The chapter deals with the design of probe-fed planar antennas to operate at wider bands and techniques to improve peak or boresight gain using reflectors. The phenomenon of frequency excitation in dual-band, that is, C-band and X-band using the technique of partial removal of the ground plane, is well demonstrated here. The impedance bandwidth achieved by the sample antenna is 285 MHz and 380 MHz, respectively. The reduced ground plane technique is further exploited along with modifications in the shape of the ground plane to cover the entire ultra-wideband (UWB) range in a probe-fed hexagonal monopole antenna. Due to the existence of higher modes and especially when fed with a probe, UWB antennas are only capable of providing mediocre gain at higher frequencies. An approach to increase the probe-fed hexagonal UWB antenna’s peak gain involves the utilization of an appropriate reflector. The antenna is given an artificial magnetic conductor (AMC)-based reflector, which increases the peak gain as well as boresight gain across a band ≤ UWB. Peak and boresight gains of 3.74 dB and 5.5 dB, respectively, are observed with AMC. The equivalent circuit model and simulated impedance results of the sample antennas are validated with the measurement results.
Part of the book: UWB Technology