Typical Properties of Wood Pyrolysis Bio-Oil, and Heavy Fuel Oil [13].
\\n\\n
IntechOpen Book Series will also publish a program of research-driven Thematic Edited Volumes that focus on specific areas and allow for a more in-depth overview of a particular subject.
\\n\\nIntechOpen Book Series will be launching regularly to offer our authors and editors exciting opportunities to publish their research Open Access. We will begin by relaunching some of our existing Book Series in this innovative book format, and will expand in 2022 into rapidly growing research fields that are driving and advancing society.
\\n\\nLaunching 2021
\\n\\nArtificial Intelligence, ISSN 2633-1403
\\n\\nVeterinary Medicine and Science, ISSN 2632-0517
\\n\\nBiochemistry, ISSN 2632-0983
\\n\\nBiomedical Engineering, ISSN 2631-5343
\\n\\nInfectious Diseases, ISSN 2631-6188
\\n\\nPhysiology (Coming Soon)
\\n\\nDentistry (Coming Soon)
\\n\\nWe invite you to explore our IntechOpen Book Series, find the right publishing program for you and reach your desired audience in record time.
\\n\\nNote: Edited in October 2021
\\n"}]',published:!0,mainMedia:{caption:"",originalUrl:"/media/original/132"}},components:[{type:"htmlEditorComponent",content:'With the desire to make book publishing more relevant for the digital age and offer innovative Open Access publishing options, we are thrilled to announce the launch of our new publishing format: IntechOpen Book Series.
\n\nDesigned to cover fast-moving research fields in rapidly expanding areas, our Book Series feature a Topic structure allowing us to present the most relevant sub-disciplines. Book Series are headed by Series Editors, and a team of Topic Editors supported by international Editorial Board members. Topics are always open for submissions, with an Annual Volume published each calendar year.
\n\nAfter a robust peer-review process, accepted works are published quickly, thanks to Online First, ensuring research is made available to the scientific community without delay.
\n\nOur innovative Book Series format brings you:
\n\nIntechOpen Book Series will also publish a program of research-driven Thematic Edited Volumes that focus on specific areas and allow for a more in-depth overview of a particular subject.
\n\nIntechOpen Book Series will be launching regularly to offer our authors and editors exciting opportunities to publish their research Open Access. We will begin by relaunching some of our existing Book Series in this innovative book format, and will expand in 2022 into rapidly growing research fields that are driving and advancing society.
\n\nLaunching 2021
\n\nArtificial Intelligence, ISSN 2633-1403
\n\nVeterinary Medicine and Science, ISSN 2632-0517
\n\nBiochemistry, ISSN 2632-0983
\n\nBiomedical Engineering, ISSN 2631-5343
\n\nInfectious Diseases, ISSN 2631-6188
\n\nPhysiology (Coming Soon)
\n\nDentistry (Coming Soon)
\n\nWe invite you to explore our IntechOpen Book Series, find the right publishing program for you and reach your desired audience in record time.
\n\nNote: Edited in October 2021
\n'}],latestNews:[{slug:"intechopen-supports-asapbio-s-new-initiative-publish-your-reviews-20220729",title:"IntechOpen Supports ASAPbio’s New Initiative Publish Your Reviews"},{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"}]},book:{item:{type:"book",id:"1970",leadTitle:null,fullTitle:"Virtual Reality and Environments",title:"Virtual Reality and Environments",subtitle:null,reviewType:"peer-reviewed",abstract:"Virtual Reality is clearly interdisciplinary research. It has, not only Information Technology importance but social, educational, economical importance too. It combines multiple disciplines for the development of virtual reality systems in which the user has the immersive feeling of being in the real world. Virtual reality has several applications in almost all fields of real life. The most typical fields for the application of virtual reality are health-care, engineering and game industry. This book may be a solid basis for the novice and advanced engineers who would like to develop user friendly Virtual Environments for education, rehabilitation and other applications of Virtual Reality. Our book provides a resource for wide variety of people including academicians, designers, developers, educators, engineers, practitioners, researchers, and graduate students.",isbn:null,printIsbn:"978-953-51-0579-4",pdfIsbn:"978-953-51-5643-7",doi:"10.5772/2387",price:119,priceEur:129,priceUsd:155,slug:"virtual-reality-and-environments",numberOfPages:218,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"a2b43a20d9bd22d96982dbb97360f1b9",bookSignature:"Cecilia Sik Lanyi",publishedDate:"April 27th 2012",coverURL:"https://cdn.intechopen.com/books/images_new/1970.jpg",numberOfDownloads:26045,numberOfWosCitations:25,numberOfCrossrefCitations:24,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:34,numberOfDimensionsCitationsByBook:0,hasAltmetrics:0,numberOfTotalCitations:83,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 5th 2011",dateEndSecondStepPublish:"June 2nd 2011",dateEndThirdStepPublish:"October 7th 2011",dateEndFourthStepPublish:"November 6th 2011",dateEndFifthStepPublish:"March 5th 2012",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"106377",title:"Dr.",name:"Cecília",middleName:null,surname:"Sik Lányi",slug:"cecilia-sik-lanyi",fullName:"Cecília Sik Lányi",profilePictureURL:"https://mts.intechopen.com/storage/users/106377/images/2769_n.jpg",biography:'Dr. Cecília Sik Lányi studied Mathematics and Computer Science (B.S. and M.S.) at the József Attila University (1981 and 1984). She became a Teacher of Mathematics at the Berzsenyi Dániel Teacher Training College in 1988. Dr. Lányi obtained the Dr. Univ. degree at the University of Veszprém, Hungary in Physical-chemistry (1993), and the Ph.D. degree at the University of Veszprém, Hungary in Computer Science (2000). She has worked as a software engineer and as an associate professor for program languages at the University of Pannonia.\nCurrently, she is focused on virtual reality and its application, user interface design, computer graphics for informatics engineering students and using multimedia in the education for teacher training courses. Ph.D. and Masters’ supervision has an emphasis on multimedia/ virtual reality for the rehabilitation of children with disabilities and patients with mental health issues. She has supervised altogether 180 BSc and MSc thesis works from 1997. Her students received numerous awards.\nDr. Lányi received several awards, the most important ones are: “Master teacher” award of the Hungarian Ministry of Education (2001), the \\"Kalmar\\" award from the John von Neumann Computer Society (2016), the “Hungarian Higher Education Plague” of the Ministry of Human Capacities (2016), the “Diamond-Award from the Association for the Advancement of Assistive Technology in Europe (2015), which is a personal recognition, granted for outstanding work in advancing assistive technology in Europe and the “King Salman Award for Disability Research” of the King Salman Center for Disability Research (2018).\nShe was the secretariat manager of EDeAN in 2009 and the representative of Hungary in IFIP Technical Committee 13: Human-Computer Interaction (TC13) in the period of 2008-2018. She has published more than 400 refereed articles and conference papers and worked as a guest editor for many renowned journals.',institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"University of Pannonia",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"573",title:"Virtual Computer System",slug:"virtual-computer-system"}],chapters:[{id:"36375",title:"Virtual Environments in Physical Therapy",doi:"10.5772/37132",slug:"virtual-environments-in-physical-therapy",totalDownloads:3038,totalCrossrefCites:3,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Felix O. Akinladejo",downloadPdfUrl:"/chapter/pdf-download/36375",previewPdfUrl:"/chapter/pdf-preview/36375",authors:[{id:"111420",title:"Dr.",name:"Felix",surname:"Akinladejo",slug:"felix-akinladejo",fullName:"Felix Akinladejo"}],corrections:null},{id:"36376",title:"A Survey of Some Virtual Reality Tools and Resources",doi:"10.5772/39062",slug:"a-survey-of-some-virtual-reality-tools-and-resources",totalDownloads:5536,totalCrossrefCites:1,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Moses Okechukwu Onyesolu, Ignatius Ezeani and Obikwelu Raphael Okonkwo",downloadPdfUrl:"/chapter/pdf-download/36376",previewPdfUrl:"/chapter/pdf-preview/36376",authors:[{id:"21147",title:"Prof.",name:"Moses",surname:"Onyesolu",slug:"moses-onyesolu",fullName:"Moses Onyesolu"},{id:"137834",title:"Mr.",name:"Ignatius",surname:"Ezeani",slug:"ignatius-ezeani",fullName:"Ignatius Ezeani"},{id:"137836",title:"Dr.",name:"Obikwelu Raphael",surname:"Okonkwo",slug:"obikwelu-raphael-okonkwo",fullName:"Obikwelu Raphael Okonkwo"}],corrections:null},{id:"36377",title:"Training of Procedural Tasks Through the Use of Virtual Reality and Direct Aids",doi:"10.5772/36650",slug:"training-of-procedural-tasks-through-the-use-of-virtual-reality-and-direct-aids",totalDownloads:1923,totalCrossrefCites:14,totalDimensionsCites:21,hasAltmetrics:0,abstract:null,signatures:"Jorge Rodríguez, Teresa Gutiérrez, Emilio J. Sánchez, Sara Casado and Iker Aguinaga",downloadPdfUrl:"/chapter/pdf-download/36377",previewPdfUrl:"/chapter/pdf-preview/36377",authors:[{id:"109230",title:"Dr.",name:"Jorge",surname:"Rodriguez",slug:"jorge-rodriguez",fullName:"Jorge Rodriguez"},{id:"109833",title:"Dr.",name:"Emilio",surname:"Sánchez",slug:"emilio-sanchez",fullName:"Emilio Sánchez"},{id:"109998",title:"MSc.",name:"Teresa",surname:"Gutierrez",slug:"teresa-gutierrez",fullName:"Teresa Gutierrez"},{id:"110000",title:"MSc.",name:"Sara",surname:"Casado",slug:"sara-casado",fullName:"Sara Casado"},{id:"142378",title:"Dr.",name:"Iker",surname:"Aguinaga",slug:"iker-aguinaga",fullName:"Iker Aguinaga"}],corrections:null},{id:"36378",title:"The Users' Avatars Nonverbal Interaction in Collaborative Virtual Environments for Learning",doi:"10.5772/36202",slug:"the-users-avatars-nonverbal-interaction-in-collaborative-virtual-environments-for-learning",totalDownloads:1548,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Adriana Peña Pérez Negrón, Raúl A. Aguilar and Luis A. Casillas",downloadPdfUrl:"/chapter/pdf-download/36378",previewPdfUrl:"/chapter/pdf-preview/36378",authors:[{id:"107464",title:"Dr.",name:"Adriana",surname:"Peña Perez Negron",slug:"adriana-pena-perez-negron",fullName:"Adriana Peña Perez Negron"},{id:"112789",title:"Dr.",name:"Raúl A.",surname:"Aguilar Vera",slug:"raul-a.-aguilar-vera",fullName:"Raúl A. Aguilar Vera"},{id:"137861",title:"Dr.",name:"Luis",surname:"Casillas",slug:"luis-casillas",fullName:"Luis Casillas"}],corrections:null},{id:"36379",title:"ROTATOR Model: A Framework for Building Collaborative Virtual Workspaces",doi:"10.5772/36216",slug:"rotator-model-a-framework-for-building-collaborative-virtual-workspaces",totalDownloads:2802,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Charles J. Lesko Jr, Christine R. Russell and Yolanda A. Hollingsworth",downloadPdfUrl:"/chapter/pdf-download/36379",previewPdfUrl:"/chapter/pdf-preview/36379",authors:[{id:"107517",title:"Dr.",name:"Charles",surname:"Lesko, Jr.",slug:"charles-lesko-jr.",fullName:"Charles Lesko, Jr."},{id:"112610",title:"Ms.",name:"Yolanda",surname:"Hollingsworth",slug:"yolanda-hollingsworth",fullName:"Yolanda Hollingsworth"},{id:"112655",title:"Ms.",name:"Christine",surname:"Russell",slug:"christine-russell",fullName:"Christine Russell"}],corrections:null},{id:"36380",title:"Optical Touch Screen and Its Application as a Next Generation Classroom Response System",doi:"10.5772/36731",slug:"optical-touch-screen-and-its-application-as-a-next-generation-classroom-response-system",totalDownloads:2659,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Hong Zhang",downloadPdfUrl:"/chapter/pdf-download/36380",previewPdfUrl:"/chapter/pdf-preview/36380",authors:[{id:"109541",title:"Dr.",name:"Hong",surname:"Zhang",slug:"hong-zhang",fullName:"Hong Zhang"}],corrections:null},{id:"36381",title:"Personalization of Virtual Environments Navigation and Tasks for Neurorehabilitation",doi:"10.5772/34840",slug:"personalization-of-virtual-environments-navigation-and-tasks-for-neurorehabilitation",totalDownloads:1430,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Dani Tost, Sergi Grau and Sergio Moya",downloadPdfUrl:"/chapter/pdf-download/36381",previewPdfUrl:"/chapter/pdf-preview/36381",authors:[{id:"101839",title:"Dr.",name:"Dani",surname:"Tost",slug:"dani-tost",fullName:"Dani Tost"},{id:"109308",title:"Dr.",name:"Sergi",surname:"Grau",slug:"sergi-grau",fullName:"Sergi Grau"},{id:"109309",title:"MSc.",name:"Sergio",surname:"Moya",slug:"sergio-moya",fullName:"Sergio Moya"}],corrections:null},{id:"36382",title:"Vision for Motor Performance in Virtual Environments Across the Lifespan",doi:"10.5772/37341",slug:"vision-for-motor-performance-in-virtual-environments-across-the-lifespan",totalDownloads:1670,totalCrossrefCites:3,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Patrick Grabowski and Andrea Mason",downloadPdfUrl:"/chapter/pdf-download/36382",previewPdfUrl:"/chapter/pdf-preview/36382",authors:[{id:"112297",title:"Prof.",name:"Andrea",surname:"Mason",slug:"andrea-mason",fullName:"Andrea Mason"},{id:"112336",title:"Mr.",name:"Patrick",surname:"Grabowski",slug:"patrick-grabowski",fullName:"Patrick Grabowski"}],corrections:null},{id:"36383",title:"Ergonomics Design Criteria of a Virtual Environment",doi:"10.5772/36401",slug:"ergonomics-design-of-virtual-environment",totalDownloads:2468,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Zahari Taha, Hartomo Soewardi, Siti Zawiah and Aznijar Ahmad-Yazid",downloadPdfUrl:"/chapter/pdf-download/36383",previewPdfUrl:"/chapter/pdf-preview/36383",authors:[{id:"108223",title:"Prof.",name:"Zahari",surname:"Taha",slug:"zahari-taha",fullName:"Zahari Taha"}],corrections:null},{id:"36384",title:"The Virtual Reality of Work - How to Create a Workplace that Enhances Well-Being for a Mobile Employee",doi:"10.5772/35548",slug:"the-virtual-reality-of-work-how-to-create-a-workplace-that-enhances-well-being-for-a-mobile-employ",totalDownloads:2972,totalCrossrefCites:2,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Ursula Hyrkkänen, Suvi Nenonen and Inka Kojo",downloadPdfUrl:"/chapter/pdf-download/36384",previewPdfUrl:"/chapter/pdf-preview/36384",authors:[{id:"104938",title:"Dr.",name:"Ursula",surname:"Hyrkkanen",slug:"ursula-hyrkkanen",fullName:"Ursula Hyrkkanen"},{id:"137485",title:"Dr.",name:"Suvi",surname:"Nenonen",slug:"suvi-nenonen",fullName:"Suvi Nenonen"},{id:"137486",title:"MSc.",name:"Inka",surname:"Kojo",slug:"inka-kojo",fullName:"Inka Kojo"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"2277",title:"Applications of Virtual Reality",subtitle:null,isOpenForSubmission:!1,hash:"1984848a9c90105b49dc6d3662c189e9",slug:"applications-of-virtual-reality",bookSignature:"Cecilia Sik Lanyi",coverURL:"https://cdn.intechopen.com/books/images_new/2277.jpg",editedByType:"Edited by",editors:[{id:"106377",title:"Dr.",name:"Cecília",surname:"Sik Lányi",slug:"cecilia-sik-lanyi",fullName:"Cecília Sik Lányi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4519",title:"The Thousand Faces of Virtual Reality",subtitle:null,isOpenForSubmission:!1,hash:"711575fce3e5b5d3d7d44a7cbc1a0746",slug:"the-thousand-faces-of-virtual-reality",bookSignature:"Cecilia Sik Lanyi",coverURL:"https://cdn.intechopen.com/books/images_new/4519.jpg",editedByType:"Edited by",editors:[{id:"106377",title:"Dr.",name:"Cecília",surname:"Sik Lányi",slug:"cecilia-sik-lanyi",fullName:"Cecília Sik Lányi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"20",title:"Virtual Reality",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"virtual-reality",bookSignature:"Jae-Jin Kim",coverURL:"https://cdn.intechopen.com/books/images_new/20.jpg",editedByType:"Edited by",editors:[{id:"14702",title:"Prof.",name:"Jae-Jin",surname:"Kim",slug:"jae-jin-kim",fullName:"Jae-Jin Kim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3010",title:"Virtual Reality",subtitle:"Human Computer Interaction",isOpenForSubmission:!1,hash:"4bbe2e1a9f2f7e67904a7b3fdf137cf7",slug:"virtual-reality-human-computer-interaction",bookSignature:"Xin‐Xing Tang",coverURL:"https://cdn.intechopen.com/books/images_new/3010.jpg",editedByType:"Edited by",editors:[{id:"144397",title:"Dr.",name:"Tang",surname:"Xinxing",slug:"tang-xinxing",fullName:"Tang Xinxing"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"580",title:"Augmented Reality",subtitle:"Some Emerging Application Areas",isOpenForSubmission:!1,hash:"5e61045dd901e3a91368f10fb909d002",slug:"augmented-reality-some-emerging-application-areas",bookSignature:"Andrew Yeh Ching Nee",coverURL:"https://cdn.intechopen.com/books/images_new/580.jpg",editedByType:"Edited by",editors:[{id:"69656",title:"Dr.",name:"Andrew Yeh Ching",surname:"Nee",slug:"andrew-yeh-ching-nee",fullName:"Andrew Yeh Ching Nee"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"79356",slug:"erratum-metrology-organic-solvents-in-the-shoes-industry-to-sfax-city-tunisia",title:"Erratum - Metrology Organic Solvents in the Shoes Industry to Sfax City (Tunisia)",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/65666.pdf",downloadPdfUrl:"/chapter/pdf-download/65666",previewPdfUrl:"/chapter/pdf-preview/65666",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/65666",risUrl:"/chapter/ris/65666",chapter:{id:"62241",slug:"metrology-organic-solvents-in-the-shoes-industry-to-sfax-city-tunisia-",signatures:"Imed Gargouri and Moncef Khadhraoui",dateSubmitted:"October 10th 2017",dateReviewed:"May 4th 2018",datePrePublished:null,datePublished:"January 30th 2019",book:{id:"6671",title:"Paint and Coatings Industry",subtitle:null,fullTitle:"Paint and Coatings Industry",slug:"paint-and-coatings-industry",publishedDate:"January 30th 2019",bookSignature:"Faris Yilmaz",coverURL:"https://cdn.intechopen.com/books/images_new/6671.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"36900",title:"Dr.",name:"Faris",middleName:"Sad",surname:"Yılmaz",slug:"faris-yilmaz",fullName:"Faris Yılmaz"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"186371",title:"Associate Prof.",name:"Imed",middleName:null,surname:"Gargouri",fullName:"Imed Gargouri",slug:"imed-gargouri",email:"imed.gargouri@fmsf.rnu.tn",position:null,institution:{name:"University of Sfax",institutionURL:null,country:{name:"Tunisia"}}},{id:"230836",title:"Dr.",name:"Khadhraoui",middleName:null,surname:"Moncef",fullName:"Khadhraoui Moncef",slug:"khadhraoui-moncef",email:"montunisia@yahoo.com",position:null,institution:null}]}},chapter:{id:"62241",slug:"metrology-organic-solvents-in-the-shoes-industry-to-sfax-city-tunisia-",signatures:"Imed Gargouri and Moncef Khadhraoui",dateSubmitted:"October 10th 2017",dateReviewed:"May 4th 2018",datePrePublished:null,datePublished:"January 30th 2019",book:{id:"6671",title:"Paint and Coatings Industry",subtitle:null,fullTitle:"Paint and Coatings Industry",slug:"paint-and-coatings-industry",publishedDate:"January 30th 2019",bookSignature:"Faris Yilmaz",coverURL:"https://cdn.intechopen.com/books/images_new/6671.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"36900",title:"Dr.",name:"Faris",middleName:"Sad",surname:"Yılmaz",slug:"faris-yilmaz",fullName:"Faris Yılmaz"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"186371",title:"Associate Prof.",name:"Imed",middleName:null,surname:"Gargouri",fullName:"Imed Gargouri",slug:"imed-gargouri",email:"imed.gargouri@fmsf.rnu.tn",position:null,institution:{name:"University of Sfax",institutionURL:null,country:{name:"Tunisia"}}},{id:"230836",title:"Dr.",name:"Khadhraoui",middleName:null,surname:"Moncef",fullName:"Khadhraoui Moncef",slug:"khadhraoui-moncef",email:"montunisia@yahoo.com",position:null,institution:null}]},book:{id:"6671",title:"Paint and Coatings Industry",subtitle:null,fullTitle:"Paint and Coatings Industry",slug:"paint-and-coatings-industry",publishedDate:"January 30th 2019",bookSignature:"Faris Yilmaz",coverURL:"https://cdn.intechopen.com/books/images_new/6671.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"36900",title:"Dr.",name:"Faris",middleName:"Sad",surname:"Yılmaz",slug:"faris-yilmaz",fullName:"Faris Yılmaz"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"7886",leadTitle:null,title:"Photodynamic Therapy",subtitle:"From Basic Science to Clinical Research",reviewType:"peer-reviewed",abstract:"Today, in the face of resistant microorganisms, aggressive cancers unresponsive to conventional treatments, and the COVID-19 pandemic, the need for advanced and innovative protocols for combating and treating disease is paramount. This book presents basic concepts of photodynamic therapy along with data from clinical research on its use in treating oncologic and other diseases. It also presents innovative strategies in photodynamic therapy, including information on polymer nanoparticles. This book was prepared with great care and by many valuable hands so that we can expand the dissemination of Photodynamic Therapy, as well as motivate for new research.",isbn:"978-1-83968-061-8",printIsbn:"978-1-83968-060-1",pdfIsbn:"978-1-83968-068-7",doi:"10.5772/intechopen.77705",price:119,priceEur:129,priceUsd:155,slug:"photodynamic-therapy-from-basic-science-to-clinical-research",numberOfPages:242,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"d7ef096c2bcf9efbda76d7631ce1e3ac",bookSignature:"Natalia Mayumi Inada, Hilde Harb Buzzá, Kate Cristina Blanco and Lucas Danilo Dias",publishedDate:"May 5th 2021",coverURL:"https://cdn.intechopen.com/books/images_new/7886.jpg",keywords:null,numberOfDownloads:5289,numberOfWosCitations:2,numberOfCrossrefCitations:4,numberOfDimensionsCitations:12,numberOfTotalCitations:18,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"July 1st 2020",dateEndSecondStepPublish:"July 22nd 2020",dateEndThirdStepPublish:"September 20th 2020",dateEndFourthStepPublish:"December 9th 2020",dateEndFifthStepPublish:"February 7th 2021",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 years",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:'Dr. Natalia M. Inada is currently working directly on the development of clinical projects such as the "Photodynamic Therapy Brazil for Non-melanoma Skin Cancer", she was awarded for her work many times, including the Mercosur Prize for Science and Technology (2016), the PDT Clinical Trial Excellence (2017), and Poster of Merit (2019), by the International Photodynamic Association.',coeditorOneBiosketch:"Dr. Hilde Buzzá is currently working as a postdoctoral fellow focusing on the combination of Photodynamic Therapy and Photothermal Therapy.",coeditorTwoBiosketch:"Dr. Kate Cristina Blanco graduated in Biomedicine and has obtained a Ph.D. degree in Applied Microbiology (2013) and is a postdoctoral fellow at the São Carlos Institute of Physics since 2014.",coeditorThreeBiosketch:"Dr. Dias has published 19 peer-reviewed papers in national/international journals and has authored more than 40 communications (oral and posters) in national/international scientific meetings, in addition, he is an inventor of 1 patent.",coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"90788",title:"Dr.",name:"Natalia Mayumi",middleName:null,surname:"Inada",slug:"natalia-mayumi-inada",fullName:"Natalia Mayumi Inada",profilePictureURL:"https://mts.intechopen.com/storage/users/90788/images/system/90788.jpg",biography:'Natalia M. Inada earned a Ph.D. in Medical Pathophysiology from the State University of Campinas (UNICAMP), Brazil, in 2006). She is currently a research scientist at the University of São Paulo (USP), São Carlos Institute of Physics, Brazil, leading the Microbial Control and Cell Culture Labs at the Biophotonics Group. She works in multicenter clinical projects such as the “CerCa Solutions for Diagnosis and Treatment of Cervical Intraepithelial Neoplasia” and \\"Photodynamic Therapy Brazil for Non-melanoma Skin Cancer.” Dr. Inada’s research focuses on improving photodynamic therapy with nanodelivery systems, and the treatment of infectious diseases. She has published numerous scientific papers and book chapters, and was awarded for her work many times, including the Mercosur Prize for Science and Technology (2016), the PDT Clinical Trial Excellence (2017), and Poster of Merit (2019) by the International Photodynamic Association.',institutionString:"University of Sao Paulo",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of Sao Paulo",institutionURL:null,country:{name:"Brazil"}}}],coeditorOne:{id:"312001",title:"Dr.",name:"Hilde Harb",middleName:null,surname:"Buzzá",slug:"hilde-harb-buzza",fullName:"Hilde Harb Buzzá",profilePictureURL:"https://mts.intechopen.com/storage/users/312001/images/system/312001.png",biography:"Dr. Hilde Harb Buzza is currently a postdoctoral fellow at the Institute of Physics of São Carlos (IFSC), University of São Paulo (USP), Brazil, studying light application in life science. She graduated with a degree in Physical and Biomolecular Sciences and obtained her Ph.D. in Applied Physics from IFSC. She has experience in the field of photodynamic and photothermal therapies for tumor treatments and infections caused by bacteria and fungi, with studies from the lab to clinical trials. She has worked with the application of nanotechnology in biophotonics and has contributed to teaching and scientific dissemination activities.",institutionString:"University of Sao Paulo",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Sao Paulo",institutionURL:null,country:{name:"Brazil"}}},coeditorTwo:{id:"189115",title:"Dr.",name:"Kate Cristina",middleName:null,surname:"Blanco",slug:"kate-cristina-blanco",fullName:"Kate Cristina Blanco",profilePictureURL:"https://mts.intechopen.com/storage/users/189115/images/system/189115.jpg",biography:"Kate Blanco is a postdoctoral researcher at the São Carlos Institute of Physics, University of São Paulo (USP), Brazil, and has been working at the Optics and Photonics Research Center of the São Paulo Research Foundation (Fapesp). She has a degree in Biomedicine and a doctorate in Microbiology from Universidade Estadual Paulista (Unesp), Brazil. She specializes in industrial fermentation and the production of health products and processes, infections, and microbial control of food using optical techniques.",institutionString:"University of Sao Paulo",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Sao Paulo",institutionURL:null,country:{name:"Brazil"}}},coeditorThree:{id:"312880",title:"Dr.",name:"Lucas Danilo",middleName:null,surname:"Dias",slug:"lucas-danilo-dias",fullName:"Lucas Danilo Dias",profilePictureURL:"https://mts.intechopen.com/storage/users/312880/images/system/312880.jpg",biography:"Lucas D. Dias received his Ph.D. in Chemistry at the University of Coimbra, Portugal, and is currently a postdoctoral research fellow at the University of São Paulo (USP), Brazil. His current research interests are in the fields of medicine and catalysis, namely, mechanisms in photodynamic therapy, synthesis of photosensitizers for photodynamic therapy, design and synthesis of photocatalysts, and synthesis of homogeneous and immobilized catalysts based on tetrapyrrolic macrocycles for the activation of small molecules (O2, CO and CO2). Dr. Dias has published thirty-two peer-reviewed papers in national/international journals, authored more than forty communications (oral and posters) in national/international scientific meetings, and is the inventor of one patent.",institutionString:"University of Sao Paulo",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Sao Paulo",institutionURL:null,country:{name:"Brazil"}}},coeditorFour:null,coeditorFive:null,topics:[{id:"222",title:"Biophysics",slug:"physics-biophysics"}],chapters:[{id:"73712",title:"Electron Transfer-Supported Photodynamic Therapy",slug:"electron-transfer-supported-photodynamic-therapy",totalDownloads:603,totalCrossrefCites:0,authors:[{id:"97768",title:"Dr.",name:"Kazutaka",surname:"Hirakawa",slug:"kazutaka-hirakawa",fullName:"Kazutaka Hirakawa"}]},{id:"73603",title:"Can PDT Alter the Glycosylation of the Tumor Cell Membrane?",slug:"can-pdt-alter-the-glycosylation-of-the-tumor-cell-membrane-",totalDownloads:371,totalCrossrefCites:0,authors:[{id:"68406",title:"Dr.",name:"Cristina",surname:"Pacheco-Soares",slug:"cristina-pacheco-soares",fullName:"Cristina Pacheco-Soares"},{id:"77510",title:"Dr.",name:"Newton",surname:"Soares Da Silva",slug:"newton-soares-da-silva",fullName:"Newton Soares Da Silva"},{id:"327391",title:"MSc.",name:"Bruno",surname:"Henrique Godoi",slug:"bruno-henrique-godoi",fullName:"Bruno Henrique Godoi"},{id:"327392",title:"Dr.",name:"Juliana",surname:"Ferreira Strixino",slug:"juliana-ferreira-strixino",fullName:"Juliana Ferreira Strixino"}]},{id:"74051",title:"Sonodynamic and Photodynamics Used as a Combined Therapy in the Treatment of Malignant Neoplasms: Facts and Open Questions",slug:"sonodynamic-and-photodynamics-used-as-a-combined-therapy-in-the-treatment-of-malignant-neoplasms-fac",totalDownloads:314,totalCrossrefCites:0,authors:[{id:"76663",title:"Prof.",name:"Luiz A.",surname:"Alves",slug:"luiz-a.