Gas Composition in the plasma and the corresponding properties of the as- deposited films. Pressure 1 Torr, substrate temperature 450°C, thickness 80nm.
\r\n\t
",isbn:"978-1-80355-841-7",printIsbn:"978-1-80355-840-0",pdfIsbn:"978-1-80355-842-4",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,hash:"c8bc6f25678ec6a696adb8003e937432",bookSignature:"Dr. Wei Wu, Ms. Qiuqin Tang, Prof. Panagiotis Tsikouras, Prof. Werner Rath and Prof. Georg-Friedrich Von Tempelhoff",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11280.jpg",keywords:"Ultrasound, Biochemical Screening, Amniocentesis, Fetoscopy, Karyotype, Molecular DNA Testing, Congenital Malformation, Birth Defects, Biomarker, Protein, Prenatal Diagnosis, Prenatal Screening",numberOfDownloads:267,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 2nd 2021",dateEndSecondStepPublish:"February 23rd 2022",dateEndThirdStepPublish:"April 24th 2022",dateEndFourthStepPublish:"July 13th 2022",dateEndFifthStepPublish:"September 11th 2022",remainingDaysToSecondStep:"3 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"A pioneering researcher in reproductive medicine, appointed associate department chair of Department of Toxicology, Nanjing Medical University, Society of Toxicology full member and holder of eleven registered patents. Dr. Wei Wu has received awards from many national societies for the originality and quality of his projects. He has authored 70 peer-reviewed papers in international journals.",coeditorOneBiosketch:"A pioneering researcher in obstetrics and holder of three registered patents. Dr. Qiuqin Tang's research interests include genetic and epigenetic risk factors of reproductive and developmental health. She has authored over 20 papers in international journals.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"178661",title:"Dr.",name:"Wei",middleName:null,surname:"Wu",slug:"wei-wu",fullName:"Wei Wu",profilePictureURL:"https://mts.intechopen.com/storage/users/178661/images/system/178661.jpeg",biography:"Dr. Wei Wu is an associate professor and associate department\nchair in the Department of Toxicology, Nanjing Medical University, China, where he received his Ph.D. in Toxicology in 2012.\nHe was a guest researcher at the National Institute of Environmental Health Sciences (NIEHS) between 2017 and 2018. Dr.\nWu is a member of different national and international societies\nin the fields of human reproduction and toxicology and has\nreceived awards from many national societies for the originality and quality of his\nprojects. Dr. Wu has authored seventy-three peer-reviewed papers in international\njournals. He has edited four books and collaborated on ten others as well as seventeen patents and in the organization of three international conferences. He is a\nreviewer for ninety-eight journals.",institutionString:"Nanjing Medical University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"Nanjing Medical University",institutionURL:null,country:{name:"China"}}}],coeditorOne:{id:"184798",title:"Ms.",name:"Qiuqin",middleName:null,surname:"Tang",slug:"qiuqin-tang",fullName:"Qiuqin Tang",profilePictureURL:"https://mts.intechopen.com/storage/users/184798/images/13334_n.jpg",biography:"Qiuqin Tang is an attending doctor of The Women’s Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital). Her research interests include genetic and epigenetic risk factors of reproductive and developmental health. She has authored over 20 papers in international journals such as EBioMedicine, Clinical Epigenetics, Molecular Human Reproduction, Scientific Reports, and European Journal of Endocrinology. She has collaborated in four books and three patents. She is the Editor-in-Chief of Journal of Woman\\'s Reproductive Health, and editor of many other journals including Journal of Gynecology and Obstetrics, and Journal of Gynecology and Obstetrics Forecast.",institutionString:"Nanjing Medical University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Nanjing Medical University",institutionURL:null,country:{name:"China"}}},coeditorTwo:{id:"48837",title:"Prof.",name:"Panagiotis",middleName:null,surname:"Tsikouras",slug:"panagiotis-tsikouras",fullName:"Panagiotis Tsikouras",profilePictureURL:"https://mts.intechopen.com/storage/users/48837/images/system/48837.jpg",biography:"Dr. Panagiotis Tsikouras is a specialist in obstetrics-gynecology,\nperinatal medicine, and contraception at the School of Medicine,\nDemocritus University of Thrace, Greece. He is also the headmaster of the Family Planning Centre and Gynecological Cytology\nLaboratory at the same university. Dr. Tsikouras is a fellow of the\nInternational Academy of Clinical and Applied Thrombosis/Hemostasis. His scientific activities focus on paediatric and adolescence medicine, gynecological oncology, high-risk pregnancies. He is a reviewer for several international journals and has numerous scientific publications to his credit, including papers and book chapters. He has also contributed to international and national guidelines on coagulation and thrombosis in obstetrics-gynecology.",institutionString:"Democritus University of Thrace, Komotini",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"11",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Democritus University of Thrace",institutionURL:null,country:{name:"Greece"}}},coeditorThree:{id:"290374",title:"Prof.",name:"Werner",middleName:null,surname:"Rath",slug:"werner-rath",fullName:"Werner Rath",profilePictureURL:"https://mts.intechopen.com/storage/users/290374/images/system/290374.jpg",biography:"Dr. Werner Rath is a specialist in obstetrics and gynecology, gynecologic oncology, perinatal medicine, and hemostaseology. He\nis currently a professor in the Gynecology and Obstetrics Faculty\nof Medicine, University of Kiel, Germany, and honorary doctor\nat the Democritus University of Thrace, Alexandroupoli University Hospital He previously served as chief of the Department\nof Gynecology and Obstetrics at University Hospital RWTH Aachen,\nGermany. Dr. Rath is a reviewer for numerous journals and chief editor of Geburtshilfe und Frauenheilkunde (GebFra). He has several publications, including thirteen\nbook chapters, to his credit.",institutionString:"Kiel University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Kiel University",institutionURL:null,country:{name:"Germany"}}},coeditorFour:{id:"299669",title:"Prof.",name:"Georg-Friedrich",middleName:null,surname:"Von Tempelhoff",slug:"georg-friedrich-von-tempelhoff",fullName:"Georg-Friedrich Von Tempelhoff",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:"St. Vinzenz Krankenhaus",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:[{id:"79159",title:"Open Fetal Surgery and Fetoscopic Repair in Spina Bifida and Myelomeningocele in Romania",slug:"open-fetal-surgery-and-fetoscopic-repair-in-spina-bifida-and-myelomeningocele-in-romania",totalDownloads:61,totalCrossrefCites:0,authors:[null]},{id:"79947",title:"Endoscopic Approach to Ectopic Pregnancy",slug:"endoscopic-approach-to-ectopic-pregnancy",totalDownloads:59,totalCrossrefCites:0,authors:[null]},{id:"80212",title:"Diagnosis of Ectopic Pregnancy",slug:"diagnosis-of-ectopic-pregnancy",totalDownloads:74,totalCrossrefCites:0,authors:[null]},{id:"80756",title:"Medical Management of Ectopic Pregnancy",slug:"medical-management-of-ectopic-pregnancy",totalDownloads:32,totalCrossrefCites:0,authors:[null]},{id:"81269",title:"Fetal Craniospinal Malformations: Aetiology and Diagnosis",slug:"fetal-craniospinal-malformations-aetiology-and-diagnosis",totalDownloads:13,totalCrossrefCites:0,authors:[null]},{id:"81570",title:"Prenatal Diagnosis of Diaphragmatic Hernia",slug:"prenatal-diagnosis-of-diaphragmatic-hernia",totalDownloads:15,totalCrossrefCites:0,authors:[null]},{id:"81868",title:"Prenatal Diagnosis: The Main Advances in the Application of Identification of Biomarkers Based on Multi-Omics",slug:"prenatal-diagnosis-the-main-advances-in-the-application-of-identification-of-biomarkers-based-on-mul",totalDownloads:0,totalCrossrefCites:0,authors:[null]},{id:"81273",title:"Ectopic Pregnancy after Ipsilateral Salpingectomy",slug:"ectopic-pregnancy-after-ipsilateral-salpingectomy",totalDownloads:13,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"278926",firstName:"Ivana",lastName:"Barac",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/278926/images/8058_n.jpg",email:"ivana.b@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6295",title:"Pregnancy and Birth Outcomes",subtitle:null,isOpenForSubmission:!1,hash:"fc1274517f5c0c09b0a923b3027f3d8a",slug:"pregnancy-and-birth-outcomes",bookSignature:"Wei Wu",coverURL:"https://cdn.intechopen.com/books/images_new/6295.jpg",editedByType:"Edited