slug:"petri-nets-in-science-and-engineering",bookSignature:"Raul Campos-Rodriguez and Mildreth Alcaraz-Mejia",coverURL:"https://cdn.intechopen.com/books/images_new/6715.jpg",editedByType:"Edited by",editors:[{id:"178524",title:"Dr.",name:"Raul",middleName:null,surname:"Campos-Rodriguez",slug:"raul-campos-rodriguez",fullName:"Raul Campos-Rodriguez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5368",title:"Radio Frequency Identification",subtitle:null,isOpenForSubmission:!1,hash:"c86dd0c6a48afce125a9f8f2363fd4b8",slug:"radio-frequency-identification",bookSignature:"Paulo Cesar Crepaldi and Tales Cleber Pimenta",coverURL:"https://cdn.intechopen.com/books/images_new/5368.jpg",editedByType:"Edited by",editors:[{id:"38288",title:"Prof.",name:"Paulo",middleName:"Cesar",surname:"Crepaldi",slug:"paulo-crepaldi",fullName:"Paulo Crepaldi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6038",title:"Wireless Sensor Networks",subtitle:"Insights and Innovations",isOpenForSubmission:!1,hash:"e63cb7f71bc1fed54902b371cbe21a2a",slug:"wireless-sensor-networks-insights-and-innovations",bookSignature:"Philip Sallis",coverURL:"https://cdn.intechopen.com/books/images_new/6038.jpg",editedByType:"Edited by",editors:[{id:"10893",title:"Prof.",name:"Philip John",middleName:null,surname:"Sallis",slug:"philip-john-sallis",fullName:"Philip John Sallis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5966",title:"Heuristics and Hyper-Heuristics",subtitle:"Principles and Applications",isOpenForSubmission:!1,hash:"da699185a8b84a430d96d54bc35acdb2",slug:"heuristics-and-hyper-heuristics-principles-and-applications",bookSignature:"Javier Del Ser Lorente",coverURL:"https://cdn.intechopen.com/books/images_new/5966.jpg",editedByType:"Edited by",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5745",title:"Recent Progress in Parallel and Distributed Computing",subtitle:null,isOpenForSubmission:!1,hash:"dba64b23d703d16339860ebf4a13f022",slug:"recent-progress-in-parallel-and-distributed-computing",bookSignature:"Wen-Jyi Hwang",coverURL:"https://cdn.intechopen.com/books/images_new/5745.jpg",editedByType:"Edited by",editors:[{id:"108614",title:"Prof.",name:"Wen-Jyi",middleName:null,surname:"Hwang",slug:"wen-jyi-hwang",fullName:"Wen-Jyi Hwang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5707",title:"Computer Simulation",subtitle:null,isOpenForSubmission:!1,hash:"9eec1723d4d4775dc9755db55aa387a6",slug:"computer-simulation",bookSignature:"Dragan Cvetkovic",coverURL:"https://cdn.intechopen.com/books/images_new/5707.jpg",editedByType:"Edited by",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5183",title:"Face Recognition",subtitle:"Semisupervised Classification, Subspace Projection and Evaluation Methods",isOpenForSubmission:!1,hash:"d693acce19fca9cbf40d8f3f759e491d",slug:"face-recognition-semisupervised-classification-subspace-projection-and-evaluation-methods",bookSignature:"S. Ramakrishnan",coverURL:"https://cdn.intechopen.com/books/images_new/5183.jpg",editedByType:"Edited by",editors:[{id:"116136",title:"Dr.",name:"Srinivasan",middleName:null,surname:"Ramakrishnan",slug:"srinivasan-ramakrishnan",fullName:"Srinivasan Ramakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5150",title:"Electronics Cooling",subtitle:null,isOpenForSubmission:!1,hash:"b95856cfcc87ef3cb7d7c7c7bac4010d",slug:"electronics-cooling",bookSignature:"S M Sohel Murshed",coverURL:"https://cdn.intechopen.com/books/images_new/5150.jpg",editedByType:"Edited by",editors:[{id:"24904",title:"Prof.",name:"S. M. Sohel",middleName:null,surname:"Murshed",slug:"s.-m.