Summarized literatures on Y(OH)3 nanowires synthesized by precipitation- hydrothermal synthetic method
\r\n\t
",isbn:"978-1-83962-547-3",printIsbn:"978-1-83962-546-6",pdfIsbn:"978-1-83962-548-0",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"e5ba02fedd7c87f0ab66414f3b07de0c",bookSignature:"Dr. John P. Tiefenbacher",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10765.jpg",keywords:"Managing Urbanization, Managing Development, Managing Resource Use, Drought Management, Flood Management, Water Quality Monitoring, Air Quality Monitoring, Ecological Monitoring, Modeling Extreme Natural Events, Ecological Restoration, Restoring Environmental Flows, Environmental Management Perspectives",numberOfDownloads:22,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"January 12th 2021",dateEndSecondStepPublish:"February 9th 2021",dateEndThirdStepPublish:"April 10th 2021",dateEndFourthStepPublish:"June 29th 2021",dateEndFifthStepPublish:"August 28th 2021",remainingDaysToSecondStep:"2 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"A geospatial scholar working at the interface of natural and human systems, collaborating internationally on innovative studies about hazards and environmental challenges. Dr. Tiefenbacher has published more than 200 papers on a diverse array of topics that examine perception and behaviors with regards to the application of pesticides, releases of toxic chemicals, environments of the U.S.-Mexico borderlands, wildlife hazards, and the geography of wine.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"73876",title:"Dr.",name:"John P.",middleName:null,surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher",profilePictureURL:"https://mts.intechopen.com/storage/users/73876/images/system/73876.jfif",biography:"Dr. John P. Tiefenbacher (Ph.D., Rutgers, 1992) is a professor of Geography at Texas State University. His research has focused on various aspects of hazards and environmental management. Dr. Tiefenbacher has published on a diverse array of topics that examine perception and behaviors with regards to the application of pesticides, releases of toxic chemicals, environments of the U.S.-Mexico borderlands, wildlife hazards, and the geography of wine. More recently his work pertains to spatial adaptation to climate change, spatial responses in wine growing regions to climate change, the geographies of viticulture and wine, artificial intelligence and machine learning to predict patterns of natural processes and hazards, historical ethnic enclaves in American cities and regions, and environmental adaptations of 19th century European immigrants to North America's landscapes.",institutionString:"Texas State University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"6",institution:{name:"Texas State University",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"12",title:"Environmental Sciences",slug:"environmental-sciences"}],chapters:[{id:"76073",title:"Integrating Ecological Site Descriptions with Soil Morphology to Optimize Forest Management: Three Missouri Case Studies",slug:"integrating-ecological-site-descriptions-with-soil-morphology-to-optimize-forest-management-three-mi",totalDownloads:22,totalCrossrefCites:0,authors:[{id:"185895",title:"Dr.",name:"Michael",surname:"Aide",slug:"michael-aide",fullName:"Michael Aide"},{id:"269286",title:"Dr.",name:"Christine",surname:"Aide",slug:"christine-aide",fullName:"Christine Aide"},{id:"269287",title:"Dr.",name:"Indi",surname:"Braden",slug:"indi-braden",fullName:"Indi Braden"}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"194667",firstName:"Marijana",lastName:"Francetic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/194667/images/4752_n.jpg",email:"marijana@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"600",title:"Approaches to Managing Disaster",subtitle:"Assessing Hazards, Emergencies and Disaster Impacts",isOpenForSubmission:!1,hash:"e97caba8487382025a1e70eb85e4e390",slug:"approaches-to-managing-disaster-assessing-hazards-emergencies-and-disaster-impacts",bookSignature:"John Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/600.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3054",title:"Approaches to Disaster Management",subtitle:"Examining the Implications of Hazards, Emergencies and Disasters",isOpenForSubmission:!1,hash:"0d6576de4f4c7fc7b8db5e91cba6dc28",slug:"approaches-to-disaster-management-examining-the-implications-of-hazards-emergencies-and-disasters",bookSignature:"John Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/3054.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"865",title:"Perspectives on Nature Conservation",subtitle:"Patterns, Pressures and Prospects",isOpenForSubmission:!1,hash:"4a4d39cf2a0c2a9416049331b508aa88",slug:"perspectives-on-nature-conservation-patterns-pressures-and-prospects",bookSignature:"John Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/865.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9846",title:"Spatial Variability in Environmental Science",subtitle:"Patterns, Processes, and Analyses",isOpenForSubmission:!1,hash:"cfa4fa7b982bbff46ffbe6fbdbffbdf1",slug:"spatial-variability-in-environmental-science-patterns-processes-and-analyses",bookSignature:"John P. Tiefenbacher and Davod Poreh",coverURL:"https://cdn.intechopen.com/books/images_new/9846.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9389",title:"Global Warming and Climate Change",subtitle:null,isOpenForSubmission:!1,hash:"435d35b33ec04fe921640a514feb19e4",slug:"global-warming-and-climate-change",bookSignature:"John P. Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/9389.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8011",title:"Natural Hazards",subtitle:"Risk, Exposure, Response, and Resilience",isOpenForSubmission:!1,hash:"43ca8c43ab0963f6c43350764f696b63",slug:"natural-hazards-risk-exposure-response-and-resilience",bookSignature:"John P. Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/8011.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"8890",title:"Yttrium Oxide Nanowires",doi:"10.5772/39501",slug:"yttrium-oxide-nanowires",body:'\n\t\tYttrium is one of the most important rare-earth elements. Yttrium compounds show promise for applications such as high quality phosphors, catalysts, up-conversion materials and fine ceramics because of their optical, catalytic properties and high-temperature stability. Yttrium oxide is the most familiar yttrium compound, which is popularly known as host for ion doping of other rare earth elements. For example, europium doped yttrium oxide, Y2O3:Eu3+, is a superior red phosphor with a quantum efficiency of nearly 100%. It presents good luminescent characteristic, acceptable atmospheric stability, reduced degradation under applied voltages, and the lack of hazardous constituents as opposed to sulphide phosphors, thus it has commercial applications in fluorescent lamps, projection televisions, and field emission displays (FEDs). With respect to the physical properties, yttrium oxide has a high melting point (Tm = 2430 C), which is higher than that of a number of other well-known oxides, such as alumina, zirconia, yttrium aluminum garnet (YAG), and spinel. Yttrium oxide exists as a cubic phase and is stable up to melting point without any phase transformations. Furthermore, it has a very large unit cell, which results in large unit slip distances. Hence, it is expected that plastic deformation in yttrium oxide by dislocation motion would be difficult. These properties endow it with usefulness as bulk ceramics for refractory applications. In addition, yttrium oxide has found applications in a wide variety of catalytic reactions owing to its basic nature. Therefore, the preparation of yttrium oxide, as well as its precursors, has attracted much academic attention. Yttrium oxide has been prepared in many shapes, like spherical particle (Tomaszewski et al., 1997, Sharma et al., 1998, Yang et al., 2007), rod (Wan et al., 2005), tube (Li et al., 2004, Fang et al., 2003, Tang et al., 2003, Wang et al., 2003, Zhang et al., 2008), prism (Zhang et al., 2005), plate (Wan et al., 2005) or sheet (Zhang et al., 2008), and wire. Our group has systematically investigated the phase distribution and morphology of products synthesized under hydrothermal conditions (Li & Yanagisawa, 2008). It was found that by simply adjusting the hydrothermal temperature and initial pH value of the starting solution, yttrium oxide with a diversity of well-defined morphologies like sheet, rod, needle and tube were successfully fabricated from different precursors. At the same time, the particle size of products could be controlled in a wide range.
\n\t\t\tHitherto, the reported synthetic pathways to yttrium oxide nanowire were unlimitedly accomplished by the preparation of its precursors through hydrothermal reaction followed by decomposing these precursors into oxide. Hydrothermal reaction will not result in yttrium oxide directly, because yttrium oxide is not stable under hydrothermal conditions at temperature lower than 550 C, according to the phase diagram of Y2O3-H2O system (Shafer & Roy, 1959).