by",editors:[{id:"178661",title:"Dr.",name:"Wei",surname:"Wu",slug:"wei-wu",fullName:"Wei Wu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10724",title:"Male Reproductive Anatomy",subtitle:null,isOpenForSubmission:!1,hash:"a3fdda3194735da4287e9ea193beb07e",slug:"male-reproductive-anatomy",bookSignature:"Wei Wu",coverURL:"https://cdn.intechopen.com/books/images_new/10724.jpg",editedByType:"Edited by",editors:[{id:"178661",title:"Dr.",name:"Wei",surname:"Wu",slug:"wei-wu",fullName:"Wei Wu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10464",title:"Oxytocin and Health",subtitle:null,isOpenForSubmission:!1,hash:"77ae1cfbfdab58a8d50b657502c9fc11",slug:"oxytocin-and-health",bookSignature:"Wei Wu and Ifigenia Kostoglou-Athanassiou",coverURL:"https://cdn.intechopen.com/books/images_new/10464.jpg",editedByType:"Edited by",editors:[{id:"178661",title:"Dr.",name:"Wei",surname:"Wu",slug:"wei-wu",fullName:"Wei Wu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7931",title:"Male Reproductive Health",subtitle:null,isOpenForSubmission:!1,hash:"5754baea5de6a634c66bae12a33d52d9",slug:"male-reproductive-health",bookSignature:"Wei Wu, Francesco Ziglioli and Umberto Maestroni",coverURL:"https://cdn.intechopen.com/books/images_new/7931.jpg",editedByType:"Edited by",editors:[{id:"178661",title:"Dr.",name:"Wei",surname:"Wu",slug:"wei-wu",fullName:"Wei Wu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9500",title:"Recent Advances in Bone Tumours and Osteoarthritis",subtitle:null,isOpenForSubmission:!1,hash:"ea4ec0d6ee01b88e264178886e3210ed",slug:"recent-advances-in-bone-tumours-and-osteoarthritis",bookSignature:"Hiran Amarasekera",coverURL:"https://cdn.intechopen.com/books/images_new/9500.jpg",editedByType:"Edited by",editors:[{id:"67634",title:"Dr.",name:"Hiran",surname:"Amarasekera",slug:"hiran-amarasekera",fullName:"Hiran Amarasekera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"39149",title:"Fabrication of Crystalline Silicon Solar Cell with Emitter Diffusion, SiNx Surface Passivation and Screen Printing of Electrode",doi:"10.5772/51065",slug:"fabrication-of-crystalline-silicon-solar-cell-with-emitter-diffusion-sinx-surface-passivation-and-sc",body:'\n\t\tThe amount of solar energy incident on the earth surface every second (1650 TW) is higher than the combined power consumption by using oil, fossil fuel, and other sources of energy by the entire world community (< 20 TW) in 2005. The solar photovoltaic power generation are ever increasing in capacity, yet at a lower scale. Thus there is a scope of further use of solar energy to produce more electricity. For this purpose a demand for a large scale commercial production of solar cells have emerged. There is a large variety of solar cell structures proposed with various types of materials, of which p-type c-Si solar cell has been one of the most popular and widely used in commercial production with screen printing technique.
\n\t\t\tLooking back to the history of solar cell, one can find that, in 1839 Becquerel observed a light dependant voltage between two electrodes, that were immersed in an electrolyte. In 1941, first silicon based solar cell was demonstrated and 1954 is the beginning of modern solar cell research. Since then there has been several proposals for solar cell design, that can lead to various photovoltaic (PV) conversion efficiencies (η) of the solar cells. A conventional Si solar cell gives 14.7% PV efficiency[1], whereas other designs, for example, back surface field (BSF) 15.5% [2], rear local contact (RLC) solar cell efficiency ~20%, as reported by NREL. However these values are not the theoretical or experimental limit, and there is a continuous effort in improving the efficiency.
\n\t\t\tThe c-Si solar cells fabricated on the high quality silicon wafers, having selective emitter on the front and local contact on the rear surface [3] shows higher η, but the required additional measures to be taken for the production of such solar cells may substantially increase the production cost.
\n\t\t\tPresently the cost of the silicon wafer alone covers >20% of the total cost of solar cell production, so there may be a technology available in future, by which a large scale production of silicon solar cells from a thin wafer ( < 200μm) will be possible
\n\t\tThe fabrication of our c-Si solar cell starts with a 300μm thick, (100) oriented Czochralski Si (or Cz-Si) wafer. The wafers generally have micrometer sized surface damages, that needs to be removed. After the damage removal, the wafer surface shows high optical reflectivity, for which an anti-reflection coating (ARC) is necessary. Furthermore, the top surface was textured by chemical etching before an ARC was deposited.
\n\t\t\tFor a p-type c-Si substrate, an n-type top layer while for an n-type c-Si substrate a p-type top layer acts as emitter. A thermal diffusion is commonly used for emitter diffusion [4]. After the emitter diffusion, the edge isolation was carried out, as otherwise the top and the bottom surfaces of the wafers remain electrically shorted.
\n\t\t\tA suitable thin dielectric coating at the front and back of the wafers were given to passivate surface defects. As the wafer becomes covered with a dielectric layer, an electrical connection to the cell becomes necessary. Ag and Al metal electrodes were formed by using screen printing of Al pastes and co-firing at a suitable temperature.
\n\t\t\tIn order to remove the organic contaminants from the c-Si wafer surfaces, we used 12% NaOCl solution and cleaned the wafers ultrasonically at room temperature (RT) for five minutes. This cleans the wafer surface with an approximate Si etching rate of 500nm/min [5]. The surface damages to the wafers were removed through isotropic etching with a concentrated solution of NaOH in de-ionized water (DI-W). DI-W helps the NaOH to break in Na+ and OH- ions in the solution. An 8% NaOH solution, at 80°C temperature for about 7 minutes of etching removes the surface damages. This saw damage removal step, etches out about 5 micro meter Si from wafer surface. After that the wafers were rinsed in HCl(10%) for 1 min, DI-W for 1 min, HF(10%) for 1 min, DI-W for 1 min.
\n\t\t\tAnisotropic chemical etching of Si (100) oriented wafers give rise to textured surface. The characteristics of the etching depends upon, time of etching, etching rate, temperature, components of the solution and its concentration. With a dilute NaOH solution containing iso-propyl alcohol (IPA) and DI-W, the Si(100) oriented smooth wafers can grow pyramidal surface texture at 80°C temperature [6]. The surface texturing was performed by asymmetric etching of front surface of the wafers, in a dilute alkaline solution, as against the concentrated solution used for saw damage removal. The loss in mass of each wafer were estimated from the mass of the wafer measured with a microbalance before and after texturing, which subsequently led to the estimation of the etched thickness of the wafer and hence etch rate. Optical microscopic observations, SEM images, and laser scanning were the tools that were used for the characterization of the textured surface morphology. Ultraviolet visible (UV-Vis) spectrophotometry was used to estimate the retro-reflectivity of the textured surface.
\n\t\t\t\tThe etching depends mainly on two processes. One is the rate of the reaction at the surface, and the other is the rate at which reactants diffuse into the surface. These two processes control the overall rate of the micro structural growth during the etching. The anisotropic etchants is expected to etch (110) plane at a faster rate than the (100) plane while the (111) plane etches at a slowest rate [7]. However if chemical composition of the etchant is such that some insoluble residue is formed during etching process (like oxides etc.) then diffusion of etchant into the Si will be hindered and hence etching will not happen as expected.
\n\t\t\t\tIPA enhances surface diffusion, so a rapid etching can take place in presence of IPA in the solution [8]. The NaOH etches silicon crystal planes differently, mostly because of different atomic concentration in different crystallographic planes. So, at a lower NaOH concentration the selective etching process helps to create textured surface of the wafer. The chemical reaction that takes place is as follows,
\n\t\t\t\tThe sodium silicate (Na2SiO3) is soluble in water and thus Si surface remains devoid of any deposition. At 80oC temperature, (100) planes etch about two orders of magnitude faster than (111) planes [9]. For a (100) silicon wafer, a solution of NaOH, IPA, DI-W creates square based four sided pyramids consisting of sections of (111) planes which form internal angles of 54.7° with the (100) surface.
