Modern kraft pulp mills generate solid waste of 1–2% of incoming debarked wood. Given the size of these plants, with an annual production capacity of at least 1000,000 tons, each plant generates 20,000–30,000 dry tons of waste per year. The largest current use of these residues is for combustion in biomass boilers for steam and power generation. However, the conversion of biomass into biofuels and chemicals is gaining interest due to increasing demands for energy, limited sources of fossil fuels, and growing concerns about the environmental impact of greenhouse gas emissions. This chapter shows the laboratory-scale results of the use of eucalyptus wood wastes to obtain cellulose pulp by alkali pulping reinforced with hydrogen peroxide to obtain alkaline peroxide mechanical pulp or cellulosic bioethanol. Based on the results, an industrial-scale techno-economic analysis of the processes is presented and compared with current alternatives for energy generation.
Part of the book: Recycling Strategy and Challenges Associated with Waste Management Towards Sustaining the World