The chapter describes the characterisation and application of nickel cubic boron nitride (Ni-CBN) coatings using the electroless nickel co-deposition method. Two different types of substrates were used, that is, high-speed steel (HSS) and carbide. The characterisation of Ni-CBN coating was conducted using Field Emission Scanning Electron Microscope (FESEM) JSM-7800F coupled with Energy-Dispersive X-ray (EDX). As for the application, coated end mill cutting tools were inserted into DMU 50 CNC machine to conduct the machining testing. Cutting speed, feed rate, and depth of cut were chosen for the Taguchi L9 3-level factors. Taguchi analysis was employed to determine the optimal parameters for the Ni-CBN (HSS) surface finish. The ANOVA evaluation was used to identify the most significant effect on surface finish parameters. The FESEM images prove that the nano-CBN powders were embedded in the Ni-CBN coatings and are uniformly distributed. The findings show Ni-CBN-coated tool life is 195 minutes compared to the uncoated is 143 minutes. The surface roughness, Ra values using Ni-CBN-coated tools ranges between 0.251 and 0.787 μm, whereas the uncoated tools Ra values between 0.42 and 1.154 μm. It can be concluded that Ni-CBN HSS cutting tools reduce tool wear and extend tool life. The Taguchi optimum machining condition obtained is 1860 RPM spindle speed, 334 mm/min feed rate, and 2 mm depth of cut.
Part of the book: Characteristics and Applications of Boron