\n\t\t\tReactant | \n\t\t\t\t\t\tpH | \n\t\t\t\t\t\tHydrothermal T . | \n\t\t\t\t\t\tSize | \n\t\t\t\t\t\tReference | \n\t\t\t\t\t
Y 2 O 3 + 10% HNO 3 + 10% NaOH/KOH | \n\t\t\t\t\t\t13 | \n\t\t\t\t\t\tfor 12-24 h | \n\t\t\t\t\t\tD id not mention | \n\t\t\t\t\t\tWang & Li, 2003 | \n\t\t\t\t\t
Y(NO 3 ) 3 E 6H 2 O + 10% KOH | \n\t\t\t\t\t\t10 | \n\t\t\t\t\t\tfor 10 h | \n\t\t\t\t\t\tD: 30-40 nm; L: 1.4 µ m | \n\t\t\t\t\t\tLi et al., 2004 | \n\t\t\t\t\t
Y 2 O 3 + concentrated HNO 3 + NaOH | \n\t\t\t\t\t\t12-13 | \n\t\t\t\t\t\t170 for 12 h | \n\t\t\t\t\t\tD:100-300 nm; L: 1-2 µ m | \n\t\t\t\t\t\tBai et al., 2005 | \n\t\t\t\t\t
Y 2 O 3 + concentrated HNO 3 + NaOH + PEG 2000 | \n\t\t\t\t\t\t13 | \n\t\t\t\t\t\tfor 24 h | \n\t\t\t\t\t\tD: 85-95 nm; L: several tens of microns | \n\t\t\t\t\t\tWu et al., 2005 | \n\t\t\t\t\t
Y 2 O 3 + HNO 3 + ammoina solution | \n\t\t\t\t\t\t12 | \n\t\t\t\t\t\tfor 24 h | \n\t\t\t\t\t\tD : 40-100 nm; L: ~1.4 µ m | \n\t\t\t\t\t\tLi & Yanagisawa, 2008 | \n\t\t\t\t\t
Y(NO3)3 E 6 H 2 O (5mol% Sm) +15% TEAH | \n\t\t\t\t\t\t13 | \n\t\t\t\t\t\tfor 10 h | \n\t\t\t\t\t\tD : 50 ± 3 nm; L: several tens of microns | \n\t\t\t\t\t\tZahir et al., 2009 | \n\t\t\t\t\t
Summarized literatures on Y(OH)3 nanowires synthesized by precipitation- hydrothermal synthetic method
Wirelike yttrium hydroxide with hexagonal structure has been used as the precursor of yttrium oxide nanowires. Generally, the reported synthesis of yttrium hydroxide nanowires is accomplished through a two-step route, which is also called precipitation-hydrothermal synthetic method. Firstly, the precipitation of precursor colloids is obtained by adjusting the pH value of Y(NO3)3 aqueous solution, sometimes produced by dissolving Y2O3 in nitric acid, to 10-14 through the addition of NaOH/KOH solution. Then this precipitation is hydrothermally treated at 120-180 ºC. The products are usually composed of discrete, single-crystalline hydroxide nanowires with diameter of 30-300 nm. Corresponding oxide nanowires were received after thermal treating the hydroxide at 450-700 ºC in air. For instance, Wang et al. reported the synthesis of hydroxide nanowires of yttrium and of other rare-earth elements through this synthetic method at 180 ºC and pH around 13 (Wang & Li, 2003). The driving force for the growth was attributed to the crystal structure of yttrium hydroxide. Li et al. explained the formation mechanism of yttrium hydroxide nanowires by the complex interaction and balance between the chemical potential and the rate of ionic motion (Li et al., 2004). Europium doped yttrium oxide nanowires were also prepared by this method by mixing appropriate amount of europium oxide and yttrium oxide. The obtained Y2O3:Eu3+ nanowires exhibited strong red 5D0-7F2 transitions in fluorescent spectra. Our group found that using ammonia solution replacing NaOH/KOH as precipitation reagent, yttrium hydroxide nanowires could be obtained at pH 12.5 via hydrothermal reaction at 200 ºC (Li & Yanagisawa, 2008). Several other researches also reported similar synthetic routes to yttrium hydroxide and yttrium oxide nanowires. Table 1 summarized the synthesis conditions and product information obtained in literatures. However, the hydroxide and oxide nanowires prepared through this synthetic method usually exhibit low aspect ratio, at most 50, which makes it look more like needles than wires, as shown in Fig. 1. Yttrium hydroxide nanowires with higher aspect ratio could be prepared by a polymer-assisted hydrothermal method (Wu et al., 2005). It is presumed that polyethylene glycol (PEG) played an important role on the formation of hydroxide nanowires. However, the final products coexisted with a mixture of nanorods and nanobelts. Recently, it is reported that after the doping of 5 mol% Sm3+ into yttrium and using tetraethylammonium hydroxide (TEAH) as precipitator, very well separated yttrium hydroxide nanowires with high aspect ratio were prepared (Zahir et al., 2009). The authors attributed the growth of yttrium hydroxide nanowires to the presence of Sm3+ and tetraethylammonium ion.
\n\t\t\tTEM image of hexagonal Y(OH)3 needles prepared by precipitation-hydrothermal synthetic method. The reaction was conducted at pH 12.5, 160 C for 24h, with ammonia solution as precipitator
Our group has recently exploited a simpler one-step hydrothermal synthetic method to prepare yttrium hydroxide nanowires, where yttrium oxide powder instead of soluble yttrium salts was directly used as a starting material, and the reaction was conducted under near neutral conditions. Unlike yttrium hydroxide nanowires obtained by precipitation-hydrothermal synthetic method, the nanowires synthesized via this one-step method showed unusual, bundle-like morphology with much higher aspect ratio (Li et al., 2009). Furthermore, we found that two other yttrium compounds, yttrium oxide nitrate hydroxide (Li & Yanagisawa, 2008) and yttrium chloride hydroxide could also be prepared in wire shape in nanometer size. Both of them were synthesized through precipitation-hydrothermal synthetic method, using yttrium nitrate and yttrium chloride as starting material respectively. In this chapter, we will introduce the preparation and characterization of the three wirelike yttrium compounds, as well as their conversion to yttrium oxide nanowires.
\n\t\tAs has introduced above, the yttrium hydroxide nanowires prepared from the precipitation-hydrothermal synthetic method usually exhibit low aspect ratio. Recently, we synthesized yttrium hydroxide nanowires by an acetic acid (HAc) assisted hydrothermal method under near neutral conditions. The as-synthesized nanowires are of higher aspect ratio up to 2000. The preparation was effected through a one-step hydrothermal procedure, simpler than the precipitation-hydrothermal synthetic method. Typically, the appropriate quantities of Y2O3 powder and 0.067 mol/L acetic acid aqueous solution were mixed at room temperature and hydrothermally treated at 200 ºC for 24 h under agitation. Powder X-ray diffraction (XRD) characterization indicated that the product could be indexed to a pure hexagonal phase of Y(OH)3, with lattice cell constants of
Typical XRD patterns of three precursors of yttrium oxide. (a) hexagonal Y(OH)3, (b) Y4O(OH)9(NO3) and (c) yttrium chloride hydroxide hydrate
SEM (a, b), TEM (c), HRTEM (d) and SAED (e) images of bundles of Y(OH)3 nanowires. SAED pattern was taken from the region indicated by white circle in (c). (f) TEM image of corresponding Y2O3 nanowires.
It was found that the formation of yttrium hydroxide nanowires was closely correlated with the presence of HAc and its concentration. Hydrothermal reaction conducted in pure water suggested that a majority of yttrium oxide could be converted into hydroxide after 72 hours of hydrothermal treatment, indicating that HAc was not necessary for this transformation. This result was consistent with the Y2O3-H2O phase diagram. However, the conversion process without the participation of HAc was very slow, and the product morphology totally differed from that of yttrium hydroxide prepared with the assistance of HAc. Our experiment results proved that in the presence of HAc the whole reaction was completed within several hours. Moreover, it was also found that the product morphology was sensitive to HAc concentration. Yttrium hydroxide could be prepared at concentration between 0.001 and 0.01 mol/L. The optimum HAc concentration for the growth of uniform nanowires was 0.006-0.007 mol/L. Lower concentration would result in irregular rods in a wide scale of size, while higher concentration would lead to the formation of an unknown phase, probably being yttrium acetate compound.
\n\t\t\tThe investigation on the intermediate products obtained during different growth stages suggested that with the process of time, yttrium oxide disappeared step by step, while the appearance of hydroxide was observed at the same time. The transformation from oxide into hydroxide was completed within two hours. SEM images (Fig. 4) indicated that at the early stage of hydrothermal reaction, the sample was composed of irregular blocks and a small quantity of microrods with quasi-hexagonal geometry, which was unreacted yttrium oxide and the formed hydroxide, respectively. The individual microrod was constructed by numerous of nanorods fused in the same orientation. Along with the proceeding of hydrothermal reaction, these rods became less faceted, and the diameter is not uniform along the long axis, forming a spindle-like structure. The tips of the rod looked like tubes. As the reaction proceeded, the size of these microrods, as well as the aspect ratio increased, suggesting that the growth along the long-axis was faster than that along the short-axis. This result was supported by XRD results that the intensity of (110) diffraction of yttrium hydroxide increased remarkably in comparison with that of (101) diffraction. Subsequently, the tips of these rods began to split into wires and the whole rod developed into a bundle of nanowires eventually.