-alves",fullName:"Luiz A. Alves"},{id:"328302",title:"BSc.",name:"Heber",surname:"Lopes de Mello",slug:"heber-lopes-de-mello",fullName:"Heber Lopes de Mello"},{id:"335156",title:"Ms.",name:"Evellyn",surname:"Araujo Dias",slug:"evellyn-araujo-dias",fullName:"Evellyn Araujo Dias"},{id:"335157",title:"Ms.",name:"Sabrina",surname:"De Sá Pereira Magalhães",slug:"sabrina-de-sa-pereira-magalhaes",fullName:"Sabrina De Sá Pereira Magalhães"},{id:"335158",title:"Prof.",name:"Vinicius",surname:"Cotta De Almeida",slug:"vinicius-cotta-de-almeida",fullName:"Vinicius Cotta De Almeida"},{id:"335161",title:"Dr.",name:"Rodrigo",surname:"Bisaggio",slug:"rodrigo-bisaggio",fullName:"Rodrigo Bisaggio"}]},{id:"75652",title:"Clinical Usage of Photodynamic Therapy",slug:"clinical-usage-of-photodynamic-therapy",totalDownloads:248,totalCrossrefCites:0,authors:[{id:"328885",title:"M.D.",name:"Niral M.",surname:"Patel",slug:"niral-m.-patel",fullName:"Niral M. Patel"},{id:"329032",title:"Dr.",name:"Ali I.",surname:"Musani",slug:"ali-i.-musani",fullName:"Ali I. Musani"}]},{id:"73612",title:"Anatomically Adjustable Device for Large-Area Photodynamic Therapy",slug:"anatomically-adjustable-device-for-large-area-photodynamic-therapy",totalDownloads:396,totalCrossrefCites:0,authors:[{id:"36412",title:"Dr.",name:"Priscila",surname:"Menezes",slug:"priscila-menezes",fullName:"Priscila Menezes"},{id:"72297",title:"Prof.",name:"Vanderlei Salvador",surname:"Bagnato",slug:"vanderlei-salvador-bagnato",fullName:"Vanderlei Salvador Bagnato"},{id:"220461",title:"Dr.",name:"Alessandra",surname:"Keiko",slug:"alessandra-keiko",fullName:"Alessandra Keiko"},{id:"326980",title:"BSc.",name:"Daniel",surname:"Chianfrone",slug:"daniel-chianfrone",fullName:"Daniel Chianfrone"},{id:"326982",title:"Mr.",name:"Vinicius",surname:"Moreira",slug:"vinicius-moreira",fullName:"Vinicius Moreira"},{id:"326985",title:"BSc.",name:"Anderson",surname:"Zanchin",slug:"anderson-zanchin",fullName:"Anderson Zanchin"}]},{id:"73785",title:"Application of Photodynamic Therapy in the Treatment of Osteonecrosis of the Jaw",slug:"application-of-photodynamic-therapy-in-the-treatment-of-osteonecrosis-of-the-jaw",totalDownloads:448,totalCrossrefCites:0,authors:[{id:"26946",title:"Prof.",name:"Dragana",surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"},{id:"33435",title:"Dr.",name:"Mato",surname:"Sušić",slug:"mato-susic",fullName:"Mato Sušić"},{id:"327713",title:"Dr.",name:"Luka",surname:"Marković",slug:"luka-markovic",fullName:"Luka Marković"},{id:"327741",title:"D.Sc.",name:"Marko",surname:"Vuletić",slug:"marko-vuletic",fullName:"Marko Vuletić"},{id:"331861",title:"Dr.",name:"Božana",surname:"Lončar Brzak",slug:"bozana-loncar-brzak",fullName:"Božana Lončar Brzak"},{id:"331862",title:"Dr.",name:"Igor",surname:"Smojver",slug:"igor-smojver",fullName:"Igor Smojver"}]},{id:"73812",title:"Strategies to Improve Drug Delivery in Topical PDT",slug:"strategies-to-improve-drug-delivery-in-topical-pdt",totalDownloads:286,totalCrossrefCites:0,authors:[{id:"326883",title:"Dr.",name:"Michelle Barreto",surname:"Requena",slug:"michelle-barreto-requena",fullName:"Michelle Barreto Requena"},{id:"329826",title:"Dr.",name:"Mirian Denise",surname:"Stringasci",slug:"mirian-denise-stringasci",fullName:"Mirian Denise Stringasci"},{id:"329827",title:"Dr.",name:"José Dirceu",surname:"Vollet-Filho",slug:"jose-dirceu-vollet-filho",fullName:"José Dirceu Vollet-Filho"}]},{id:"75016",title:"Photodynamic Treatment of Staphylococcus aureus Infections",slug:"photodynamic-treatment-of-em-staphylococcus-aureus-em-infections",totalDownloads:383,totalCrossrefCites:1,authors:[{id:"328234",title:"Ph.D.",name:"Christian",surname:"Palavecino",slug:"christian-palavecino",fullName:"Christian Palavecino"},{id:"334020",title:"BSc.",name:"Camila",surname:"Perez",slug:"camila-perez",fullName:"Camila Perez"},{id:"334021",title:"BSc.",name:"Tania",surname:"Zuñiga",slug:"tania-zuniga",fullName:"Tania Zuñiga"}]},{id:"73605",title:"Cell Death after Photodynamic Therapy Treatment in Unicellular Protozoan Parasite Tritrichomonas foetus",slug:"cell-death-after-photodynamic-therapy-treatment-in-unicellular-protozoan-parasite-em-tritrichomonas-",totalDownloads:333,totalCrossrefCites:0,authors:[{id:"68406",title:"Dr.",name:"Cristina",surname:"Pacheco-Soares",slug:"cristina-pacheco-soares",fullName:"Cristina Pacheco-Soares"},{id:"77510",title:"Dr.",name:"Newton",surname:"Soares Da Silva",slug:"newton-soares-da-silva",fullName:"Newton Soares Da Silva"},{id:"295340",title:"Dr.",name:"Rafael M.",surname:"Etto",slug:"rafael-m.-etto",fullName:"Rafael M. Etto"},{id:"295341",title:"Dr.",name:"Carolina W.",surname:"Galvão",slug:"carolina-w.-galvao",fullName:"Carolina W. Galvão"},{id:"327925",title:"Dr.",name:"Aline",surname:"Margraf-Ferreira",slug:"aline-margraf-ferreira",fullName:"Aline Margraf-Ferreira"}]},{id:"73813",title:"Evaluation of the Antimicrobial Efficacy of Different Types of Photodynamic Therapy on the Main Pathogenic Bacteria of Peri-Implantitis",slug:"evaluation-of-the-antimicrobial-efficacy-of-different-types-of-photodynamic-therapy-on-the-main-path",totalDownloads:467,totalCrossrefCites:0,authors:[{id:"26946",title:"Prof.",name:"Dragana",surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"},{id:"327713",title:"Dr.",name:"Luka",surname:"Marković",slug:"luka-markovic",fullName:"Luka Marković"},{id:"162745",title:"Dr.",name:"Ivona",surname:"Bago",slug:"ivona-bago",fullName:"Ivona Bago"},{id:"327711",title:"Dr.",name:"Bleron",surname:"Azizi",slug:"bleron-azizi",fullName:"Bleron Azizi"},{id:"327712",title:"Prof.",name:"Ana",surname:"Budimir",slug:"ana-budimir",fullName:"Ana Budimir"},{id:"327716",title:"Prof.",name:"Verica",surname:"Pavlić",slug:"verica-pavlic",fullName:"Verica Pavlić"}]},{id:"74812",title:"Antimicrobial Photodynamic Therapy of the Respiratory Tract: From the Proof of Principles to Clinical Application",slug:"antimicrobial-photodynamic-therapy-of-the-respiratory-tract-from-the-proof-of-principles-to-clinical",totalDownloads:354,totalCrossrefCites:2,authors:[{id:"90788",title:"Dr.",name:"Natalia Mayumi",surname:"Inada",slug:"natalia-mayumi-inada",fullName:"Natalia Mayumi Inada"},{id:"312001",title:"Dr.",name:"Hilde Harb",surname:"Buzzá",slug:"hilde-harb-buzza",fullName:"Hilde Harb Buzzá"},{id:"189115",title:"Dr.",name:"Kate Cristina",surname:"Blanco",slug:"kate-cristina-blanco",fullName:"Kate Cristina Blanco"},{id:"312880",title:"Dr.",name:"Lucas Danilo",surname:"Dias",slug:"lucas-danilo-dias",fullName:"Lucas Danilo Dias"},{id:"72297",title:"Prof.",name:"Vanderlei Salvador",surname:"Bagnato",slug:"vanderlei-salvador-bagnato",fullName:"Vanderlei Salvador Bagnato"},{id:"312000",title:"Ph.D. Student",name:"Giulia",surname:"Kassab",slug:"giulia-kassab",fullName:"Giulia Kassab"}]},{id:"73761",title:"Nanomaterials for Enhanced Photodynamic Therapy",slug:"nanomaterials-for-enhanced-photodynamic-therapy",totalDownloads:502,totalCrossrefCites:1,authors:[{id:"326753",title:"Dr.",name:"Lucas",surname:"de Freitas",slug:"lucas-de-freitas",fullName:"Lucas de Freitas"}]},{id:"73893",title:"Synergic Influence of Parameters Involved in the Polymeric Nanoparticle Preparation on the Efficacy of Photodynamic Therapy",slug:"synergic-influence-of-parameters-involved-in-the-polymeric-nanoparticle-preparation-on-the-efficacy-",totalDownloads:585,totalCrossrefCites:0,authors:[{id:"327892",title:"Ph.D.",name:"André",surname:"Da Silva",slug:"andre-da-silva",fullName:"André Da Silva"},{id:"328172",title:"B.Sc.",name:"Barbara Silva",surname:"Figueiredo",slug:"barbara-silva-figueiredo",fullName:"Barbara Silva Figueiredo"},{id:"328173",title:"Mrs.",name:"Vannyla",surname:"Vasconcelos",slug:"vannyla-vasconcelos",fullName:"Vannyla Vasconcelos"},{id:"328174",title:"B.Sc.",name:"Julyana",surname:"Ferreira",slug:"julyana-ferreira",fullName:"Julyana Ferreira"},{id:"328176",title:"Ms.",name:"Priscila Ponate De",surname:"Souza",slug:"priscila-ponate-de-souza",fullName:"Priscila Ponate De Souza"},{id:"328177",title:"Ms.",name:"Rafaela Vergna",surname:"De Angeli",slug:"rafaela-vergna-de-angeli",fullName:"Rafaela Vergna De Angeli"}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"252211",firstName:"Sara",lastName:"Debeuc",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/252211/images/7239_n.png",email:"sara.d@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3569",title:"Biodegradation",subtitle:"Life of Science",isOpenForSubmission:!1,hash:"bb737eb528a53e5106c7e218d5f12ec6",slug:"biodegradation-life-of-science",bookSignature:"Rolando Chamy and Francisca Rosenkranz",coverURL:"https://cdn.intechopen.com/books/images_new/3569.jpg",editedByType:"Edited by",editors:[{id:"165784",title:"Dr.",name:"Rolando",surname:"Chamy",slug:"rolando-chamy",fullName:"Rolando Chamy"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"43716",title:"Hydrotreating Catalytic Processes for Oxygen Removal in the Upgrading of Bio-Oils and Bio-Chemicals",doi:"10.5772/52581",slug:"hydrotreating-catalytic-processes-for-oxygen-removal-in-the-upgrading-of-bio-oils-and-bio-chemicals",body:'In a future sustainable scenario a progressive transition by the chemical and energy industries towards renewable feedstock will become compulsory. Energy demand is expected to grow by more than 50% by 2035 [1], with most of this increase in demand emerging from developing nations. Clearly, increasing demand from finite petroleum resources cannot be a satisfactory policy for the long term. The transition to a more renewable production system is now underway; however, this transition needs more research and investment in new technologies to be feasible.
Biomass appears as the only renewable source for liquid fuels and most commodity chemicals [2]. This is the reason why, in the near future, bio-refineries in which biomass is catalytically converted to pharmaceuticals, agricultural chemicals, plastics and transportation fuels will take the place of petrochemical plants [3]. Indeed, biomass represents 77.4% of global renewable energy supply [4]. Current technologies to produce liquid fuels from biomass are typically multistep and energy-intensive processes, including the production of ethanol by fermentation of biomass derived glucose [5],bio-oils by fast pyrolysis or high pressure liquefaction of biomass [6,7], polyols and alkanes from hydrogenolysis of biomass derived sorbitol [8],and biodiesel from vegetable oils [9].Biomass can also be gasified to produce CO and H2(synthesis gas), which can be further processed to produce methanol or liquid alkanes through Fischer–Tropsch synthesis [10].
The so-called “First Generation” biofuels, such as sugarcane ethanol in Brazil, corn ethanol in US, oilseed rape biodiesel in Germany, and palm oil biodiesel in Malaysia,already present mature commercial markets and well developed technologies. Nonetheless, there is a worldwide increasing awareness against the use of edible oils and seeds to generate transportation fuels, and critical voices have aroused questioning the actual sustainability of these “First Generation” biofuels. In fact, nowadays 95 % of biodiesel is made from edible oil [9]. This means that possible food resources are being used as automotive fuels when some part of the World’s population is suffering from hunger. Therefore, large-scale production of biodiesel from edible oils may bring about a global imbalance in the food supply market. Another significant concern of using “First Generation” technologies is the deforestation and the destruction of ecosystems. Indeed, the expansion of oil-crop plantations for biofuel production on a large scale has caused deforestation in countries such as Malaysia, Indonesia and Brazil because more and more forest has been cleared for plantation purposes. In addition to this, in developing countries energy crops are powerful competitors for scarce water resources [11].
Being the non-edible portion of the plant and the most abundant source of biomass, lignocellulosic biomass materials are attracting growing attention as sustainable and renewable energy sources. The so-called “Second Generation” technologies for the production of fuels and chemicals can use a wide range of lignocellulosic biomass residues such as agricultural, industrial, and forest wastes, and also energy crops (willow, switchgrass) that do not compete with food crops for available land. The average composition of lignocellulosic material is as follows: 50% cellulose, 25% hemicellulose, and 20% lignin [12]. Cellulose is a linear polysaccharide with β-1,4 linkages of D-glucopyranose monomers (Figure 1). Hemicellulose is a more complex polymer containing five different sugar monomers: five carbon sugars (xylose and arabinose) and six carbon sugars (galactose, glucose, and mannose). Lignin is a highly branched aromatic polymer, that consists of an irregular array of variously bonded “hydroxy-” and “methoxy-“ substitutedphenylpropane units. Lignin is mainly found in woody biomass. Lignocellulosic materials can be converted into liquid fuels by three primary routes, including (i) syngas production by gasification, (ii) bio-oil production by pyrolysis or liquefaction, and (iii) acid hydrolysis reactions [13].
Chemical structure of cellulose.
In the pyrolysis process, biomass feedstock is heated in the absence of oxygen, forming a gaseous product, which after cooling condenses. Depending on the operating conditions that are used, pyrolysis processes are known as slow or fast pyrolysis. Fast pyrolysis processes are characterized by high rates of particle heating (heating rate > 1000ºC/min) to temperatures around 500ºC, and rapid cooling of the produced vapors to condense them (vapor residence time 0.5-5s). In order to obtain that fast heating rates, it is essential to use reactors that provide high external heat transfer (such as fluidized bed reactors) and to guarantee an efficient heat transfer through the biomass particle, using biomass particle size of less than 5 mm [7]. Fast pyrolysis produce 60-75 wt% of liquid bio-oil, 15-25 wt% of solid char, and 10-20 wt% of non condensable gases, depending on the feedstock. In slow pyrolysis biomass is heated to around 500ºC at much lower heating rates than those used in fast pyrolysis. The vapor residence times are much longer; they vary from 5 min to 30 min. As a consequence of the lower heating rate and of the longer vapor residence time, lower yields to pyrolysis oils and higher yields to char and gas products are obtained (Figure 2). As a result of all this, for bio-oil production from biomass, fast pyrolysis processes are preferred.
Product spectrum from pyrolysis. Data from [
Bio-oils are dark-red brown color liquids. They are also known as pyrolysis oils, bio-crude oil, wood oil or liquid wood. Bio-oils usually have higher density, viscosity and oxygen content compared to fuel-oil. While the sulfur and nitrogen content is usually smaller (Table 1). The high oxygen content of bio-oils generates some negative characteristics like low heating value (HV), immiscibility with conventional fuels and high viscosity. A serious problem of bio-oils is their instability during storage, as their viscosity, HV and density are affected. This is because some of the organic compounds present in bio-oils are highly reactive. For instance, ketones, aldehydes and organic acids react to form ethers, acetals and hemiacetals respectively [15]. Therefore, bio-oils need to be upgraded to reduce their oxygen content in order to increase their stability, to be miscible with conventional oil, and to increase their H/C ratio. This upgrading can be carried out through three different routes: (i) catalytic hydrotreating, usually known as hydrodeoxygenation (HDO), which consists mainly on decarboxylation, hydrocracking, hydrogenolysis and hydrogenation reactions, (ii) zeolite upgrading or (iii) through esterification reactions. Zeolite upgrading is carried out without external hydrogen sources, and therefore the resulting oil has lower HV and H/C than conventional fuels. Esterification can significantly increase the chemical and physical properties of bio-oil, however it requires using high amounts of alcohols, which are highly demanded. Catalytic hydrotreating appears to have the greatest potential to obtain high grade oils which are compatible with the already available infrastructure for fossil fuels.
\n\t\t\t\t | \n\t\t\t||
Moisture Content, wt % | \n\t\t\t15-30 | \n\t\t\t0.1 | \n\t\t
pH | \n\t\t\t2.5 | \n\t\t\t\n\t\t |
Elemental Composition, wt % | \n\t\t\t\n\t\t\t | \n\t\t |
Carbon | \n\t\t\t54-58 | \n\t\t\t85 | \n\t\t
Hydrogen | \n\t\t\t5.5-7.0 | \n\t\t\t11 | \n\t\t
Oxygen | \n\t\t\t35-40 | \n\t\t\t1.0 | \n\t\t
Nitrogen | \n\t\t\t0-0.2 | \n\t\t\t0.3 | \n\t\t
Ash | \n\t\t\t0-0.2 | \n\t\t\t0.1 | \n\t\t
Higher Heating Value, MJ/kg | \n\t\t\t16-19 | \n\t\t\t40 | \n\t\t
Viscosity (50°C), cP | \n\t\t\t40-100 | \n\t\t\t180 | \n\t\t
Solids (wt%) | \n\t\t\t0.2-1.0 | \n\t\t\t1 | \n\t\t
Typical Properties of Wood Pyrolysis Bio-Oil, and Heavy Fuel Oil [13].
Not only fuels, but also commodity chemicals are nowadays derived from petroleum-based resources. Commodity chemicals are involved in the production of a wide variety of products and thus are an essential and integral part of the modern societies. Hence, in the search for a sustainable scenario, it is crucial to also look towards alternative biorenewable sources for these chemicals. In the case of platform chemicals coming from biomass, such as glucose, levulinic acid, 5-(hydroxyl-methyl furfural), sorbitol, or glycerol,they usually have higher O/C ratio than most commodity chemicals. Therefore, the conversion of these platform chemicals into value-added chemicals usually requires O removal reactions.
This book chapter summarizes the main aspects involved in the catalytic hydrotreating processes for the oxygen removal from bio-oils and from biomass based platform chemicals.
As it has been stated in the introduction, a general characteristic of bio-oils coming from the pyrolysis of biomass is their high oxygen content (35-40 wt%). More than 300 compounds have been identified in bio-oil, most of them containing oxygen atoms. The exact composition of the bio-oil depends on the type of biomass fed. These compounds can be classified in five broad categories: (i) hydroxyaldehydes, (ii) hydroxyketones, (iii) sugars and dehydrosugars, (iv) carboxylic acids, and (v) phenolic compounds [16]. Hydroprocessing of biomass-derived oils differs from processing petroleum because of the importance of deoxygenation as compared to nitrogen or sulfur removal. Bio-oil hydrodeoxygenation (HDO) process implies complex reaction networks that includes cracking, decarbonylation, decarboxylation, hydrocracking, hydrogenolysis, hydrogenation and polymerization. The upgrading process should yield a product with lower amount of water and oxygen, decreased acidity and viscosity, and higher HV. The complexity of the reactions and the high variety of oxygenated compounds make the evaluation of bio-oil upgrading difficult and has brought the use of model compounds such as phenol, guaicol, 2-ethylphenol, methyl heptanoate or benzofuran to test different catalysts and to understand the main characteristics of the HDO process. Elliot [17] has reported the HDO reactivity of different organic compounds that are typically present in bio-oils (see Figure 3). Olefins, aldehydes and ketones can easily be reduced by H2 at temperatures as low as 150–200 °C. Alcohols react at 250–300 °C by hydrogenation and thermal dehydration to form olefins. Carboxylic and phenolic ethers react at around 300 °C. Regarding the operating pressures, due to the low solubility of hydrogen in organic and aqueous solutions, high pressures are required to guarantee high availability of hydrogen in the vicinity of the catalyst (80-300 bar of H2 pressure) [15].
Reactivity scale of organic components under HDO conditions. Adapted from [
HDO is a process closely related to hydrodesulphurization (HDS), which is highly developed in the oil-refinery industry. In both processes, hydrogen is used to remove the heteroatom in the form of H2O and H2S respectively. This is the reason why several works on bio-oil HDO use catalytic systems already used in HDS processes, such as Co-Mo or Ni-Mo based catalysts. These catalysts are active in their sulphide form, so they need to be pretreated with H2S before operation to obtain Co-MoS2 or Ni-MoS2 active sites. Romero et al. [18] using Co-MoS2 type catalysts for the HDO of 2-ethylphenol at 340ºC and 7 MPa of hydrogen pressure proposed the reaction mechanism described in Figure 4. It is suggested that the oxygen from the molecule adsorbs on a vacancy of a MoS2 matrix. At the same time, the H2 from the feed dissociatively adsorbs on the catalyst surface forming S-H species. The addition of a proton to the adsorbed oxygenated molecule leads to an adsorbed carbocation. This intermediate can directly undergo a C–O bond cleavage and the aromatic ring is regenerated leading to ethylbenzene. The vacancy is afterwards recovered by elimination of water.
The problem of using MoS2 type catalysts for HDO of bio-oils is that during prolonged operation sulfur stripping and oxidation of the surface of the catalyst occurs, causing deactivation of the catalyst. The reason is that as compared to conventional oil, the sulfur content of bio-oil is very low (less than 0.1 wt % [19]). One alternative to avoid this problem is the co-feeding of H2S to the system, in order to regenerate the sulfide sites. For instance, in the HDO of alyphatic esters over a CoMoS2/Al2O3 and NiMoS2/Al2O3 catalysts a promoting effect was observed in the activity of the catalyst when co-feeding H2S, however this co-feeding did not prevent from catalyst deactivation. This promoting effect was related to the increase in Brönsted acidity in the presence of H2S [20]. Nonetheless, the use of H2S has also some drawbacks. In the HDO of phenol over a Ni-MoS2-Al2O3 catalyst, it was observed an inhibitory effect of H2S, leading to a decrease in phenol conversion and not preventing catalyst deactivation. This was ascribed to the competitive adsorption between phenol and H2S [21]. Moreover, the formation of sulfur-containing compounds such as dimethyl sulfide, diheptyl sulfide, hexanethiol and heptanethiol was observed in the HDO of aliphatic oxygenates over Co-MoS2 catalysts, even in the absence of sulfiding agents [22]. Therefore, the use of MoS2 type catalysts in bio-oil HDO seems challenging, becouse sulfur free bio-oil can be contaminated by sulfur, and because wood-based bio-oils contain high amounts of phenolic compounds that would compete with H2S for the active sites of the catalyst.
Proposed mechanism of HDO of 2-ethylphenol over a schematic Co-MoS2 catalyst Adapted from [
Another alternative is the use of bi-functional catalysts formed by the combination of transition metals and oxophilic metals, such as MoO3, Cr2O3,WO3 or ZrO2. In this case, the oxophilic metal acts as a Lewis acid site. The oxygen ion pair of the target molecule is attracted by the unsaturated oxophilic metal. The second step of the mechanism is hydrogen donation. In this case, the hydrogen molecule is dissociatively adsorbed and activated on the transition metal. Finally, the activated hydrogen is transferred to the adsorbed molecule.
