Dust acoustic wave of three-dimensional (3D) dusty plasmas (DPs) has been computed using equilibrium molecular dynamics (EMD) simulations for plasma parameters of Coulomb coupling strength (Γ) and Debye screening (κ). New simulations of wave properties such as longitudinal current correlation (LCC) CL(k, t) function have been investigated for 3D weakly DPs (WCDPs), for the first time. EMD results, CL (k, t) have been simulated for four normalized wave numbers (k = 0, 1, 2, and 3). Our simulations illustrate that the frequency and amplitude of oscillation vary with increasing of Γ and κ. Moreover, present simulations of CL (k, t) illustrate that the varying behavior has been observed for changing (Γ, κ) and system sizes (N). Current investigation illustrates that amplitude of wave oscillation increases with a decrease in Γ and N. However, there are slightly change in the value of CL (k, t) and its fluctuation increases with an increasing k. The obtained outcomes have found to be more acceptable than those that of previous numerical, theoretical, and experimental data. EMD simulation has been performed with an increasing sequence for WCDPs and it serves to benchmark improved approach for future energy generation applications.
Part of the book: Advances in Fusion Energy Research