\n\t\t\tIt is likely that the growth is accomplished through an oriented attachment and the subsequent dissolution process from the defect sites. Firstly, yttrium oxide gradually dissolves into the solution, and yttrium hydroxide nucleates into 1D nanocrystals owing to the high anisotropic structure along
SEM images of products synthesized at 200 C in 0.067 mol/L HAc for 0h (a, b), 0.5h (c, d), 1.0 h (e, f) and 2.0 h (g, h)
HAc plays a key role in the formation of the unusual nanowires, probably acting in two ways. Firstly, the addition of HAc changes the pH value of solution, thus accelerates the conversion from yttrium oxide to hydroxide. Secondly, acetic acid molecules or ions adsorb to the surface of yttrium hydroxide crystallites, introducing defects and blocking the attachment mechanism.
\n\t\tSketch for the growth mechanism of Y(OH)3 nanowires. Reprinted with permission from Cryst. Growth Des, 9 (2):978-981, Copyright 2009 American Chemical Society.
As we have mentioned in the introduction of this chapter, yttrium hydroxide nanowires could be prepared through a precipitation-hydrothermal synthetic method. Our group have systematically investigated the precipitation-hydrothermal reaction conducted in a wide range of temperature and pH value. It was found that three compounds, hydrated yttrium nitrate hydroxide Y2(OH)5.14(NO3)0.86, yttrium oxide nitrate hydroxide Y4O(OH)9(NO3), and hexagonal yttrium hydroxide Y(OH)3 were obtained when hydrothermal reaction were conducted at 80-220 C and pH 6.0-13.5. Y2(OH)5.14(NO3)0.86 and Y4O(OH)9(NO3) occurred under near neutral to weak basic conditions, and low hydrothermal temperature would result in Y2(OH)5.14(NO3)0.86, while Y4O(OH)9(NO3) was received at higher temperature. If the hydrothermal reaction was conducted under strong basic condition, Y(OH)3 was obtained. The pH boundary where Y(OH)3 was formed was 11.25 and 13.0 when ammonia and NaOH solution was used as precipitator respectively. Among the three yttrium compounds, yttrium oxide nitrate hydroxide Y4O(OH)9(NO3) could also be synthesized in wire shape, which made it a alternative precursor for the preparation of yttrium oxide nanowires.
\n\t\t\tThe synthesis of Y4O(OH)9(NO3) was almost identical with that of yttrium hydroxide with the exception that the reaction was conducted at a slightly lower pH value. In a typical synthesis process, an appropriate quantity of yttrium oxide was dissolved in nitric acid. Then ammonia/NaOH solution was added to adjust the solution to a designated pH value. Products were received after hydrothermal treatment at 80-220 C for 24 h and then investigated by XRD and TEM characterizations. As the XRD pattern shown in Fig. 2b, the product could be attributed to a pure monoclinic phase. TEM images (Fig. 6a, b) illustrated that these nanowires were straight and well-dispersed with uniform diameter along the longitudinal axis. The diameter ranged from 30 to 50 nm, while the length was up to tens of micrometers. Some nanowires were as long as several millimetres, spanning the whole visual field under the TEM observation at low magnification (×4). That means the nanowires could be prepared with extraordinary high aspect ratio. Some of the shorter nanowires probably were broken fragments from the longer ones by the ultrasonic during the TEM pre-treatment. HRTEM and SAED characterization revealed its single crystalline nature. It seems that the driving force for the spontaneous growth of nanowires is the anisotropic characteristic of monoclinic structure of yttrium oxide nitrate hydroxide. The yttrium oxide obtained through calcinations maintained the wire shape. However, it became porous in contrast with its precursor, as shown in Fig. 6c.
\n\t\t\tTEM images of Y4O(OH)9(NO3) nanowires hydrothermally synthesized at 200 C, pH 12.5 (a, b), and of Y2O3 nanowires prepared thereby (c)
This yttrium compound could be prepared in a wide pH range, from 6.0 to 13.0. However, nanometer sized product was only obtained at relatively high pH value, for example, pH 12.5, while low pH value would lead to the formation of microrods with hexagonal cross-section. Along with the increasing pH value, the size of the product decreased. This is because that high pH value leads to the formation of large amount of nuclei and small particles is favoured due to the suppressed growth of each nuclear. It should be noted that further increasing the pH value would give rise to the formation of yttrium hydroxide, which contains more hydroxyl in its structure and thus is more stable than yttrium oxide nitrate hydroxide under stronger basic conditions. Therefore, by carefully controlling the pH value of the colloidal solution and its concentration, nanosized products could be prepared. The effects of hydrothermal temperature on products were also studied by fixing the pH value and changing the reaction temperature from 140 C to 220 C. The products did not show much difference in morphology except for the size distribution narrowed down with increasing temperature, indicating that pH value was the predominant factor in strong basic media, and the morphologies were less dependent on reaction temperature as compared with pH value.
\n\t\tIn the aforementioned precipitation-hydrothermal synthesis, it is yttrium nitrate that was used as starting material. What will happen if yttrium chloride took the place of yttrium nitrate? Our study revealed that different products were received in this case, and Cl element was usually involved in the final products. Among them, an yttrium chloride hydroxide with indefinite composition could be prepared in wire shape.
\n\t\t\tSEM image of yttrium chloride hydroxide nanowires
Similar as that of Y4O(OH)9(NO3), the synthesis was started by dissolving yttrium oxide in hydrochloric acid. Ammonia solution was then added to adjust the solution to designated pH value. Flocculent product was received after hydrothermal treatment at 200 C for 12 h. The crystal structure and morphology of the products were studied by XRD and SEM, respectively. Fig. 2c shows the XRD pattern of the product hydrothermally synthesized at pH 9.5. It was poorly crystallized and could not be identified to any known phase. SEM observation revealed that the product consisted of sub-micrometer wires. The wires were of uniform diameter ranging from 100 to 300 nm, while the length was up to tens of microns, as shown in Fig. 7. It is possible that the wirelike product synthesized at pH 9.5 belongs to chloride hydroxide hydrate, represented by Y(OH)xCl3-x yH2O. These wirelike products could be prepared within the pH range from 9.50 to 10.25.
\n\t\tAll of the three above-mentioned yttrium compounds could be converted into yttrium oxide through calcination in air. Their wirelike morphologies were maintained except for the slight shrinkage in size, arising from the higher density of yttrium oxide compared with their precursors. Because of the difference in structural compositions, these compounds exhibited different characteristics during calcination. Their decomposition behaviours were illustrated in Fig. 8.
\n\t\t\tTypical TG-DTA curves of (a) hexagonal Y(OH)3, (b) Y4O(OH)9(NO3) and (c) yttrium chloride hydroxide hydrate. Reproduced in part with permission from J. Solid State Chem. 181 (8):1738-1743, Copyright 2008 Elsevier.
During heat treatment, yttrium hydroxide nanowires synthesized by the HAc-assisted hydrothermal method underwent two step-wised decomposition procedures, where yttrium hydroxide was firstly transformed into an intermediate oxyhydroxide, YOOH, and then it converted into oxide at elevated temperature. The conversions occurred at around 280 and 415 C, respectively, as indicated by two DTA endothermic peaks in Fig. 8a.
\n\t\t\tFor Y4O(OH)9(NO3) nanowires, there were two decomposition procedures during the heat treatment, as shown in Fig. 8b. Ion chromatography analysis suggested that the NO3\n\t\t\t\t- content of intermediate products did not decrease until temperature increased to 460 C, indicating that N-O species were released in the second step. The weight loss of the first procedure between 330 C to 450 C was 10.14%, lower than the theoretical value associated with the total release of water (13.8%). It suggests that some hydroxyl was stilled remained in the structure. Following this step, sample transformed into oxide at around 490 C, accompanied by the release of N-O species and water.
\n\t\t\tWith respect to yttrium chloride hydroxide, it also underwent two decomposition procedures during calcinations, as shown in Fig. 8c. The first one below 400 C gave weight loss of 14.0%, which was consistent with the release of water, and the weight loss of 9.2% during the second step corresponded to the release of HCl. Its calcination behaviour exhibited an overall weight loss of 23.2%.
\n\t\tIn summary, we have prepared three wirelike yttrium compounds by hydrothermal method, which were hexagonal yttrium hydroxide, yttrium oxide nitrate hydroxide, and yttrium chloride hydroxide. Hexagonal yttrium hydroxide nanowires were synthesized as single crystals from yttrium oxide powder by a simple acetic acid-assisted hydrothermal method under near neutral conditions. The nanowires show unusual, bundle-like morphology with diameter of 20-50 nm and aspect ratio of 600-2000. The growth of nanowires involved the oriented attachment of 1D nanocrystals to form microrods and selective dissolution from defect sites to form bundles of nanowires. Another wirelike yttrium compound, Y4O(OH)9(NO3) were obtained through conventional precipitation-hydrothermal synthetic route under basic condition. These nanowires were straight and well-dispersed single crystals, with extraordinary high aspect ratio and uniform diameter ranging from 30 to 50 nm. By substituting yttrium nitrate with yttrium chloride, yttrium chloride hydroxide nanowires with diameter of 100-300 nm and length up to tens of microns were synthesized at pH 9.50-10.25 via hydrothermal reaction.