Regarding the support, γ-Al2O3 is the most commonly used one. Nonetheless, it has to be taken into account the structural changes that γ-Al2O3 might suffer under the typical operating conditions in HDO. In contact with hot water (T > 350ºC), γ-Al2O3 is converted into a hydrated boehmite (AlOOH) phase with a significant decrease in the acidity and surface area [23]. Moreover, the relatively high surface acidity of Al2O3 is thought to promote the formation of coke precursors. In fact, coke formation is one the main factors affecting the stability of the catalyst. Therefore, the use of less acidic or neutral support like active carbon or SiO2 is an interesting alternative [24]. For instance, Echeandia et al. [25] using Ni-WO3 on active carbon for the HDO of 1 wt% phenol in n-octane at 150-300ºC and 15 bar observed lower coke formation on the surface of the active carbon with respect to alumina support. Based on product analysis, they also concluded that HDO of phenol occurs via two separate pathways: one leading to aromatics through a direct hydrogenolysis route, and the other one to cyclohexane, through a hydrogenation-hydrogenolysis route (see Figure 5). In terms of obtaining a final product with high octane number and reducing the consumption of hydrogen, direct hydrogenolysis reaction is preferred. Nonetheless, aromatics are harmful to human health and its content in transportation fuels is limited by legislation. Therefore, it is important to understand which sites are responsible of each route, in order to obtain an upgraded product with the desired aromatic content. CeO2 and ZrO2 supports have also shown to give good results in the HDO of different molecules. ZrO2-supported noble metal catalysts (Rh, Pd and Pt) [26] were compared with the conventional sulfided CoMo/Al2O3 catalyst in the HDO of Guaiacol in the presence of H2 at 300 °C. Sulfided CoMo/Al2O3 deactivated due to carbon deposition, and the products were contaminated with sulfur, however, neither problem was observed with the ZrO2-supported noble metal catalysts. As a conclusion, a good support for HDO should provide high affinity for the oxygen-containing molecule while presenting moderate acidity in order to minimize the formation of coke deposits.
Scheme of phenol HDO. Adapted from [
An important aspect in the HDO of bio-oils is the required degree of deoxygenation. It is assumed that the upgraded oil should contain less than 5 wt% oxygen so that the viscosity is decreased to that required for fuel applications [17]. However, during the hydrotreating, not only the oxygen is removed in the form of water, but also the saturation of double bounds occurs. This saturation has two significant negative effects. The first one is related to the quality of the upgraded oil, because the saturation of the aromatic components has a highly detrimental effect in the octane number. For instance, the octane number of toluene (119) decreases to 73 when the aromatic ring is hydrogenated [10]. The second negative effect is related to the consumption of hydrogen. According to Venderbosh et al. [27] in order to achieve 50% of deoxygenation 16 g H2/Kg of bio-oil is required, which is close to the expected stoichiometry value. Nonetheless, if the aim is to obtain the total removal of oxygen, the H2 consumption increases to 50 g H2/Kg of bio-oil; which means that the H2 consumption is 56% higher than the stoichiometry value. Some other studies suggest even higher H2 consumption requirements, 62 g H2/Kg of bio-oil [28]. This deviation of the H2 consumption from the stoichiometry value is explained on the basis of the different reactivity of the oxygenated compounds present in the bio-oil. High reactive compounds, such as ketones, are easily converted with low hydrogen consumption. However, more complex molecules, such as phenols, might suffer the hydrogenation/saturation of the molecule and therefore the hydrogen consumption exceeds the stoichiometric prediction at the high degree of deoxygenation.
In order to obtain high degrees of HDO but minimizing the hydrogenation of aromatics in bio-oil, two step hydrogenating processes have been developed. In the first stage, high reactive and unstable compounds are transformed into more stable ones at low temperature (270ºC, 136 atm H2) and without a catalyst. In the second step, a deeper HDO is carried out at higher temperatures (400ºC, 136 atm H2) and using hydrotreating catalysts. The two-step hydrotreatment allows 13% reduction in hydrogen consumption for equivalent oil yield. Nonetheless, the reported octane number of the upgraded bio-oil, 72, is still lower than that of gasoline [17].
Environmental aspects should also be taken into account. Aromatic compounds have on one hand high octane number; however, they are also harmful to health. Indeed, environmental standards for aromatics in transportation fuels are becoming more restrictive. Thus, it seems challenging to achieve an agreement between obtaining oils with high octane number while fulfilling aromatic content policies.
Biomass components have a great potential as building block intermediates. Indeed, sugars, vegetable oils and terpenes can be employed for synthesizing products with a high added value, such as chemicals and fine chemicals. There are hundreds of different processes to obtain chemicals from biomass origin building blocks. This chapter deals with those processes involving hydrotreating for the removal of oxygen. In the first part of this section, some examples of significant hydrogenolysis reactions in the valorization of platform chemicals will be given, while the last part will be focused on one of the most studied hydrogenolysis proccesses; the conversion of glycerol into propanediols (PDO).
As it has been previously stated, platform chemicals coming from biomass usually contain higher O/C ratio than most commodity chemicals; thus main valorization processes require the removal of oxygen. One widely used process to remove oxygen is hydrogenolysis. Hydrogenolysis is a type of reduction that involves chemical bond dissociation in an organic substrate and simultaneous addition of hydrogen to the resulting molecular fragments [33]. Therefore, reaction for oxygen removal involves the cleavage of the C-O bond and the addition of hydrogen (oxygen is removed in the form of H2O). This is a significant aspect, because, in those processes where the starting and target molecule have the same number of carbons it is important to use catalytic systems that present high activity in C-O bond hydrogenolysis while low activity in C-C bond hydrogenolysis.
Two types of sugars are present in biomass: hexoses (six-carbon sugars), of which glucose is the most common one, and pentoses (five-carbon sugars), of which xylose is the most common one. Glucose and xylose can be easily hydrogenated to yield sorbitol [29] and xylitol [30] respectively. These two molecules can undergo C-C and C-O hydrogenolysis in the presence of hydrogenation catalysts, leading mainly to a mixture of ethyleneglycol, glycerol, and 1,2-propanediol. Other products such as butanediols, lactic acid, methanol, ethanol, and propanol can also be formed (Figure 6). Ni is known to show high hydrogenolysis activity towards C-C and C-O bond hydrogenolysis, this is the reason why, the use of Ni on different acid supports seems an interesting alternative for this process. For instance, Ni supported on NaY zeolite gave 68% sorbitol conversion with 75% combined selectivity to 1,2-PDO and glycerol at 220ºC and 60 bar H2 pressure after 6 h [8]. The addition of Pt to the catalyst did not influence its activity and selectivity significantly. However, in the case of 20 wt% Ni/Al2O3 prepared by coprecipitation, the addition of 0.5 wt% of Ce significantly increased sorbitol conversion (from 41% to 91%) and the stability of the catalyst [31]. It seems that the addition of Ce considerably reduces Ni leaching, and hence improves the stability of the catalyst. Other catalytic systems have also been reported besides the Ni acid-support ones. For instance, Ru supported on carbon nanofiber and graphite felt composite catalysts gave 68% sorbitol conversion and 79% propylene glycol selectivity at 220ºC and 8.0 MPa hydrogen pressure [32].
Reaction products of catalytic hydrogenolysis of sorbitol over supported Ni catalyst in the aqueous phase. Adapted from [
5-Hydroxymethyl-furfural (HMF) can be obtained in a biphasic reactor from the acid-catalyzed dehydration of hexoses[33]. HMF by itself cannot be used as motor fuel due to its high boiling point (283ºC). However, it can be transformed to 2,5-dimethylfuran (DMF) through a two consecutive hydrogenolysis reactions (see Figure 7). DMF not only decreases the boiling point to a value suitable for liquid fuels, but also attains the lowest water solubility and the highest octane number (RON) of the mono-oxygenated C6 compounds, while preserving a high energy density 30 kJ cm-3, which is 40% higher that the energy density of bio-ethanol and comparable to the one of gasoline (35 KJ cm-3) [34]. Roman-Leshkov et al. [34] used CuRu/C catalysts (prepared by incipient wetness impregnation) in a flow reactor using 5 wt% HMF in a 1-butanol solution at 220 ºC and 6.8 bar H2 pressure. Yields to DMF of 71% were measured. An important aspect in their process is that the catalyst should be chloride-resistant, because, NaCl was used in the dehydration step of hexoses to HMF to increase their solubility in water. Very recently, Luijkx et al. [35] reported the production of 2,5-DMF by the hydrogenolysis of 5-HMF over a Pd/C catalyst in 1-propanol. Due to simultaneous alcoholysis, significant amount of ethers products were formed.
Reaction scheme for the conversion of sugars into 2,5-dimethylfuran. Adapted from [
Biodiesel is currently obtained from the transesterification reaction of vegetable oils. A possible drawback of this technology is that large investment is required to build up new biodiesel plants. An interesting alternative is to directly feed the vegetable oil into the hydrotreating unit of a petroleum refinery, for instance, vegetable oil can be co-fed with heavy vacuum oil HVO. Under typical hydrotreating conditions (300-450ºC, 50 bar H2 pressure, sulfidedNiMo/Al2O3 catalyst), vegetable oils are transformed into alkanes through three different pathways: decarboxylation, decarbonylation and HDO. The straight chain alkanes can undergo isomerization and cracking to produce lighter and isomerized alkanes (Figure 8) [37]. It was reported that mixing the sunflower oil with HVO does not decrease the rate of desulfurization. Moreover, the rate of vegetable oil hydrotreating is faster that the rate of HVO desulfurization. For industrial application, corrosion problems should be taken into account and the formation of waxes should be minimized, as they can plug the reactor.
Reaction pathway for conversion of tri-glycerides to alkanes [
Fatty alcohols can be obtained by catalytic hydrogenolysis of fatty acid methyl esters. Small-chain fatty alcohols are used in cosmetics and food and as industrial solvents or plasticizers, while the large-chain fatty alcohols are important as biofuels and as nonionic surfactants or emulsifiers. Fatty alcohols are produced by hydrogenolysis, in the presence of Cu based heterogeneous hydrogenation catalysts, operating under H2 pressures between 20 and 30 bar and temperatures in the range of 97-197ºC [38]. High hydrogen pressures are required to increase the solubility of hydrogen in the reaction mixture, in order to boost the availability of H2 at the catalyst surface and to reduce mass transport limitations [39].The stoichiometry of the reaction is presented below:
In the last years, much attention has been devoted to the valorization of glycerol. Glycerol is obtained as byproduct in the transesterification reaction of fatty acids to produce biodiesel. With the significant increase of worldwide biodiesel production, there is also an important increase in glycerol availability. Due to the increments in biodiesel manufacture, important amounts of glycerol have been placed in the market, and glycerol has become a waste difficult to handle. The volumes of glycerol remaining unsold in recent years are a clear example of wasted energy and material resources. This is the reason why intense research activity has started worldwide in order to find an exit to the big amounts of glycerol produced. Glycerol price has experimented constant reduction during the last years. Low glycerol prices allow new interesting applications like the production of high added value chemicals. Effective valorization of glycerol will enable to make more cost effective biodiesel production and to replace fossil fuels as the raw material for the production of commodity chemicals.
Among the different possible transformations of glycerol, the hydrogenolysis to propanediols (PDO) presents special interest due to the big number of applications of both 1,2 and 1,3-propanediol (PDO). 1,3-PDO has traditionally been considered a specialty chemical; it has been used in the synthesis of polymers and other organic chemicals, but its market has been quite small. However, over the past years this situation has changed significantly. 1,3-PDO is a starting material in the production of polyesters. It is used together with terephthalic acid to produce polytrimethylene terephthalate (PTT), which is in turn used for the manufacture of fibers and resins. This polymer is currently manufactured by Shell Chemical (Corterra polymers) and DuPont (Sorona 3GT).1,2-PDO is a major commodity chemical traditionally derived from propylene oxide, and hence also based on fossil feedstock. It is a widely used commodity chemical that plays a significant role in the manufacture of a broad array of industrial and consumer products, including unsaturated polyester resins, plasticizers and thermoset plastics, antifreeze products, heat-transfer and coolant fluids, aircraft and runway deicing products, solvents, hydraulic fluids, liquid detergents, paints, lubricants, cosmetics and other personal care products. Today, the industry estimates a global demand for 1,2- PDO between 2.6 and 3.5 billion lb/yr [48]. One of the future main markets for 1,2-PDO shall be the substitution of ethylene glycol (EG) in cooling water systems to prevent freezing, as ethylene glycol is harmful to health.
Glycerol hydrogenolysis to PDOs consists of hydrogen addition and removal of one oxygen atom in the form of H2O. In order to design efficient catalysts, it is fundamental to understand the mechanism of this reaction. Three main reaction mechanisms have been proposed in the literature, depending on whether the reaction runs on acid or basic catalytic sites and with or without the formation of intermediate compounds:
dehydrogenation – dehydration – hydrogenation (glyceraldehyde route),
dehydration– hydrogenation,
direct glycerol hydrogenolysis.
Below, the main features of each mechanism will be discussed
Glyceraldehyde route
One of the first studies related to glycerol hydrogenolysis was developed by Montassier et al. [40] in the late 1980s. They suggested that over Ru/C catalyst glycerol is first dehydrogenated to glyceraldehyde on the metal sites. Next, a dehydroxylation reaction takes place by a nucleophilic reaction of glyceraldehyde with water or with adsorbed -OH species. Finally, hydrogenation of the intermediate yields 1,2-PDO (Figure 9). The main controversial point of this mechanism is the initial dehydrogenation step, which is thermodynamically unfavored due to the high hydrogen pressures used [41]. Therefore, in order to shift the equilibrium, glyceraldehyde dehydration should be faster than glycerol dehydrogenation. Otherwise glyceraldehyde would be hydrogenated back to glycerol on the metal sites. Several authors observed that the addition of a base notably increased glycerol conversion, and this was related to the fact that bases enhance glyceraldehyde dehydration [42-44]. It is interesting to point out that when glycerol hydrogenolysis is carried out under alkaline conditions, marginal 1,3-PDO selectivities are measured.
Apart from 1,2-PDO, other products stemming from C-C bond cleavage were also reported when glycerol hydrogenolysis is conducted under alkaline conditions; mainly, ethylene glycol (EG), methanol and methane. It is suggested that glyceraldehyde can either undergo dehydration or retro-aldolization reactions.The so formed intermediates are hydrogenated in the last step to yield the products of C-C bond cleavage. Because both the glyceraldehyde dehydration and glyceraldehyde retro-aldol reaction are catalyzed by OH-, the addition of a base increases the glycerol reaction rate but does not improve the selectivity to 1,2-PDO [45].
PDO formation from glycerol under alkaline conditions.
Dehydration-hydrogenation route
Dasari et al. [46] observed the formation of acetol (hydroxyacetone) together with 1,2-PDO using copper-chromite catalyst at 473 K and 15 bar hydrogen pressure. Moreover, glycerol hydrogenolysis to 1,2-PDO occurred even in the absence of water. Since the copper-chromite catalyst was reduced in a stream of hydrogen prior to the reaction, no surface hydroxyl species were present to take part in the reaction. Therefore, the mechanism suggested by Montassier et al. (Figure 9) was not able to explain these results. Dasari et al. proposed a new mechanism in which glycerol is first dehydrated to acetol, which is further hydrogenated to 1,2-PDO (Figure 10). Based on their findings, a two step process was developed [47]. In the first step, acetol is generated from glycerol dehydration by a reactive distillation process, operating at 513 K, slight vacuum and using copper-chromite catalyst. The acetol obtained is then hydrogenated at 15 bar H2 pressure using the same catalyst. The process was patented in the USA in 2005 [48].
PDO formation via the dehydration-hydrogenation route.
According to Schlaf, acid-catalyzed hydrogenolytic cleavage of -OH group occurs through an initial protonation of the hydroxyl group that leads to the formation of a carbocation and water [49]. Thermodynamically, the formation of a secondary carbocation is more favored than the formation of a primary carbocation. Therefore, operating under acid conditions should bring about higher selectivity to 1,3-PDO. The fact that product distribution is usually shifted towards 1,2-PDO seems to be a complex function of operating conditions, catalyst and starting materials. Ethylene glycol, ethanol, methanol and methane are usually reported as degradation products. Ethylene glycol and methanol are formed from the C-C bond cleavage reaction of glycerol, while ethanol stems from the further hydrogenolysis of ethylene glycol.
Direct glycerol hydrogenolysis
A direct glycerol hydrogenolysis mechanism was recently proposed by Yoshinao et al. [50]. The experiments were carried out using Rh-ReOx/SiO2 and Ir-ReOx/SiO2 catalysts at 393 K and 80 bar H2 pressure. The low reaction temperature implies that the dehydration-hydrogenation route was not further possible, due to the endothermic character of glycerol dehydration and the required activation energy, and suggests the energetically more favored direct hydrogenolysis reaction [51]. They suggested a direct hydride
Model structures of the transition states of the hydride attack to the adsorbed substrate in the glycerol hydrogenolysis [
A different direct glycerol hydrogenolysis mechanism was established by Chia et al. [53] trying to explain the hydrogenolysis of different polyols and cyclic ethers over a Rh-ReOx/C catalyst. They concluded from DFT calculations that the -OH groups on Re associated with Rh are acidic. The acidic nature of ReOx was also reported before [54]. Such acidic Re sites can donate a proton to the reactant molecule and form carbenium ion transition states. In the case of glycerol hydrogenolysis, the first step involves the formation of a carbocation by protonation-dehydration reaction. This carbocation is stabilized by the formation of a more stable oxocarbenium ion intermediate resulting from the hydride transfer from the primary -CH2OH group. Final hydride transfer step leads to 1,2-PDO or 1,3-PDO [53]. The authors also reported that the secondary carbocation is more stable than the primary carbocation. Nevertheless, higher selectivity to 1,2-PDO was obtained (1,3-PDO/1,2-PDO ratio = 0.65).
Reaction mechanism for direct glycerol dehydrogenation. Adapted from[
Noble metals
Hydrogenolysis reactions involve the addition of hydrogen to an organic molecule. Therefore, hydrogenolysis catalysts must be able to activate hydrogen molecules. Noble metals are known to be active for the dissociation of hydrogen molecules and are widely used in hydrogenation reactions. The first studies on glycerol hydrogenolysis were carried out using Ru based catalysts [56]. Feng et al. [57] studied the effect of different supports (TiO2, SiO2, NaY, γ-Al2O3) on Ru based catalysts. The TiO2 supported catalyst exhibited the highest activity giving a glycerol conversion of 90.1%; however, it also favored the production of ethylene glycol over 1,2-PDO. In contrast, Ru/SiO2 showed the lowest activity, but resulted in much higher selectivity to 1,2-PDO. They also performed blank reactions with the supports, achieving no significant conversions; which indicated that the supports cannot catalyze the reaction independently. Ru particle size was affected by the type of support, and a correlation was established between the size of the Ru particle and the activity of the catalyst, being higher with decreasing Ru particle size.
Apart from Ru, other noble metals have also been studied. For instance, Furikado et al. [58] compared the activity of various supported noble-metal catalysts (Rh, Ru, Pt and Pd over C, SiO2 and Al2O3). Among all the catalysts, the best results in terms of 1,2-PDO selectivity were achieved with Rh/SiO2 at low reacting temperature and low glycerol conversions (7.2). Nevertheless, the selectivities to 1,2-PDO obtained were rather low, due to the over-hydrogenolysis of 1,2- and 1,3-PDO to 1 and 2-PO.
The use of noble metal-base bifunctional catalytic systems has also been reported. As it was previously described in the glyceraldehyde based mechanism, the dehydration of glycerol to glyceraldehyde, and further dehydration of glyceraldehyde to pyruvaldehyde are both thought to be catalyzed by adsorbed hydroxyls.The effect of different base additives on the performance of Ru/TiO2was reported [45]. The addition of Li or Na hydroxides dramatically increased the glycerol hydrogenolysis activity of Ru/TiO2and the selectivity to 1,2-PDO. The highest conversion of glycerol (89.6%) and the highest selectivity to 1,2-PDO (86.8%) were observed with LiOH. The selectivity to 1,2-PDO was similar with all the bases added, which showed that the selectivity to 1,2-PDO is independent of base concentration within a certain range. However, the selectivity to ethylene glycol decreased no matter which base was added. Almost no reaction was observed in the absence of Ru/TiO2, indicating that the presence of metal is required in order to take place glycerol hydrogenolysis. The lower selectivity to ethylene glycol with increasing base addition to the reacting solution was explained by the fact that ethylene glycol presented higher affinity to adsorb in the surface of the catalyst and to suffer the attack of hydroxyl groups, whose concentration was higher at elevated pH values [59].
Noble metal-acid catalytic systems have also been used. According to the mechanism in Figure 10, glycerol is firstly dehydrated to acetol, which is then hydrogenated to 1,2-PDO. The first dehydration step is supposed to be catalyzed by acid sites while the second one by metal sites. Therefore, one interesting option to increase the selectivity to target product, 1,2-PDO, is the use of bifunctional noble metal-acid catalysts. Different Bronsted acids like sulfonated zirconia, zeolites, homogeneous H2SO4 and Amberlyst 15 were tested together with Ru/C [60,61]. Acid-type cation-exchange resin Amberlyst 15 was the most effective co-catalyst. Nevertheless, a weak point in the system of Ru/C with Amberlyst 15 is that the reaction temperature is limited to 393 K. At higher temperatures sulfur compounds such as SO2 and H2S, which are formed by the thermal decomposition of the sulphonic groups of the resins, poison the catalyst. Using Amberlyst 70 the reacting temperature can be increased to 453 K before observing thermal decomposition [62].
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t||||||
Ru/TiO2, 5wt% | \n\t\t\t50 | \n\t\t\t180 | \n\t\t\t20 | \n\t\t\t96 | \n\t\t\t12 | \n\t\t\t90.1 | \n\t\t\t1,2-PDO (21), EG (41) | \n\t\t\t[57] | \n\t\t
Pt/C, 3wt% + CaO 0.8 M | \n\t\t\t40 | \n\t\t\t200 | \n\t\t\t1 | \n\t\t\t233 | \n\t\t\t5 | \n\t\t\t40 | \n\t\t\t1,2-PDO (71), lacticacid (19), EG (9) | \n\t\t\t[42] | \n\t\t
Ru/C, 5wt% + Amberlyst 15 | \n\t\t\t80 | \n\t\t\t120 | \n\t\t\t20 | \n\t\t\t112.5 | \n\t\t\t10 | \n\t\t\t79.3 | \n\t\t\t1,2-PDO (75), 1-PO(8), 2-PO (2), EG (7) | \n\t\t\t[63] | \n\t\t
Ru/C, 5wt% + Amberlyst 70 | \n\t\t\t80 | \n\t\t\t180 | \n\t\t\t20 | \n\t\t\t12.2 | \n\t\t\t10 | \n\t\t\t48.8 | \n\t\t\t1,2-PDO (70), 1,3-PDO (1.3), 1-PO (7.1), EG (8.3) | \n\t\t\t[62] | \n\t\t
Cu/Al2O3, 60wt% | \n\t\t\t1 | \n\t\t\t120 -200 | \n\t\t\t30 | \n\t\t\t- | \n\t\t\t0.066 h−1 a\n\t\t\t | \n\t\t\t100 | \n\t\t\t1,2-PDO (96.9), acetol (1.4) | \n\t\t\t[64] | \n\t\t
Cu/SiO2, 30wt% | \n\t\t\t90 | \n\t\t\t180 | \n\t\t\t80 | \n\t\t\t62.5 | \n\t\t\t12 | \n\t\t\t32.7 | \n\t\t\t1,2.PDO (98), EG (1) | \n\t\t\t[65] | \n\t\t
Cu0.4/Mg5.6Al2O9 + NaOH | \n\t\t\t30 | \n\t\t\t180 | \n\t\t\t75 | \n\t\t\t166 | \n\t\t\t20 | \n\t\t\t91 | \n\t\t\t1,2-PDO (96), EG (3) | \n\t\t\t[44] | \n\t\t
Pd0.04Cu0.4Mg5.6−Al2(OH) | \n\t\t\t20 | \n\t\t\t180 | \n\t\t\t75 | \n\t\t\t166 | \n\t\t\t10 | \n\t\t\t77 | \n\t\t\t1,2-PDO (98), EG (1.6) | \n\t\t\t[66] | \n\t\t
Ir–ReO (Re/Ir = 1) | \n\t\t\t80 | \n\t\t\t120 | \n\t\t\t20 | \n\t\t\t37.5 | \n\t\t\t36 | \n\t\t\t81.0 | \n\t\t\t1,2-PDO (4.2), 1,3-PDO (46.3), 1-PO (41.2) | \n\t\t\t[72] | \n\t\t
Selected examples of hydrogenolysis of aqueous glycerol over heterogeneous catalysts. PDO: Propanediol, PO: Propanol, EG: Ethylene Glycol.
a WHSV (weight hour space velocity)
The use of more stable inorganic salts can avoid the temperature problems related to ion-exchange resins. Balaraju et al. [67] used the combination of Ru/C catalyst with different inorganic salts such as niobia, zirconia-supported 12-tungstophosphoric acid or acid caesium 12-tungstophosphate in glycerol hydrogenolysis at 453 K. The best results were achieved with those co-catalysts presenting a high number of medium strength acid sites. Particularly, with niobia as co-catalyst 62.8% glycerol conversion and 66.5% 1,2-PDO selectivity were reported. Another option is the use of a noble metal on acid supports. Vasiliadou et al. [68] investigated glycerol hydrogenolysis on Ru-based (γ-Al2O3, SiO2, ZrO2) catalysts at 513 K and 80 bar. The nature of the oxidic support was found to influence the ability of the catalyst to both activate the glycerol substrate and selectively convert it to propanediol. The characterization of the catalytic materials revealed a correlation between catalytic activity for the hydrogenolysis reaction and total acidity, as the yield to hydrogenolysis products increased with the concentration of the acid sites. However, increased acidity was also responsible for the promotion of the excessive hydrogenolysis of the desired 1,2-propanediol to propanols.
Cu based catalysts
Cu has been extensively investigated in the glycerol hydrogenolysis reactions. Although its hydrogenation activity is generally lower than that of noble metals, its much lower price and its ability to catalyze C-O bond but not C-C bond hydrogenolysis make Cu catalysts attractive for this process. There are some works in the literature that report the use of other transition metals like Ni or Co, however, Cu based catalysts are predominant. Vapor phase glycerol dehydration reaction was studied by Sato et al. [69] over different copper catalysts at 513 K and atmospheric N2 pressure. They observed that basic MgO, CeO2, and ZnO supports showed low acetol selectivity, while acidic supports, such as Al2O3, ZrO2, Fe2O3, and SiO2, effectively promoted acetol formation. The best results were obtained with Cu/Al2O3 catalyst. Increments in copper content lead to increments in acetol selectivity. Moreover, the activity of the Al2O3 support alone was rather low, which indicates that copper metal sites play a significant role in glycerol dehydration. Continuing with vapor phase processes, Akiyama et al. [64,70] studied glycerol hydrogenolysis in a fixed-bed down-flow glass reactor at temperatures between 340 and 473 K, atmospheric hydrogen pressure, and using Cu/Al2O3 catalysts. In the two step reaction they observed that glycerol dehydration to acetol was favored at relatively high temperatures. However, acetol hydrogenation to 1,2-PDO was favored at lower temperatures, because it is an exothermic reaction and the dehydrogenation of 1,2-PDO occurs preferentially at high temperatures. Based on these findings, they developed a reactor with gradient temperatures, at the top of the reactor glycerol dehydration reaction occurred at 453 K while at the bottom of the reactor acetol was hydrogenated to 1,2-PDO at 418 K. Really high 1,2-PDO yields (94.9%) were reported.
Some of the best results in terms of glycerol conversion and 1,2-PDO selectivity were recently reported using Cu on base supports. For instance, Yuan et al. [44] developed a Cu based solid catalyst (Cu0.4/Mg5.6Al2O8.6)via thermal decomposition of the as-synthesized Cu0.4Mg5.6Al2(OH)16CO3 layered double hydroxides. This bifunctional highly dispersed Cu-solid base catalyst was effective for hydrogenolysis of aqueous glycerol. The measured conversion of glycerol reached 80.0% with a 98.2% selectivity of 1,2-propanediol at 180 °C, 30 bar H2 and 20 h. The addition of Pd to the same catalytic system notably increased the activity of the catalyst [71]. It was suggested that the hydrogen spill over from Pd to Cu favored glycerol hydrogenolysis to 1,2-PDO.