\n\t\t\t\tThe degree of isotropy is sensitive to the concentration of the solution. While a 8% NaOH solution at 80°C temperature etches silicon isotropically to achieve a polished wafer surface, a 2% NaOH, 8% IPA solution at 80°C temperature etches anisotropically to a square based pyramidal surface texture.
\n\t\t\tThe thermal diffusion of phosphorus is necessary to create an n-type emitter to the p-type wafer. The diffusion depends on various factors, of which temperature and gaseous environment is most important [10]. In oxygen environment and at 850°C temperature, the diffusion coefficient (D) can be approximated as D~0.0013μm2/hr. The phosphorus diffusion leads to formation of n+ type emitter at the top surface of the wafer. The diffusion was carried out in two stages, pre-deposition and drive-in [11-13]. At the pre-deposition stage, liquid POCl3 was evaporated by bubbling N2 gas into the liquid. The POCl3 evaporates and gets deposited at the surface of the wafers. In presence of oxygen, phosphosilicate glass (PSG) is formed at the 850°C temperature. Phosphosilicate glass or PSG is phosphorus doped silicon dioxide, a hard material formed at the top surface of Si wafer. PSG formation rate is about 15nm in 30 minutes.
\n\t\t\t\tAfter that, in the drive-in stage, the wafers were heated at 850°C temperature for 7 mins, 0.3Torr pressure in presence of oxygen, when the P atoms from the n+-type top layer diffuses deeper into the wafer, forming a deeper junction. Details of the reaction is given below
\n\t\t\t\tFor gaseous diffusion with POCl3, the p-type silicon wafers were loaded into a quartz boat, which was slowly moved into the middle of a fused quartz tube in a heated horizontal furnace. The boat, which can hold tens of wafers, was moved slowly into the tube so that the wafers do not suffer large temperature gradients and warping. Furnace temperature for the diffusion was held at about 800°C, with a variation across the length of the boat of not more than 2°C.
\n\t\t\t\tWhen the PSG was deposited in the pre-deposition stage, the dopant profile leads to a shallow junction depth and a high surface concentration. In the drive-in stage, a deeper junction was formed as phosphorus atoms diffuse deeper, thus thicker emitter and a lower surface concentration of dopant was achieved. The junction depth is defined as the depth where the phosphorus and boron concentrations are equal (as boron already existed in p-Si wafers).
\n\t\t\t\t\n\t\t\t\t\tTable 1 shows details of P-diffusion process. A shorter pre-deposition of only 7 minutes at 850°C and a drive-in of about 20 min at 850°C temperature, shows good result. It is to be noted that, a relatively deeper junction and the dead layer near the top wafer surface degrade blue response of solar cells. The PSG was removed by washing the wafer in a 10% HF solution for one minute.
\n\t\t\t\tThe heated quartz tube, used for pre-deposition and drive-in, were periodically cleaned with HCl vapor in an N2 stream.
\n\t\t\t\tA typical condition for phosphorus diffusion used in this study, using POCl3 vapor as a source gas, here ‘lpm’ stands for liter per minutes.
The edge isolation was carried out after screep printing of acid barrier paste as a mask, by the reactive ion etching [14-15]. However, it can also be performed by wet etching [16-17] with HF, HNO3 and CH3COOH acidic solution in the 1:3:1 volume ratio. Then the wafers were dipped into the acid solution for 1.5 – 2 minutes, after which the stack was rinsed in DI-W. Then the wafers were thoroughly rinsed with DI-W for five minutes and later spin dried to make it ready for silicon nitride film deposition.
\n\t\t\tLight reflection as well as electronic defects at the front surface are undesirable, that needs to be minimized. The hydrogenated SiNx layer also acts as a high quality silicon surface passivator [18]. It has been observed that, more than 35% of the incident light gets reflected back from a bare silicon surface, and a significant amount of incident light reflects from the silicon surface even after surface texturing. For a single layer ARC, the wavelength (λ0) at which the anti-reflection is most effective at normal incidence, can be expressed as: λ0 = 4μl dl, where μl and dl are refractive index, and thickness of the ARC respectively. The reflectance R of the top surface of a solar cell is given by : R = [(μl\n\t\t\t\t\t2 –μoμ2 ) / (μ1\n\t\t\t\t\t2 + μ0μ2)] 2, where μo and μ2 are the refractive indices of the medium above the ARC and that of the substrate below the ARC, respectively. For zero reflectance, i.e. R = 0, it gives: μl = (μoμ2) ½. At λ = 550 nm, the desired thickness of silicon nitride film with μ1 = 1.96 would be 700 Å, taking air (μ = 1) as ambient above the cells [19]. The thicknesses and refractive indices of the SiNx films prepared by PECVD under different gas flow ratios were characterized by Spectroscopic Ellipsometry.
\n\t\t\t\tThe parameters for the SiNx depositions were: chamber pressure 0.6 Torr, deposition temperature 300°C, RF power density 0.08 W cm-2 at a 13.56 MHz frequency, silane (SiH4) and ammonia (NH3) source gases, deposition time 4 minutes, with deposition rate of 3 Å/s. The Si atom of SiNx mostly comes from silane source gas in RF PECVD process, following the reaction, 3 SiH4 + 4NH3 → Si3N4 + 12H2.
\n\t\t\t\tSiNx can also be deposited on Si surface through forming gas annealing at a higher temperature. Forming gas is a mixture of hydrogen (H2) and nitrogen (N2), that were obtained by dissociating ammonia (NH3) at high temperature. In this case the Si atom of SiNx come from the surface atoms of Si wafer. However, due to higher process temperature, this method was avoided, as a higher process temperature may alter distribution of phosphorus atoms and hence the junction depth.
\n\t\t\t\tThe recombination rate (Us) at the surface, with surface recombination velocity (S), is related to excess concentration of minority carriers (∆ns) at the surface. Us ≡ S ∆ ns. Therefore, the recombination can be minimized by a reduction of minority carrier type at the surface. Using high-low junction n+pp+ structure the minority carriers at the surface can be reduced [20]. This technology, known as back surface field (BSF), is widely used at the rear surface of solar cells. Another method is the field effect passivation. The fixed charges in a passivation layer repel the minority carriers or the extremely large fixed charges bend the energy band, resulting in an inverting layer at the surface.
\n\t\t\t\tThe effective lifetime of charge carrier can reflect total effect of bulk and surface recombination. For the p-type silicon wafer of thickness W and diffusion coefficient of electron Dn, having front and back surfaces equally passivated, the effective lifetime ( τeff) can be expressed as
\n\t\t\t\tand
\n\t\t\t\twhere τb is minority carrier lifetime at the back surface. By combining the two cases, the effective lifetime can be calculated by using above equations with about 5 % deviation from the exact solution [21]
\n\t\t\t\tIf the parameters, such as bulk lifetime of silicon (Π), wafer thickness, and diffusion co-efficient of electron are considered to be constant, the measure of effective lifetime gives the direct measure of S. As the S is an indicator of surface passivation, the measured τeff can also be used as an indicator of the quality of surface passivation in silicon substrate.
\n\t\t\tIn order to reduce the production cost of the photovoltaic solar cell, metallization was realized by screen-printing of metal paste on the SiNx coating, followed by a co-firing. Another competing technology for solar cell production is buried-contact technology, that involves laser grooving and metal plating, which is a bit complex procedure, time consuming and may result in a significantly high number of faulty solar cells, because of small imperfection in metallizations, a kind of imperfection that does not make screen printed solar cells faulty.
\n\t\t\t\tScreen-printing (SP) is cost effective, robust, simple, inexpensive, and fast method of metallization of the solar cells [22-23]. It can also be easily automated with a high throughput (exceeding about 1,000 wafers per hour). This technique has been widely used for solar cell fabrication since the early 1970s.