\n\t\t\tAll of the three compounds could be utilized to fabricate yttrium oxide nanowires through thermal treatment. This one dimensional (1D) structure may lead to new opportunities in yttrium chemistry. For example, the yttrium oxide nanowires showed intriguing high-temperature stability. Our experiments suggested that after calcination at 1400 C, the yttrium oxide nanowires obtained from yttrium chloride hydroxide remained their wire shape, which makes it promising material for refractory applications, such as refractory insulation and high temperature gas filtration. Furthermore, the formation of the three compounds all went through a dissolution-crystallization procedure. Therefore, homogeneous rare earth doped yttrium oxide nanowires could be prepared by using mixture of yttrium and other rare earth oxide as starting material. By this means, 1D luminescent materials like Y2O3:Eu3+ nanowires can be fabricated, which may extend its application and benefit the understanding of the luminescent mechanism in low dimensional materials.
\n\t\tUp to now, researchers have developed a variety of micro/Nano driving and positioning platforms based on piezoelectric materials. Among the developed piezoelectric platforms, many of them have been applied for biological cell manipulation, atomic manipulation, micro/nano indentation, aerial photography and other systems with great application results [1, 2] . However, the working stroke of piezoelectric components is quite small, often only a few micrometers or tens of micrometers, which seriously limits the further application of piezoelectric actuators. Therefore, many researchers have done a lot of work to overcome this shortcoming of piezoelectric components, so as to expand the application field of piezoelectric actuators [3]. The inchworm type piezoelectric actuator is one kind of the developed new piezoelectric actuators which is able to ensure a large working stroke and achieve nano-scale accuracy at the same time. It has a wide application demand in the fields which have strict requirements on output accuracy, space size and antielectronmagnetic interference. The study on inchworm piezoelectric actuators has become a hot spot in the application and research field of piezoelectric actuators in recent years [4, 5].
\nThe inchworm type piezoelectric actuator mimics the motion principle of the real inchworm in nature, as is illustrated in Figure 1(a) [6]. Sometimes, it is called one kind of novel bionic actuators. It is found that the natural inchworm moves smoothly by stepping motion form. With the help of the stepping motion form and the piezoelectric technology, large working stroke is easy to be achieved by inchworm actuators through the alternating motion of driving units and clamping units. At the same time, compared with other piezoelectric actuators, the use of clamping unit brings larger output force. The inchworm type piezoelectric actuator usually consists of one driving unit and two clamping units. According to the difference of motion modes, inchworm type piezoelectric actuators could be split into three motion patterns: the “walker” pattern, the “pusher” pattern and hybrid “walker-pusher” pattern.
\nMotion principles: (a) real inchworm [32]; (b) “walker” pattern; (c) “pusher” pattern.
\nFigure 1(b) shows the motion principle of the “walker” pattern piezoelectric actuator, which is essentially similar to the walking mode of the real inchworm in nature. The “walker” mechanism obtains a large working stroke by repeating the following six steps: (1) in the original position, all piezoelectric elements in the driving unit and clamping units do not work, so there is a gap between the clamping device and the base guider; (2) the piezoelectric element in clamping unit 1 obtains the power, and then clamping unit 1 holds the base guide tightly; (3) the driving unit is extending while the piezoelectric element inside it obtains the power; (4) the clamping unit 2 obtains the power to tightly fix the base guider and the clamping unit 1; (5) the clamping unit 1 loses power to release the base guider; (6) the driving unit returns to its original length. Finally, the clamping unit 2 is de energized to release the base guider in the same original position as in step (1). By repeating these six steps, a large working stroke is achieved gradually [7].
\nThe “push” pattern piezoelectric actuator also needs six steps to obtain a step motion, as shown in Figure 1(c): (1) in the original position, all of the driving and clamping units have no power to fix the slider; (2) the clamping unit 2 obtains the power to hold the slider tightly; (3) the driving unit gets power to push the clamping unit 2, and since the slider is hold by clamping unit 2 tightly, it will move forward for small moving distance; (4) the clamping unit 1 holds the slider; (5) the clamping unit 2 is powered off to release the slider; (6) the driving unit returns to the original length when it loses power. At last, the clamping unit 1 releases the slider to the same condition as in the original position [8].
\nHybrid “Walker-pusher” pattern piezoelectric actuator is a hybrid of “Walker” and “pusher” modes. The difference is that the driving unit is inserted into the sliding block, and the clamping unit is assembled in the base in the “Walker-pusher” mode [9].
\nInchworm type piezoelectric actuator has been widely concerned by researchers because it is able to ensure long working stroke, high precision and large output at the same time. Many inchworm driving devices have been developed. According to the different motion forms, they could be divided into the linear actuator, the rotary actuator and the multi-DOF actuator.
\nAs early as in 1964, Stibitz developed the first “pusher” inchworm actuator with magnetostrictive elements to generate driving force, so as to solve the positioning problem of machining tools [10]. Three magnetostrictive elements are utilized as driving and clamping units to generate large stroke linear stepping motion. However, limited by the technical conditions, its performance is not very high, but the driving principle of the inchworm movement provides a new space for the research of precision positioning technology. After that, Hsu et al. proposed the inchworm piezoelectric actuator for the first time [11]. As shown in Figure 2(b), the piezoelectric element is applied to convert the electrical signal into mechanical motion, and two unidirectional clamps are combined to accumulate the movement of the electric element. A piezoelectric tube is inserted into the slider so that it is in the mixed “walker-pusher” mode. In 1968, Brisbane invented the first “walker” type inchworm piezoelectric actuator [12]. Two piezoelectric disks and one piezoelectric tube are assembled inside the slider, which makes it possible to realize the linear motion of the slider by walking which is illustrated in Figure 2(c).
\nInchworm actuators: (a) the first inchworm actuator [
However, due to the immaturity of piezoelectric materials at that time, the development of inchworm type piezoelectric actuators was hindered. For many years, even though there were still some researches on inchworm type piezoelectric actuators, most of them only focused on the theoretical research. Until the end of the 1980s, commercial piezoelectric elements were able to provide an output force of up to several thousand newtons, and the driving voltage dropped from 1000 V to 200 V. All of these provided great opportunities for the further development of piezoelectric actuators. After that many researchers have focused on the development of inchworm type piezoelectric actuators. By using three packaged piezoelectric stacks forming a U-shaped structure, Chen et al. proposed a “pusher” pattern inchworm type piezoelectric actuator [13]. The experimental results show that the maximum driving force is 13.2 N and the maximum speed is 47.6 μm/s. With the help of adding an integrated heterodyne interferometer as feedback device in the servo control system, an inchworm type piezoelectric actuator with fast response is developed by Moon et al. [14]. Based on the fast response characteristics of the servo control system, it can move to the target position quickly and reduce the hysteresis of the piezoelectric actuator.
\nHowever, an important problem is that the extension length of piezoelectric elements is very small, which brings trouble to the clamping unit to clamp the slider tightly. Therefore, many literatures are focusing on different methods to improve the clamping unit. As a typical compliant mechanism, the flexure hinge mechanism has been widely applied in the design of piezoelectric actuators to expand the elongation of piezoelectric elements due to its advantages of fast response, no friction and easy manufacturing. In 1988, Fujimoto firstly proposed an inchworm type piezoelectric actuator with flexible hinge [15]. This “walker” type piezoelectric actuator adopts C-shaped lever type flexible hinge on both clamping units to increase the clamping force, and it has great practical value for the real application of inchworm piezoelectric actuators. The magnification could be adjusted by changing the position of the pivot point. Kim constructed an inchworm platform with an amplification stage, and it utilized the flexure hinge as a lever mechanism to obtain a magnification of 8.4 at a leverage ratio of 3.6 [16].