Metal oxide modified-noble metal
As stated above, the use of acid or base as a co-catalyst gives 1,2-PDO as a main product. To obtain more valuable 1,3-PDO, the most effective approach has shown to be the use of noble metal (Ir, Rh or Pt) combined with oxophilic metals. Shinmi et al. [52] modified Rh/SiO2 catalyst with Re, W and Mo. Re addition showed the largest enhancing effect on catalytic activity and also increased the selectivity to 1,3-PDO. The Rh–ReOx/SiO2 (Re/Rh = 0.5) exhibited 22 times higher glycerol conversion (79%) and 37 times higher 1,3-PD yield (11%) than Rh/SiO2. In a more recent work, an Ir–ReO
In summary, Cu based catalysts are active and selective for the production of 1,2-PDO from glycerol. However, if the aim is to produce the more valuable 1,3-PDO, different approaches are required. The used of noble metals combined with low-valence metal oxide seems to be a promising alternative. Nonetheless, there is still room for improvement; both in catalyst design and in process engineering, as PDOs further hydrogenolysis significantly affect the final yields to target products.
In the previous sections the significance that hydrogenolysis reactions have and will have in the future bio-refineries has been highlighted. In fact, they will be essential in fuel and chemical manufacturing. Hydrogenolysis involves chemical bond dissociation in an organic substrate and simultaneous addition of hydrogen. Therefore, hydrogen is required as reactant in all hydrogenolysis reactions. This is the reason why, most of the literature works referred to hydrogenolysis report experiments conducted under molecular hydrogen (H2) atmosphere. Nevertheless, the use of molecular hydrogen has some important drawbacks:
Liquid phase processes are preferred to gas phase processes as they are more energy efficient. However, H2 presents really low solubility on aqueous or organic solutions. As a consequence, when operating in liquid phase it is necessary to operate at elevated hydrogen pressures to obtain significant hydrogen concentrations near the catalysts. This, on one hand, notably increases the cost of design and building of the future plants, and on the other hand, increases the operating cost related to safety measures, as hydrogen is easily ignited and shows high diffusivity.
Most of the nowadays available hydrogen gas is produced from fossil fuels by energy intensive processes. Therefore, if sustainability is the goal it is a contradiction that the main reactant in most of the biorefinery processes is based on fossil resources.
The low density and high diffusivity of hydrogen make problematic and expensive its transportation and storage. This problem is more relevant for small size biomass conversion facilities.
Hydrogen from non fossil origin will surely be a reality in the oncoming years, as reforming processes from various renewable compounds (like biomethane, glycerol or ethanol) and water splitting processes using solar light are being intensively developed. Nonetheless, the problems of transportation, storage and low solubility in liquid solutions will remain. One interesting option that could solve the problems associated to the use of molecular hydrogen is to directly generate the required hydrogen in the active sites of the catalyst.
One interesting approach to reduce the consumption of molecular hydrogen during the HDO of bio-oils is to use hydrogen donating solvents. For instance, Elliott has reported that when the bio-oil upgrading is carried out in the presence of a hydrogen donor solvent (tetralin, 1-1 ratio with bio-oil feedstock) the oxygen removal increases from 70 to 85% and less deactivation of the catalyst was observed. Some of the components already present in the bio-oil, such as alcohols or acids, may also provide hydrogen for the deoxygenation reactions [10]. Traditional catalysts active in hydrogen transfer reactions, such as Pd, Ni or Cu should be used in this process [73].
Another attractive option is to use hydrogen donating solvents during the hydrotreating of biomass. The idea is to obtain a bio-oil with a lower oxygen content, and therefore, easier to upgrade. This concept has been mainly applied in the pyrolysis of lignin. If a hydrogen donor molecule is added during the pyrolysis, both depolymerization and hydrogenation occur simultaneously. Remarkable results have been obtained using hydrogen-donating solvents, such as tetralin or 9,10-dihydroanthracene [74]. However, a major drawback is the need for large quantities of these solvents. At this point, formic acid appears to be a promising donor molecule, as it can be obtained together with levulinic acid from the hydrolysis of biomass. On heating, formic acid decomposes completely into CO2 and two active hydrogen atoms, which are efficient scavengers of any radical species formed in the lignin. By successive homolytic cleavage of the covalent linkages of the lignin, including aromatic rings, most of the oxygen is removed as water and hydrocarbons are formed (Figure 13). When pyrolysis is carried out with formic acid, lignin can be converted into hydrogen-rich, oxygen depleted products with no added catalyst [75].
Schematic picture of the products formed upon the pyrolysis of lignin in thepresence of formic acid [
One interesting option to in situ generate the required hydrogen for hydrogenolysis reactions is through aqueous phase reforming (APR). APR is a quite well known process in which a polyol is converted to hydrogen and CO2 in the presence of water. The hydrogen generated can be further used in the hydrogenolysis reaction. The specific case for combined glycerol APR and hydrogenolysis to 1,2-PDO is shown in Figure 14. If the process is perfectly balanced, glycerol is fully converted into 1,2-PDO, being CO2 and H2O the only byproduct. Tailored metal-acid bifunctional catalysts or combination of catalysts are required to obtain high yields to 1,2-PDO. Indeed, there must be a proper balance between the C-C bond cleavage reactions that lead to the production of hydrogen, and the C-O bond cleavage reactions that lead to the formation of PDOs [76]. While Pt is known to be active in C-C bond cleavage, its combination with other metals active in C-O bond hydrogenolysis, like Ni, Sn or Ru, over acidic supports appears as promising formulations to obtain high yields to 1,2-PDO [77]. However, glycerol APR itself runs at elevated pressure and therefore the advantage over conventional hydrogenolysis at high hydrogen pressure is marginal with regard to equipment and safety costs.
Combined glycerol APR and hydrogenolysis to 1,2-PDO.
The same benefits that have been previously addressed for the use of
Huber et al. [78] studied the production of renewable alkanes (C1-C6) from the aqueous phase reforming of sorbitol using a Pt/SiO2-Al2O3catalyst.They suggested a multistep bifunctional reaction pathway. The first step involves the formation of CO2 and H2 on the Pt sites, and the dehydration of sorbitol on the acid sites of the silica-alumina support. These initial steps are followed by hydrogenation of the dehydrated reaction intermediates on the metal catalyst (Scheme 9). 64 % alkane selectivity at 92% sorbitol conversion were recorded at 498 K and 39.6 bar. When hydrogen was co-fed, alkane selectivity significantly increased up to 91%. Glucose showed to be less active than sorbitol over a Pt/Al2O3 catalyst at 538 K and 52.4 bar of N2pressure, achieving moderate alkane selectivities (49.5%) [79]. Therefore, it seems that initial hydrogenation of glucose to sorbitol and subsequent aqueous phase reforming of the sugar is more effective than direct aqueous phase reforming of glucose.
Catalytic transfer hydrogenation (CTH) is a process in which hydrogen is transferred from a hydrogen donor molecule to an acceptor [80]. CTH reactions can be of industrial importance as the renewable production, transportation and storage of hydrogen donors can be cheaper than those for molecular hydrogen. For CTH, it has been reported that adjacent sites may be necessary for donor and acceptor molecules [73]. Therefore, the first criterion to be fulfilled by the selected hydrogen donor molecules is to be soluble in the compound to be hydrotreated. Moreover, in order to improve the yield of desired products, reactions other than dehydrogenation of the donor should be minimized under the operating conditions. The best hydrogen donors for heterogeneous CTH include simple molecules like cyclohexene, hydrazine, formic acid and formates [81]. Alcohols like 2-propanol (2-PO) or methanol can also be used as hydrogen donors; primary alcohols are generally less active than the corresponding secondary alcohols due to the smaller electron-releasing inductive effect of one alkyl group as against two [82]. The most active catalysts for heterogeneous transfer reduction are based on palladium metal. Other noble metals such as Pt and Rh are also widely utilized. Sometimes, other transition metals such as Ni and Cu have also been reported but for operation at higher temperature [73].
In this area, the most studied process has been the conversion of glycerol into 1,2-PDO. Musolino et al. [83] studied glycerol hydrogenolysis by transfer hydrogenation under 5 bar inert atmosphere, using ethanol and 2-PO as solvents and hydrogen donor molecules over 10PdFe2O3 catalyst at 453 K. They observed that complete glycerol conversion and high selectivities to 1,2-PDO could be obtained when the hydrogen came from the dehydrogenation of the solvent. Formic acid has also been used as a hydrogen donor molecule in the glycerol hydrogenolysis process using Ni-Cu/Al2O3 catalysts [84]. Under the operating conditions used, formic acid was readily converted into CO2 and H2, therefore, a semi-continuous set-up was used to continuously pump formic acid to the glycerol water solution, in order to ensure a constant supply of hydrogen at an appropriate rate [85]. For a constant metal content of 35 wt-% (Ni+Cu), increasing Ni proportion caused an increase in glycerol conversion but also an increase in C-C bond cleavage reactions. Cu is known to be active in the C-O bond cleavage but not in the C-C bond cleavage. The presence of Cu and the creation of a Ni-Cu alloy notably reduced formation of products <C3. This was related to the fact that C-C bond cleavage reactions are ensemble size sensitive and that the formation of a Cu-Ni alloy causes a decrease in the Ni ensemble size. Therefore, the presence of both metals is required for obtaining high 1,2-PDO yields: Ni to provide high hydrogenolysis activity and Cu to shift the selectivity towards C-O bond cleavage. It was also observed that above a certain metal content, further increments led to a decrease in glycerol conversion. This was correlated to the total acidity of the catalyst that also decreased with increasing metal content. A direct glycerol hydrogenolysis mechanism was also proposed (Figure 15).
Proposed mechanism for glycerol hydrogenolysis by CTH using formic acid as hydrogen donor molecule [
Bio-oils coming from the pyrolysis of biomass feedstocks and biomass based platform chemicals present a common limiting feature: their high oxygen content. This oxygen can be removed by catalytic hydrotreating in the form of H2O. Intensive research is required in this field in order to develop catalytic systems active and stable under the hard operating conditions used: high temperatures and pressures, and high concentrations of sub-critical water. The required bifunctional catalysts must have Brönsted acidity to catalyze dehydration reactions or/and Lewis acid sites to attract the oxygen ion pair of the target molecule; but also metal sites that show the ability to activate hydrogen molecules. In this sense, the combination of oxophilic metals (Re, Mo or W) with Ni or noble metals has shown to be a promising approach. In the case of bio-oil upgrading, the developed catalysts should promote hydrodeoxygenation reactions against hydrogenation reactions that lead to higher hydrogen consumption and reduction in the octane number of the oil. In order to avoid coke formation under the hard operating conditions used, neutral supports appear as an interesting option. In the case of catalysts for platform chemical valorization, C-C bond cleavage reactions should be avoided. Therefore, for some applications, like glycerol hydrogenolysis to 1,2-PDO, Cu based catalysts have to be considered due to the high selectivity of Cu for C-O bond cleavage reactions.
Hydrogenolysis processes for oxygen removal require the use of large amounts of hydrogen, which is commonly supply by operating under high molecular hydrogen pressures. Nonetheless, this might be a problem because nowadays, most technologies to obtain hydrogen are energy intensive and non-renewable. An interesting alternative might be to in-situ generate the required hydrogen. Among all the alternatives, the use of hydrogen donor molecules that can be obtained from biomass in a renewable way, such as formic acid, appears as a promising approach.
Conservation of plant genetics is one of the main areas which is to be refined and revolutionized again and again with knowledge. The phenomenon of conservation is helpful in the maintenance of the genetic basis being needed for breeding. This allows the production and selection of varieties with desirable characteristics in crops, which later can be used for purpose of feeding, fuel, and health sectors [1]. Germplasm is the plant’s genetic resources such as tissues or cells which are being preserved for purpose of obtaining desired breeding characteristics. These resources are obtained from gene banks, plants grown in nurseries, and laboratory culture. The collection of germplasm usually ranges from wild species to genes which are supposed to capture traits of plants as a result of natural selection [2].
A germ is defined as the collection of genetic resources for an organism. In the case of plants, the germplasm is stored or preserved in form of seeds or trees in the nursery. So, it is the living tissue from which new varieties of plants can be grown i.e., it can be the seed from which the whole plant can be grown because it contains all the genetic makeup or information required for resources of the diversity of plants. Plant germplasm is a spice of generic materials needed by breeders to develop new varieties. This includes seeds, leaves, stems, pollen, and cultured cells. So it provides the necessary raw material to develop the commercially valuable varieties of plants [3].
It is of prime importance in the maintenance of diversity in the biological system and the security of food. Conservation of plant resources is of great importance because most of the plant species are getting endangered with time. Genetic resources are a potential sustainable source of agricultural products i.e. efficient production of crops used as food, for the reduction of poverty and maintenance of economic conditions of the population [4]. For example, in countries like Nigeria, the major source of food is from crops sowed by simple farmers which maintain them by their efforts utilizing their resources. This involves the conservation of gene resources which preserve them for storage and usage systemically at both national and international levels [5]. Hence maintaining these species for purpose of variation in genetics is therefore of immense importance especially in the case of poor farmers who are participating in the agriculture of the country at much lower input conditions in marginal land [6].
On-farm conservation provides the best example of preservation as it is helpful in the maintenance of evolution responsible for genetic variability. Variations in genes are observed in both ex-situ i.e. in a natural environment and ex-situ in the form of gene banks obtained from laboratory culture. A huge collection of the most value able crop fields are being reserved in the gene bank and are placed in modern aseptic conditions in gene bank facilities. The variety includes collection from national and international worldwide programs i.e., NAGRAB, OSTROM, and IITTA. It also includes varieties obtained from plant genetic programmers in collaboration with a national action plan [7]. It has been revealed from a scientific investigation that about 3 lac plant species of higher plants exist in the world but only 1% of them are being utilized in the world today. About 80% of food is provided by only 8–10 crops ranging from wheat, rice species to millet, and rye. Most advancements in the field of agriculture in the present day world is based on a wide range of genetic resources possessing two types of values [8]. The plant genes and various genotypes are considered for many characteristics such as insect and pest resistance, bearing the conditions of drought, plant structure, function, and color acting as an immediate source of plant genotype conservation for desired properties. Secondly, diversity in genes or genetics ensures future requirements. Hence in turn contribute to the farming system at both local or small level and national levels [9].
Moreover, variations in genetics have also resulted in losing information in an already present generation which makes the preservation of these genes much important. Because if genes for variations are not preserved, it would lead to endangerment of plant species. International board [7] as a bank for further next generations [10]. The conservation involves
Preservation of breeding lines
Conservation of commercially important species
Stock for genetics
For direct or indirect usage of wild species which include either in form of crops or stocks of roots.
There are several reasons why breeders use this technique which is as follows;
Loss of genetic diversity among plant species.
Humans and animals are dependent on plants for their food which means they require plants for basic food crops such as wheat, maize, etc.
Humans also utilize plants for their social activities such as buildings construction, obtaining waxes, and perfumes, resume fibers, and therapeutics.
Deforestation has led to the endangerment of many valuable varieties of plants which present an utmost need to preserve them [11].
To keep the stability of the ecosystem, genetic diversity provides food prints that can be maintained via germplasm.
It provides an esthetic value to the natural ecosystem and bio-diversity of plants [12].
Based on its need, germplasm has undergone an evolution over a certain period of years in response to particular requirement including
Base collections
Backup collections
Active collections
Breeder collections
Working collections
To a certain extent, these collections are artificial to a much extent because some of the classes or classifications are useful for more than one reason. Hence an active number of collections were previously breeder such as for formal breeding purposes. So, the following discussion is required to explain the classes of the collection which must serve.
It presents the method of long-term preservation of genetic variability by storing in presence of optimum conditions. For base collection, the materials are not used for distribution except with the need for replacement of material that has been lost either from active or backup collection types. It includes the most explanatory sampling method being employed for checking out variability within the species group. They are most stable in the sense that they can store the variation which arises in the natural condition. But they are also dynamic in the sense that they have some novel collected materials, some collections being produced via plant breeding and population involving genetic materials are added as they are available. In this way, the storing for many decades can be possible so the loss of variability occurs during the processes of regeneration and storing present within the acceptable limits. It is the collection under a low level of humidity at the temperature of subfreezing which must be below −150 °C to 190 °C. But some difficulties are present, which include that they cannot bear the chilling or drying temperature. So, an alternative and long-term methodology are required which includes cryopreservation within the in-vitro cultures. A huge collection at a global level is initiated with a proper guidance and help of Food and agriculture organization by designing specific agencies which serve as the base as well as back up collections for principal species in case of principle crop plants. But most agencies also vary in their ability to fulfill all the responsibilities regarding its designation [13].
It supplements base collection at another location or another level. For example, laboratory at US national seed stores holds the collection of some of the duplicate backup samples of maize for the improvement of these crops. Similarly, the international research Centre of rice is abbreviated as IRR present in the Philippines for the collection of rice. So it holds collection as well as insurance for loss in primary CIMMYT and IRRI collections of crops [14].
Active as well as base collection mostly includes the same type of materials. So, it provides the seeds and other raw materials for purpose of distribution as well as for other uses. So, it has been found that a certain collection of material is conserved for maintenance of sufficient collections of plants of each type in active collection particularly when it is required in a huge collection or amount. All the materials in this type of collection are maintained under a shorter half-life and in the response to more standards of variability. So, grow outs or techniques for replacing seed supplies in form of the active collection as compared to that available in the form of the base collection. Hence replacing the active collet ions being necessary at regular intervals is being necessary in the case of the base collection so puts the genetic association at the risk [15].
Breeders as well as the working collection include materials being used in breeding programs and are used for the short term in nature. Breeders get knowledge from their experience such as superior performance in their local region has resulted in the favorable combinations of different alleles at an almost different genetic locus. Hence attempts for the introduction of alleles from exotic resources into adapted materials are determined to the performance in the short-term way. So, the breeder’s collection includes the advanced cell lines developed in their programs in addition to professional cultivars, advanced breeding lines, and finally genetically enhanced as obtained from a breeding population in the presence of a similar type of ecological variable conditions. It is suggested from breeders that dependence on the already available stock has resulted in slow advancement towards the new technology. But modern breeders turn into exotic materials for utilization of variability in the active collections. But they obtain the variability in exotic alleles or genes from the genetically enhanced population or breeding stocks in both of them the most useful and desirable alleles have been introduced. So breeder’s collection has turned ultimately to increase in proportion for genetically enhanced stock which can possess the useful alleles in the genetic backgrounds too [16].
Gene pool includes almost all the cultivars which can be obsolete or current, or wild species and their relatives which in turn contain genes available for utilization in true-breeding lines. Based on their relationship, the gene pool can be classified into three major classes;
Primary gene pool
Secondary gene pool
Tertiary gene pool
It is abbreviated as GP1 and it is the form of gene pool where the crossing of two species is much easier which ultimately leads to the production of sexually fertile organisms. It includes plants or other species which upon mating produce a very closely related species which is fertile via its reproductive means. In the gene pools, the genes can be exchanged in between the two reproductive lines via arranging simple crosses or hybridization patterns. So, it is also known as Gene pool one and is of prime importance in breeding lines.
This type of genetic material can lead to a partial type of fertility upon crossing with GP1 being referred to as the secondary gene pool. It can ultimately cross with the primary generic pool but the hybrids obtained after the process of hybridization usually produce offspring which are fertile to some extent which means that some of them are fertile while others are sterile. Transferring such genes to the primary form of the gene pool is a much difficult and laborious task and such type of genetic pool is also known as Gene pool two (GP2) [17].
It includes the type of genetic material which produces the ultimate sterile type of hybrids while crossing with the primary types and hence the name tertiary is given to them being abbreviated as GP3. It owns the material that can be easily crossed with the primary type of gene pool but the offspring after hybridization will produce a sterile organism. So transferring such materials to the primary gene pool is only possible in the presence of specific biotechnological techniques.
There are six types of activities being related to gene resource which include;
Collection or exploration of germplasm
Conservation of germplasm
Evaluation
Documentation
Distribution
Utilization of germplasm
Exploration refers to the collection of germplasm or in other words collecting the variable genetic resources from different sources and placing them at one place which is a highly scientific procedure. Collection can be done from five sources i.e., from diversity centers, gene Banks or sanctuaries, companies for seed collection, and finally through fields. Secondly, germplasm collection is done based on endangerment i.e., the species or crops which are more at the extent of extinction are preferred more as compared to others. The method of collection is done in presence of agricultural universities in collaboration with the National Bureau of genetic resources of the plant in New Delhi. For collection at the global level, it is done at the global level by International plant genetic resources being abbreviated as IPGRI with Rome and Italy [18]. The collection is done based on migration to areas of more genetic diversity, by visiting the gene bank by yourself, and finally via the exchange of genetic material. Similarly, there exist two methods for the exchange of germplasm which include random sampling involving the collection of genetic traits for both the biotic or abiotic stresses while abiotic involves collecting the different phenotypically traits. Hence both the random as well as non-random sampling methodologies are employed for collecting germplasm. Sampling size should be such that it can collect about 96% of diversity occurring in genetic traits [19]. Hence it involves the collection of 55% crop plant species of seeds per plant. Also, a wider range of habitats is sampled for obtaining maximum diversity accordingly. But there are certain drawbacks of exploration or collection such as reduction of genetic diversity due to occurrence of genetic erosion, collection from other countries or sites leads to disease condition leading to spread of weeds or pests. Moreover, it is a tedious job that requires drilling, lodging, and transport. Lastly collection from huge resources promotes problems in the collection as well as transportation. While some of the merits include the discovery of new species while exploration and also help in the preservation of certain genotypes that have become either extinct or at the extent of extinction [15].
Conservation involves the protection of the genetic diversity of plant crops from genetic erosion which can be either ex-situ or in situ. In situ refers to conservation under natural habitat requiring establishing resources of biosphere or ecosystem for the preservation of endangered crops or plants for future usage. Following this method both wilds, as well as natural biospheres, are conserved presenting the disadvantage of covering a very small area of genotype in the case of single species, it is a much expensive methodology and also requires a proper management system. An ex-situ conservation germplasm is conserved in form of a gene bank which is a most practical application being employed under laboratory conditions. This methodology enables the preservation of whole genetic diversity in one place. Moreover, the method is in-expensive and easy to operate [20].
Evaluation involves the investigation or examination of genetic resources of plants based on their phenotypically, genetics, economic, biological, and chemical characteristics. It is essential for the identification of resources for the resistance, production, yield, and other quantitative characteristics. It provides all the necessary information regarding the classification of germplasm and their characterization of each of the individual germplasm attributes. It involves the requirement of a team of specialists from physiology, biotechnology, biochemistry, and entomology. For all the characters evolution is done separately and experts from IPGR, Italy. Evolution is either done infield, in the laboratory, or greenhouse. Observation is done on basis of morphological characteristics and is recorded via specific instrumentation. The characters of resistance and biotic or abiotic stresses are screened in the greenhouse. While the evaluation of biochemical characters is done on basis of conditions under laboratory. Both visual as well as instrumentation is done accordingly [21].
Documentation involves storage, analysis, and dimension. In-plant genetic resources includes the collection, evolution, storage, and conservation of information. But now it is termed as an information system. A large collection of information is available for major crops such as maize, sorghum, wheat, and rice, etc. Till now about 7.6 million germplasm are available for the conservation of about 300 or more species. Handling of the huge collection is done via the involvement of electronic computers. For uniformity of characteristics, it involves standard characters and further descriptors for comparison in IPRGI. The information is stored in the memory of a computer and must be available at the time of need when required.
Distributions are the most important activity for genetic resource centers. During this process, specific germplasm is supplied to the users for improvement of genetic traits and is responsible for the maintenance of conserved germplasm and its supply at a time for utilization. Distribution is the responsibility of the gene bank center’s where they are maintained and being stored and to those who are engaged in specific research activities of a particular crop. The amount transferred as a sample is very small and depends upon the type of material available in raw form and also several other factors. A proper recording system is maintained and checked after the report by the user which tells the most important characteristics of association to the distributor. Germplasm is usually distributed after collection for at least two crop seasons because it is helpful in the adoption and purification of plant material [22].
Utilization involves the employment of conserved germplasm in research and improvement programs and can be utilized in various paths mainly in three forms such as;
As a new variety of crop
As a sample in the hybridization of plants
As a genetic variant allele in crop improvement.
Some of the crop varieties are made available instantaneously after their testing because in this case performance of these exotic gene lines are found to be better than that of local varieties so it will be available for usage at the commercial level. In another case, new varieties are developed based on selection done from the already present collection. In either case, some of the germplasm is not usable at all but possesses certain characteristics such as resistance, economic or wider adaptability. Transfer of such germplasm is easy because it can show cross-compatibility. The similarly wild form of germplasm is used for providing resistance to biotic or abiotic stresses and other characteristics such as strength in cotton. But it will present some further problems which include; the inability of the hybrid to survive for a large period. Sometimes the hybrid plant is unable to produce its offspring’s and desirable characters get linked to undesirable ones. Hence the utilization of germplasm is a difficult task and requires special attention [23].
Two of the organizations on both national as well as international level are available having an association with preservation or conservation of germplasm of plants. Thus, providing the facility of their abrupt usage when necessary by them. These include the international plant genetic resources institute located in Rome, Italy operating at the global level. Various types of institutes work and deal with the germplasm of concerned and most important crop plants. However, in India National Buraeu of Plant Genetic Resources abbreviated as NBPGR deals with a huge collection of both horticulture and agriculture crops. In addition to them, Forest research institutes deal with species living in forests and lastly Botanical survey of India located in Kolkata deals with the remaining plant species [24].
IPGRI old IBPGR is an international scientific organization whose work in addition to other institutions is analyzed by CGIAR which is a consultative group on international agricultural research. Its main role is to conduct and organize research and also to promote and ensure collection, documentation, and utilization of these plant germplasm and it will be helpful in the collection and exchange of plant materials. It also possesses an advisory committee which helps in the collection, evaluation, and utilization of germplasm of crop plants. So it promotes global collection and conservation of all the genetic resources of plant species. It was changed from IBPGR to IPGRI in 1993 while its predecessor was established in 1974.
This institute was established by the Indian Council of Agriculture research Centre (ICAR) in New Delhi in 1976. In India, the introduction of the plant was done in 1946 in the Division of Botany and a separate introduction was done by Dr.H.B. Singh who made a well-known achievement in the fields of the introduction of plants in India. He also arranged a large collection of germplasm of various species of plants and systemized the research in this field. In 1976, this decision of introduction of plants was revolutionized to an independent agency named NBPGR. The basic function is that it is helpful in the import and export of genetic resources of plants hence facilitating the exchange of germplasm. Also, it promotes activities of germplasm like collection, conservation, documentation, and utilization. It also organizes short term courses of collection, conservation, evaluation, and utilization of genetic resources of crops. Besides, it also guides the development of storage of plants at cold temperatures and short-term conservation of germplasm. It’s also a decision about the setting of the gene for endangered species of plants [25].
It is also known as genetic depletion in which a limited number of genes of species that are endangered get more reduced where reproductive individuals die before reproduction with others in their low population. In a more detailed way, it is described as a loss of some alleles or genes while referring to further loss of the whole phenotypic trait or genotype. It occurs because each individual has a unique set of genes that get lost when they die before they breed. A low level of genetic diversity leads to further reduction of the genetic pool thus breeds a combination and also weakens the immune system taking the species to the level of eventual extinction. Genetic erosion is greatly observed in endangered species. Most crop species get benefits from most of the human-associated programs to keep the production viable. So in this way avoids extinction for a large time frame [26]. A small collection of populations are more vulnerable to erosion than that of a larger one. The level of erosion gets worse and is being accelerated with time-based on the loss of habitat and fragmentation of habitat which also forms the firm basis of barriers inflow of genes between two or more than two types of populations. A genetic pool is a complete set of all alleles investigated by the genetic material of all members of living species or a set of populations. A large pool indicates a greater level of diversity occurring in genetics that is associated with populations that survive as a result of selection phenomenon similarly low level of diversity leads to a reduced level of fitness and increase in chances of extinction of any species [27].