\n\t\t\t\tFor selective emitter formation at the back, etchant material was screen printed before screen printing the metal paste. During the co-firing process the necessary electronic connection of the cell layers with the electrodes were formed. We used the Ferro- 53-102 aluminum paste and Ferro-33-462 as Ag paste.
\n\t\t\t\tBaking of the screen printed wafers were carried out immediately after each printing step in a separate conveyor belt furnace at 150°C. A burn-out process removes the organic binders from the paste and it was carried out between 350 ~ 510°C.
\n\t\t\t\tThe thickness of the Al over the entire back surface of the cell was maintained almost uniform with a variation of ± 2 μm. Wafer bowing is a problem with full Al printing at the back of the wafer, that was minimized to a level below 0.5 mm due to the use the low bow, lead free paste and a thicker wafer (300μm). Bowing happens mainly due to difference in the thermal expansion coefficients of Si and Al pastes (αSi = 7.6 K-1, αAl = 23.8 K-1) and can be avoided by the local back contact (LBC) approach. For the application of this LBC technique in industrial production, an addition step of Ag / Al printing in a pattern of two wide bus bars on the back surface was introduced in order to make back metal contact solderable during the module making process. Despite the simplicity and technical advantages of this process for making fully covered back metal contact and surface passivation through back surface field (BSF) in a single shot, the emerging trend of using thinner wafers to meet the challenges posed by depleting silicon feedstock may put this process at stake.
\n\t\t\t\tA problem of Aluminum ball formation was observed during the co-firing process, that was mostly eliminated by flowing sufficient oxygen during the co-firing and also by applying a rapid cooling approach at the end of co-firing.
\n\t\t\t\tMetallization is a very important step for device fabrication because it strongly affects performance of the solar cell on its short circuit current density (Jsc), open circuit voltage (Voc), series resistance (Rs), shunt resistance (Rsh), and fill factor (FF). At the front surface the metallization creates electrical connection to thin n+ layer that is covered with SiNx. At the back surface it provides an electrical connection and at the same time it creates a p+ layer. A glass frit present in the Ag paste makes a superior metallization through SiNx film. However, optimization of the co-firing process is critical in obtaining desired metal contact. The peak temperature and ramp-up rate during the co-firing process are crucial along with the belt speed that determines residual time of the wafers to various temperature zones. A cylindrical process zone has different local temperature setting and the belt carries the Si wafers at a certain speed. The grid pattern of the front electrode has a significant influence on Rs and FF, that demands optimization of co-firing process. With an increase in the sheet resistance (Rsheet) of the emitters, Voc decreases, however Jsc increases, which may be because of the improvement of blue-response, more light entering the solar cell active region and the reduction of recombination in the front surface. At a faster co-firing condition BSF layers and Ohmic front contacts can preferably be established, because the Rsheet of emitters may remain nearly unchanged. We observed a Voc of around 622mV and FF of 80.6% by Suns-Voc measurement.
\n\t\t\t\tSuns-Voc measurement is a method of estimating open circuit voltage from decay characteristics of photo generated charge carriers. This method is generally adopted when physical dimension of solar cell is different from its standard cell structure. Using the result, we obtain an optimized co-firing process.
\n\t\t\t\t\n\t\t\t\t\tFig 1 shows important components of screen printing. The screen is made up of an interwoven mesh kept at a high tension, with an organic emulsion layer defining the printing pattern. Fig. 1(a) shows a microscopic image of the screen. Printing pattern of the front metal contact with optimized dimensions (finger width, finger spacing, busbar width, maximum defined finger length) was developed in the form of a computer- aided – design (CAD) as shown in Fig. 1(b). The screen printer is equipped with optical vision system for proper alignment. The co-firing was carried out in a conveyor belt furnace (Sierratherm).
\n\t\t\t\ta) Microscopic image of the screen used in SP. (b) Design of the front metal printing pattern for the single c-Si wafer of size 125mm × 125mm (pseudo square).
Rear surface of solar cells were screen printed with Aluminum paste (Ferro- 53-102). The thickness of the printed metal was maintained 20μm, with a variation of ±2μm. The average gain in mass of the wafer after back printing and drying was ~ 6 mg /cm2.
\n\t\t\t\tCo-firing of printed metal paste was followed in three major steps, baking, burn- out, and sintering. Baking refers to the process of evaporating solvents of the pastes to avoid the gas bubbling and cracks formation during the high temperature treatment. The baking is carried out immediately after each metal printing step in a separate conveyor belt furnace at 150oC. Burn- out process removes the organic binders from the paste and it was carried out at 350-510oC.
\n\t\t\t\t\tThe temperature profile for the co-firing cycle can be decided on the basis of the studies of Kim et. al [24]. With improper temperature and the belt speed settings of the co-firing, the metal electrodes can penetrate across the p-n junction, as schematically shown in Fig. 2, thus making the cell unusable.
\n\t\t\t\t\tThe belt furnace used in this system was equipped with the facility to observe and adjust the actual front and back surface temperatures of the wafer by real time measurement, with two different thermocouples. As suggested in ref [24], we tested the co-firing with different temperatures of front and back surface. However, such a temperature difference may lead to bending of the wafer. So we prefer keeping the temperature of both the surfaces as equal. Proper Ohmic contact formation on the front and Al-Si alloying at back surface for proper BSF generation are the two significant accomplishments of this single shot method.
\n\t\t\t\t\tP-N junction of a typical solar cell with Ag metallization on front surface showing the possible cases of shunting through the p-n junction during co-firing as well as good sintering.
The co-firing was carried out in the condition of sufficient dry and filtered air flow into the furnace. It is one of the most sensitive steps of the solar cell fabrication. Any non-uniformity in surface cleaning, texturing, doping, or even ARC can have detrimental effect on the performance of the fabricated cells as well, especially in industrial process. If co-firing is done at a temperature below optimum temperature profile, it results in high series resistance and hence low FF due to poor Ohmic front contact and poor BSF, whereas over – co-firing at a higher temperature profile may result in junction shunting and degradation in surface and bulk passivation. Thus, finding an optimum co-firing temperature profile should be always the first priority in the industrial process.
\n\t\t\t\t\tAn advantage of an LBSF compared to the standard full Al-BSF is the lower consumption of expensive printing pastes. In order to accomplish the local back contact in solar cells, many techniques have already been employed. It has been shown that the hybrid buried contact solar cell with photo lithographically defined rear contacts achieves an increase in Voc by 30mV [25] as compared with a standard buried contact cell with conventional aluminum alloyed BSF, which may result in a high rear surface recombination velocity. Koschier et al. [26] also demonstrated a 30 to 40mV increase in open circuit voltage relative to conventional buried contact solar cells using the thyristor structure device on the rear which incorporates a grown p+ layer in localized regions of the passivating oxide. However, both these rear contact schemes require the use of photolithography to remove regions of the oxide to expose the underlying surface for contact, which may not be suitable for large-scale commercial solar cell fabrication processes. Other techniques of creating small area contacts such as laser firing have been demonstrated to be feasible [27].
\n\t\t\t\tRecombination of charge carriers at the rear surface in a solar cell can be suppressed by deposition of a silicon dioxide (SiO2) layer at the back surface, grown in a high-temperature (≥900°C) oxidation process [28-29]. Additionally, the SiO2/Al stack at the rear should act as a reflector for the near band gap photons, that leads to improved light trapping properties and hence the Jsc of the solar cell may improve as well. Thermally grown SiO2 layers are manufactured using a time and energy intensive high temperature process, they may not be a good choice for mass production, although they possibly provide a good thermally stable passivation [30]. Hence, an alternative low temperature surface passivation became necessary for future industrial production of high efficiency Si solar cells, which should have properties comparable to the SiO2 passivated solar cells.
\n\t\t\t\t\tOne way of achieving this is deposition of SiNx layer by PECVD technique. It has been observed that this gives comparably low surface recombination velocity (SRVs) as compared to that with a thermal SiO2 on low resistivity p-type silicon [31-32]. However, conventional studies have mentioned certain limitations of a SiNx layer on p-type substrates [33]. When it was applied to the rear of a PERC (Passivated Emitter and Rear Cell) solar cell, the short circuit current density (Jsc) reduced as compared to a SiO2 passivated cell [34]. This effect has been attributed to the large density of the fixed positive charges in the SiNx layer, inducing an inversion layer in the c-Si near the SiNx layer. A capacitance-voltage (C-V) measurement of SiNx layer having variation of refractive index may demonstrate a part of improvement with Si-rich SiNx thin film. This may be because of field created by positive charges fixed at its surface. It is clear that a positive fixed charge is suitable for the n-type substrate, while a negative fixed charge is suitable for the p-type c-Si wafer substrate.