\nThe research team of Jilin University and Zhejiang Normal University has carried out systematic research on the development of inchworm piezoelectric actuators. After years of experience, it has developed series of Inchworm piezoelectric actuators, and has achieved a series of remarkable research results. For example, Yang et al. proposed a novel linear piezoelectric actuator [17] (Figure 3). The proposed actuator adopts the principle of “pusher” motion pattern, and realizes the passive linear motion of the slider with the help of clamping and driving units. Based on the analysis of the working principle and the mechanical structure of the actuator, a linear driving mathematical model with the piezoelectric stack as the driving element is established, and its structure is analyzed by finite element method (FEM). The proposed inchworm piezoelectric actuator adopts the principle of bidirectional thrust, and realizes the consistency of driving characteristics in the process of forward and reverse directions. Experimental results show that the novel inchworm actuator has the characteristics of firm clamping, high frequency (100 Hz), high step speed (30 mm/min), large stroke (> 10 mm), high resolution (0.05 μm) and large driving force (100 N), which greatly improves the driving performance of the inchworm piezoelectric actuator. It has a broad further application in precision motion, micromanipulation, optical engineering, and precise positioning and so on.
\nInchworm actuator developed by Yang et al. [
Besides the inchworm piezoelectric actuators to achieve linear motion, some inchworm actuators which could obtain rotary motion have been developed by researchers. Kim et al. developed a new type of inchworm piezoelectric actuator that uses a combination of flexure hinge and piezoelectric drive technology to achieve rotational movement [18] (Figure 4). The device pioneered the use of linear output piezoelectric stacks to achieve an inchworm-shaped rotary motion, which has extremely high research significance. The device realizes the movement of the flexible hinge by controlling the power-on sequence of the four piezoelectric stacks, thereby driving the belt wound on the rotating shaft to drive the rotating shaft to rotate. The test results show that the resolution of the rotary drive device can reach 2.36 μrad, which is greatly improved compared to the previous rotary drive device.
\nInchworm type piezoelectric actuators with flexible belts by Kim et al. [
In view of the shortcomings of the existing inchworm actuators, Li et al. firstly designed an inchworm type piezoelectric actuator based on multi-layer torsional flexure hinges, which is able realize the rotary motion with large working stroke and high precision [4]. The developed actuator utilizes the piezoelectric stack to push the thin-walled flexure hinge structure to carry out relevant clamping. By controlling the working sequence of the clamping units in the first and second layers of the stator, the precise rotary motion around the fixed shaft is realized step by step. Its structure is divided into two main parts: rotor and stator. According to the function, it could be divided into the driving unit, the clamping unit and the preloading unit. The proposed device uses high-precision piezoelectric stack to push the thin-walled flexure hinge structure for relevant clamping. By controlling the clamping sequence of the piezoelectric clamping units in the first and second layers of the stator, the step-by-step ultra-precision rotary motion around the rotating shaft is realized. The stator is packaged with two layers of the self-centering piezoelectric clamping unit, rotary driving unit and preloading unit; the rotor is a variable interface rotating shaft, which can drive different objects by changing the connection style of the interface. The clamping unit is composed of the piezoelectric stack encapsulated in the stator and the self-centering flexure hinge. The preloading unit is utilized to pre tighten the clamping piezoelectric stack, and the clamping pressure is adjusted by adjusting the screw in length to control the engaging wedge block. The driving unit is composed of the driving piezoelectric stack, the driving indenting block and the corresponding parts of stator, which is used to apply rotating torque to the first layer of stator. The maximum diameter of stator is 80 mm and the diameter of rotor is 20 mm. This proposed inchworm type piezoelectric actuator could achieve stable stepping rotation output. The size of the driving voltage will affect the single-step rotation angle of the rotor: as the driving voltage increases, the rotation angle of the rotor also increases; when the driving voltage is less than 20 V, the rotor cannot work stably, so the minimum step angle of the rotor is 4.95 μrad. In the case that the driving voltage is 100 V, the maximum step angle of the rotor is 216.7 μrad. The maximum speed of the rotor is 6508.5 μrad/s, and the driving frequency is 30 Hz. The designed inchworm type piezoelectric actuator has a maximum output torque of 93.1 N·mm. Figure 5 shows that the driving voltage and clamping voltage are maintained at 100 V, and when the driving frequency is 1 Hz, after the rotor rotates 20 steps in the forward and reverse directions, the forward and backward error of the rotor is 0.76 μm. The total error of 20 steps is 38 μrad, so the step angle error of the inchworm type piezoelectric rotary actuator designed in this paper is 1.9 μrad.
\nRotary inchworm type piezoelectric actuators by Li et al. [
The disadvantage of the inchworm type piezoelectric actuator is that the structure is relatively complicated. The traditional inchworm type actuator needs to use at least two clamping units and one drive unit. In this way, multiple timing controls will cause the program to be complicated, which makes the inchworm piezoelectric actuator more complicated. The application has brought unfavorable effects. Based on the above work, a simplified inchworm type piezoelectric rotary actuator was designed and manufactured by Li et al., which uses a triangular lever flexure hinge to complete the clamping and driving actions at the same time [19].
\nBy using the triangular lever flexure hinge, one driving unit and one clamping unit could be utilized to realize stepping rotation of the rotor. Its stator is simplified from a two-layer structure to a single-layer structure, which reduces the overall height; the control adopts two-channel voltage control, which reduces the output of one clamp voltage. Figure 6 shows the overall structure of the simplified inchworm piezoelectric actuator, which mainly includes a stator, a rotor, four drive piezoelectric stacks, two clamp piezoelectric stacks and six pre-tightening screws. The stator material is 65Mn, and the drive hinge and clamp hinge are processed by wire cutting. The rotor diameter is 20 mm. The pre-tightening screws are used to adjust the pre-tightening force of the clamping piezoelectric stack and the driving piezoelectric stack. It is seen from Figure 6 that there is a small “jump” in the middle of each step, which is caused by the impact of the clamping unit on the rotor. When the driving voltage is 100 V and the driving frequency is 1 Hz, the maximum output torque of the designed simplified inchworm piezoelectric actuator is 19.6 N·mm. When the output load is greater than 19.6 N·mm, the rotor cannot run stably. When the driving voltage signal increases from 20 V to 100 V, the rotor step angle also increases, which coincides with the approximately proportional relationship between the output displacement of the piezoelectric stack and the driving voltage. The maximum step angle occurs when the drive voltage is 100 V and the drive frequency is fixed at 1 Hz, and the maximum step angle is 1360 μrad. When the drive voltage is less than 20 V, the simplified inchworm piezoelectric actuator cannot operate stably, so its operating resolution is 25 μrad. Contrary to the above, when the drive frequency is increased from 0 Hz to 200 Hz, the rotor step angle decreases rapidly. After 200 Hz, the rotor step angle stabilizes near a small value.
\nSimplified inchworm piezoelectric actuator by Li et al. [
How to obtain multi-DOF motion within a compact size is always the pursuing interest for researchers of the actuator field. Generally, same single-DOF actuators are assembled in series to achieve the so called multi-DOF motion, which brings the large structure size and assemble problems. With the help of integral flexure structure, Li et al. firstly proposed the 2-DOF inchworm piezoelectric actuator which could achieve both rotary and linear motions with a compact size, as is shown in Figure 7 [20]. The structure of the proposed 2-DOF actuator is composed of a stator and a slider. The stator and slider are subdivided into upper, middle and lower layers. Four right-angle flexure hinges acting as torsion springs are used to overlap the upper and middle layers of the stator. The linear displacement of the positioning platform relies on four flexure hinges to connect the middle and lower layers of the stator. Moreover, according to the characteristics of PZTs that can be driven by linear motion and rotational motion, four linear driving PZTs and one rotary driving PZT are respectively arranged on the upper and lower layers of the stator. As for the slider, each layer is fixed with a single clamping PZT. Using 65Mn as the material of the stator and slider to obtain higher elasticity, the device needs to be vacuum heat treated.
\nGraphic model of the 2-DOF inchworm piezoelectric actuator [
The positioning platform can realize linear movement and rotational movement according to different numbers of piezoelectric ceramics, placement positions and flexible hinges. For the rotary motion, the proposed actuator operates stably under a driving voltage of 100 V to 6 V. In the case that the driving voltage is reduced from 100 V to 6 V, the rotation angle of 10 steps decreases. This result may be that the degree of PZT expansion is directly proportional to the input voltage. In addition, with the lowering of the driving voltage, the amplitude of the first-order oscillation decreases from 28.20μrad to 3.75μrad. During the down-regulation process, it is found that the step displacement of the platform is shortened and the fluctuation amplitude is larger. The platform cannot work stably when the driving voltage is lower than 6 V. According to the total rotation angle of 4.52μrad, 20 steps, the minimum step angle is 0.23μrad. It indicates that this inchworm positioning platform has good performance under constant driving frequency and driving voltage. Under the condition of controlling the driving frequency, the speed increases with the increase of the driving voltage. When
For the linear motion, the designed inchworm actuator works continuously under a constant driving voltage of 10 V to 100 V. Under the driving voltage
As shown in Table 1, three types of inchworm actuators all obtain large output force/torque and stroke, high resolution. Previous studies indicate that all types are able to realize the output force/torque of several to dozen newton/newton metre. The resolution scales of them all attain micrometer/microradian and based on its working principle, repeating the displacement output under the periodic signal, their stroke are all very large. Linear inchworm actuator is able to attain a high speed of 30 mm/min and rotary inchworm actuator achieves a high speed of 6508.5 μrad/s while Multi-DOF inchworm actuator is slower. To achieve the aim of multi-DOF, the structure of Multi-DOF inchworm actuator is also more complicated with a slower response.