Bottlenecks of population results in the creation of genetic pools that possess very few mating partners which are fertile too. Reduction in the number of breed Plants by unique genes will be similar to the situation where dealers operate with similar five cards again and again. Hence producing very few numbers of limited hands. As the sample inbreeds, it’s both physical as well as reproductive effects appear to have existence much often. The most common and wide effects are on the Immune system which becomes weaker with time, presenting less resistance to diseases and in turn increases the count of bacteria, virus, parasites resulting in threats of diseases. So even if any endangered species in the genetic pool or bottleneck can bear with human development or growth. So, it faces the threat of epidemic which proves to be dangerous to the whole set of population [28].
Erosion in genes has resulted in the loss of a particular gene or gene which has undergone a recombination process i.e., complex set of genes that are either produced locally by the racers of land for domestic plants and animal species that adapt to natural conditions where these species grow. The major force behind the genetic erosion is the clearing of land, over the employment of species, deforestation, and degradation and finally grazing to a large extent. The major factors are the replacement of local varieties with varieties that are found to be non-locale. When commercial species overcome the traditional species and are introduced into the traditional farm system, it will also result in a reduction of a huge collection of varieties however the major problem is that it results in a reduction in tendency for uniformity in both genetic as well as economic factors in the development of a modern form of agriculture. So, if any endangered species can tolerate the process of human development and are adopted at a place much away from their natural habitat. It will still result in facing the danger of a serious threat to the whole population. With the advancement in science and technology, several techniques have been checked for checking defects of genetic erosion which result in the extinction of species that are at the extent of endangerment. But many techniques are very expensive for using them at a practical level. So, the best way is to preserve them by the protection of their natural habitat and to allow them to live in natural conditions as long as possible [29].
Medicinal plants grow in. A natural environment around us and with the advent of technology, humans have gained the knowledge of how these can be utilized in fighting an illness or for maintenance of human health. The capability to use wild species in the improvement of health is not dependent on humans alone. The ability is affected by various factors such as pests, diseases, climate, environment, and other biotic or abiotic factors. According to society in America in 1999 the capability for maintainability of crop production depends on the compounds or genes being extracted from wild species of medicinal plants as depicted in Table 1. Because of their extensive use in commercial as well as the scientific environment, there has been increased pressure on wild species from which all these medicinal plants have been extracted. Over-harvest action, as well as commercial exploitation, has resulted in the unavailability of traditional medicine where the people utilize them. For all these reasons there is an urgent need to conserve these plant species [31].
Name of crop | Medicinal usage | Origin |
---|---|---|
For curing burns and wounds | South Africa | |
Aspirin | Pain killer, health rate normalization, and blood thinning | Europe |
Bloodroot | Treatment of skin cancer | US |
Camphor | As a pain-relieving agent | Asia |
Digitalis | For the treatment of heart failure | Europe |
Quinine | Malaria | South America. |
Some medicinal plants which are at extent of endangerment [30].
Some of the examples of species include slippery elm which involves the use of gummy lining for used in North America as a therapeutic agent for cough and cold, gastrointestinal diseases, and allergy to skin epidermis. But this medicine being used by local people is demanded by Millions of people now. They are not used commercially so the trees are separated from bark and are left to die. So, for about 50 pounds, 15 trees are sacrificed every year and now the species is identified as at risk by the US.
Another example is yew belonging to Texas specie that is used for the production of cancer drugs such as taxol. It is also identified as endangered based on its over-harvesting. Similarly, black cohosh is used for the cure of a large number of ailments such as colds, pains, and largely menopause and also found to be a list of endangerment due to degradation of habitat as well as over-harvesting. Moreover, goldenseal has numerous uses being used as a toner treatment of diseases such as hemorrhoids. It is already threatened, endangered, and vanished in many states.
There are various methods for the preservation of genetic resources or traits for crop plants. The easiest and most economical method is the storage of seeds of crop species. But not all the plant species can be stored easily in this condition because some seeds have a shorter span of viability and several species do not produce seed vegetative. Still there exist many methods that depend on storage conditions, storage vassals, the extent of conservation, and finally on the facilities available for proper storage of plants [32]. The most efficient way is to store biological crops in the environment where they were produced or developed earlier i.e., in situ farmlands as shown in Figure 1. This type of method can be employed when the natural environment is balanced and there are no chances of off balance. The most important point which must be considered is that genes should be conserved instead of the genotype of plant species [33].
This method employs the conservation of resources totally in a natural habitat. It involves the maintenance of plant species in which it grows and also in the habitat to which it is adopted for a long time in the past. The objective behind this methodology of preservation is to maintain the self-sustaining species in a natural ecosystem [34]. A huge collection of plant and animal species can be conserved by this mechanism. But along with it, there exists a limitation that it is impossible to sustain and preserve the genes of crops without conservation of the ecosystem of which it is adopted by nature [35]. It allows the conservancy of naturally occurring beneficial species in a condition where it continues to undergo evolution with time. Moreover, it also allows the conservation of both wild and cultivated genotypes without having much expenditure on the area. The major benefit of this process is that species selected by nature continue to evolve timely which results in the production of new recombinant forms of a living being. In the case of reluctant seeds that grow either in tropical or perennial regions, it serves as the best phenomenon of conservation within the in vitro environment [36]. Although in situ conservation is the best method but, its operation in any country or ecosystem is possible only when it is ensured by people who are in continual conflict with national plans and when its continuity is also confirmed in any environment. Usually, if continuous and control monitoring does not operate, its survival rates get much lower. This results in loss of naturally occurring habitat and also replacement of old generation of crops with new varities which occur as a normal part of the crop growing system [37].
In situ conservation is, therefore, can be achieved by the protection of naturally occurring wild species in their natural or adopted habitat via cultivation in fields. Such areas or regions are being discovered in natural parks and recreational areas under government territory. Practices such as horticulture and floriculture present an efficient way of conservation in the naturally existing ecosystem [38]. Horticulture is a phenomenon in agriculture whereby plants are preserved for the purpose of feed but mainly for comfort and decoration purposes. It employed the use of knowledge and skills to grow plants for use in both food and non-food areas and also for social requirements. It includes both tropical and perennial species, vegetable varieties, tasty fruits in addition to decorative indoors, and other Landscape plant varieties [39]. Floriculture is also a subtype of horticulture which is mainly concerned with cultivating flower varieties of ornamental plants for use in the floral industry, gardens, and orchids. Development and growth of varieties via breeding techniques to a novel variety of species is a major point of focus in floriculture which allows the transfer of desirable characteristics to next-generation resulting in maintenance of specific genetic traits [40]. This methodology of preservation has some advantages which include;
Each preserved area will contain a small portion of whole diversity i.e., Small portion of total diversity. So, it requires the preservation of a large number of areas for the conservation of the whole genetic pool.
The maintenance and management of all these areas also require labor and present problems.
This is the most expensive method for the conservation of germplasm.
Elaboration of integrated plant conservation involving both in-situ as well as ex-situ methodology. In-situ conservation allows the conservation of germplasm of and living parts of endangered plant species while ex-situ conservation involves the plant material available for research purpose, horticulture and reintroduction of materials preventing materials from getting extinct.
Another methodology involving the collection of plant gardens and banks of seeds where the plants are grown under natural conditions [41]. Seed banks are maintained and produced by research institutions and universities produced via the technique of tissue culture and utilization of much lower temperature in the environment for its operation [42]. It also ensures that the plant materials are easily available, characterization is done efficiently and well documented and its exposure to the outer environment is safe i.e., it should not possess any threat to the natural ecosystem of humans as well as animals. However, it provides the best alternative to naturally existing methods which in addition to providing an opportunity to wild species having desirable traits to continue undergoing the evolutionary process in a naturally existing environment. This method has the advantage of safeguarding the germplasm while it is in its natural environment resulting in the genetic variation in naturally occurring verities and is readily available for use. Examples of plant undergoing this subtype of preservation under biotechnological area are sugarcane, cocoa, and maize, etc. [43].
This is also referred to as offsite conservation which employs the conservation of species outside their natural habitat or system. In this method, the genetic information of the plant is preserved in form of banks which may be either seed or gene bank or in the form of cultures to increase their half-life so that they can be used for a long period inefficiently [44]. The class of preservation technique results in the formation of collection or bank of genes, DNA, seeds, and germplasm forming a genetic library in the form of gardens. This will lead to the creation of a good option for the conservation of species that are thought to be endangered or near the extent of it, which are primitive and in turn, are much valuable for use in industry for commercial purposes. It includes certain techniques such as cryopreservation and other genetic transfer approaches for the eradication of diseases, pest and stress control, and lastly conservation of endangered species in the long run [45]. It is almost similar to that of in-vitro methodological practice. Other disadvantages include loss of viability of seed structure, destruction of the crop by pest or insect, poor germination of a seed plant, and lastly, it is a much expensive procedure [46]. On the other hand, major advantages can be summarized as,
Small areas can store a large collection of materials
It protects all other environmental-based methods [47].
It is the cheapest method and preservation of germplasm is much easier.
It is possible to store the whole genetic material in a single place.
The most advanced form of preservation of genetic resources is to maintain them in laboratory conditions. This is the conservation technique which employs the use of test tubes or laboratory apparatus which is sealed in one or other way for maintenance of resources [48]. The genetic resources such as tissue cells or callus are placed in the sealed tubes which operate on the fact that plant parts can be kept alive under controlled laboratory conditions which proves the fact that plants are totipotent. This means that every part of a plant can develops into a whole organism. This phenomenon has made this fact clear that disease-free plants and species can be transferred to the next generation within the laboratory controlled conditions [49]. Or in other words, engineered species provide a viable means for the transfer of pest and insect-free species from one generation to another. The source of such genotypes is from the culture of laboratories or having origins from international seed banks [50].
In vitro conservation of plants was first done in the mid-1970s. Although whole ‘is not can be regenerated from any part of the plant because of its totipotency but due to the involvement of unorganized culture there exist some risks of a generation of somatic mutation and mutants. In comparison to it, the cultures containing somatic meristem culture are much more stable in their transformation mode but also it can propagate more frequently as these areas do not have to recover after differentiation [49]. Most efficient storing systems are usually not much expensive, are easy to maintain, and reduce the work labor and load in germplasm working bank. Scheduled monitoring of the cells along with viability and contamination assessment is not that necessary. The exploitation of in Vito technique of genetic conservation is hindered if any species is unable to prorogate to the next generation from tissue or cell culture [51]. For example, a proper technique for the prorogation of coconut does not exist yet unlike other crops of this class which can be propagated inefficient way via callus differentiation. But in this case, the leaves or plantlets can only be produced from a zygote or embryo. Each embryo in this case will produce a new plant which represents no further division of genetic material. In the same manner, the effect of in-vitro culturing is much less for woody plants as compared to other species as it can result in difficulty in culturing and regeneration of new species [52]. In these cases, less research has been done for the development of an appropriate cultural technique in vitro. But a thorough examination of the problem occurring in the handicap pathway of procedure for wood culture can solve this problem, presenting a suitable solution to the development of plant and conservation of their genetic resources efficiently [53].
The most important drawback of this phenomenon is that it requires the utilization of modern technology and labor force under the controlled conditions of an aseptic environment. Also, it requires proper laboratory skills with excessive usage of electricity which makes this procedure much labor-intensive and expensive [54]. This process is helpful in the production of disease-free varities of plants that are also pest-free and these species include sugarcane etc. The produced genetic resources are used in several ways such as genetic improvement, maintenance of biodiversity, mechanism-based research of ecosystems, classification according to taxonomy, monitoring of environmental characteristics, epidemiological, and forensic based studies. One of the main strategic reasons behind germplasm conservation is that it maintains biological diversity and provides germplasm which is validated in both genotypic and phenotypic aspects [55]. Germplasm is either conserved in the form of seed or meristem form.
Gene banks are the type of repository in biology for the preservation of genetic resources. In the case of plants, it is done by storing in laboratory conditions, freezing cuts from the plant materials, or maintaining stocks of seed. Accession is the term provided to each sample in a gene bank like the species or variety. In plants, it is easy to unfreeze the materials for their propagation and usage.
Gene banks are also classified as both in vivo that is within the body and in-vitro which involve sustaining of characters in proper laboratory conditions. The type of gene bank where traits or alleles are stored by employing conventional methodologies are termed in-vivo. For example in the form of seeds and vegetative collections [56]. While the subtypes where the characteristic resources are stored in form of non-conventional methods in form of cellular structure and tissues are referred to as in vitro. Both techniques are of prime importance in the development of valuable trait crops for breeders to develop both new and improved varieties [57]. This involves using DNA as a source of DNA in terms of germplasm being employed in breeding technologies. When these are properly identified and after that efficiently characterized, it will result in the production of the transgenic organism which can express these genes. Genetic disruption can be avoided by the phenomenon of transformation which also involves sexual hybridization. It is not limited by compatibility from the sexual life cycle and can be evolved from other forms of life in the short run. The transgenic genes are helpful in the production of plants which in addition to herbicide-resistant are also pest resistant and are conveniently preserved as a transgenic or cloned form of genetic material. The process is limited by the identification of potable genes which will result in the production of higher yield along with greater stability of Transformants in host genera. Such genes have been produced successfully for conservation as well as patent purposes so that they can be employed at a commercial level. Economically or technically, is not worthy in the future that this synthesis of the gene will store these genetic traits in the form of physical germplasm i.e., in form of seeds, tissue, or the whole plant, etc. Conservation of DNA molecules and similarly the assembly of these molecules in the form of DNA data sequence is not the best alternative to conventional methods for germplasm because genes are not coordinated in them in a small similar fashion.
Recently with the discovery of artificial chromosomes in yeast has raised the fact that coordinated assemblies of genes can be made and therefore can be conserved which will allow further morphological or phenotypical changes to be engineered in the laboratory efficiently. To use them practically, it is important to conserve the host organism but the genetic information in them is not yet fully discovered. But gene liberates, sequence data, and gene banks cannot be employed to reproduce a whole organism but have a significant role in preserving genetic resources of crop plants which are either on the extent of danger or found to be endangered. The conservation of plant or genetic diversity involves the collection of small parts of plants such as tissues, cells, shoots, etc. A tissue sample from all the plants and species will be collected in liquid nitrogen as described in cryopreservation at a much lower temperature of freezing point. In theory, these samples are not indefinite and DNA extraction is not performed until recommended. So, at that moment, DNA can be identified, immobilized in a membrane to act as a source of a specific gene or sequence of DNA molecules. The technique is helpful in the conservation of both undefined and undescribed species of plants whose seeds cannot be stored directly and is used for diverting those whose seed values have been found earlier and observed in germplasm banks already. DNA sequencing is carried out in almost all laboratories throughout the world because they can be compared to novel sequences with those which are properly and characterized considerably. Comparisons also highlight the unrevealed homologies and suspected functional properties between the organisms which are unrelated. Most organizations support coordinated DNA sequencing and storage. The most famous banks are the European molecular biology laboratory located in the US, GenBank operated by the United States laboratory. The rapidly increasing data of sequence raises voice on important problems of storing and facilitating rapid comparison regarding new information on data sequence of the gene. Gene banks are of three types which include;
It stores the seed at very low temperatures after they have been dried efficiently. Spores, as well as meristems, are stored by this method in seed banks but the vegetative plants which do not possess seed are not concerned by this technique. The largest bank for storing seeds is Millenium seed bank which is located at WTMB near London.
By this technique buds, roots and meristem are stored in this way by utilizing light, the temperature in presence of aseptic conditions, and nutrient media containing all the essentials such as carbon, nitrogen, etc. Hence the technique is based on the preservation of seedless plants and which reproduce by sexual reproduction.
By this technique, a seed or embryo cell is stored at a much lower temperature or temperature much lower than freezing temperature in liquid nitrogen at a temperature of about −196 °C. So, it is helpful for the conservation of species that are at the extent of extinction or have become endangered. But mostly it is used for the cryopreservation of genetic resources of animals. But in the case of plants, conservation of pollen grains is done by storing at a much lower temperature of −196 °C. Hence this methodology is used for cross breeding and also in the production of plants having a set of chromosomes.
The method is used for the conservation of genes of planting plants where the ecosystem is created artificially. By this method, the different plant species can be compared so that they can be studied in detail. It needs more artificial requirements such as soil, water, and weather, etc. The germplasm of most crop plants is conserved by this process. For example, 43000 rice varieties are conserved in Orissa at a central research institute.
The word is derived from two Greek words. i.e., Kryos means frosting while preservation means storage for a long time or increasing half-life in one way or another. Following these techniques cells and tissues are stored at a much lower or frozen temperature either using carbon dioxide at −79 °C or nitrogen gas at −160 °C in the form of vapors in deep freezers. In the c as e of liquid nitrogen, the limit of temperature would be from 170 °C to 197 °C. The technique involves four stages involving freezing, thawing, and re-culturing, etc. [58]. Thus, freezing temperature inactivates the cells and tissues so that it can be preserved for a longer period. Any of the tissues of the plant can be preserved under proper conditions for example meristem, stem, ovules, anther, embryos, endosperm, cells, and leaves, etc. [59]. The process of cryopreservation being followed by regeneration of the whole plant invoke the following steps Figure 2;
Isolation and development of sterile tissue culture
Addition of cryoprotectants
Pretreatment
Freezing of plant material
Storing of plants parts
Thawing followed by culturing
Assessment of viability of cells based on their rate of survival
Regeneration of plants
Schematic flow sheet representation of steps involved in cryopreservation of plant materials in biotechnology for genetic resource(germplasm) conservation of endangered plant species such as golden paintbrush from natural environment to cryobank in form of seeds, tissues, roots, meristem and shoots etc.
Physiological and structural conditions of plant effects ultimately the survival of the plant during cryopreservation. Tissues to be used in preservation must be healthy, small, young, having rich cytoplasm, and highly vacuolated. In either case, callus acts as the best source of tissues as it is more resistant to damage caused by freezing [60]. So, a callus after 1 to 2 weeks of subculturing is selected for the cryopreservation process. But old and black areas should be avoided and organized structures are preferred more.
To prevent the damage resulting from abrupt freezing or thawing, the chemicals such as glycerol, alcohol, dimethyl sulfate, glycerol, praline, etc. are being added for the purpose of conservation. This protectant referred to as cryoprotectants are added to protect freeze cells or low freezing temperatures etc. But the limitation of the procedure is that only a few biological materials can be frozen below the minus temperature in presence of gas without affecting the viability of cell structures. Liquid nitrogen is used because of the following reasons;
It is inert in chemical form.
It is a less expensive process posing less burden on the economy.
It is non-toxic posing no side effects on the environment.
It is a non-flammable and most readily available method so far.
However, two more practical approaches in biotechnology may lead to widespread applications of conservation of germplasm of plants to reduce damage from abrupt cooling. This includes vitrification by using cryoprotectants mixture and another is an encapsulation of a sample with gel which is dehydrated later on as described above. For the process of vitrification, the sample is submerged in a cryoprotectants mixture which results in the promotion of conservation of cellular water into non-crystal-like solids which later cool rapidly. In the case of encapsulation, the sample material such as root or shoot tip is dipped in a gel to form an artificial seed-like structure which is then dehydrated before cooling. The gel performs the function of protection against physical damage and is more robust than shoot tip or embryo culture. Despite the presence of optimistic methodologies using plant tissues, further research is required to find the development of preservation to that available for animal and human embryos. But there exist many barriers that prevent the utilization of technology in one or other way.
The process involves regrowth which involves the application of additives to enhance growth e.g. abscisic acid etc. [61]. On the other hand, cryoprotectants act as an anti-freeze, increases viscosity, and prevents damage which resulted wither due to the formation of ice crystals during cryopreservation or due to an increase in intracellular concentration of solutes before or during the process of freezing as a result of dehydration.
Vitrification is a process of conversion of liquid into solid in the absence of crystallization. When the cells have properly undergone the process of slow freezing, it will result in vitrification where ice formation does not take place because here the aqueous solution is much concentrated which results in permitting the formation of ice cubes. Instead, the water gets solidified into a glassy clear state. Dehydration during this process is achieved by the high concentration of osmotically active compounds like sugars, polyols performed in the sterile cabinet over silica gel [62]. In the process of dehydration, a reduction in the amount of water followed by the formation of ice and an increase in osmotic pressure occurs which ultimately depress the freezing point [63].
Then plant material is placed in liquid nitrogen at a much lower temperature ranging from −300 to −1000 °C. Dry ice can also be similarly used in the process. The more quickly freezing is done the less will be the intracellular state of crystal formation. The methodology is simpler and easy to handle and can also be used for tips of potatoes and strawberry species. Dry ice can also be utilized for this purpose.
In this method, the temperature is lowered to about −30 °C for at least a period of 30 minutes and then abrupt cooling is done via using liquid nitrogen at the much lower temperature of −196 °C. Slow freezing increases dehydration while abrupt freezing promotes crystal formation. It gives excellent results in the preservation of strawberries in the suspension culture.
Storing at the correct temperature is as important as that of freezing. For storage, the temperature is left to almost −70 °C to 197 °C because this temperature is sufficiently low for the preservation of cells without metabolic damage to them. Long term storage is mostly done at about −197 °C.
It involves the rapid thawing of the ampule containing the sample in a water bath at about 40 °C. They are plunged into warm water with swirling for rapid mixing just to the point where ice gets disappears and is important for the survival of tissues that the sample must be removed from the water bath after melting of ice. Tissues being thawed at a much lower temperature are then abruptly thawed following this step.
Regrowth of stored tissue is the best indication of the survival of plant tissues. For this purpose, many viability tests are used which involve fluorescein diacetate staining, measurement of growth by cell number, and finally by calculating the dry and fresh weight. The two most popular methods are m
Triphenyl tetrazolium chloride
Evans blue staining
It provides the best opportunity for the conservation of endangered species being used for medicinal purposes. It also provides an ideal approach for the suppression of cell division to avoid further need for sub culturing. Pathogen free cultures and subcultures can be frozen and stirred when required and also provide a much suitable material for the selection of cold-resistant strains of mutant cell lines which later get differentiated into frost resistant cells or plants. The seeds may be stored for food crops or to protect biodiversity or reason for storage also varied which involve first drying of moisture to less than 5% and then stored at the much lower temperature of −18 °C or below it [64].
For the last 20 years, advancement in tissue culture technologies has led to the development of the micro propagation method which is a novel technology, providing young and fresh plants for horticulture, agricultural, and agriculture purposes. One of the main consequences is the rapid growth of in-Vito exchange as a viable means for the transfer of germplasm between different laboratories [65]. The International Board for genetic research has elucidated that more than 140 plant germplasm has been exchanged from 1980 to 1986s. Out of all attempts, about 97% were found to be successful. Now almost every agriculture research center is attributed to the exchange of germplasm in-vitro. For example, the exchange of germplasm of potato culture is now a routine procedure. Shoot cultures are incubated for about 3 weeks after inoculation to induce roots and any contamination resulting from the microbial mass [66]. Transferring them to a fresh medium compensates this problem and increases rates of survival. Now the new era has replaced the cultures with small test tubes produced under in-vitro conditions [67]. These are more robust and rapid methods, and the produced plants or germplasm can be stored for months or even years. The recipient can place them in nursery beds without the involvement of further culture step. In the modern process of potato breeding, the in-vitro cultures provide another species that is disease free followed during the process of field testing required to select the most desirable form of clone as in Table 2 [69].
Species/crops | Applications |
---|---|
Rice | Food, fodder, and beverage |
Sorghum | fodder |
Cowpea | Food, fodder |
Maize | Food, industry, fodder |
Soya bean | Industry, food, fodder |
Sesame | fodder |
Cassava | fodder |
Millet | Medicinal, fodder, industry |
Hungry rice | Food, industrial, fodder |
Yarn | Food |
Sugarcane | Food, beverage, industry |
Groundnut | food |
Utilization of plant species/crops in various aspects after their conservation in the form of germplasm which are thought to be endangered in future [68].
The successful application and conservation of genetic resources in every country for the purpose of food and agriculture depend upon the collaboration of the government. Policymakers, germplasm scientists, rural populations, and breeders or farmers. Usually plant genetic resources are conserved because they are ultimately used in food and agriculture and sustainable agriculture depends upon their usage. Farmers in modern agriculture use their plants or crops for purpose of not only food but for medicine and fodder also as shown in Table 3. Deployment of genetic resources in a better idea paves the way for the reduction of vulnerability of crops or plants to that of insects, pests, and other fertilizers making them herbicide, pesticide, and insecticide resistant. In national research institutes of every country about 13% rice, 7% soybean, and 8% of sugarcane species are conserved in various breeding technologies as illustrated in Table 1. With the abrupt increase in population and reduction in land available for agricultural purposes, an increment in the production of food, as well as its distribution across the globe, is much necessary. There is an utmost need in every country to use their genetic resources for better purposes utilizing the breeding techniques effectively. The involvement of genetic resources in the techniques has resulted in almost the compensation of food required by the increasing population of the world. So the stress of poverty alleviation in developing countries has been reduced effectively and is also involved in food security depending on the availability and utilization of species that produce a higher amount of crops or plants with desirable characters especially in rural areas where most families rely on farming for their survival. So utilizing a small collection of gene bank resources can lead to greater benefits as elaborated in breeding programs. However, less usage of them can lead to fewer benefits in both the social and economic sectors. The constraints involved in the low level of germplasm conservation include lack of ability to characterize and evaluate gene data banks, insufficient knowledge, inappropriate documentation and poor relationship between users of gene banks and germplasm. Currently, in sugarcane industry much data is available on characterization and evaluation of data on sugarcanes for utilization by stakeholders.
Name of crop | Type of conservation | Improvements resulted |
---|---|---|
Soybeans | Gene banks, bottles, and tissue culturing | Reducing days required for maturation. Transferring smut resistance from wild to cultivated type. |
Sugarcane | Gene banks | Transfer of smut resistance from wild to cultivated type. Introduction of sucrose and improved protein content. |
Rice | Storing bottles and tissue culturing | Hybridization of both wild and cultivated species. Development of short duration techniques Development of iron resistant specie. |
Sorghum | Field gene banks, tissue culture | Production of short duration variety. Mildew resistant varieties. |
Maize | Storing bottles and tissue culturing | Production of varieties which are high in lysine content |
Cowpea | Storing bottles and tissue culturing | High yield of product. High protein species. |
Sesame | Storing bottles and tissue culturing | Early maturing species. Development of verities that are resistant to black specks. High oil containing verities. |
Improvement in crops by germplasm conservation of plants (conservation type) being used in everyday life which are thought to get endangered in future [70].
The development of various successful methodologies for preservation of genetic resources enables the establishment of basal collections of endangered species with the representative diversity. The collections include many of species which have been threatened for loss of habitat. Collections related to critically endangered species are maintained in simple media. These threatened species could also be maintained at lower temperature after acquiring specific laboratory conditions. From the whole discussion, the fact has become clear that there is a need to conserve germplasm in a variety of ways. It is also elucidated that the effectiveness of conservation technology depends upon the maintainability of the collection of genetic resources in a much cost-effective manner. So, there is an abrupt need to emphasize evaluation of the efficiency of conservation procedure by realizing efforts in an in-expensive way. Because the future will depend upon the presence and utilization of conserved germplasm. Thus, there is an urgent need to conserve the most important crops such as maize, rice, sorghum, wheat, etc. The variation in them is leading to genetic erosion which will ultimately degrade them and their availability in the future will be affected. So on the whole, involvement of germplasm in its preserved form and plant breeders in growth and development of these crops for improved and better varieties. Moreover there is a large collection of endangered species in under developing countries and creation of botanical gardens for in vitro and in vivo conservation allows establishment of culture facilities which in turn results in rescue as well as regrowth of endangered species. Additionally networking in exchange of information or materials and dissemination of useful protocols are important steps in continuous development and exchange of mechanisms for germplasm conservation. So at this point scientists and conservationists need to work together in order to develop better programs for germplasm conservation of plant species which are at risk of extinction.
"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges".
\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.