-sohel-murshed",fullName:"S. M. Sohel Murshed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4655",title:"Applications of Digital Signal Processing through Practical Approach",subtitle:null,isOpenForSubmission:!1,hash:"b20308efd28e8a487949997c8d673fb8",slug:"applications-of-digital-signal-processing-through-practical-approach",bookSignature:"Sudhakar Radhakrishnan",coverURL:"https://cdn.intechopen.com/books/images_new/4655.jpg",editedByType:"Edited by",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:33,mostCitedChapters:[{id:"50801",doi:"10.5772/62898",title:"Performance Evaluation of Nanofluids in an Inclined Ribbed Microchannel for Electronic Cooling Applications",slug:"performance-evaluation-of-nanofluids-in-an-inclined-ribbed-microchannel-for-electronic-cooling-appli",totalDownloads:1949,totalCrossrefCites:44,totalDimensionsCites:78,book:{slug:"electronics-cooling",title:"Electronics Cooling",fullTitle:"Electronics Cooling"},signatures:"Mohammad Reza Safaei, Marjan Gooarzi, Omid Ali Akbari, Mostafa\nSafdari Shadloo and Mahidzal Dahari",authors:[{id:"178854",title:"Dr.",name:"Mohammad Reza",middleName:null,surname:"Safaei",slug:"mohammad-reza-safaei",fullName:"Mohammad Reza Safaei"},{id:"179807",title:"Dr.",name:"Mostafa",middleName:null,surname:"Safdari Shadloo",slug:"mostafa-safdari-shadloo",fullName:"Mostafa Safdari Shadloo"},{id:"179809",title:"Dr.",name:"Mahidzal",middleName:null,surname:"Dahari",slug:"mahidzal-dahari",fullName:"Mahidzal Dahari"},{id:"179813",title:"MSc.",name:"Marjan",middleName:null,surname:"Goodarzi",slug:"marjan-goodarzi",fullName:"Marjan Goodarzi"},{id:"185093",title:"MSc.",name:"Omid",middleName:null,surname:"Ali Akbari",slug:"omid-ali-akbari",fullName:"Omid Ali Akbari"}]},{id:"5184",doi:"10.5772/6180",title:"From the Lab to the Real World: Affect Recognition Using Multiple Cues and Modalities",slug:"from_the_lab_to_the_real_world__affect_recognition_using_multiple_cues_and_modalities",totalDownloads:3132,totalCrossrefCites:34,totalDimensionsCites:51,book:{slug:"affective_computing",title:"Affective Computing",fullTitle:"Affective Computing"},signatures:"Hatice Gunes, Massimo Piccardi and Maja Pantic",authors:null},{id:"5197",doi:"10.5772/6167",title:"Generating Facial Expressions with Deep Belief Nets",slug:"generating_facial_expressions_with_deep_belief_nets",totalDownloads:3140,totalCrossrefCites:1,totalDimensionsCites:46,book:{slug:"affective_computing",title:"Affective Computing",fullTitle:"Affective Computing"},signatures:"Joshua M. Susskind, Geoffrey E. Hinton, Javier R. Movellan and Adam K. Anderson",authors:null}],mostDownloadedChaptersLast30Days:[{id:"68505",title:"Research Design and Methodology",slug:"research-design-and-methodology",totalDownloads:16004,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"cyberspace",title:"Cyberspace",fullTitle:"Cyberspace"},signatures:"Kassu Jilcha Sileyew",authors:null},{id:"15946",title:"Wake-Up-Word Speech Recognition",slug:"wake-up-word-speech-recognition",totalDownloads:4003,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"speech-technologies",title:"Speech Technologies",fullTitle:"Speech Technologies"},signatures:"Veton Kepuska",authors:[{id:"24379",title:"Prof.",name:"Veton",middleName:null,surname:"Kepuska",slug:"veton-kepuska",fullName:"Veton Kepuska"}]},{id:"51031",title:"Face Recognition: Issues, Methods and Alternative Applications",slug:"face-recognition-issues-methods-and-alternative-applications",totalDownloads:10292,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"face-recognition-semisupervised-classification-subspace-projection-and-evaluation-methods",title:"Face Recognition",fullTitle:"Face Recognition - Semisupervised Classification, Subspace Projection and Evaluation Methods"},signatures:"Waldemar Wójcik, Konrad Gromaszek and Muhtar Junisbekov",authors:[{id:"24059",title:"Dr.Ing.",name:"Konrad",middleName:null,surname:"Gromaszek",slug:"konrad-gromaszek",fullName:"Konrad Gromaszek"}]},{id:"56541",title:"Routing Protocols for Wireless Sensor Networks (WSNs)",slug:"routing-protocols-for-wireless-sensor-networks-wsns-",totalDownloads:4344,totalCrossrefCites:9,totalDimensionsCites:11,book:{slug:"wireless-sensor-networks-insights-and-innovations",title:"Wireless Sensor Networks",fullTitle:"Wireless Sensor Networks - Insights and Innovations"},signatures:"Noman Shabbir and Syed Rizwan Hassan",authors:[{id:"206600",title:"Mr.",name:"Noman",middleName:null,surname:"Shabbir",slug:"noman-shabbir",fullName:"Noman