\nType | \nStructure | \nMotion type | \nOutput speed | \nOutput force/torque | \nStroke | \n
---|---|---|---|---|---|
Linear | \nSimple | \nLinear | \nLarge | \nLarge | \nLarge | \n
Rotary | \nMedium | \nRotary | \nLarge | \nLarge | \nLarge | \n
Multi-DOF | \nComplicated | \nMulti-DOF | \nMedium | \nLarge | \nLarge | \n
Characteristics comparison of different inchworm actuators.
Over the past years, the inchworm actuator has been widely applied in some commercial areas. High resolution is one of the most significant advantages of the inchworm actuator. Therefore, ultra-precision manufacturing technology, precision focusing system and micro-robot obtains wide range use of inchworm actuator as their actuation sources [21, 22]. When coupled with large output force/torque, the inchworm actuator is also widely used in medical engineering areas like drug delivery, cell manipulation, lab on a chip [23, 24]. Compared with other piezoelectric actuators, the advantage of long stroke also employs inchworm actuator in precision position platform [25].
\nOne of the significant shortcomings of inchworm type piezoelectric is the complex structure which brings trouble for the manufacture and control. Figure 8 shows the structure of the proposed simplified piezoelectric actuator based on the parasitic movement of the flexure mechanism by Li et al. [26]. With the help of the parasitic movement of the flexure mechanism, only two piezoelectric elements are needed. It is mainly composed of the base, the slider, piezo-stack 1, piezo-stack 2, flexure mechanism 1, flexure mechanism 2, two wedge blocks, four micrometer knobs and eight screws. Piezo-stack 1 (AE0505D16, 5 × 5 × 20 mm, NEC/TOKIN CORPORATION) is inserted into the flexure mechanism 1 through the wedge block to push the linear slider. The assembly process of the piezoelectric stack 2 and the flexure mechanism 2 are the same. The high-precision four-micron knob (M6 from SHSIWI) is utilized to adjust the preloading force between the flexure mechanism and the slider. The slider is a commercial linear guide with high linearity produced by THK. The flexure mechanism is made of aluminum alloy AL7075 manufactured by WEDM. Screws are applied to stably assemble all components on the base. The overall size of the proposed stepping piezoelectric actuator is 100 mm × 60 mm × 18 mm.
\nStructure of the proposed simplified piezoelectric actuator and motion principle [
Two piezoelectric “legs” are required to alternately drive the slider, and this is why they are sometimes called “walking” type piezoelectric actuators. In addition, for traditional “walking” type piezoelectric actuator, in each piezoelectric “leg”, at least two piezoelectric elements are required (one for flexure movement and one for longitudinal movement). The movement principle of the stepping piezoelectric actuator is the “circular movement” of the piezoelectric “legs”. In short, each piezoelectric “leg” should achieve two movements in
In the proposed study by Li et al., the parasitic movement of the flexure mechanism is applied to simplify the entire system. Generally, the piezo-stack could only achieve the one motion in its longitudinal direction. Whereas, as shown in Figure 8(b), with the aid of the asymmetrical flexure mechanism, the piezo-stack will generate an oblique upward force, which causes the motion displacement in both
For most of the inchworm type piezoelectric actuators, three input signals are necessary for one driving unit and two clamping units, which make the control system also complicated. In order to simplify the control system, Gao et al. proposed one novel piezoelectric inchworm actuator which uses a DC motor to drive the permanent magnet for alternate clamping, applies a laser beam sensor to detect the position of the permanent magnet and generates an excitation signal to drive the piezoelectric stack [27]. The actuator only needs a DC signal to drive and can adjust the frequency by changing the motor speed. The movement mechanism of the actuator is emphatically discussed, and the influence of the permanent magnet structure on the clamp is studied. The flexibility matrix method and COMSOL finite element software are used to simulate and analyze the flexure hinge. The driving signal for the piezoelectric stack is generated by self-sensing and automatically adapts to the frequency change, which simplifies the control signal of the inchworm actuator. The use of the magnetic clamping unit solves the serious friction and wear problems of the current clamping method of piezoelectric inchworm actuators. In addition, the driving unit and clamping unit of the proposed piezoelectric inchworm actuator are tested experimentally. The experimental results confirm the feasibility of the proposed scheme and obtained relevant optimized structural parameters.
\nThe overall structure of the proposed actuator, as shown in Figure 9, is mainly composed of a sensing unit, a driving unit and a clamping unit. As shown in Figure 9(a), the clamping unit is mainly composed of a DC motor, a motor base, a permanent magnet after magnetization (RPM, red), a permanent magnet before magnetization (NRPM, blue), bearings and a bearing housing. As shown in Figure 9(b), the sensing unit includes a cam, a laser beam sensor (OLS) and a bracket. The driving unit includes a flexible hinge mechanism with integrated piezoelectric stack (AE0505D16, NEC/TOKIN CORPORATION), a wedge-shaped adjusting mechanism (built-in a pair of wedges and a pre-tightening bolt) and a slider, as shown in Figure 9(c). The designed slider can slide in the sliding groove of the flexible hinge mechanism. Two clamping modules and cams are fixed at the end of the output shaft of the DC motor, and each clamping module is assembled by a radially polarized permanent magnet RPM and a non-radially polarized permanent magnet NRPM. The piezoelectric stack is preloaded by the wedge-shaped adjusting mechanism and nested in the installation slot of the flexible hinge mechanism. The laser beam sensor is supported by two brackets and generates an excitation signal by detecting the position of the cam. In addition, the support block, the DC motor and the bearing are assembled on the base with eight bolts.
\nStructure of the actuator by Gao et al.: (a) sensing unit; (b) sensing unit; (c) driving unit [
The proposed inchworm actuator by Gao et al. utilizes a DC motor to drive the permanent magnet for rotating to achieve alternate clamping. The actuator does not need to input the driving voltage signal of the piezoelectric stack. It only senses the position of the permanent magnet through the laser beam sensor, and generates an excitation signal to drive the piezoelectric stack to achieve precise linear displacement output. Its working principle is shown in Figure 10. Work performance of the proposed actuator was studied carefully. For the important component of the driving unit, the “Z” type flexure hinge, the flexibility matrix method is used to perform theoretical calculations. The error between the simulation results and the theoretical calculation results is about 2.13%, indicating the accuracy of the calculation; for the magnetic clamping unit, when the clamping distance is 1 mm, the magnetic clamping unit has better clamping capability. The experimental results show that the actuator has a good linear displacement. When
Working principle of the inchworm piezoelectric actuator with simplified control system by Gao et al. [
The inchworm type piezoelectric drive device can not only obtain large output stroke, but also ensure high output accuracy and load-carrying capacity, which is favored by many scholars. The research of Inchworm piezoelectric driving device has its own characteristics at home and abroad, which provides a favorable technical basis for the development and application of piezoelectric precision drive technology. Besides the above future directions, the existing inchworm piezoelectric actuator is still in the stage of empirical design and test, lacking of relevant theoretical model guidance, and there are problems of empirical design and repeated attempts. Therefore, it is necessary to establish the dynamic model of the inchworm piezoelectric actuator to guide the design and research of the inchworm piezoelectric drive device. In addition, the miniaturization is always the hot point for piezoelectric actuators which could leads to the real application in many research and industrial fields.
\nRisaku et al. have developed a large stroke and high precision inchworm actuator [28] (Figure 11). With the combination of piezoelectric and electrostatic motion principles, the displacement accuracy of each step reaches tens of nanometers, which can be called ultra-high precision. The displacement accuracy is 59 nm/cycle, but the maximum travel distance is only 600 μm, which needs to be improved.
\nMiniaturized inchworm type actuators: (a) by Risaku et al. [
In order to solve the shortcomings that most inchworm type piezoelectric actuators require larger input voltage, Mehmet et al. took the lead in developing a new type of low voltage, largestroke, and large output inchworm actuator based on the micro-electromechanical systems (MEMS) [29]. It mainly applies the principle of electrostatic motion. Through the amplification of the flexible hinge, it achieves a total displacement of ±18 μm and an output force of ±30 μN at a low voltage of 7 V; a displacement of ±35 μm can be achieved at a voltage of 16 V, ±110 μN output force.