",metaTitle:"About Open Access",metaDescription:"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges.\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.",metaKeywords:null,canonicalURL:"about-open-access",contentRaw:'[{"type":"htmlEditorComponent","content":"The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\\n\\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\\n\\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nOAI-PMH
\\n\\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\\n\\nLicense
\\n\\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\\n\\nPeer Review Policies
\\n\\nAll scientific works are Peer Reviewed prior to publishing. Read more
\\n\\nOA Publishing Fees
\\n\\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\\n\\nDigital Archiving Policy
\\n\\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\\n\\nOpen Science is transparent and accessible knowledge that is shared and developed through collaborative networks.
\\n\\nOpen Science is about increased rigour, accountability, and reproducibility for research. It is based on the principles of inclusion, fairness, equity, and sharing, and ultimately seeks to change the way research is done, who is involved and how it is valued. It aims to make research more open to participation, review/refutation, improvement and (re)use for the world to benefit.
\\n\\nOpen Science refers to doing traditional science with more transparency involved at various stages, for example by openly sharing code and data. It implies a growing set of practices - within different disciplines - aiming at:
\\n\\nWe aim at improving the quality and availability of scholarly communication by promoting and practicing:
\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:'
The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\n\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\n\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\n\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\n\nOAI-PMH
\n\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\n\nLicense
\n\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\n\nPeer Review Policies
\n\nAll scientific works are Peer Reviewed prior to publishing. Read more
\n\nOA Publishing Fees
\n\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\n\nDigital Archiving Policy
\n\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\n\nOpen Science is transparent and accessible knowledge that is shared and developed through collaborative networks.
\n\nOpen Science is about increased rigour, accountability, and reproducibility for research. It is based on the principles of inclusion, fairness, equity, and sharing, and ultimately seeks to change the way research is done, who is involved and how it is valued. It aims to make research more open to participation, review/refutation, improvement and (re)use for the world to benefit.
\n\nOpen Science refers to doing traditional science with more transparency involved at various stages, for example by openly sharing code and data. It implies a growing set of practices - within different disciplines - aiming at:
\n\nWe aim at improving the quality and availability of scholarly communication by promoting and practicing:
\n\n\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13389},{group:"region",caption:"Middle and South America",value:2,count:11658},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22334},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33642}],offset:12,limit:12,total:135272},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"8"},books:[{type:"book",id:"11559",title:"Photocatalysts - New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"fc9a28dbceaeccb8991b24aec1decd32",slug:null,bookSignature:"Prof. Nasser S Awwad, Dr. Saleh S. Alarfaji and Dr. Ahmed Alomary",coverURL:"https://cdn.intechopen.com/books/images_new/11559.jpg",editedByType:null,editors:[{id:"145209",title:"Prof.",name:"Nasser",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11560",title:"Piezoelectric Materials - New Opportunities to Energy Harvesting Devices",subtitle:null,isOpenForSubmission:!0,hash:"ef99895997e3b7c308813218cd6f61e7",slug:null,bookSignature:"D.Sc. Rafael Vargas-Bernal",coverURL:"https://cdn.intechopen.com/books/images_new/11560.jpg",editedByType:null,editors:[{id:"182114",title:"D.Sc.",name:"Rafael",surname:"Vargas-Bernal",slug:"rafael-vargas-bernal",fullName:"Rafael Vargas-Bernal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11561",title:"Zeolite From Wastes - New Perspectives on Innovative Resources and Their Valorization Process",subtitle:null,isOpenForSubmission:!0,hash:"3ed0dfd842de9cd1143212415903e6ad",slug:null,bookSignature:"Dr. Claudia Belviso",coverURL:"https://cdn.intechopen.com/books/images_new/11561.jpg",editedByType:null,editors:[{id:"61457",title:"Dr.",name:"Claudia",surname:"Belviso",slug:"claudia-belviso",fullName:"Claudia Belviso"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11563",title:"A Comprehensive Review of the Versatile Dehydration Processes",subtitle:null,isOpenForSubmission:!0,hash:"91d7853d4e74d161d7a8f5913626cf94",slug:null,bookSignature:"Ph.D. Jelena Jovanovic",coverURL:"https://cdn.intechopen.com/books/images_new/11563.jpg",editedByType:null,editors:[{id:"447810",title:"Ph.D.",name:"Jelena",surname:"Jovanovic",slug:"jelena-jovanovic",fullName:"Jelena Jovanovic"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11895",title:"Sonochemistry - Recent Advances, New Perspectives, and Advanced Applications",subtitle:null,isOpenForSubmission:!0,hash:"a3bb7281ab6a6ce27a0d69cddedc05fd",slug:null,bookSignature:"Prof. Mohammed Khalid",coverURL:"https://cdn.intechopen.com/books/images_new/11895.jpg",editedByType:null,editors:[{id:"137240",title:"Prof.",name:"Mohammed",surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11898",title:"Glycerol - Current Catalytic and Biochemical Processes for Sustainability",subtitle:null,isOpenForSubmission:!0,hash:"f4b04aa4b82f5a8f2de916212b20da55",slug:null,bookSignature:"Ph.D. Israel Pala-Rosas, Dr. Jose Salmones and Prof. Jose Luis Contreras Larios",coverURL:"https://cdn.intechopen.com/books/images_new/11898.jpg",editedByType:null,editors:[{id:"284261",title:"Ph.D.",name:"Israel",surname:"Pala-Rosas",slug:"israel-pala-rosas",fullName:"Israel Pala-Rosas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11899",title:"Ethanol Chemistry - Production, Modelling, Applications, and Technological Aspects",subtitle:null,isOpenForSubmission:!0,hash:"bee828f72f44f58c6bcb10453b91c3e9",slug:null,bookSignature:"Assistant Prof. Rampal Pandey",coverURL:"https://cdn.intechopen.com/books/images_new/11899.jpg",editedByType:null,editors:[{id:"338234",title:"Assistant Prof.",name:"Rampal",surname:"Pandey",slug:"rampal-pandey",fullName:"Rampal Pandey"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11902",title:"Lignin - Chemistry, Structure, and Application",subtitle:null,isOpenForSubmission:!0,hash:"4c3ccf3ce961d9c60aeb9774034eeb87",slug:null,bookSignature:"Associate Prof. Arpit Sand and Dr. Jaya Tuteja",coverURL:"https://cdn.intechopen.com/books/images_new/11902.jpg",editedByType:null,editors:[{id:"287032",title:"Associate Prof.",name:"Arpit",surname:"Sand",slug:"arpit-sand",fullName:"Arpit Sand"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11903",title:"Covalent Organic Frameworks",subtitle:null,isOpenForSubmission:!0,hash:"8125f3f415f5d2fa9583abde0143602d",slug:null,bookSignature:"Prof. Yanan Gao and Dr. Fei Lu",coverURL:"https://cdn.intechopen.com/books/images_new/11903.jpg",editedByType:null,editors:[{id:"171387",title:"Prof.",name:"Yanan",surname:"Gao",slug:"yanan-gao",fullName:"Yanan Gao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11904",title:"Actinides - New Insights on Contamination, Exposure, and Analytical Techniques",subtitle:null,isOpenForSubmission:!0,hash:"a74f62997524c0c100aac1388bf529e8",slug:null,bookSignature:"Dr. Markus R. Zehringer",coverURL:"https://cdn.intechopen.com/books/images_new/11904.jpg",editedByType:null,editors:[{id:"311750",title:"Dr.",name:"Markus R.",surname:"Zehringer",slug:"markus-r.-zehringer",fullName:"Markus R. Zehringer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11905",title:"Rare Earth Elements - Emerging Advances, Technology Utilization, and Resource Procurement",subtitle:null,isOpenForSubmission:!0,hash:"38ffcf92affa26770585dbc04b3742fe",slug:null,bookSignature:"Dr. Michael Thomas Aide",coverURL:"https://cdn.intechopen.com/books/images_new/11905.jpg",editedByType:null,editors:[{id:"185895",title:"Dr.",name:"Michael",surname:"Aide",slug:"michael-aide",fullName:"Michael Aide"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11908",title:"Self-Assembly of Materials and Supramolecular Structures",subtitle:null,isOpenForSubmission:!0,hash:"e9cc643ae0a219e91e445a1e61b33a22",slug:null,bookSignature:"Prof. Hemali Rathnayake and Dr. Gayani Pathiraja",coverURL:"https://cdn.intechopen.com/books/images_new/11908.jpg",editedByType:null,editors:[{id:"323782",title:"Prof.",name:"Hemali",surname:"Rathnayake",slug:"hemali-rathnayake",fullName:"Hemali Rathnayake"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:28},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:8},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:16},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:43},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:9},{group:"topic",caption:"Materials Science",value:14,count:17},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:69},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:3},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:6},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:7},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:28},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11263",title:"Supply Chain",subtitle:"Recent Advances and New Perspectives in the Industry 4.0 Era",isOpenForSubmission:!1,hash:"aab634c9c1f9a692c1e9881d18e9c9b7",slug:"supply-chain-recent-advances-and-new-perspectives-in-the-industry-4-0-era",bookSignature:"Tamás Bányai, Ágota Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/11263.jpg",editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4805},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7107,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1955,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1452,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2289,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11263",title:"Supply Chain",subtitle:"Recent Advances and New Perspectives in the Industry 4.0 Era",isOpenForSubmission:!1,hash:"aab634c9c1f9a692c1e9881d18e9c9b7",slug:"supply-chain-recent-advances-and-new-perspectives-in-the-industry-4-0-era",bookSignature:"Tamás Bányai, Ágota Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/11263.jpg",publishedDate:"July 27th 2022",numberOfDownloads:888,editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1566,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2054,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",publishedDate:"July 27th 2022",numberOfDownloads:780,editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318480,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271760,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"278",title:"Social Psychology",slug:"social-psychology",parent:{id:"23",title:"Social Sciences",slug:"social-sciences"},numberOfBooks:7,numberOfSeries:0,numberOfAuthorsAndEditors:235,numberOfWosCitations:29,numberOfCrossrefCitations:55,numberOfDimensionsCitations:108,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"278",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10450",title:"Evolutionary Psychology Meets Social Neuroscience",subtitle:null,isOpenForSubmission:!1,hash:"bd4df54e3fb185306ec3899db7044efb",slug:"evolutionary-psychology-meets-social-neuroscience",bookSignature:"Rosalba Morese, Vincenzo Auriemma and Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/10450.jpg",editedByType:"Edited by",editors:[{id:"214435",title:"Dr.",name:"Rosalba",middleName:null,surname:"Morese",slug:"rosalba-morese",fullName:"Rosalba Morese"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10814",title:"Anxiety, Uncertainty, and Resilience During the Pandemic Period",subtitle:"Anthropological and Psychological Perspectives",isOpenForSubmission:!1,hash:"2db4d2a6638d2c66f7a5741d0f8fe4ae",slug:"anxiety-uncertainty-and-resilience-during-the-pandemic-period-anthropological-and-psychological-perspectives",bookSignature:"Fabio Gabrielli and Floriana Irtelli",coverURL:"https://cdn.intechopen.com/books/images_new/10814.jpg",editedByType:"Edited by",editors:[{id:"259407",title:"Prof.",name:"Fabio",middleName:null,surname:"Gabrielli",slug:"fabio-gabrielli",fullName:"Fabio Gabrielli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6934",title:"Psycho-Social Aspects of Human Sexuality and Ethics",subtitle:null,isOpenForSubmission:!1,hash:"44731b106aa0d1ab5c64a7394483c7d5",slug:"psycho-social-aspects-of-human-sexuality-and-ethics",bookSignature:"Dhastagir Sultan Sheriff",coverURL:"https://cdn.intechopen.com/books/images_new/6934.jpg",editedByType:"Edited by",editors:[{id:"167875",title:"Dr.",name:"Dhastagir Sultan",middleName:null,surname:"Sheriff",slug:"dhastagir-sultan-sheriff",fullName:"Dhastagir Sultan Sheriff"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7818",title:"Social Isolation",subtitle:"An Interdisciplinary View",isOpenForSubmission:!1,hash:"db3b513d7d35476f333a0d4a3147935b",slug:"social-isolation-an-interdisciplinary-view",bookSignature:"Rosalba Morese, Sara Palermo and Raffaella Fiorella",coverURL:"https://cdn.intechopen.com/books/images_new/7818.jpg",editedByType:"Edited by",editors:[{id:"214435",title:"Dr.",name:"Rosalba",middleName:null,surname:"Morese",slug:"rosalba-morese",fullName:"Rosalba Morese"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8262",title:"The New Forms of Social Exclusion",subtitle:null,isOpenForSubmission:!1,hash:"29bf235aa7659d3651183fe9ea49dc0d",slug:"the-new-forms-of-social-exclusion",bookSignature:"Rosalba Morese and Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/8262.jpg",editedByType:"Edited by",editors:[{id:"214435",title:"Dr.",name:"Rosalba",middleName:null,surname:"Morese",slug:"rosalba-morese",fullName:"Rosalba Morese"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5761",title:"Quality of Life and Quality of Working Life",subtitle:null,isOpenForSubmission:!1,hash:"f6000bc0eeed7fcf0277a2f8d75907d9",slug:"quality-of-life-and-quality-of-working-life",bookSignature:"Ana Alice Vilas Boas",coverURL:"https://cdn.intechopen.com/books/images_new/5761.jpg",editedByType:"Edited by",editors:[{id:"175373",title:"Dr.",name:"Ana Alice",middleName:null,surname:"Vilas Boas",slug:"ana-alice-vilas-boas",fullName:"Ana Alice Vilas Boas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:7,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"66422",doi:"10.5772/intechopen.85463",title:"Vulnerability and Social Exclusion: Risk in Adolescence and Old Age",slug:"vulnerability-and-social-exclusion-risk-in-adolescence-and-old-age",totalDownloads:1157,totalCrossrefCites:8,totalDimensionsCites:11,abstract:"Vulnerability can be defined as the quality or state of being exposed to the possibility of being attacked or harmed, either physically or emotionally. In this chapter, it is defined as a possible ability of an individual or a group to face, manage, and anticipate a possible problem. This concept of vulnerability is associated with that of risk factor for social isolation, and therefore to situations that can also lead to illness and lack of mental and physical health. It can have its roots in poverty, in social exclusion, in ethnicity, in disability or simply in disease or specific developmental phases in life. All these aspects reflect very important vulnerability factors among biological, psychological, social, and behavioral variables. To date, no one has highlighted together two critical moments in life in which this brain area undergoes important variations: adolescence, in which its development occurs, and old age, in which this area goes into cognitive decline with the relative loss of many higher cognitive functions. This knowledge can help to better understand the forms of exclusion due to vulnerability in order to develop new forms of social inclusion.",book:{id:"8262",slug:"the-new-forms-of-social-exclusion",title:"The New Forms of Social Exclusion",fullTitle:"The New Forms of Social Exclusion"},signatures:"Rosalba Morese, Sara Palermo, Matteo Defedele, Juri Nervo and Alberto Borraccino",authors:[{id:"214435",title:"Dr.",name:"Rosalba",middleName:null,surname:"Morese",slug:"rosalba-morese",fullName:"Rosalba Morese"},{id:"218983",title:"BSc.",name:"Juri",middleName:null,surname:"Nervo",slug:"juri-nervo",fullName:"Juri Nervo"},{id:"218984",title:"MSc.",name:"Matteo",middleName:null,surname:"Defedele",slug:"matteo-defedele",fullName:"Matteo Defedele"},{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"},{id:"266453",title:"Prof.",name:"Alberto",middleName:null,surname:"Borraccino",slug:"alberto-borraccino",fullName:"Alberto Borraccino"}]},{id:"74550",doi:"10.5772/intechopen.95395",title:"School Conflicts: Causes and Management Strategies in Classroom Relationships",slug:"school-conflicts-causes-and-management-strategies-in-classroom-relationships",totalDownloads:2308,totalCrossrefCites:1,totalDimensionsCites:10,abstract:"Conflicts cannot cease to exist, as they are intrinsic to human beings, forming an integral part of their moral and emotional growth. Likewise, they exist in all schools. The school is inserted in a space where the conflict manifests itself daily and assumes relevance, being the result of the multiple interpersonal relationships that occur in the school context. Thus, conflict is part of school life, which implies that teachers must have the skills to manage conflict constructively. Recognizing the diversity of school conflicts, this chapter aimed to present its causes, highlighting the main ones in the classroom, in the teacher-student relationship. It is important to conflict face and resolve it with skills to manage it properly and constructively, establishing cooperative relationships, and producing integrative solutions. Harmony and appreciation should coexist in a classroom environment and conflict should not interfere, negatively, in the teaching and learning process. This bibliography review underscore the need for during the teachers’ initial training the conflict management skills development.",book:{id:"7827",slug:"interpersonal-relationships",title:"Interpersonal Relationships",fullTitle:"Interpersonal Relationships"},signatures:"Sabina Valente, Abílio Afonso Lourenço and Zsolt Németh",authors:[{id:"324514",title:"Ph.D.",name:"Sabina",middleName:"N.",surname:"Valente",slug:"sabina-valente",fullName:"Sabina Valente"},{id:"326375",title:"Prof.",name:"Abílio Afonso",middleName:"Afonso",surname:"Lourenço",slug:"abilio-afonso-lourenco",fullName:"Abílio Afonso Lourenço"},{id:"329177",title:"Dr.",name:"Zsolt",middleName:null,surname:"Németh",slug:"zsolt-nemeth",fullName:"Zsolt Németh"}]},{id:"55323",doi:"10.5772/intechopen.68873",title:"Positive Psychology: The Use of the Framework of Achievement Bests to Facilitate Personal Flourishing",slug:"positive-psychology-the-use-of-the-framework-of-achievement-bests-to-facilitate-personal-flourishing",totalDownloads:1737,totalCrossrefCites:3,totalDimensionsCites:9,abstract:"The Framework of Achievement Bests, which was recently published in Educational Psychology Review, makes a theoretical contribution to the study of positive psychology. The Framework of Achievement Bests provides an explanatory account of a person’s optimal best practice from his/her actual best. Another aspect emphasizes on the saliency of the psychological process of optimization, which is central to our understanding of person’s optimal functioning in a subject matter. Achieving an exceptional level of best practice (e.g. achieving excellent grades in mathematics) does not exist in isolation, but rather depends on the potent impact of optimization. This chapter, theoretical in nature, focuses on an in‐depth examination of the expansion of the Framework of Achievement Bests. Our discussion of the Framework of Achievement Bests, reflecting a methodical conceptualization, is benchmarked against another notable theory for understanding, namely: Martin Seligman’s PERMA theory. For example, for consideration, one aspect that we examine entails the extent to which the Framework of Achievement Bests could explain the optimization of each of the five components of PERMA (e.g. how does the Framework of Achievement Bests explain the optimization of engagement?).",book:{id:"5761",slug:"quality-of-life-and-quality-of-working-life",title:"Quality of Life and Quality of Working Life",fullTitle:"Quality of Life and Quality of Working Life"},signatures:"Huy P. Phan and Bing H. Ngu",authors:[{id:"196435",title:"Prof.",name:"Huy",middleName:"P",surname:"Phan",slug:"huy-phan",fullName:"Huy Phan"}]},{id:"55349",doi:"10.5772/intechopen.68596",title:"The Development of a Human Well-Being Index for the United States",slug:"the-development-of-a-human-well-being-index-for-the-united-states",totalDownloads:2041,totalCrossrefCites:3,totalDimensionsCites:9,abstract:"The US Environmental Protection Agency (EPA) has developed a human well-being index (HWBI) that assesses the over-all well-being of its population at the county level. The HWBI contains eight domains representing social, economic and environmental well-being. These domains include 25 indicators comprised of 80 metrics and 22 social, economic and environmental services. The application of the HWBI has been made for the nation as a whole at the county level and two alternative applications have been made to represent key populations within the overall US population—Native Americans and children. A number of advances have been made to estimate the values of metrics for counties where no data is available and one such estimator—MERLIN—is discussed. Finally, efforts to make the index into an interactive web site are described.",book:{id:"5761",slug:"quality-of-life-and-quality-of-working-life",title:"Quality of Life and Quality of Working Life",fullTitle:"Quality of Life and Quality of Working Life"},signatures:"J. Kevin Summers, Lisa M. Smith, Linda C. Harwell and Kyle D. Buck",authors:[{id:"197485",title:"Dr.",name:"J. Kevin",middleName:null,surname:"Summers",slug:"j.-kevin-summers",fullName:"J. Kevin Summers"},{id:"197486",title:"Ms.",name:"Lisa",middleName:null,surname:"Smith",slug:"lisa-smith",fullName:"Lisa Smith"},{id:"197487",title:"Ms.",name:"Linda",middleName:null,surname:"Harwell",slug:"linda-harwell",fullName:"Linda Harwell"},{id:"197488",title:"Dr.",name:"Kyle",middleName:null,surname:"Buck",slug:"kyle-buck",fullName:"Kyle Buck"}]},{id:"56529",doi:"10.5772/intechopen.70237",title:"Well-being and Quality of Working Life of University Professors in Brazil",slug:"well-being-and-quality-of-working-life-of-university-professors-in-brazil",totalDownloads:1676,totalCrossrefCites:2,totalDimensionsCites:6,abstract:"This chapter presents a study about the perceptions on quality of working life (QWL) regarding factors and indicator in two public universities in Brazil. It aimed also to analyze their perceptions about university working conditions. This exploratory study is based on quantitative and qualitative analyses. A sample of 715 university professors participated on the research. Data collection was carried out in two steps: online survey and focus groups. There is a moderate negative correlation between psychological well-being and work-related stress. Emotional charge also presents a moderate positive correlation with work-related stress, as well as physical charge and psychological distress. Work-life balance is negatively correlated with physical charge, emotional charge, work-related stress, psychological distress, and burnout. We observed also that 43.6% of the professors reported high levels of work-related stress in their everyday work. The precariousness of university teaching is associated with three main elements, which we defined as the tripod of the precarization of university teaching work. It consists of academic productivism, excess of administrative work and bureaucratic activities, and inadequate working conditions. The operating dynamics of this tripod effect professors’ well-being, their QWL, and even the quality of the work they develop in public universities.",book:{id:"5761",slug:"quality-of-life-and-quality-of-working-life",title:"Quality of Life and Quality of Working Life",fullTitle:"Quality of Life and Quality of Working Life"},signatures:"Alessandro Vinicius de Paula and Ana Alice Vilas Boas",authors:[{id:"175373",title:"Dr.",name:"Ana Alice",middleName:null,surname:"Vilas Boas",slug:"ana-alice-vilas-boas",fullName:"Ana Alice Vilas Boas"},{id:"196534",title:"Dr.",name:"Alessandro Vinicius",middleName:null,surname:"De Paula",slug:"alessandro-vinicius-de-paula",fullName:"Alessandro Vinicius De Paula"}]}],mostDownloadedChaptersLast30Days:[{id:"74550",title:"School Conflicts: Causes and Management Strategies in Classroom Relationships",slug:"school-conflicts-causes-and-management-strategies-in-classroom-relationships",totalDownloads:2328,totalCrossrefCites:1,totalDimensionsCites:10,abstract:"Conflicts cannot cease to exist, as they are intrinsic to human beings, forming an integral part of their moral and emotional growth. Likewise, they exist in all schools. The school is inserted in a space where the conflict manifests itself daily and assumes relevance, being the result of the multiple interpersonal relationships that occur in the school context. Thus, conflict is part of school life, which implies that teachers must have the skills to manage conflict constructively. Recognizing the diversity of school conflicts, this chapter aimed to present its causes, highlighting the main ones in the classroom, in the teacher-student relationship. It is important to conflict face and resolve it with skills to manage it properly and constructively, establishing cooperative relationships, and producing integrative solutions. Harmony and appreciation should coexist in a classroom environment and conflict should not interfere, negatively, in the teaching and learning process. This bibliography review underscore the need for during the teachers’ initial training the conflict management skills development.",book:{id:"7827",slug:"interpersonal-relationships",title:"Interpersonal Relationships",fullTitle:"Interpersonal Relationships"},signatures:"Sabina Valente, Abílio Afonso Lourenço and Zsolt Németh",authors:[{id:"324514",title:"Ph.D.",name:"Sabina",middleName:"N.",surname:"Valente",slug:"sabina-valente",fullName:"Sabina Valente"},{id:"326375",title:"Prof.",name:"Abílio Afonso",middleName:"Afonso",surname:"Lourenço",slug:"abilio-afonso-lourenco",fullName:"Abílio Afonso Lourenço"},{id:"329177",title:"Dr.",name:"Zsolt",middleName:null,surname:"Németh",slug:"zsolt-nemeth",fullName:"Zsolt Németh"}]},{id:"76968",title:"In the Darkness of This Time: Wittgenstein and Freud on Uncertainty",slug:"in-the-darkness-of-this-time-wittgenstein-and-freud-on-uncertainty",totalDownloads:461,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Both Wittgenstein and Freud experienced the crisis of humanism resulting from the first and second world wars. Although they were both considered to be influential figures, they hardly investigated the ways in which people could cope with the consequences of these crises. However, Wittgenstein and Freud did suggest ways of understanding uncertainties caused by real life events, as well as by the nature of human thought processes. This article will explore the therapeutic ways of dealing with uncertainties common to both thinkers and the different concepts facilitating their methodologies. The central contention of this article is that both Wittgenstein and Freud developed a complex methodology, acknowledging the constant and unexpected changes humans have deal with, whilst also offering the possibility of defining “hinge propositions” and “language-games” which can stabilize our consciousness.",book:{id:"10814",slug:"anxiety-uncertainty-and-resilience-during-the-pandemic-period-anthropological-and-psychological-perspectives",title:"Anxiety, Uncertainty, and Resilience During the Pandemic Period",fullTitle:"Anxiety, Uncertainty, and Resilience During the Pandemic Period - Anthropological and Psychological Perspectives"},signatures:"Dorit Lemberger",authors:[{id:"325725",title:"Dr.",name:"Dorit",middleName:null,surname:"Lemberger",slug:"dorit-lemberger",fullName:"Dorit Lemberger"}]},{id:"76565",title:"Introductory Chapter: The Transition from Distress to Acceptance of Human Frailty - Anthropology and Psychology of the Pandemic Era",slug:"introductory-chapter-the-transition-from-distress-to-acceptance-of-human-frailty-anthropology-and-ps",totalDownloads:393,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"10814",slug:"anxiety-uncertainty-and-resilience-during-the-pandemic-period-anthropological-and-psychological-perspectives",title:"Anxiety, Uncertainty, and Resilience During the Pandemic Period",fullTitle:"Anxiety, Uncertainty, and Resilience During the Pandemic Period - Anthropological and Psychological Perspectives"},signatures:"Fabio Gabrielli and Floriana Irtelli",authors:[{id:"174641",title:"Dr.",name:"Floriana",middleName:null,surname:"Irtelli",slug:"floriana-irtelli",fullName:"Floriana Irtelli"},{id:"259407",title:"Prof.",name:"Fabio",middleName:null,surname:"Gabrielli",slug:"fabio-gabrielli",fullName:"Fabio Gabrielli"}]},{id:"77214",title:"The Impact of the COVID-19 Pandemic on the Mental Health of Dentists",slug:"the-impact-of-the-covid-19-pandemic-on-the-mental-health-of-dentists",totalDownloads:390,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Since March 2020, the COVID-19 disease has declared a pandemic producing a worldwide containment. For months, many people were subjected to strict social isolation away from family and loved ones to prevent disease transmission, leading to anxiety, fear, and depression. On the other hand, many had to close down their businesses and stop working, resulting in financial issues. Previous studies have reported that pandemics, epidemics, and some diseases can lead to mental disorders such as fear, anxiety, stress, and depression. Among those most affected, healthcare workers (HCWs), especially those on the front line, often develop mental health problems. Although there is data available on the management and care of HCWs, little attention has been paid to the mental health and well-being of dentists during the COVID-19 pandemic. Therefore, this chapter aims to review the impact of the COVID-19 pandemic on dentists’ mental health and mental health-related symptoms. Finally, to recommend specific measures to avoid consequent potential implications for dentists, dental students, and dental patients.",book:{id:"10814",slug:"anxiety-uncertainty-and-resilience-during-the-pandemic-period-anthropological-and-psychological-perspectives",title:"Anxiety, Uncertainty, and Resilience During the Pandemic Period",fullTitle:"Anxiety, Uncertainty, and Resilience During the Pandemic Period - Anthropological and Psychological Perspectives"},signatures:"Andrea Vergara-Buenaventura and Carmen Castro-Ruiz",authors:[{id:"346660",title:"M.Sc.",name:"Andrea",middleName:null,surname:"Vergara-Buenaventura",slug:"andrea-vergara-buenaventura",fullName:"Andrea