Shabbir"},{id:"206601",title:"Mr.",name:"Syed Rizwan",middleName:null,surname:"Hassan",slug:"syed-rizwan-hassan",fullName:"Syed Rizwan Hassan"}]},{id:"62639",title:"Reliability Evaluation for Mechanical Systems by Petri Nets",slug:"reliability-evaluation-for-mechanical-systems-by-petri-nets",totalDownloads:514,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"petri-nets-in-science-and-engineering",title:"Petri Nets in Science and Engineering",fullTitle:"Petri Nets in Science and Engineering"},signatures:"Jianing Wu and Shaoze Yan",authors:[{id:"238979",title:"Dr.",name:"Jianing",middleName:null,surname:"Wu",slug:"jianing-wu",fullName:"Jianing Wu"}]},{id:"70973",title:"Social Media, Ethics and the Privacy Paradox",slug:"social-media-ethics-and-the-privacy-paradox",totalDownloads:850,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"security-and-privacy-from-a-legal-ethical-and-technical-perspective",title:"Security and Privacy From a Legal, Ethical, and Technical Perspective",fullTitle:"Security and Privacy From a Legal, Ethical, and Technical Perspective"},signatures:"Nadine Barrett-Maitland and Jenice Lynch",authors:[{id:"311821",title:"Ph.D. Student",name:"Nadine",middleName:null,surname:"Barrett-Maitland",slug:"nadine-barrett-maitland",fullName:"Nadine Barrett-Maitland"},{id:"311822",title:"Ms.",name:"Jenice",middleName:null,surname:"Lynch",slug:"jenice-lynch",fullName:"Jenice Lynch"}]},{id:"50437",title:"Face Recognition: Demystification of Multifarious Aspect in Evaluation Metrics",slug:"face-recognition-demystification-of-multifarious-aspect-in-evaluation-metrics",totalDownloads:2343,totalCrossrefCites:4,totalDimensionsCites:7,book:{slug:"face-recognition-semisupervised-classification-subspace-projection-and-evaluation-methods",title:"Face Recognition",fullTitle:"Face Recognition - Semisupervised Classification, Subspace Projection and Evaluation Methods"},signatures:"Mala Sundaram and Ambika Mani",authors:[{id:"180904",title:"Mrs.",name:"Mala",middleName:null,surname:"Sundaram",slug:"mala-sundaram",fullName:"Mala Sundaram"},{id:"180905",title:"Mrs.",name:"Ambika",middleName:null,surname:"Mani",slug:"ambika-mani",fullName:"Ambika Mani"}]},{id:"50065",title:"Heat Pipes for Computer Cooling Applications",slug:"heat-pipes-for-computer-cooling-applications",totalDownloads:4038,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"electronics-cooling",title:"Electronics Cooling",fullTitle:"Electronics Cooling"},signatures:"Mohamed H.A. Elnaggar and Ezzaldeen Edwan",authors:[{id:"178453",title:"Dr.",name:"Mohamed",middleName:null,surname:"Elnaggar",slug:"mohamed-elnaggar",fullName:"Mohamed Elnaggar"},{id:"184278",title:"Dr.",name:"Ezzaldeen",middleName:null,surname:"Edwan",slug:"ezzaldeen-edwan",fullName:"Ezzaldeen Edwan"}]},{id:"5175",title:"Facial Expression Recognition Using 3D Facial Feature Distances",slug:"facial_expression_recognition_using_3d_facial_feature_distances",totalDownloads:3825,totalCrossrefCites:5,totalDimensionsCites:10,book:{slug:"affective_computing",title:"Affective Computing",fullTitle:"Affective Computing"},signatures:"Hamit Soyel and Hasan Demirel",authors:null},{id:"68561",title:"Cyberspace and Artificial Intelligence: The New Face of Cyber-Enhanced Hybrid Threats",slug:"cyberspace-and-artificial-intelligence-the-new-face-of-cyber-enhanced-hybrid-threats",totalDownloads:527,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"cyberspace",title:"Cyberspace",fullTitle:"Cyberspace"},signatures:"Carlos Pedro Gonçalves",authors:[{id:"278948",title:"Prof.",name:"Carlos Pedro",middleName:null,surname:"Gonçalves",slug:"carlos-pedro-goncalves",fullName:"Carlos Pedro Gonçalves"}]}],onlineFirstChaptersFilter:{topicSlug:"computer-science-and-engineering",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/53288/richard-miller",hash:"",query:{},params:{id:"53288",slug:"richard-miller"},fullPath:"/profiles/53288/richard-miller",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()