\n\t\t\t\t\tIn this respect formation of local back contact is a promising technique, where a highly doped p-type local back contact can reduce the potential barrier that charge carriers may face before reaching the metal electrode.
\n\t\t\t\t\tProtection of the back surface of the Si-wafer may be achieved in two possible different ways, one is a complete coverage with Al back contact, and the other is with SiNx anti reflection coating. The problem with full metal coverage with thinner Si wafers is the cracks and lattice defects formed during high temperature co-firing when there is high possibility of wafer bending. Thus partial coverage of the back surface with metal electrode and the rest covered by SiNx ARC surface passivator is a better alternative.
\n\t\t\t\t\tComparison of SEM micrograph of the (a) saw damaged wafer surface, unclean and (b) saw damage removed clean surface of Cz-Si wafer.
The scanning electron microscopic (SEM) surface image of one of the cleaned and surface damage removed wafers is shown in Fig. 3. It shows image of untreated as well as wet chemical etched wafer surface where saw damages have been removed.
\n\t\t\tSince the concentration limit for anisotropic etching of surface texturing is 1.6 to 4 wt.%, the concentration of NaOH (wt. %) in the etchant solution was chosen as 2 wt.%. At a different etching time the resulting surface texture and specular reflection were different. For an etching/texturing time of 25, 30, 35, 40 mins, the average specular reflectivities were 17.2, 17.0, 16.1, 15.1%.
\n\t\t\t\t\n\t\t\t\t\tFig. 4 (a ), (b ), ( c ) and ( d ) shows textured wafers with the four different texturing times and depict the increase in pyramid size with increase in etching time. The average heights of the pyramids on the surface textured for 25, 30, 35, and 40 min were estimated to be ~ 3, 5, 7, and 10 µm, respectively.
\n\t\t\t\tSEM micrographs of the silicon surface textured for (a) 25 min, (b) 30 min, ( c ) 35 min, and (d ) 40 min in and solution containing NaOH ( 2 wt. %) in DI-W water and IPA ( 6 wt. %) at 82°C.
After the texturing, the emitter diffusion and PSG removal were carried out. Then the wafers were rinsed in DI-W and spin dryed. A secondary ion mass spectrometric (SIMS) depth profiling was carried out to measure the emitter junction depth. Fig. 5 shows depth profiling of P atoms observed by (SIMS) into the c-Si wafer. 5×1015 cm-3 seems to be the boron concentration of the p-type wafer, with junction depth of about 300 nm from the top surface.
\n\t\t\t\tVariation of phosphorus (P) concentration with the distance from the emitter surface into the wafer, As observed by SIMS depth profiling.
The diffusion profile can be expressed as a complimentary error function.
\n\t\t\tThere is a trade off between good antireflective property and surface passivation. From high frequency capacitance-voltage (C–V) measurements with metal-insulator-semiconductor (MIS) structure as Al/SiN
60 60 60 60 60 60 | \n\t\t\t\t\t\t\t18 30 45 60 66 75 | \n\t\t\t\t\t\t\t1.8 1.9 2.0 2.1 2.2 2.3 | \n\t\t\t\t\t\t\t2.33 2.86 4.10 4.26 4.05 4.00 | \n\t\t\t\t\t\t
Gas Composition in the plasma and the corresponding properties of the as- deposited films. Pressure 1 Torr, substrate temperature 450°C, thickness 80nm.
300 | \n\t\t\t\t\t\t\t600 | \n\t\t\t\t\t\t\t70.5 | \n\t\t\t\t\t\t\t65.5 | \n\t\t\t\t\t\t
400 | \n\t\t\t\t\t\t\t800 | \n\t\t\t\t\t\t\t69 | \n\t\t\t\t\t\t\t64.5 | \n\t\t\t\t\t\t
500 | \n\t\t\t\t\t\t\t100 | \n\t\t\t\t\t\t\t68.7 | \n\t\t\t\t\t\t\t63.0 | \n\t\t\t\t\t\t
600 | \n\t\t\t\t\t\t\t1200 | \n\t\t\t\t\t\t\t65.5 | \n\t\t\t\t\t\t\t62 | \n\t\t\t\t\t\t
Comparison of emitter sheet resistance before and after the drive in step for the various different gas flow rates, where [O] is O2 flow rate and [POCl3] is POCl3 flow rate in sccm, Rsb is sheet resistance before passivation, Rsa is sheet resistance after passivation.
Carrier lifetime measurement can provide valuable information. We used a μ-PCD system of Semilab (WT-1000) in order to measure the carrier lifetime of the silicon wafers at various stages, with a measurement precision of ± 0.01 μs. A 940 nm wavelength laser pulse was used for generation of the photo carriers, and all the measurements were carried out in automatic parameter setting mode. The minority carrier effective lifetime of the bare wafers were measured first, thereafter (prior to metallization) the measurements of effective lifetime of silicon wafer were carried out.
\n\t\t\t\tDifferent passivating layers such as silicon nitride (SiNx), silicon oxide (SiOx), amorphous silicon (a-Si), microcrystalline silicon (μc-Si), oxidized aluminum nitride (AlON), and oxidized porous silicon (PS) were deposited on the surfaces of the wafers. Minority carrier lifetime was measured at least three different places of each wafer and mean of the results were taken. The results were then compared with the minority carrier effective lifetime of the bare wafer for further analysis.
\n\t\t\t\t\tWe observed that the effective lifetime of each of the wafers increases by ~ 2 μs after cleaning and texturing. This improvement is attributed to the removal of contaminants and structural defects from the silicon surface after cleaning and saw damage removal. A significant improvement in lifetime, from ~ 6 μs to more than 10 μs, was observed after the phosphorus diffusion. This improvement reflects the increase in bulk as well as surface recombination lifetime during phosphorus diffusion. The thermal oxide passivation step after phosphorus diffusion causes further improvement in lifetime of about ~ 3 μs. This improvement can be attributed to the decrease of surface recombination velocity due to the passivation of surface by the thermally grown SiO2 layer. The subsequent process of edge isolation by SF6 plasma causes degradation in the lifetime by ~ 1 μs. Such a degradation is basically due to plasma induced damages, especially near the edges of the wafers that indicates the formation of recombination centers on the surface during the process. A sharp rise in lifetime by ~ 3 μs was observed after deposition of non-stoichiometric TiOx films [39-40]. It is likely that fixed positive charges in these films bend the semiconductor energy bands near the surface of the wafer, which improves the effective surface passivation [41]. A good surface passivation can be achieved by growing a thin thermal SiO2 passivation layer over TiO2 [39,42,43]. The variation in the minority carrier lifetime during the solar cell fabrication, indicates that the surface conditions play a vital role than the bulk of the Cz-Si wafers. During the solar cell fabrication and before metallization there might have been the improvement in the lifetime due to gettering of the impurities from the bulk during phosphorus doping. The SiNx films had a refractive index between 1.90 and 2.13 and a thickness of 65 nm after annealing in the 673-1173 K temperature range. The effective lifetime of the samples became maximum for the samples annealed at 773 K, while the lifetime of almost all samples, covered with as-grown film, showed a minimum value.
\n\t\t\t\t\tThe out-diffusion of hydrogen from the Si-SiNx interface might cause degradation of lifetime of the samples if annealed above 773 K in vacuum. The maximum recorded effective lifetime for the sample passivated with SiNx with a refractive index of 1.94, annealed at 773 K was 55.21 μs whereas a minimum lifetime of 6.3 μs was found for the sample with as-deposited SiNx film with refractive index 1.9.
\n\t\t\t\t\tThe minority carrier lifetime with different passivating films as AlON, Bare Si, Poly Si, μc-Si, SiOx, a-Si, SiNx were 9.6, 10.1, 21.5, 23.6, 43.4, 51.0, 55.2 μs respectively, where all the samples were annealed at 773 K in vacuum.