Vergara-Buenaventura"},{id:"419814",title:"MSc.",name:"Carmen",middleName:null,surname:"Castro-Ruiz",slug:"carmen-castro-ruiz",fullName:"Carmen Castro-Ruiz"}]},{id:"55323",title:"Positive Psychology: The Use of the Framework of Achievement Bests to Facilitate Personal Flourishing",slug:"positive-psychology-the-use-of-the-framework-of-achievement-bests-to-facilitate-personal-flourishing",totalDownloads:1748,totalCrossrefCites:3,totalDimensionsCites:9,abstract:"The Framework of Achievement Bests, which was recently published in Educational Psychology Review, makes a theoretical contribution to the study of positive psychology. The Framework of Achievement Bests provides an explanatory account of a person’s optimal best practice from his/her actual best. Another aspect emphasizes on the saliency of the psychological process of optimization, which is central to our understanding of person’s optimal functioning in a subject matter. Achieving an exceptional level of best practice (e.g. achieving excellent grades in mathematics) does not exist in isolation, but rather depends on the potent impact of optimization. This chapter, theoretical in nature, focuses on an in‐depth examination of the expansion of the Framework of Achievement Bests. Our discussion of the Framework of Achievement Bests, reflecting a methodical conceptualization, is benchmarked against another notable theory for understanding, namely: Martin Seligman’s PERMA theory. For example, for consideration, one aspect that we examine entails the extent to which the Framework of Achievement Bests could explain the optimization of each of the five components of PERMA (e.g. how does the Framework of Achievement Bests explain the optimization of engagement?).",book:{id:"5761",slug:"quality-of-life-and-quality-of-working-life",title:"Quality of Life and Quality of Working Life",fullTitle:"Quality of Life and Quality of Working Life"},signatures:"Huy P. Phan and Bing H. Ngu",authors:[{id:"196435",title:"Prof.",name:"Huy",middleName:"P",surname:"Phan",slug:"huy-phan",fullName:"Huy Phan"}]}],onlineFirstChaptersFilter:{topicId:"278",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:139,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:122,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:21,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"August 2nd, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:33,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"3",title:"Bacterial Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/3.jpg",isOpenForSubmission:!0,editor:{id:"205604",title:"Dr.",name:"Tomas",middleName:null,surname:"Jarzembowski",slug:"tomas-jarzembowski",fullName:"Tomas Jarzembowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKriQAG/Profile_Picture_2022-06-16T11:01:31.jpg",biography:"Tomasz Jarzembowski was born in 1968 in Gdansk, Poland. He obtained his Ph.D. degree in 2000 from the Medical University of Gdańsk (UG). After specialization in clinical microbiology in 2003, he started studying biofilm formation and antibiotic resistance at the single-cell level. In 2015, he obtained his D.Sc. degree. His later study in cooperation with experts in nephrology and immunology resulted in the designation of the new diagnostic method of UTI, patented in 2017. He is currently working at the Department of Microbiology, Medical University of Gdańsk (GUMed), Poland. Since many years, he is a member of steering committee of Gdańsk branch of Polish Society of Microbiologists, a member of ESCMID. He is also a reviewer and a member of editorial boards of a number of international journals.",institutionString:"Medical University of Gdańsk, Poland",institution:null},editorTwo:{id:"484980",title:"Dr.",name:"Katarzyna",middleName:null,surname:"Garbacz",slug:"katarzyna-garbacz",fullName:"Katarzyna Garbacz",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003St8TAQAZ/Profile_Picture_2022-07-07T09:45:16.jpg",biography:"Katarzyna Maria Garbacz, MD, is an Associate Professor at the Medical University of Gdańsk, Poland and she is head of the Department of Oral Microbiology of the Medical University of Gdańsk. She has published more than 50 scientific publications in peer-reviewed journals. She has been a project leader funded by the National Science Centre of Poland. Prof. Garbacz is a microbiologist working on applied and fundamental questions in microbial epidemiology and pathogenesis. Her research interest is in antibiotic resistance, host-pathogen interaction, and therapeutics development for staphylococcal pathogens, mainly Staphylococcus aureus, which causes hospital-acquired infections. Currently, her research is mostly focused on the study of oral pathogens, particularly Staphylococcus spp.",institutionString:"Medical University of Gdańsk, Poland",institution:null},editorThree:null},{id:"4",title:"Fungal Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",isOpenForSubmission:!0,editor:{id:"174134",title:"Dr.",name:"Yuping",middleName:null,surname:"Ran",slug:"yuping-ran",fullName:"Yuping Ran",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9d6QAC/Profile_Picture_1630330675373",biography:"Dr. Yuping Ran, Professor, Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China. Completed the Course Medical Mycology, the Centraalbureau voor Schimmelcultures (CBS), Fungal Biodiversity Centre, Netherlands (2006). International Union of Microbiological Societies (IUMS) Fellow, and International Emerging Infectious Diseases (IEID) Fellow, Centers for Diseases Control and Prevention (CDC), Atlanta, USA. Diploma of Dermatological Scientist, Japanese Society for Investigative Dermatology. Ph.D. of Juntendo University, Japan. Bachelor’s and Master’s degree, Medicine, West China University of Medical Sciences. Chair of Sichuan Medical Association Dermatology Committee. General Secretary of The 19th Annual Meeting of Chinese Society of Dermatology and the Asia Pacific Society for Medical Mycology (2013). In charge of the Annual Medical Mycology Course over 20-years authorized by National Continue Medical Education Committee of China. Member of the board of directors of the Asia-Pacific Society for Medical Mycology (APSMM). Associate editor of Mycopathologia. Vice-chief of the editorial board of Chinses Journal of Mycology, China. Board Member and Chair of Mycology Group of Chinese Society of Dermatology.",institutionString:null,institution:{name:"Sichuan University",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null},{id:"5",title:"Parasitic Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",isOpenForSubmission:!0,editor:{id:"67907",title:"Dr.",name:"Amidou",middleName:null,surname:"Samie",slug:"amidou-samie",fullName:"Amidou Samie",profilePictureURL:"https://mts.intechopen.com/storage/users/67907/images/system/67907.jpg",biography:"Dr. Amidou Samie is an Associate Professor of Microbiology at the University of Venda, in South Africa, where he graduated for his PhD in May 2008. He joined the Department of Microbiology the same year and has been giving lectures on topics covering parasitology, immunology, molecular biology and industrial microbiology. He is currently a rated researcher by the National Research Foundation of South Africa at category C2. He has published widely in the field of infectious diseases and has overseen several MSc’s and PhDs. His research activities mostly cover topics on infectious diseases from epidemiology to control. His particular interest lies in the study of intestinal protozoan parasites and opportunistic infections among HIV patients as well as the potential impact of childhood diarrhoea on growth and child development. He also conducts research on water-borne diseases and water quality and is involved in the evaluation of point-of-use water treatment technologies using silver and copper nanoparticles in collaboration with the University of Virginia, USA. He also studies the use of medicinal plants for the control of infectious diseases as well as antimicrobial drug resistance.",institutionString:null,institution:{name:"University of Venda",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},{id:"6",title:"Viral Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",isOpenForSubmission:!0,editor:{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:19,paginationItems:[{id:"82804",title:"Psychiatric Problems in HIV Care",doi:"10.5772/intechopen.106077",signatures:"Seggane Musisi and Noeline Nakasujja",slug:"psychiatric-problems-in-hiv-care",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82827",title:"Epidemiology and Control of Schistosomiasis",doi:"10.5772/intechopen.105170",signatures:"Célestin Kyambikwa Bisangamo",slug:"epidemiology-and-control-of-schistosomiasis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"82817",title:"Perspective Chapter: Microfluidic Technologies for On-Site Detection and Quantification of Infectious Diseases - The Experience with SARS-CoV-2/COVID-19",doi:"10.5772/intechopen.105950",signatures:"Andres Escobar and Chang-qing Xu",slug:"perspective-chapter-microfluidic-technologies-for-on-site-detection-and-quantification-of-infectious",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82667",title:"Perspective Chapter: Analysis of SARS-CoV-2 Indirect Spreading Routes and Possible Countermeasures",doi:"10.5772/intechopen.105914",signatures:"Cesare Saccani, Marco Pellegrini and Alessandro Guzzini",slug:"perspective-chapter-analysis-of-sars-cov-2-indirect-spreading-routes-and-possible-countermeasures",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}}]},overviewPagePublishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",slug:"influenza-therapeutics-and-challenges",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"105e347b2d5dbbe6b593aceffa051efa",volumeInSeries:1,fullTitle:"Influenza - Therapeutics and Challenges",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}]},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",biography:"Dr. Kasenga is a graduate of Tumaini University, Kilimanjaro Christian Medical College, Moshi, Tanzania and Umeå University, Sweden. He obtained a Master’s degree in Public Health and PhD in Public Health and Epidemiology. He has a background in Clinical Medicine and has taken courses at higher diploma levels in public health from University of Transkei, Republic of South Africa, and African Medical and Research Foundation (AMREF) in Nairobi, Kenya. Dr. Kasenga worked in different places in and outside Malawi, and has held various positions, such as Licensed Medical Officer, HIV/AIDS Programme Officer, HIV/AIDS resource person in the International Department of Diakonhjemet College, Oslo, Norway. He also managed an Integrated HIV/AIDS Prevention programme for over 5 years. He is currently working as a Director for the Health Ministries Department of Malawi Union of the Seventh Day Adventist Church. Dr. Kasenga has published over 5 articles on HIV/AIDS issues focusing on Prevention of Mother to Child Transmission of HIV (PMTCT), including a book chapter on HIV testing counseling (currently in press). Dr. Kasenga is married to Grace and blessed with three children, a son and two daughters: Happy, Lettice and Sungani.",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}]}]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"12086",title:"Cattle Diseases - Molecular and Biochemical Approach",coverURL:"https://cdn.intechopen.com/books/images_new/12086.jpg",hash:"afdbf57e32d996556a94528c06623cf3",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 5th 2022",isOpenForSubmission:!0,editors:[{id:"219081",title:"Dr.",name:"Abdulsamed",surname:"Kükürt",slug:"abdulsamed-kukurt",fullName:"Abdulsamed Kükürt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11579",title:"Animal Welfare - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11579.jpg",hash:"12e4f41264cbe99028655e5463fa941a",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 8th 2022",isOpenForSubmission:!0,editors:[{id:"51520",title:"Dr.",name:"Shao-Wen",surname:"Hung",slug:"shao-wen-hung",fullName:"Shao-Wen Hung"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:47,paginationItems:[{id:"82938",title:"Trauma from Occlusion: Practical Management Guidelines",doi:"10.5772/intechopen.105960",signatures:"Prashanth Shetty, Shweta Hegde, Shubham Chelkar, Rahul Chaturvedi, Shruti Pochhi, Aakanksha Shrivastava, Dudala Lakshmi, Shreya Mukherjee, Pankaj Bajaj and Shahzada Asif Raza",slug:"trauma-from-occlusion-practical-management-guidelines",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82654",title:"Atraumatic Restorative Treatment: More than a Minimally Invasive Approach?",doi:"10.5772/intechopen.105623",signatures:"Manal A. Ablal",slug:"atraumatic-restorative-treatment-more-than-a-minimally-invasive-approach",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82608",title:"Early Management of Dental Trauma in the Era of COVID-19",doi:"10.5772/intechopen.105992",signatures:"Khairul Bariah Chi Adam, Haszelini Hassan, Pram Kumar Subramaniam, Izzati Nabilah Ismail, Nor Adilah Harun and Naziyah Shaban Mustafa",slug:"early-management-of-dental-trauma-in-the-era-of-covid-19",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82767",title:"Teeth Avulsion",doi:"10.5772/intechopen.105846",signatures:"Manal Abdalla Eltahir, Randa Fath Elrahman Ibrahim and Hanan Alharbi",slug:"teeth-avulsion",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82735",title:"The Influence of Salivary pH on the Prevalence of Dental Caries",doi:"10.5772/intechopen.106154",signatures:"Laura-Cristina Rusu, Alexandra Roi, Ciprian-Ioan Roi, Codruta Victoria Tigmeanu and Lavinia Cosmina Ardelean",slug:"the-influence-of-salivary-ph-on-the-prevalence-of-dental-caries",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82288",title:"Dental Emergency and Conditions",doi:"10.5772/intechopen.105495",signatures:"Navneet Kaur",slug:"dental-emergency-and-conditions",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"81961",title:"Antioxidants as an Adjuncts to Periodontal Therapy",doi:"10.5772/intechopen.105016",signatures:"Sura Dakhil Jassim and Ali Abbas Abdulkareem",slug:"antioxidants-as-an-adjuncts-to-periodontal-therapy",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82357",title:"Caries Management Aided by Fluorescence-Based Devices",doi:"10.5772/intechopen.105567",signatures:"Atena Galuscan, Daniela Jumanca and Aurora Doris Fratila",slug:"caries-management-aided-by-fluorescence-based-devices",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"81894",title:"Diet and Nutrition and Their Relationship with Early Childhood Dental Caries",doi:"10.5772/intechopen.105123",signatures:"Luanna Gonçalves Ferreira, Giuliana de Campos Chaves Lamarque and Francisco Wanderley Garcia Paula-Silva",slug:"diet-and-nutrition-and-their-relationship-with-early-childhood-dental-caries",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80963",title:"Pain Perception in Patients Treated with Ligating/Self-Ligating Brackets versus Patients Treated with Aligners",doi:"10.5772/intechopen.102796",signatures:"Farid Bourzgui, Rania Fastani, Salwa Khairat, Samir Diouny, Mohamed El Had, Zineb Serhier and Mohamed Bennani Othmani",slug:"pain-perception-in-patients-treated-with-ligating-self-ligating-brackets-versus-patients-treated-wit",totalDownloads:32,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}}]},subseriesFiltersForOFChapters:[{caption:"Prosthodontics and Implant Dentistry",value:2,count:22,group:"subseries"},{caption:"Oral Health",value:1,count:25,group:"subseries"}],publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10843",title:"Persistent Organic Pollutants (POPs)",subtitle:"Monitoring, Impact and Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10843.jpg",slug:"persistent-organic-pollutants-pops-monitoring-impact-and-treatment",publishedDate:"April 13th 2022",editedByType:"Edited by",bookSignature:"Mohamed Nageeb Rashed",hash:"f5b1589f0a990b6114fef2dadc735dd9",volumeInSeries:1,fullTitle:"Persistent Organic Pollutants (POPs) - Monitoring, Impact and Treatment",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Pollution",value:38,count:1}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1}],authors:{paginationCount:754,paginationItems:[{id:"310674",title:"Dr.",name:"Pravin",middleName:null,surname:"Kendrekar",slug:"pravin-kendrekar",fullName:"Pravin Kendrekar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/310674/images/system/310674.jpg",biography:"Dr. Pravin Kendrekar, MSc, MBA, Ph.D., is currently a visiting scientist at the Lipid Nanostructure Laboratory, University of Central Lancashire, England. He previously worked as a post-doctoral fellow at the Ben-Gurion University of Negev, Israel; University of the Free State, South Africa; and Central University of Technology Bloemfontein, South Africa. He obtained his Ph.D. in Organic Chemistry from Nagaoka University of Technology, Japan. He has published more than seventy-four journal articles and attended several national and international conferences as speaker and chair. Dr. Kendrekar has received many international awards. He has several funded projects, namely, anti-malaria drug development, MRSA, and SARS-CoV-2 activity of curcumin and its formulations. He has filed four patents in collaboration with the University of Central Lancashire and Mayo Clinic Infectious Diseases. His present research includes organic synthesis, drug discovery and development, biochemistry, nanoscience, and nanotechnology.",institutionString:"Visiting Scientist at Lipid Nanostructures Laboratory, Centre for Smart Materials, School of Natural Sciences, University of Central Lancashire",institution:null},{id:"428125",title:"Dr.",name:"Vinayak",middleName:null,surname:"Adimule",slug:"vinayak-adimule",fullName:"Vinayak Adimule",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/428125/images/system/428125.jpg",biography:"Dr. Vinayak Adimule, MSc, Ph.D., is a professor and dean of R&D, Angadi Institute of Technology and Management, India. He has 15 years of research experience as a senior research scientist and associate research scientist in R&D organizations. He has published more than fifty research articles as well as several book chapters. He has two Indian patents and two international patents to his credit. Dr. Adimule has attended, chaired, and presented papers at national and international conferences. He is a guest editor for Topics in Catalysis and other journals. He is also an editorial board member, life member, and associate member for many international societies and research institutions. His research interests include nanoelectronics, material chemistry, artificial intelligence, sensors and actuators, bio-nanomaterials, and medicinal chemistry.",institutionString:"Angadi Institute of Technology and Management",institution:null},{id:"284317",title:"Prof.",name:"Kantharaju",middleName:null,surname:"Kamanna",slug:"kantharaju-kamanna",fullName:"Kantharaju Kamanna",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/284317/images/21050_n.jpg",biography:"Prof. K. Kantharaju has received Bachelor of science (PCM), master of science (Organic Chemistry) and Doctor of Philosophy in Chemistry from Bangalore University. He worked as a Executive Research & Development @ Cadila Pharmaceuticals Ltd, Ahmedabad. He received DBT-postdoc fellow @ Molecular Biophysics Unit, Indian Institute of Science, Bangalore under the supervision of Prof. P. Balaram, later he moved to NIH-postdoc researcher at Drexel University College of Medicine, Philadelphia, USA, after his return from postdoc joined NITK-Surthakal as a Adhoc faculty at department of chemistry. Since from August 2013 working as a Associate Professor, and in 2016 promoted to Profeesor in the School of Basic Sciences: Department of Chemistry and having 20 years of teaching and research experiences.",institutionString:null,institution:{name:"Rani Channamma University, Belagavi",country:{name:"India"}}},{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",biography:"Prof. Dr. Yusuf Tutar conducts his research at the Hamidiye Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Division of Biochemistry, University of Health Sciences, Turkey. He is also a faculty member in the Molecular Oncology Program. He obtained his MSc and Ph.D. at Oregon State University and Texas Tech University, respectively. He pursued his postdoctoral studies at Rutgers University Medical School and the National Institutes of Health (NIH/NIDDK), USA. His research focuses on biochemistry, biophysics, genetics, molecular biology, and molecular medicine with specialization in the fields of drug design, protein structure-function, protein folding, prions, microRNA, pseudogenes, molecular cancer, epigenetics, metabolites, proteomics, genomics, protein expression, and characterization by spectroscopic and calorimetric methods.",institutionString:"University of Health Sciences",institution:null},{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",biography:"Hiroyuki Kagechika received his bachelor’s degree and Ph.D. in Pharmaceutical Sciences from the University of Tokyo, Japan, where he served as an associate professor until 2004. He is currently a professor at the Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU). From 2010 to 2012, he was the dean of the Graduate School of Biomedical Science. Since 2012, he has served as the vice dean of the Graduate School of Medical and Dental Sciences. He has been the director of the IBB since 2020. Dr. Kagechika’s major research interests are the medicinal chemistry of retinoids, vitamins D/K, and nuclear receptors. He has developed various compounds including a drug for acute promyelocytic leukemia.",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",country:{name:"Japan"}}},{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",biography:"Martins Emeje obtained a BPharm with distinction from Ahmadu Bello University, Nigeria, and an MPharm and Ph.D. from the University of Nigeria (UNN), where he received the best Ph.D. award and was enlisted as UNN’s “Face of Research.” He established the first nanomedicine center in Nigeria and was the pioneer head of the intellectual property and technology transfer as well as the technology innovation and support center. Prof. Emeje’s several international fellowships include the prestigious Raman fellowship. He has published more than 150 articles and patents. He is also the head of R&D at NIPRD and holds a visiting professor position at Nnamdi Azikiwe University, Nigeria. He has a postgraduate certificate in Project Management from Walden University, Minnesota, as well as a professional teaching certificate and a World Bank certification in Public Procurement. Prof. Emeje was a national chairman of academic pharmacists in Nigeria and the 2021 winner of the May & Baker Nigeria Plc–sponsored prize for professional service in research and innovation.",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",country:{name:"Nigeria"}}},{id:"436430",title:"Associate Prof.",name:"Mesut",middleName:null,surname:"Işık",slug:"mesut-isik",fullName:"Mesut Işık",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/436430/images/19686_n.jpg",biography:null,institutionString:null,institution:{name:"Bilecik University",country:{name:"Turkey"}}},{id:"268659",title:"Ms.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/268659/images/8143_n.jpg",biography:"Dr. Zhan received his undergraduate and graduate training in the fields of preventive medicine and epidemiology and statistics at the West China University of Medical Sciences in China during 1989 to 1999. He received his post-doctoral training in oncology and cancer proteomics for two years at the Cancer Research Institute of Human Medical University in China. In 2001, he went to the University of Tennessee Health Science Center (UTHSC) in USA, where he was a post-doctoral researcher and focused on mass spectrometry and cancer proteomics. Then, he was appointed as an Assistant Professor of Neurology, UTHSC in 2005. He moved to the Cleveland Clinic in USA as a Project Scientist/Staff in 2006 where he focused on the studies of eye disease proteomics and biomarkers. He returned to UTHSC as an Assistant Professor of Neurology in the end of 2007, engaging in proteomics and biomarker studies of lung diseases and brain tumors, and initiating the studies of predictive, preventive, and personalized medicine (PPPM) in cancer. In 2010, he was promoted to Associate Professor of Neurology, UTHSC. Currently, he is a Professor at Xiangya Hospital of Central South University in China, Fellow of Royal Society of Medicine (FRSM), the European EPMA National Representative in China, Regular Member of American Association for the Advancement of Science (AAAS), European Cooperation of Science and Technology (e-COST) grant evaluator, Associate Editors of BMC Genomics, BMC Medical Genomics, EPMA Journal, and Frontiers in Endocrinology, Executive Editor-in-Chief of Med One. He has\npublished 116 peer-reviewed research articles, 16 book chapters, 2 books, and 2 US patents. His current main research interest focuses on the studies of cancer proteomics and biomarkers, and the use of modern omics techniques and systems biology for PPPM in cancer, and on the development and use of 2DE-LC/MS for the large-scale study of human proteoforms.",institutionString:null,institution:{name:"Xiangya Hospital Central South University",country:{name:"China"}}},{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",biography:"Dr. Rizwan Ahmad is a University Professor and Coordinator, Quality and Development, College of Medicine, Imam Abdulrahman bin Faisal University, Saudi Arabia. Previously, he was Associate Professor of Human Function, Oman Medical College, Oman, and SBS University, Dehradun. Dr. Ahmad completed his education at Aligarh Muslim University, Aligarh. He has published several articles in peer-reviewed journals, chapters, and edited books. His area of specialization is free radical biochemistry and autoimmune diseases.",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",country:{name:"Saudi Arabia"}}},{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",biography:"Farid A. Badria, Ph.D., is the recipient of several awards, including The World Academy of Sciences (TWAS) Prize for Public Understanding of Science; the World Intellectual Property Organization (WIPO) Gold Medal for best invention; Outstanding Arab Scholar, Kuwait; and the Khwarizmi International Award, Iran. He has 250 publications, 12 books, 20 patents, and several marketed pharmaceutical products to his credit. He continues to lead research projects on developing new therapies for liver, skin disorders, and cancer. Dr. Badria was listed among the world’s top 2% of scientists in medicinal and biomolecular chemistry in 2019 and 2020. He is a member of the Arab Development Fund, Kuwait; International Cell Research Organization–United Nations Educational, Scientific and Cultural Organization (ICRO–UNESCO), Chile; and UNESCO Biotechnology France",institutionString:"Mansoura University",institution:{name:"Mansoura University",country:{name:"Egypt"}}},{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",biography:"Dr. Singh received a BPharm (2003) and MPharm (2005) from Panjab University, Chandigarh, India, and a Ph.D. (2013) from Punjab Technical University (PTU), Jalandhar, India. He has more than sixteen years of teaching experience and has supervised numerous postgraduate and Ph.D. students. He has to his credit more than seventy papers in SCI- and SCOPUS-indexed journals, fifty-five conference proceedings, four books, six Best Paper Awards, and five projects from different government agencies. He is currently an editorial board member of eight international journals and a reviewer for more than fifty scientific journals. He received Top Reviewer and Excellent Peer Reviewer Awards from Publons in 2016 and 2017, respectively. He is also on the panel of The International Reviewer for reviewing research proposals for grants from the Royal Society. He also serves as a Publons Academy mentor and Bentham brand ambassador.",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",country:{name:"India"}}},{id:"142388",title:"Dr.",name:"Thiago",middleName:"Gomes",surname:"Gomes Heck",slug:"thiago-gomes-heck",fullName:"Thiago Gomes Heck",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/142388/images/7259_n.jpg",biography:null,institutionString:null,institution:{name:"Universidade Regional do Noroeste do Estado do Rio Grande do Sul",country:{name:"Brazil"}}},{id:"336273",title:"Assistant Prof.",name:"Janja",middleName:null,surname:"Zupan",slug:"janja-zupan",fullName:"Janja Zupan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/336273/images/14853_n.jpeg",biography:"Janja Zupan graduated in 2005 at the Department of Clinical Biochemistry (superviser prof. dr. Janja Marc) in the field of genetics of osteoporosis. Since November 2009 she is working as a Teaching Assistant at the Faculty of Pharmacy, Department of Clinical Biochemistry. In 2011 she completed part of her research and PhD work at Institute of Genetics and Molecular Medicine, University of Edinburgh. She finished her PhD entitled The influence of the proinflammatory cytokines on the RANK/RANKL/OPG in bone tissue of osteoporotic and osteoarthritic patients in 2012. From 2014-2016 she worked at the Institute of Biomedical Sciences, University of Aberdeen as a postdoctoral research fellow on UK Arthritis research project where she gained knowledge in mesenchymal stem cells and regenerative medicine. She returned back to University of Ljubljana, Faculty of Pharmacy in 2016. She is currently leading project entitled Mesenchymal stem cells-the keepers of tissue endogenous regenerative capacity facing up to aging of the musculoskeletal system funded by Slovenian Research Agency.",institutionString:null,institution:{name:"University of Ljubljana",country:{name:"Slovenia"}}},{id:"357453",title:"Dr.",name:"Radheshyam",middleName:null,surname:"Maurya",slug:"radheshyam-maurya",fullName:"Radheshyam Maurya",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/357453/images/16535_n.jpg",biography:null,institutionString:null,institution:{name:"University of Hyderabad",country:{name:"India"}}},{id:"418340",title:"Dr.",name:"Jyotirmoi",middleName:null,surname:"Aich",slug:"jyotirmoi-aich",fullName:"Jyotirmoi Aich",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038Ugi5QAC/Profile_Picture_2022-04-15T07:48:28.png",biography:"Biotechnologist with 15 years of research including 6 years of teaching experience. Demonstrated record of scientific achievements through consistent publication record (H index = 13, with 874 citations) in high impact journals such as Nature Communications, Oncotarget, Annals of Oncology, PNAS, and AJRCCM, etc. Strong research professional with a post-doctorate from ACTREC where I gained experimental oncology experience in clinical settings and a doctorate from IGIB where I gained expertise in asthma pathophysiology. A well-trained biotechnologist with diverse experience on the bench across different research themes ranging from asthma to cancer and other infectious diseases. An individual with a strong commitment and innovative mindset. Have the ability to work on diverse projects such as regenerative and molecular medicine with an overall mindset of improving healthcare.",institutionString:"DY Patil Deemed to Be University",institution:null},{id:"349288",title:"Prof.",name:"Soumya",middleName:null,surname:"Basu",slug:"soumya-basu",fullName:"Soumya Basu",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035QxIDQA0/Profile_Picture_2022-04-15T07:47:01.jpg",biography:"Soumya Basu, Ph.D., is currently working as an Associate Professor at Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India. With 16+ years of trans-disciplinary research experience in Drug Design, development, and pre-clinical validation; 20+ research article publications in journals of repute, 9+ years of teaching experience, trained with cross-disciplinary education, Dr. Basu is a life-long learner and always thrives for new challenges.