Perovskites material is in the spotlight as photovoltaic device due to their optical and physical properties. In a short period of time, this organic-inorganic pevskite can achieve about energy conversion efficiencies of 25.6% by anti-solvent and spin-coating based process. In addition, ambipolar carrier transport properties of perovskite materials open up new directions for the high-efficiency thin-film solar cells. Despite its attractive properties in solar cell application, concerned about device stability and the use of lead compounds (APbX3, A = a cation X = halide) with toxicity cause the potential risk for the human body and environment issue. Therefore, the use of a new classed strucutral materials with intrinsic stability and beneficial optoelectronic properties can be considered as a start of the next chapter in pervoksite device. This chapter is structured into two major parts: In section 1, we introduce more stable class of perovskite, A2SnX6, where Sn is in the 4+ oxidation state. A detailed discussion on the ramifications of material structure and chemistry-related challenges is presented for solution processing, along with careful characterization. In section 2, we talk about the direction of development for perovksite materials to be a next chapter of energy source for a green mobility.
Part of the book: Recent Advances in Multifunctional Perovskite Materials