\n\t\t\t\t\tThe comparison of surface passivation of the electronic grade Cz-Si wafers with the different passivating layers indicates that the SiNx film is superior to other films. In order to identify the appropriate properties and annealing condition of the SiNx films for solar cell application, the effective lifetimes of samples, coated with PECVD grown SiNx film, were measured after annealing at a pressure of ~ 105Pa for ~ 90sec and at temperatures, varying from 500 to 900°C in air ambience of a belt furnace. The minority carrier effective lifetime of the silicon wafers, after the surface passivation with SiNx films and annealed at 500, 600, 700, 800, 900°C results in the lifetime of 42, 43, 85, 115, 64μs respectively. The annealing temperature for optimized carrier lifetime was found to be the same (760°C) as the set temperature of the belt furnace at which c-Si solar cell was earlier optimized for co-firing to ensure good Ohmic contact on the front and back surfaces in conjunction with the proper back surface field ( BSF) generation. Minority-carrier lifetime is a critical parameter for all solar cell designs. If the silicon wafers to be used for the fabrication of solar cell has a low minority carrier lifetime, therefore a short diffusion length, most of the minority carriers cannot be collected, and the solar cell will suffer from low conversion efficiency.
\n\t\t\t\t\tThe results of this study indicate that the proper surface as well as bulk passivation in conjunction with gettering of defects during phosphorus diffusion can lead to a substantial gain in minority carrier effective lifetime of silicon wafers, provided the degradation of wafer surface condition during edge isolation is prevented.
\n\t\t\t\tIn order to optimize the co-firing we defined four different temperature zones in the furnace. We investigated each zone, changed stay time of the wafers in each zone, by varying the belt speed and the temperature of the zones. Emitters were formed with the sheet resistance in the range of 30 to 60Ω/sq. A uniform 80nm thick SiNx layer deposited on the front side served as an anti-reflection coating. Back and front contacts were screen printed on the wafers and baked. The back contacts were screen printed first, using Al paste, and then the wafers were dried at 150°C for 4min in a belt dryer. Then the front contacts were printed with Ag paste and the same post-printing treatment was carried out. Then the wafers were co-fired in a conventional belt-type furnace with four different temperature zones. For the maximization of the Suns-Voc we varied the temperatures T1, T2, T3, and T4 of the four thermal zones. When an optimum temperature distribution was found, we investigated different belt speeds keeping the temperature unchanged. By measuring Suns-Voc, we determine the effect of peak temperature change on the FF and Voc. We measured the co-firing temperatures on the wafers directly in the belt-type furnace with a Datapaq 9000 system, which has a thin, sensitive thermo couple tip and a thermally insulated measuring system pack for recording the firing conditions of a wafer with a thermo couple tip on it. In the first set of experiment, without a front electrode, we varied the temperatures T1, T2, T3, and T4 in the four thermal zones and measured the Suns-Voc.
\n\t\t\t\t\tIn the second set of experiments, we examined the effect of varying only the belt speed 170, 140, 165 and 160 inch per minute (IPM) on the Voc for the same sheet resistance. In this step, we used wafers of 2–4 μm texture, sheet resistance of 35 to 40 Ω/sq. and 80μm width of finger with 2.4mm spacing metallization.
\n\t\t\t\t\tIn the third set of experiments, we investigated the variation in the Voc with the changes in the sheet resistance, as obtained in different drive-in operations. In this step, we used wafers that have 2–4μm texture, sheet resistance of 30, 40, 50, and 60Ohm/sq and 80μm as width of finger with 2.2mm spacing of the metallization. The peak temperature was 759.5°C, the melting duration was 4.5s, and the belt speed was 170 IPM.
\n\t\t\t\t\tIn the fourth set of experiment, we investigated firing conditions that determines sheet resistance, by varying belt speed, and temperature. We found a co-firing process window that resulted in a fill factor greater than 77%. For the metallization of the front side, we used Ferro 33-501 Ag paste with a peak temperature 700°C and a firing time <1–3s.
\n\t\t\t\t\tIn the fifth set of experiment, we examined the relationship between the number of grid lines to the series resistance, fill factor, and shading loss in a single-crystal, 5-inch (125mm X 125mm, 154.83cm2) Czochralski-type solar cell. The grid model, as in ref [44], was used to optimize the grid line design in terms of resistance and shading loss.
\n\t\t\t\t\tIn order to obtain higher Voc by BSF layer, we observed that it is necessary to have the ramp-up rate higher than 70°C/s, that resulted in an average Voc higher than 620mV [45], as shown in Table 4. At a higher ramp-up rate and proper belt speed setting made it possible to get a higher Voc by reducing the deterioration caused by the effects of the thermal stress on the wafer. For further improvement in Voc, a densely packed Al layer or uniformly formed BSF layer created by a high ramp-up rate would also be helpful.
\n\t\t\t\t\tHowever, as the heat increases, micro-cracks in a wafer or bowing of the wafer may occur, leading to an increase in leakage current. Large defects or poor features of a wafer increase the surface recombination and leakage current.
\n\t\t\t\t\tFor sheet resistance of 40, 50, 60Ω/sq, the carrier lifetimes were 14, 14.9, 17.2μs and surface recombination velocities were 660, 480, 425cm/sec respectively. We observed that, as the emitter sheet resistance increases, the carrier lifetime increases with the decrease in surface recombination velocity. To a certain degree, the variation in sheet resistance is dependant upon the surface doping density, which is related to electron mobility and its lifetime in a silicon bulk [46].
\n\t\t\t\t\tBelt Speed (IPM) | \n\t\t\t\t\t\t\t\t170 | \n\t\t\t\t\t\t\t\t140 | \n\t\t\t\t\t\t\t\t165 | \n\t\t\t\t\t\t\t\t160 | \n\t\t\t\t\t\t\t
Temp. Slope (oC/s) | \n\t\t\t\t\t\t\t\t70.82 | \n\t\t\t\t\t\t\t\t64.13 | \n\t\t\t\t\t\t\t\t69.15 | \n\t\t\t\t\t\t\t\t72.8 | \n\t\t\t\t\t\t\t
Peak Temp. (oC) | \n\t\t\t\t\t\t\t\t756.5 | \n\t\t\t\t\t\t\t\t759.5 | \n\t\t\t\t\t\t\t\t765.0 | \n\t\t\t\t\t\t\t\t753.0 | \n\t\t\t\t\t\t\t
Average Voc (mV) | \n\t\t\t\t\t\t\t\t620.3 | \n\t\t\t\t\t\t\t\t617.7 | \n\t\t\t\t\t\t\t\t619.0 | \n\t\t\t\t\t\t\t\t621.7 | \n\t\t\t\t\t\t\t
FF (%) | \n\t\t\t\t\t\t\t\t79.2 | \n\t\t\t\t\t\t\t\t78.9 | \n\t\t\t\t\t\t\t\t78.1 | \n\t\t\t\t\t\t\t\t80.6 | \n\t\t\t\t\t\t\t
High temperature firing specifications.
To investigate the effects of different drive-in operations, we examine the variation in Voc and the Jsc according to the sheet resistance changes. As different drive-in operations for dopant diffusion can lead to changes in sheet resistance. In this step, we used wafers of 24-μm texture, sheet resistance of 30, 40, 50, or 60Ω/sq. and 80 μm width of finger with 2.2 mm spacing shows the Voc as 621, 622, 623, 627mV and Jsc as 34.6, 34.9, 35.0, 35.3mA/cm2 respectively. The peak temperature was 759.5°C, the melting duration was 4.5s, and the belt speed was 170 IPM.
\n\t\t\t\t\tAs the emitter layer becomes thinner the sheet resistance increases, it becomes difficult to fire the electrode to a moderate depths (i.e., near the pn junction). So the higher sheet resistance means thinner emitter and it is more likely to lead to a short circuit of electrodes that penetrate through the emitter. With low sheet resistance (i.e., a heavy doping) by the over-fired sites such a situation is less likely. Fig. 6 shows a safe operating zone for the range of belt speed (Fig. 6(a)) and firing temperature (Fig. 6(b)), it gets narrower as the sheet resistance increases. While the duration of firing was investigated, we found that the shorter the firing time, the more was the minority carriers lifetime. Thus shorter firing time results in increased number of minority carriers and as a result increased Voc. It is known that mobility is dependent on the effective minority carrier lifetime. We also investigated the relationship between the number of fingers and the series resistance, fill factor, and shading loss in a single-crystal, 5inch (125mm×125mm, 154.83cm2) Czochralski-type solar cell. We used two different finger spacings 1.8mm and 2.4mm.