\nThe inchworm movement is a high-precision driving method that imitates the movement form of the inchworm in nature to realize the stepping movement of itself or the holding object. Inchworm movement is a kind of stepping movement, which is different from other continuous movement. Its movement can be regarded as a combination of movement and stop in time, but it is also a continuous movement from the perspective of the overall effect of the movement. Inchworm motion can easily achieve large-stroke step-by-step linear motion. Although scholars in various countries have conducted a number of research work on inchworm-type piezoelectric driving devices, most of their research content is linear inchworm driving devices, which involve rotation. There are few reports on the inchworm actuator, and the existing inchworm-type piezoelectric actuator has complex structure control, lacks relevant theoretical model guidance, and has problems of empirical design and repeated attempts. In the future, there is still a lot of work to be solved for the inchworm piezoelectric actuator to promote the real practical use of the inchworm piezoelectric actuator.
\nThis work is supported by the Natural Science Foundation of Zhejiang Province: LY19E050010, LY20E050009, LGF20E050001; General Research Projects of Zhejiang Provincial Department of Education: Y201943038; Zhejiang Provincial Key Research and Development Project of China: 2021C01181.ADDIN EN.REFLISTX.
\nYou have been successfully unsubscribed.
",metaTitle:"Unsubscribe Successful",metaDescription:"You have been successfully unsubscribed.",metaKeywords:null,canonicalURL:"/page/unsubscribe-successful",contentRaw:'[{"type":"htmlEditorComponent","content":""}]'},components:[{type:"htmlEditorComponent",content:""}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5817},{group:"region",caption:"Middle and South America",value:2,count:5282},{group:"region",caption:"Africa",value:3,count:1755},{group:"region",caption:"Asia",value:4,count:10511},{group:"region",caption:"Australia and Oceania",value:5,count:906},{group:"region",caption:"Europe",value:6,count:15915}],offset:12,limit:12,total:119159},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"20"},books:[{type:"book",id:"10672",title:"Nonlinear Optics",subtitle:null,isOpenForSubmission:!0,hash:"cfe87b713a8bee22c19361b86b03d506",slug:null,bookSignature:"Dr. Boris I. Lembrikov",coverURL:"https://cdn.intechopen.com/books/images_new/10672.jpg",editedByType:null,editors:[{id:"2359",title:"Dr.",name:"Boris",surname:"Lembrikov",slug:"boris-lembrikov",fullName:"Boris Lembrikov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10674",title:"Topics on Quantum Information Science",subtitle:null,isOpenForSubmission:!0,hash:"d7481712cff0157cd8f849cba865727d",slug:null,bookSignature:"Prof. Sergio Curilef and Dr. Angel Ricardo Plastino",coverURL:"https://cdn.intechopen.com/books/images_new/10674.jpg",editedByType:null,editors:[{id:"125424",title:"Prof.",name:"Sergio",surname:"Curilef",slug:"sergio-curilef",fullName:"Sergio Curilef"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10852",title:"Electromagnetic Compatibility",subtitle:null,isOpenForSubmission:!0,hash:"f5d2cce3a2adbd5d108d3301ee97025b",slug:null,bookSignature:"Dr. Ahmed Kishk",coverURL:"https://cdn.intechopen.com/books/images_new/10852.jpg",editedByType:null,editors:[{id:"150146",title:"Dr.",name:"Ahmed",surname:"Kishk",slug:"ahmed-kishk",fullName:"Ahmed Kishk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10921",title:"Plasma Science and Technology",subtitle:null,isOpenForSubmission:!0,hash:"c45670ef4b081fd9eebaf911b2b4627b",slug:null,bookSignature:"Dr. Aamir Shahzad",coverURL:"https://cdn.intechopen.com/books/images_new/10921.jpg",editedByType:null,editors:[{id:"288354",title:"Dr.",name:"Aamir",surname:"Shahzad",slug:"aamir-shahzad",fullName:"Aamir Shahzad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10956",title:"Pulsed Lasers",subtitle:null,isOpenForSubmission:!0,hash:"88bd906b149fc3d1c5d6fdbd9916826c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10956.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:27},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:9},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:11},{group:"topic",caption:"Computer and Information Science",value:9,count:9},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:9},{group:"topic",caption:"Engineering",value:11,count:24},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:2},{group:"topic",caption:"Medicine",value:16,count:46},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:5},popularBooks:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8445",title:"Dam Engineering",subtitle:"Recent Advances in Design and Analysis",isOpenForSubmission:!1,hash:"a7e4d2ecbc65d78fa7582e0d2e143906",slug:"dam-engineering-recent-advances-in-design-and-analysis",bookSignature:"Zhongzhi Fu and Erich Bauer",coverURL:"https://cdn.intechopen.com/books/images_new/8445.jpg",editors:[{id:"249577",title:"Dr.",name:"Zhongzhi",middleName:null,surname:"Fu",slug:"zhongzhi-fu",fullName:"Zhongzhi Fu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8937",title:"Soil Moisture Importance",subtitle:null,isOpenForSubmission:!1,hash:"3951728ace7f135451d66b72e9908b47",slug:"soil-moisture-importance",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",editors:[{id:"313528",title:"Associate Prof.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8158",title:"Veganism",subtitle:"a Fashion Trend or Food as a Medicine",isOpenForSubmission:!1,hash:"d8e51fc25a379e5b92a270addbb4351d",slug:"veganism-a-fashion-trend-or-food-as-a-medicine",bookSignature:"Miljana Z. Jovandaric",coverURL:"https://cdn.intechopen.com/books/images_new/8158.jpg",editors:[{id:"268043",title:"Dr.",name:"Miljana Z.",middleName:"Z",surname:"Jovandaric",slug:"miljana-z.-jovandaric",fullName:"Miljana Z. Jovandaric"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5314},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8445",title:"Dam Engineering",subtitle:"Recent Advances in Design and Analysis",isOpenForSubmission:!1,hash:"a7e4d2ecbc65d78fa7582e0d2e143906",slug:"dam-engineering-recent-advances-in-design-and-analysis",bookSignature:"Zhongzhi Fu and Erich Bauer",coverURL:"https://cdn.intechopen.com/books/images_new/8445.jpg",editors:[{id:"249577",title:"Dr.",name:"Zhongzhi",middleName:null,surname:"Fu",slug:"zhongzhi-fu",fullName:"Zhongzhi Fu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8937",title:"Soil Moisture Importance",subtitle:null,isOpenForSubmission:!1,hash:"3951728ace7f135451d66b72e9908b47",slug:"soil-moisture-importance",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",editors:[{id:"313528",title:"Associate Prof.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9536",title:"Education at the Intersection of Globalization and Technology",subtitle:null,isOpenForSubmission:!1,hash:"0cf6891060eb438d975d250e8b127ed6",slug:"education-at-the-intersection-of-globalization-and-technology",bookSignature:"Sharon Waller, Lee Waller, Vongai Mpofu and Mercy Kurebwa",coverURL:"https://cdn.intechopen.com/books/images_new/9536.jpg",editedByType:"Edited by",editors:[{id:"263302",title:"Dr.",name:"Sharon",middleName:null,surname:"Waller",slug:"sharon-waller",fullName:"Sharon Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editedByType:"Edited by",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editedByType:"Edited by",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9524",title:"Organ Donation and Transplantation",subtitle:null,isOpenForSubmission:!1,hash:"6ef47e03cd4e6476946fc28ca51de825",slug:"organ-donation-and-transplantation",bookSignature:"Vassil Mihaylov",coverURL:"https://cdn.intechopen.com/books/images_new/9524.jpg",editedByType:"Edited by",editors:[{id:"313113",title:"Associate Prof.",name:"Vassil",middleName:null,surname:"Mihaylov",slug:"vassil-mihaylov",fullName:"Vassil Mihaylov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9280",title:"Underwater Work",subtitle:null,isOpenForSubmission:!1,hash:"647b4270d937deae4a82f5702d1959ec",slug:"underwater-work",bookSignature:"Sérgio António Neves Lousada",coverURL:"https://cdn.intechopen.com/books/images_new/9280.jpg",editedByType:"Edited by",editors:[{id:"248645",title:"Dr.",name:"Sérgio António",middleName:null,surname:"Neves Lousada",slug:"sergio-antonio-neves-lousada",fullName:"Sérgio António Neves Lousada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editedByType:"Edited by",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8158",title:"Veganism",subtitle:"a Fashion Trend or Food as a Medicine",isOpenForSubmission:!1,hash:"d8e51fc25a379e5b92a270addbb4351d",slug:"veganism-a-fashion-trend-or-food-as-a-medicine",bookSignature:"Miljana Z. Jovandaric",coverURL:"https://cdn.intechopen.com/books/images_new/8158.jpg",editedByType:"Edited by",editors:[{id:"268043",title:"Dr.",name:"Miljana Z.",middleName:"Z",surname:"Jovandaric",slug:"miljana-z.