Real-world systems, such as physical and living systems, are generally subject to vibrations that can affect their long-term integrity and safety. Thus, the determination of the law that governs the evolution of the oscillatory quantity has become a major topic in modern engineering design. The process often leads to solving nonlinear differential equations. However, one can admit that the main objective of the theory of differential equations to obtain explicit solutions is far from being carried out. If we know how to solve linear systems, the case of systems of nonlinear differential equations is not in general solved. Isochronous nonlinear systems have therefore received particular attention. This chapter is devoted to presenting some recent developments and advances in the theory of isochronous oscillations of nonlinear systems. The harmonic oscillator as a prototype of isochronous systems is investigated to state some useful definitions (section 2), and the existence of second-order isochronous nonlinear systems having explicit elementary first integrals with an exact sinusoidal solution and higher-order autonomous nonlinear systems that reproduce the dynamics of the harmonic oscillator is proven (section 3). Finally, higher-order nonautonomous nonlinear systems that can exhibit isochronous oscillations are shown (section 4), and a conclusion for the chapter is presented.
Part of the book: Nonlinear Systems