\n\t\t\t\t\tFiring process window from the firing conditions according to the variations of the sheet resistances, the (a) belt speeds and (b) the firing temperatures. Hatched area indicates the range (min.–max.) that has larger than 77% of the fill factor by the combination of variations of the sheet resistances (drive-in operations), the belt speeds and the firing temperatures.
The screen printed and metalized front side shading loss is relatively large, in the range of 8–10% [47]. A grid model suggested in [44] can be used to optimize the grid line design, considering resistance and shading loss. The finger width was as usual 80 μm in the case of the fired Ferro 33-501 Ag paste grid lines. Consequently, the number of grid lines compared to the original grid line design increased by 17. With the new grid line design, the finger spacing decreased from 2.4 to 1.8 mm. This led to a decrease in the total series resistance and an improvement in the fill factor. The design of the metal grid line was essentially a matter of finding the separation between the fingers that resulted in the best compromise between shading losses and resistive ones [48]. The contribution to the series resistance from the diffused sheet was 0.192Ω.cm2 for 2.4mm spacing and 0.108Ω.cm2 for 1.8mm spacing, so that emitter resistance (Re) improved by 0.084Ω.cm2. Each 1Ω.cm2 in series resistance caused a decrease of about 0.041 in the fill factor (assuming a moderately high shunt resistance) [48], the total calculated improvement in fill factor due to the increase in emitter sheet resistance was 0.0078Ω. We also investigated the relation between the variations of Rsheet and spacing for the available range of more than 77% of the fill factor. As shown in Fig. 7, the narrower the spacing, the wider range of Rsheet can give a better solar cell. By shortening the spacing between the grid lines, the series resistance decreased and the FF increased, but the addition of extra fingers caused a 1% increase in shading loss as well as lowering the short circuit current. As a result of these drops, cell efficiency reduced from 17.18% to 16.92%.
\n\t\t\t\t\tThe relation between the sheet resistance with finger spacing for the available range of more than 77% of the fill factor.
\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t||
As-deposited | \n\t\t\t\t\t\t\t\t100 | \n\t\t\t\t\t\t\t\tAs-deposited | \n\t\t\t\t\t\t\t\t110 | \n\t\t\t\t\t\t\t
FGA | \n\t\t\t\t\t\t\t\t125 | \n\t\t\t\t\t\t\t\tFGA | \n\t\t\t\t\t\t\t\t70 | \n\t\t\t\t\t\t\t
Co-firing | \n\t\t\t\t\t\t\t\t180 | \n\t\t\t\t\t\t\t\tCo-firing | \n\t\t\t\t\t\t\t\t165 | \n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t||
As-deposited | \n\t\t\t\t\t\t\t\t205 | \n\t\t\t\t\t\t\t\tAs-deposited | \n\t\t\t\t\t\t\t\t120 | \n\t\t\t\t\t\t\t
FGA | \n\t\t\t\t\t\t\t\t320 | \n\t\t\t\t\t\t\t\tFGA | \n\t\t\t\t\t\t\t\t225 | \n\t\t\t\t\t\t\t
Co-firing | \n\t\t\t\t\t\t\t\t11 | \n\t\t\t\t\t\t\t\tCo-firing | \n\t\t\t\t\t\t\t\t20 | \n\t\t\t\t\t\t\t
Temperature dependence of different passivating films. FGA – forming gas annealing, ONO – silicon -oxide -nitride -oxide.
For the fabrication of local back contact structure with little modification on conventional cell process, adaptation of rear passivating film on c-Si solar cell should address two issues which are
\n\t\t\t\t\ttemperature dependence as shown in Table 5,
grid pattern on rear metallization.
In order to carry out a comparative investigation about the effectiveness of Al-BSF and dielectric passivation on rear surface, solar cells were fabricated with and without dielectric passivation in conjunction with screen printed Al grid pattern with different rear metal covered area. Comparative analysis show that the role of the rear surface passivation with SiNx film becomes dominant when the metal coverage area is below 45% of total surface area. But, as the metal coverage area goes above 45%, the quality of passivation degrades first then starts improving due to the dominating effect of Al BSF over the passivation with SiNx. As the metal coverage area on the rear surface reaches as high as 85%, an improvement in infrared response with net improvement in Isc by ~ 0.16 A has been observed. This indicates that there is dominance of Al-BSF passivation in comparison to the dielectric passivation on the cells fabricated with screen printed local back contact, especially when the rear metal coverage reaches 45% or more but when the metal coverage comes below 45%, the effect of the dielectric passivation becomes dominant.
\n\t\t\t\t\tAll the results suggest that the passivation with dielectric film on the rear surface is a must for local back contact formation by screen printing of Al paste whereas the role of such dielectric passivation becomes significant for Al printed local back contact only if the metal covered area on the rear surface goes below 45%. These results indicate a suitable rear metal covered area for high efficiency thin c-Si solar cells with local back contact in conjunction with dielectric passivation with dielectric film of SiNx and were found to be in accordance with the results obtained by simulation in ref [28].
\n\t\t\t\t\tComparison of the illuminated current-voltage (LIV) characteristics of the cells fabricated with local back contact through the opening in SiNx film on rear surface by varying the peak temperature of the co-firing profile, as indicated with the traces.
825 | \n\t\t\t\t\t\t\t\t12 | \n\t\t\t\t\t\t\t\t67 | \n\t\t\t\t\t\t\t\t11.5 | \n\t\t\t\t\t\t\t\t576.2 | \n\t\t\t\t\t\t\t\t4.40 | \n\t\t\t\t\t\t\t
850 | \n\t\t\t\t\t\t\t\t11 | \n\t\t\t\t\t\t\t\t71 | \n\t\t\t\t\t\t\t\t12.4 | \n\t\t\t\t\t\t\t\t575.6 | \n\t\t\t\t\t\t\t\t4.45 | \n\t\t\t\t\t\t\t
875 | \n\t\t\t\t\t\t\t\t8 | \n\t\t\t\t\t\t\t\t75 | \n\t\t\t\t\t\t\t\t13.0 | \n\t\t\t\t\t\t\t\t576.8 | \n\t\t\t\t\t\t\t\t4.38 | \n\t\t\t\t\t\t\t
890 | \n\t\t\t\t\t\t\t\t24 | \n\t\t\t\t\t\t\t\t60 | \n\t\t\t\t\t\t\t\t10.1 | \n\t\t\t\t\t\t\t\t574.0 | \n\t\t\t\t\t\t\t\t4.35 | \n\t\t\t\t\t\t\t
912 | \n\t\t\t\t\t\t\t\t16 | \n\t\t\t\t\t\t\t\t67 | \n\t\t\t\t\t\t\t\t8.4 | \n\t\t\t\t\t\t\t\t564.5 | \n\t\t\t\t\t\t\t\t3.77 | \n\t\t\t\t\t\t\t
Comparison of the performance parameters of the cells fabricated with local back contact through the opening window on SiNx film on rear surface by varying the peak temperature of the co-firing profile, where Tp is peak firing temperature.
When the cells were co-fired keeping peak temperature below 875°C, the problem of Al bead formation was found to have reduced but the cells were found to have under-fired due to which the series resistance of the cells increased appreciably. The comparison of LIV characteristics of the cells with local back contact through the opening in SiNx film, fabricated by varying the peak co-firing temperature is shown in Fig. 8 and the comparative analysis of the performance parameters of the cells is shown in Table 6. The co-firing profile with peak temperature of 875°C was found to be the best for SiNx passivation layer in terms of performance parameters despite the formation of the Al beads on the rear surface when the cell was co-fired at this temperature.