-jovandaric",fullName:"Miljana Z. Jovandaric"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"165",title:"Geometry & Topology",slug:"geometry-and-topology",parent:{title:"Mathematics",slug:"mathematics"},numberOfBooks:3,numberOfAuthorsAndEditors:23,numberOfWosCitations:11,numberOfCrossrefCitations:7,numberOfDimensionsCitations:10,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"geometry-and-topology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7342",title:"Manifolds II",subtitle:"Theory and Applications",isOpenForSubmission:!1,hash:"97f5bd89a6e5006ea10d90df5a6df5a5",slug:"manifolds-ii-theory-and-applications",bookSignature:"Paul Bracken",coverURL:"https://cdn.intechopen.com/books/images_new/7342.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5488",title:"Manifolds",subtitle:"Current Research Areas",isOpenForSubmission:!1,hash:"e1193790ca2c8027d4ffc6911dd24365",slug:"manifolds-current-research-areas",bookSignature:"Paul Bracken",coverURL:"https://cdn.intechopen.com/books/images_new/5488.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:3,mostCitedChapters:[{id:"52886",doi:"10.5772/65903",title:"Head Pose Estimation via Manifold Learning",slug:"head-pose-estimation-via-manifold-learning",totalDownloads:1328,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"manifolds-current-research-areas",title:"Manifolds",fullTitle:"Manifolds - Current Research Areas"},signatures:"Chao Wang, Yuanhao Guo and Xubo Song",authors:[{id:"190308",title:"Dr.",name:"Chao",middleName:null,surname:"Wang",slug:"chao-wang",fullName:"Chao Wang"},{id:"190461",title:"Prof.",name:"Xubo",middleName:null,surname:"Song",slug:"xubo-song",fullName:"Xubo Song"},{id:"191562",title:"MSc.",name:"Yuanhao",middleName:null,surname:"Guo",slug:"yuanhao-guo",fullName:"Yuanhao Guo"}]},{id:"63130",doi:"10.5772/intechopen.79989",title:"Manifold Learning in Medical Imaging",slug:"manifold-learning-in-medical-imaging",totalDownloads:544,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"manifolds-ii-theory-and-applications",title:"Manifolds II",fullTitle:"Manifolds II - Theory and Applications"},signatures:"Samuel Kadoury",authors:null},{id:"53713",doi:"10.5772/67008",title:"An Intrinsic Characterization of Bonnet Surfaces Based on a Closed Differential Ideal",slug:"an-intrinsic-characterization-of-bonnet-surfaces-based-on-a-closed-differential-ideal",totalDownloads:997,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"manifolds-current-research-areas",title:"Manifolds",fullTitle:"Manifolds - Current Research Areas"},signatures:"Paul Bracken",authors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}]}],mostDownloadedChaptersLast30Days:[{id:"52886",title:"Head Pose Estimation via Manifold Learning",slug:"head-pose-estimation-via-manifold-learning",totalDownloads:1331,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"manifolds-current-research-areas",title:"Manifolds",fullTitle:"Manifolds - Current Research Areas"},signatures:"Chao Wang, Yuanhao Guo and Xubo Song",authors:[{id:"190308",title:"Dr.",name:"Chao",middleName:null,surname:"Wang",slug:"chao-wang",fullName:"Chao Wang"},{id:"190461",title:"Prof.",name:"Xubo",middleName:null,surname:"Song",slug:"xubo-song",fullName:"Xubo Song"},{id:"191562",title:"MSc.",name:"Yuanhao",middleName:null,surname:"Guo",slug:"yuanhao-guo",fullName:"Yuanhao Guo"}]},{id:"53492",title:"Mutiple Hopf Bifurcation on Center Manifold",slug:"mutiple-hopf-bifurcation-on-center-manifold",totalDownloads:1317,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"manifolds-current-research-areas",title:"Manifolds",fullTitle:"Manifolds - Current Research Areas"},signatures:"Qinlong Wang, Bo Sang and Wentao Huang",authors:[{id:"191996",title:"Dr.",name:"Qinlong",middleName:null,surname:"Wang",slug:"qinlong-wang",fullName:"Qinlong Wang"},{id:"195099",title:"Dr.",name:"Bo",middleName:null,surname:"Sang",slug:"bo-sang",fullName:"Bo Sang"},{id:"195100",title:"Prof.",name:"Wentao",middleName:null,surname:"Huang",slug:"wentao-huang",fullName:"Wentao Huang"}]},{id:"52596",title:"Symplectic Manifolds: Gromov-Witten Invariants on Symplectic and Almost Contact Metric Manifolds",slug:"symplectic-manifolds-gromov-witten-invariants-on-symplectic-and-almost-contact-metric-manifolds",totalDownloads:1035,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"manifolds-current-research-areas",title:"Manifolds",fullTitle:"Manifolds - Current Research Areas"},signatures:"Yong Seung Cho",authors:[{id:"62522",title:"Prof.",name:"Yong Seung",middleName:null,surname:"Cho",slug:"yong-seung-cho",fullName:"Yong Seung Cho"}]},{id:"53109",title:"A Fusion Scheme of Local Manifold Learning Methods",slug:"a-fusion-scheme-of-local-manifold-learning-methods",totalDownloads:1207,totalCrossrefCites:1,totalDimensionsCites:0,book:{slug:"manifolds-current-research-areas",title:"Manifolds",fullTitle:"Manifolds - Current Research Areas"},signatures:"Xianglei Xing, Kejun Wang and Weixing Feng",authors:[{id:"30150",title:"Prof.",name:"Kejun",middleName:null,surname:"Wang",slug:"kejun-wang",fullName:"Kejun Wang"},{id:"191016",title:"Dr.",name:"Xianglei",middleName:null,surname:"Xing",slug:"xianglei-xing",fullName:"Xianglei Xing"},{id:"196253",title:"Prof.",name:"Weixing",middleName:null,surname:"Feng",slug:"weixing-feng",fullName:"Weixing Feng"}]},{id:"53552",title:"Sub-Manifolds of a Riemannian Manifold",slug:"sub-manifolds-of-a-riemannian-manifold",totalDownloads:1238,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"manifolds-current-research-areas",title:"Manifolds",fullTitle:"Manifolds - Current Research Areas"},signatures:"Mehmet Atçeken, Ümit Yıldırım and Süleyman Dirik",authors:[{id:"191326",title:"Prof.",name:"Mehmet",middleName:null,surname:"Atceken",slug:"mehmet-atceken",fullName:"Mehmet Atceken"},{id:"196148",title:"Dr.",name:"Umit",middleName:null,surname:"Yildirim",slug:"umit-yildirim",fullName:"Umit Yildirim"}]},{id:"63130",title:"Manifold Learning in Medical Imaging",slug:"manifold-learning-in-medical-imaging",totalDownloads:544,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"manifolds-ii-theory-and-applications",title:"Manifolds II",fullTitle:"Manifolds II - Theory and Applications"},signatures:"Samuel Kadoury",authors:null},{id:"63626",title:"On Conformal Anti-Invariant Submersions Whose Total Manifolds Are Locally Product Riemannian",slug:"on-conformal-anti-invariant-submersions-whose-total-manifolds-are-locally-product-riemannian",totalDownloads:384,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"manifolds-ii-theory-and-applications",title:"Manifolds II",fullTitle:"Manifolds II - Theory and Applications"},signatures:"Mehmet Akif Akyol",authors:null},{id:"65349",title:"The Generalized Weierstrass System in Three-Dimensional Euclidean Space",slug:"the-generalized-weierstrass-system-in-three-dimensional-euclidean-space",totalDownloads:434,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"manifolds-ii-theory-and-applications",title:"Manifolds II",fullTitle:"Manifolds II - Theory and Applications"},signatures:"Paul Bracken",authors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}]},{id:"63611",title:"Manifold-Based Robot Motion Generation",slug:"manifold-based-robot-motion-generation",totalDownloads:413,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"manifolds-ii-theory-and-applications",title:"Manifolds II",fullTitle:"Manifolds II - Theory and Applications"},signatures:"Yuichi Kobayashi",authors:null},{id:"53712",title:"Spectral Theory of Operators on Manifolds",slug:"spectral-theory-of-operators-on-manifolds",totalDownloads:1242,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"manifolds-current-research-areas",title:"Manifolds",fullTitle:"Manifolds - Current Research Areas"},signatures:"Paul Bracken",authors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}]}],onlineFirstChaptersFilter:{topicSlug:"geometry-and-topology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/47505/michael-bergman",hash:"",query:{},params:{id:"47505",slug:"michael-bergman"},fullPath:"/profiles/47505/michael-bergman",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()