\r\nHer research area is the design and synthesis of small molecule partial agonists of PPAR-γ in lung cancer. She is also using artificial intelligence and deep learning methods to understand the exosomal miRNA’s role in cancer metastasis. Dr. Basu is the recipient of many awards including the Early Career Research Award from the Department of Science and Technology, Govt. of India. She is a reviewer of many journals like Molecular Biology Reports, Frontiers in Oncology, RSC Advances, PLOS ONE, Journal of Biomolecular Structure & Dynamics, Journal of Molecular Graphics and Modelling, etc. She has edited and authored/co-authored 21 journal papers, 3 book chapters, and 15 abstracts. She is a Board of Studies member at her university. She is a life member of 'The Cytometry Society”-in India and 'All India Cell Biology Society”- in India.",institutionString:"Dr. D.Y. Patil Vidyapeeth, Pune",institution:{name:"Dr. D.Y. Patil Vidyapeeth, Pune",country:{name:"India"}}},{id:"354817",title:"Dr.",name:"Anubhab",middleName:null,surname:"Mukherjee",slug:"anubhab-mukherjee",fullName:"Anubhab Mukherjee",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0033Y0000365PbRQAU/ProfilePicture%202022-04-15%2005%3A11%3A18.480",biography:"A former member of Laboratory of Nanomedicine, Brigham and Women’s Hospital, Harvard University, Boston, USA, Dr. Anubhab Mukherjee is an ardent votary of science who strives to make an impact in the lives of those afflicted with cancer and other chronic/acute ailments. He completed his Ph.D. from CSIR-Indian Institute of Chemical Technology, Hyderabad, India, having been skilled with RNAi, liposomal drug delivery, preclinical cell and animal studies. He pursued post-doctoral research at College of Pharmacy, Health Science Center, Texas A & M University and was involved in another postdoctoral research at Department of Translational Neurosciences and Neurotherapeutics, John Wayne Cancer Institute, Santa Monica, California. In 2015, he worked in Harvard-MIT Health Sciences & Technology as a visiting scientist. He has substantial experience in nanotechnology-based formulation development and successfully served various Indian organizations to develop pharmaceuticals and nutraceutical products. He is an inventor in many US patents and an author in many peer-reviewed articles, book chapters and books published in various media of international repute. Dr. Mukherjee is currently serving as Principal Scientist, R&D at Esperer Onco Nutrition (EON) Pvt. Ltd. and heads the Hyderabad R&D center of the organization.",institutionString:"Esperer Onco Nutrition Pvt Ltd.",institution:null},{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/319365/images/system/319365.png",biography:"Manash K. Paul is a Principal Investigator and Scientist at the University of California Los Angeles. He has contributed significantly to the fields of stem cell biology, regenerative medicine, and lung cancer. His research focuses on various signaling processes involved in maintaining stem cell homeostasis during the injury-repair process, deciphering lung stem cell niche, pulmonary disease modeling, immuno-oncology, and drug discovery. He is currently investigating the role of extracellular vesicles in premalignant lung cell migration and detecting the metastatic phenotype of lung cancer via machine-learning-based analyses of exosomal signatures. Dr. Paul has published in more than fifty peer-reviewed international journals and is highly cited. He is the recipient of many awards, including the UCLA Vice Chancellor’s award, a senior member of the Institute of Electrical and Electronics Engineers (IEEE), and an editorial board member for several international journals.",institutionString:"University of California Los Angeles",institution:{name:"University of California Los Angeles",country:{name:"United States of America"}}},{id:"311457",title:"Dr.",name:"Júlia",middleName:null,surname:"Scherer Santos",slug:"julia-scherer-santos",fullName:"Júlia Scherer Santos",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/311457/images/system/311457.jpg",biography:"Dr. Júlia Scherer Santos works in the areas of cosmetology, nanotechnology, pharmaceutical technology, beauty, and aesthetics. Dr. Santos also has experience as a professor of graduate courses. Graduated in Pharmacy, specialization in Cosmetology and Cosmeceuticals applied to aesthetics, specialization in Aesthetic and Cosmetic Health, and a doctorate in Pharmaceutical Nanotechnology. Teaching experience in Pharmacy and Aesthetics and Cosmetics courses. She works mainly on the following subjects: nanotechnology, cosmetology, pharmaceutical technology, aesthetics.",institutionString:"Universidade Federal de Juiz de Fora",institution:{name:"Universidade Federal de Juiz de Fora",country:{name:"Brazil"}}},{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",slug:"abdulsamed-kukurt",fullName:"Abdulsamed Kükürt",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/219081/images/system/219081.png",biography:"Dr. Kükürt graduated from Uludağ University in Turkey. He started his academic career as a Research Assistant in the Department of Biochemistry at Kafkas University. In 2019, he completed his Ph.D. program in the Department of Biochemistry at the Institute of Health Sciences. He is currently working at the Department of Biochemistry, Kafkas University. He has 27 published research articles in academic journals, 11 book chapters, and 37 papers. He took part in 10 academic projects. He served as a reviewer for many articles. He still serves as a member of the review board in many academic journals. He is currently working on the protective activity of phenolic compounds in disorders associated with oxidative stress and inflammation.",institutionString:null,institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"178366",title:"Dr.",name:"Volkan",middleName:null,surname:"Gelen",slug:"volkan-gelen",fullName:"Volkan Gelen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178366/images/system/178366.jpg",biography:"Volkan Gelen is a Physiology specialist who received his veterinary degree from Kafkas University in 2011. Between 2011-2015, he worked as an assistant at Atatürk University, Faculty of Veterinary Medicine, Department of Physiology. In 2016, he joined Kafkas University, Faculty of Veterinary Medicine, Department of Physiology as an assistant professor. Dr. Gelen has been engaged in various academic activities at Kafkas University since 2016. There he completed 5 projects and has 3 ongoing projects. He has 60 articles published in scientific journals and 20 poster presentations in scientific congresses. His research interests include physiology, endocrine system, cancer, diabetes, cardiovascular system diseases, and isolated organ bath system studies.",institutionString:"Kafkas University",institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"418963",title:"Dr.",name:"Augustine Ododo",middleName:"Augustine",surname:"Osagie",slug:"augustine-ododo-osagie",fullName:"Augustine Ododo Osagie",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/418963/images/16900_n.jpg",biography:"Born into the family of Osagie, a prince of the Benin Kingdom. I am currently an academic in the Department of Medical Biochemistry, University of Benin. Part of the duties are to teach undergraduate students and conduct academic research.",institutionString:null,institution:{name:"University of Benin",country:{name:"Nigeria"}}},{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",biography:"Prof. Shagufta Perveen is a Distinguish Professor in the Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. Dr. Perveen has acted as the principal investigator of major research projects funded by the research unit of King Saud University. She has more than ninety original research papers in peer-reviewed journals of international repute to her credit. She is a fellow member of the Royal Society of Chemistry UK and the American Chemical Society of the United States.",institutionString:"King Saud University",institution:{name:"King Saud University",country:{name:"Saudi Arabia"}}},{id:"49848",title:"Dr.",name:"Wen-Long",middleName:null,surname:"Hu",slug:"wen-long-hu",fullName:"Wen-Long Hu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49848/images/system/49848.jpg",biography:"Wen-Long Hu is Chief of the Division of Acupuncture, Department of Chinese Medicine at Kaohsiung Chang Gung Memorial Hospital, as well as an adjunct associate professor at Fooyin University and Kaohsiung Medical University. Wen-Long is President of Taiwan Traditional Chinese Medicine Medical Association. He has 28 years of experience in clinical practice in laser acupuncture therapy and 34 years in acupuncture. He is an invited speaker for lectures and workshops in laser acupuncture at many symposiums held by medical associations. He owns the patent for herbal preparation and producing, and for the supercritical fluid-treated needle. Dr. Hu has published three books, 12 book chapters, and more than 30 papers in reputed journals, besides serving as an editorial board member of repute.",institutionString:"Kaohsiung Chang Gung Memorial Hospital",institution:{name:"Kaohsiung Chang Gung Memorial Hospital",country:{name:"Taiwan"}}},{id:"298472",title:"Prof.",name:"Andrey V.",middleName:null,surname:"Grechko",slug:"andrey-v.-grechko",fullName:"Andrey V. Grechko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/298472/images/system/298472.png",biography:"Andrey Vyacheslavovich Grechko, Ph.D., Professor, is a Corresponding Member of the Russian Academy of Sciences. He graduated from the Semashko Moscow Medical Institute (Semashko National Research Institute of Public Health) with a degree in Medicine (1998), the Clinical Department of Dermatovenerology (2000), and received a second higher education in Psychology (2009). Professor A.V. Grechko held the position of Сhief Physician of the Central Clinical Hospital in Moscow. He worked as a professor at the faculty and was engaged in scientific research at the Medical University. Starting in 2013, he has been the initiator of the creation of the Federal Scientific and Clinical Center for Intensive Care and Rehabilitology, Moscow, Russian Federation, where he also serves as Director since 2015. He has many years of experience in research and teaching in various fields of medicine, is an author/co-author of more than 200 scientific publications, 13 patents, 15 medical books/chapters, including Chapter in Book «Metabolomics», IntechOpen, 2020 «Metabolomic Discovery of Microbiota Dysfunction as the Cause of Pathology».",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",biography:'Natalia Vladimirovna Beloborodova was educated at the Pirogov Russian National Research Medical University, with a degree in pediatrics in 1980, a Ph.D. in 1987, and a specialization in Clinical Microbiology from First Moscow State Medical University in 2004. She has been a Professor since 1996. Currently, she is the Head of the Laboratory of Metabolism, a division of the Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russian Federation. N.V. Beloborodova has many years of clinical experience in the field of intensive care and surgery. She studies infectious complications and sepsis. She initiated a series of interdisciplinary clinical and experimental studies based on the concept of integrating human metabolism and its microbiota. Her scientific achievements are widely known: she is the recipient of the Marie E. Coates Award \\"Best lecturer-scientist\\" Gustafsson Fund, Karolinska Institutes, Stockholm, Sweden, and the International Sepsis Forum Award, Pasteur Institute, Paris, France (2014), etc. Professor N.V. Beloborodova wrote 210 papers, five books, 10 chapters and has edited four books.',institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"354260",title:"Ph.D.",name:"Tércio Elyan",middleName:"Azevedo",surname:"Azevedo Martins",slug:"tercio-elyan-azevedo-martins",fullName:"Tércio Elyan Azevedo Martins",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/354260/images/16241_n.jpg",biography:"Graduated in Pharmacy from the Federal University of Ceará with the modality in Industrial Pharmacy, Specialist in Production and Control of Medicines from the University of São Paulo (USP), Master in Pharmaceuticals and Medicines from the University of São Paulo (USP) and Doctor of Science in the program of Pharmaceuticals and Medicines by the University of São Paulo. Professor at Universidade Paulista (UNIP) in the areas of chemistry, cosmetology and trichology. Assistant Coordinator of the Higher Course in Aesthetic and Cosmetic Technology at Universidade Paulista Campus Chácara Santo Antônio. Experience in the Pharmacy area, with emphasis on Pharmacotechnics, Pharmaceutical Technology, Research and Development of Cosmetics, acting mainly on topics such as cosmetology, antioxidant activity, aesthetics, photoprotection, cyclodextrin and thermal analysis.",institutionString:null,institution:{name:"University of Sao Paulo",country:{name:"Brazil"}}},{id:"334285",title:"Ph.D. Student",name:"Sameer",middleName:"Kumar",surname:"Jagirdar",slug:"sameer-jagirdar",fullName:"Sameer Jagirdar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334285/images/14691_n.jpg",biography:"I\\'m a graduate student at the center for biosystems science and engineering at the Indian Institute of Science, Bangalore, India. I am interested in studying host-pathogen interactions at the biomaterial interface.",institutionString:null,institution:{name:"Indian Institute of Science Bangalore",country:{name:"India"}}},{id:"329248",title:"Dr.",name:"Md. Faheem",middleName:null,surname:"Haider",slug:"md.-faheem-haider",fullName:"Md. Faheem Haider",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329248/images/system/329248.jpg",biography:"Dr. Md. Faheem Haider completed his BPharm in 2012 at Integral University, Lucknow, India. In 2014, he completed his MPharm with specialization in Pharmaceutics at Babasaheb Bhimrao Ambedkar University, Lucknow, India. He received his Ph.D. degree from Jamia Hamdard University, New Delhi, India, in 2018. He was selected for the GPAT six times and his best All India Rank was 34. Currently, he is an assistant professor at Integral University. Previously he was an assistant professor at IIMT University, Meerut, India. He has experience teaching DPharm, Pharm.D, BPharm, and MPharm students. He has more than five publications in reputed journals to his credit. Dr. Faheem’s research area is the development and characterization of nanoformulation for the delivery of drugs to various organs.",institutionString:"Integral University",institution:{name:"Integral University",country:{name:"India"}}},{id:"329795",title:"Dr.",name:"Mohd Aftab",middleName:"Aftab",surname:"Siddiqui",slug:"mohd-aftab-siddiqui",fullName:"Mohd Aftab Siddiqui",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329795/images/system/329795.png",biography:"Dr. Mohd Aftab Siddiqui is an assistant professor in the Faculty of Pharmacy, Integral University, Lucknow, India, where he obtained a Ph.D. in Pharmacology in 2020. He also obtained a BPharm and MPharm from the same university in 2013 and 2015, respectively. His area of research is the pharmacological screening of herbal drugs/natural products in liver cancer and cardiac diseases. He is a member of many professional bodies and has guided many MPharm and PharmD research projects. Dr. Siddiqui has many national and international publications and one German patent to his credit.",institutionString:"Integral University",institution:null}]}},subseries:{item:{id:"9",type:"subseries",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11405,editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",biography:"Dr. Luis Villarreal is a research professor from the Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México. Dr. Villarreal is the editor in chief and founder of the Revista de Ciencias Tecnológicas (RECIT) (https://recit.uabc.mx/) and is a member of several editorial and reviewer boards for numerous international journals. He has published more than thirty international papers and reviewed more than ninety-two manuscripts. His research interests include biomaterials, nanomaterials, bioengineering, biosensors, drug delivery systems, and tissue engineering.",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,series:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343"},editorialBoard:[{id:"35539",title:"Dr.",name:"Cecilia",middleName:null,surname:"Cristea",slug:"cecilia-cristea",fullName:"Cecilia Cristea",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYQ65QAG/Profile_Picture_1621007741527",institutionString:null,institution:{name:"Iuliu Hațieganu University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"40735",title:"Dr.",name:"Gil",middleName:"Alberto Batista",surname:"Gonçalves",slug:"gil-goncalves",fullName:"Gil Gonçalves",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYRLGQA4/Profile_Picture_1628492612759",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"211725",title:"Associate Prof.",name:"Johann F.",middleName:null,surname:"Osma",slug:"johann-f.-osma",fullName:"Johann F. Osma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDv7QAG/Profile_Picture_1626602531691",institutionString:null,institution:{name:"Universidad de Los Andes",institutionURL:null,country:{name:"Colombia"}}},{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",slug:"mani-t.-valarmathi",fullName:"Mani T. Valarmathi",profilePictureURL:"https://mts.intechopen.com/storage/users/69697/images/system/69697.jpg",institutionString:"Religen Inc. | A Life Science Company, United States of America",institution:null},{id:"205081",title:"Dr.",name:"Marco",middleName:"Vinícius",surname:"Chaud",slug:"marco-chaud",fullName:"Marco Chaud",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDGeQAO/Profile_Picture_1622624307737",institutionString:null,institution:{name:"Universidade de Sorocaba",institutionURL:null,country:{name:"Brazil"}}}]},onlineFirstChapters:{paginationCount:20,paginationItems:[{id:"82800",title:"Repurposing Drugs as Potential Therapeutics for the SARS-Cov-2 Viral Infection: Automatizing a Blind Molecular Docking High-throughput Pipeline",doi:"10.5772/intechopen.105792",signatures:"Aldo Herrera-Rodulfo, Mariana Andrade-Medina and Mauricio Carrillo-Tripp",slug:"repurposing-drugs-as-potential-therapeutics-for-the-sars-cov-2-viral-infection-automatizing-a-blind-",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Molecular Docking - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11451.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82582",title:"Protecting Bioelectric Signals from Electromagnetic Interference in a Wireless World",doi:"10.5772/intechopen.105951",signatures:"David Marcarian",slug:"protecting-bioelectric-signals-from-electromagnetic-interference-in-a-wireless-world",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82586",title:"Fundamentals of Molecular Docking and Comparative Analysis of Protein–Small-Molecule Docking Approaches",doi:"10.5772/intechopen.105815",signatures:"Maden Sefika Feyza, Sezer Selin and Acuner Saliha Ece",slug:"fundamentals-of-molecular-docking-and-comparative-analysis-of-protein-small-molecule-docking-approac",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Molecular Docking - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11451.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82184",title:"Biological Sensing Using Infrared SPR Devices Based on ZnO",doi:"10.5772/intechopen.104562",signatures:"Hiroaki Matsui",slug:"biological-sensing-using-infrared-spr-devices-based-on-zno",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hiroaki",surname:"Matsui"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82122",title:"Recent Advances in Biosensing in Tissue Engineering and Regenerative Medicine",doi:"10.5772/intechopen.104922",signatures:"Alma T. Banigo, Chigozie A. Nnadiekwe and Emmanuel M. Beasi",slug:"recent-advances-in-biosensing-in-tissue-engineering-and-regenerative-medicine",totalDownloads:22,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82080",title:"The Clinical Usefulness of Prostate Cancer Biomarkers: Current and Future Directions",doi:"10.5772/intechopen.103172",signatures:"Donovan McGrowder, Lennox Anderson-Jackson, Lowell Dilworth, Shada Mohansingh, Melisa Anderson Cross, Sophia Bryan, Fabian Miller, Cameil Wilson-Clarke, Chukwuemeka Nwokocha, Ruby Alexander-Lindo and Shelly McFarlane",slug:"the-clinical-usefulness-of-prostate-cancer-biomarkers-current-and-future-directions",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82005",title:"Non-Invasive Approach for Glucose Detection in Urine Quality using Its Image Analysis",doi:"10.5772/intechopen.104791",signatures:"Anton Yudhana, Liya Yusrina Sabila, Arsyad Cahya Subrata, Hendriana Helda Pratama and Muhammad Syahrul Akbar",slug:"non-invasive-approach-for-glucose-detection-in-urine-quality-using-its-image-analysis",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81412",title:"Mathematical Morphology and the Heart Signals",doi:"10.5772/intechopen.104113",signatures:"Taouli Sidi Ahmed",slug:"mathematical-morphology-and-the-heart-signals",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81360",title:"Deep Learning Algorithms for Efficient Analysis of ECG Signals to Detect Heart Disorders",doi:"10.5772/intechopen.103075",signatures:"Sumagna Dey, Rohan Pal and Saptarshi Biswas",slug:"deep-learning-algorithms-for-efficient-analysis-of-ecg-signals-to-detect-heart-disorders",totalDownloads:80,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81068",title:"Characteristic Profiles of Heart Rate Variability in Depression and Anxiety",doi:"10.5772/intechopen.104205",signatures:"Toshikazu Shinba",slug:"characteristic-profiles-of-heart-rate-variability-in-depression-and-anxiety",totalDownloads:30,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80691",title:"Applications of Quantum Mechanics, Laws of Classical Physics, and Differential Calculus to Evaluate Source Localization According to the Electroencephalogram",doi:"10.5772/intechopen.102831",signatures:"Kristin S. Williams",slug:"applications-of-quantum-mechanics-laws-of-classical-physics-and-differential-calculus-to-evaluate-so",totalDownloads:21,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80643",title:"EEG Authentication System Using Fuzzy Vault Scheme",doi:"10.5772/intechopen.102699",signatures:"Fatima M. Baqer and Salah Albermany",slug:"eeg-authentication-system-using-fuzzy-vault-scheme",totalDownloads:55,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80529",title:"Effective EEG Artifact Removal from EEG Signal",doi:"10.5772/intechopen.102698",signatures:"Vandana Roy",slug:"effective-eeg-artifact-removal-from-eeg-signal",totalDownloads:103,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80505",title:"Soft Tissue Image Reconstruction Using Diffuse Optical Tomography",doi:"10.5772/intechopen.102463",signatures:"Umamaheswari K, Shrichandran G.V. and Jebaderwin D.",slug:"soft-tissue-image-reconstruction-using-diffuse-optical-tomography",totalDownloads:57,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},publishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",slug:"biomedical-signal-and-image-processing",publishedDate:"April 14th 2021",editedByType:"Edited by",bookSignature:"Yongxia Zhou",hash:"22b87a09bd6df065d78c175235d367c8",volumeInSeries:10,fullTitle:"Biomedical Signal and Image Processing",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou",profilePictureURL:"https://mts.intechopen.com/storage/users/259308/images/system/259308.jpeg",institutionString:"University of Southern California",institution:{name:"University of Southern California",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9973",title:"Data Acquisition",subtitle:"Recent Advances and Applications in Biomedical Engineering",coverURL:"https://cdn.intechopen.com/books/images_new/9973.jpg",slug:"data-acquisition-recent-advances-and-applications-in-biomedical-engineering",publishedDate:"March 17th 2021",editedByType:"Edited by",bookSignature:"Bartłomiej Płaczek",hash:"75ea6cdd241216c9db28aa734ab34446",volumeInSeries:9,fullTitle:"Data Acquisition - Recent Advances and Applications in Biomedical Engineering",editors:[{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",institutionString:"University of Silesia",institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9905",title:"Biometric Systems",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9905.jpg",slug:"biometric-systems",publishedDate:"February 10th 2021",editedByType:"Edited by",bookSignature:"Muhammad Sarfraz",hash:"c730560dd2e3837a03407b3a86b0ef2a",volumeInSeries:8,fullTitle:"Biometric Systems",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",institutionString:"Kuwait University",institution:{name:"Kuwait University",institutionURL:null,country:{name:"Kuwait"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8622",title:"Peptide Synthesis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8622.jpg",slug:"peptide-synthesis",publishedDate:"December 18th 2019",editedByType:"Edited by",bookSignature:"Jaya T. Varkey",hash:"de9fa48c5248dbfb581825b8c74f5623",volumeInSeries:0,fullTitle:"Peptide Synthesis",editors:[{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",institutionString:"St. Teresa’s College",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7497",title:"Computer Vision in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7497.jpg",slug:"computer-vision-in-dentistry",publishedDate:"September 18th 2019",editedByType:"Edited by",bookSignature:"Monika Elzbieta Machoy",hash:"1e9812cebd46ef9e28257f3e96547f6a",volumeInSeries:7,fullTitle:"Computer Vision in Dentistry",editors:[{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8633",title:"Novel Diagnostic Methods in Ophthalmology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8633.jpg",slug:"novel-diagnostic-methods-in-ophthalmology",publishedDate:"September 4th 2019",editedByType:"Edited by",bookSignature:"Anna Nowinska",hash:"da2c90e8db647ead30504defce3fb5d3",volumeInSeries:6,fullTitle:"Novel Diagnostic Methods in Ophthalmology",editors:[{id:"261466",title:"Dr.",name:"Anna",middleName:"Karolina",surname:"Nowińska",slug:"anna-nowinska",fullName:"Anna Nowińska",profilePictureURL:"https://mts.intechopen.com/storage/users/261466/images/system/261466.jpeg",institutionString:"Medical University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",institutionString:"University of Silesia",institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:139,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:122,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:21,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"August 3rd, 2022",hasOnlineFirst:!0,numberOfOpenTopics:3,numberOfPublishedChapters:107,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},subseries:[{id:"7",title:"Bioinformatics and Medical Informatics",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",annualVolume:11403,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"5886",title:"Dr.",name:"Alexandros",middleName:"T.",surname:"Tzallas",fullName:"Alexandros Tzallas",profilePictureURL:"https://mts.intechopen.com/storage/users/5886/images/system/5886.png",institutionString:"University of Ioannina, Greece & Imperial College London",institution:{name:"University of Ioannina",institutionURL:null,country:{name:"Greece"}}},{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",fullName:"Lulu Wang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRX6kQAG/Profile_Picture_1630329584194",institutionString:"Shenzhen Technology University",institution:{name:"Shenzhen Technology University",institutionURL:null,country:{name:"China"}}},{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",fullName:"Reda R. Gharieb",profilePictureURL:"https://mts.intechopen.com/storage/users/225387/images/system/225387.jpg",institutionString:"Assiut University",institution:{name:"Assiut University",institutionURL:null,country:{name:"Egypt"}}}]},{id:"8",title:"Bioinspired Technology and Biomechanics",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',annualVolume:11404,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"49517",title:"Prof.",name:"Hitoshi",middleName:null,surname:"Tsunashima",fullName:"Hitoshi Tsunashima",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTP4QAO/Profile_Picture_1625819726528",institutionString:null,institution:{name:"Nihon University",institutionURL:null,country:{name:"Japan"}}},{id:"425354",title:"Dr.",name:"Marcus",middleName:"Fraga",surname:"Vieira",fullName:"Marcus Vieira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003BJSgIQAX/Profile_Picture_1627904687309",institutionString:null,institution:{name:"Universidade Federal de Goiás",institutionURL:null,country:{name:"Brazil"}}},{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",fullName:"Ramana Vinjamuri",profilePictureURL:"https://mts.intechopen.com/storage/users/196746/images/system/196746.jpeg",institutionString:"University of Maryland, Baltimore County",institution:{name:"University of Maryland, Baltimore County",institutionURL:null,country:{name:"United States of America"}}}]},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",annualVolume:11405,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"35539",title:"Dr.",name:"Cecilia",middleName:null,surname:"Cristea",fullName:"Cecilia Cristea",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYQ65QAG/Profile_Picture_1621007741527",institutionString:null,institution:{name:"Iuliu Hațieganu University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"40735",title:"Dr.",name:"Gil",middleName:"Alberto Batista",surname:"Gonçalves",fullName:"Gil Gonçalves",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYRLGQA4/Profile_Picture_1628492612759",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"211725",title:"Associate Prof.",name:"Johann F.",middleName:null,surname:"Osma",fullName:"Johann F. Osma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDv7QAG/Profile_Picture_1626602531691",institutionString:null,institution:{name:"Universidad de Los Andes",institutionURL:null,country:{name:"Colombia"}}},{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",fullName:"Mani T. Valarmathi",profilePictureURL:"https://mts.intechopen.com/storage/users/69697/images/system/69697.jpg",institutionString:"Religen Inc. | A Life Science Company, United States of America",institution:null},{id:"205081",title:"Dr.",name:"Marco",middleName:"Vinícius",surname:"Chaud",fullName:"Marco Chaud",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDGeQAO/Profile_Picture_1622624307737",institutionString:null,institution:{name:"Universidade de Sorocaba",institutionURL:null,country:{name:"Brazil"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/49509",hash:"",query:{},params:{id:"49509"},fullPath:"/profiles/49509",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()