\n\t\t\t\t\tThe minimum Rs of 8 mΩ and maximum FF of 75% among the cells compared are the evidences of the improved front metal contact without over-heating of Ag finger lines in the case of the cell co-fired with a peak temperature 875°C. The bead formation could be minimized with the increased belt speed keeping peak temperature fixed at 875°C but that test could not be carried out in our system because of the limitation to increase the belt speed beyond 180 IPM.
\n\t\t\t\tProcess sequence of wafer cleaning, saw damage removal and surface texturing of c-Si wafer.
Wafer cleaning for saw damage removal is a fundamental step for c-Si solar cell fabrication. Texturing the top surface of the wafer reduces reflection loss of incident light, as well as increased effective surface area of the wafer for light trapping, light absorption, carrier collection inside the wafer. Surface passivation with silicon nitride layer increases carrier lifetime and further reduces reflectivity of the top surface as it also works as an anti-reflection coating. It also gives protection of the sensitive and thin top n+ layer from environmental degradation. Co-firing at two different temperatures for the top and the bottom surface of the wafer may be necessary as top surface needs lowed co-firing temperature than the bottom one. Because of the thin n+ layer at the top of the cell and thin silicon nitride layer, the Ag top contact may make electrical shorting through the n+/p interface, if co-firing is done at higher temperature. The Al/Ag paste that is used for back contact works for electrical contact as well as p+ doping of Si at the back surface. Al is a group III element in the periodic table so it works as a p-type dopant for Si. After the high temperature co-firing, the Si-Al alloy that is formed at the back of the cell acts as a p+ layer and creates strong back surface field so the photo generated holes are efficiently collected during light illumination.
\n\t\t\t\tProcess flow for doping or emitter diffusion of cleaned and textured wafer. The PSG removal can be carried out after the pre-deposition (as shown above), or it it can be done after the drive in operation. In the latter case the drive-in can be the third step (the PSG removal will be the fourth step), and all other steps remain in order. The emitter diffusion for this latter case has been depicted in
SiNx, ARC deposition on the wafer by RF PECVD.
Out of several approaches to improve the Voc and FF, increasing the ramp-up rate of temperature and setting the belt speed along the heating furnace properly, makes it possible to get a higher Voc. This increase in Voc may be because of reduction in the deterioration due to the effect of thermal stress on the wafer. In presence of excess thermal stress small cracks in the wafer may develop, resulting in a high sheet resistance and low open circuit voltage. Thus optimizing the drive-in condition for low sheet resistance is necessary. The faster belt speed in the co-firing stage, results in higher ramp-up rate for temperature, that greatly enhances Voc. By studying the results of our five sets of experiments, we determined certain approaches for improving the open circuit voltage and fill factor:
\n\t\t\t\tAs the temperature ramp-up rate went higher, we could obtain better uniformity of the BSF layer.
A higher belt speed tends to reduce the overall leakage current of a wafer.
As the emitter sheet resistance increases, the open circuit voltage decreases with the decrease in dopant concentration in the emitter, although the short circuit current is increased, that is attributed to the improvement of the short wavelength response, more light entering the cell active region and to a reduction of recombination in the front surface.
The peak temperature of the wafer was optimized for the shorter the firing time. It results in increased minority carrier density, which in turn increases the open circuit voltage. We investigated the optimal firing conditions for different sheet resistance, temperature, and belt speed, and within the profile window of the firing process, we obtained a high Voc (>620 mV) and fill factor (>77%) for a range of different sheet resistance emitters.
By narrowing the spacing between gridlines, the series resistance and the fill factor of the cell got enhanced.
However, the short circuit current falls because of shadow effect of the metal electrodes. In the case of low series resistance, we can expect to improve the fill factor, while the short circuit current decreased because of the shading loss.
\n\t\t\t\tProcess steps for metallization of the solar cell by screen printing (SP). In our system, the peak temperature was 759.5°C.
Thin silicon wafer is more economical because it consumes less Si material, and results in more efficient solar cell because of higher built in field. Cost of silicon is one of the major expenses in c-Si solar cell production and thus with less consumption of semiconductor mass in the form of thinner wafer, the cost of production can be significantly reduced.
\n\t\t\t\tOne problem that thin wafer may face is bowing during the co-firing process, and hence creation of additional structural defects. Due to unequal thermal expansion of Si and Al back electrode these defects may be created in the wafer. The LBC approach may be more suitable for such cells.
\n\t\t\t\tResistance of screen printed front electrode provides additional element to the series resistance. Each electrode creates a shadow to the cell that reduces total number of electron-hole pair generation under constant illumination. Thus, although decreasing the spacing among the electrodes help reducing series resistance, yet shadow effect leads to reduced total number of electron-hole pair generation. For this, a finger with good conducting material and a high aspect ratio is preferable. Usually glass frit Ag/Al paste is used in the electrode design. If Ag/Al particles in the frit is bigger in size and less dense, and firing temperature profile is not best suited then an insulating layer between Si and Ag/Al electrode may form. This may be avoided by using Ag/Al nano-particles in the paste, with a higher number density of the particles.
\n\t\t\t\tAnother method that has partly been adopted in commercial production is selective emitter design. In this method a local doping pattern is designed before phosphorus doping through diffusion chamber treatment. Ag electrodes at the front surface are fabricated over this so that a highly doped local semiconductor region is formed around the Ag-electrode after high temperature co-firing. In this way a barrier potential at metal semiconductor junction can be reduced. This electrode structure may bring the screen printed solar cell technology close to buried contact solar cell with one additional process step.
\n\t\t\tAcute Kidney Injury is a syndrome that consists of several clinical conditions, due to sudden kidney dysfunction (within a few hours to several days) that causes retention of residual nitrogen (urea-creatinine) and non-nitrogenous metabolism, with or without oligouria, and is affected by some underlying disease. The most common causes of AKI in patients with critical illness are sepsis and septic shock, accounting for more than 50% of AKI cases in the ICU. The incidence of sepsis and AKI in critical patients increases gradually and both shows poor prognosis. In various epidemiological studies, it is said that AKI occurs in 11-60% of sepsis patients, 23% of severe sepsis patients and 51 – 64% in septic shock patients [1, 2]. Sepsis is one of the causes of Acute Kidney Injury (AKI) in critically ill patients treated in the ICU known as Sepsis-Associated AKI (SA-AKI). The morbidity and mortality rate of SA-AKI is still quite high even though the development of supportive care technology has progressed. A good understanding of SA-AKI is expected to increase alertness and make appropriate decisions in initiating management so as to provide better outcomes for patients with SA-AKI in the ICU.
By definition, Sepsis is a life-threatening condition of organ dysfunction due to an uncontrolled body’s response to a systemic infection. Meanwhile, septic shock is part of sepsis with higher mortality characterized by hypotension requiring vasoactive therapy to maintain an average arterial pressure of at least 65 mmHg and serum lactate above 2 mmol/L despite adequate fluid resuscitation with a mortality rate of>40% [2]. Organ dysfunction caused by inflammatory response can be used to distinguish infections with sepsis, using Sequential Organ Failure Assessment (SOFA) scoring where a minimum of 2 points is the most recent associated with a mortality rate of 10% [3, 4, 5]. Critically ill patients with sepsis when patients are undergoing treatment in the Intensive Care Unit (ICU) may experience organ failure, especially in the respiratory system (43%) and the renal system (36%) [6, 7].
According to the latest definition, sepsis is characterized by suspicion or evidence of infection plus clinical signs and laboratory findings that indicate organ dysfunction (based on the SOFA/Sequential Organ Failure Assessment score) due to an immune response to the infection. The heart, liver, lungs and kidneys are organs that are often affected during this process [2]. For a longtime sepsis has been known as a cause of morbidity and mortality; the consensually agreed upon definition of sepsis has only been around for the last few decades [3]. The first consensual definition defined sepsis as a continuous physiological and serological disorder that causes progressive organ failure.
The consensual definition of Sepsis-3 is the response to the limitations of the old definition, where SIRS and severe sepsis are removed. Sepsis is defined as life-threatening organ dysfunction due to the body’s uncontrolled response to infection. Organ dysfunction can be identified by a condition of acute changes associated with infection with at least 2 points on a Sequential Organ Failure Assessment (SOFA score), increasing the mortality rate by 10% [2]. The determination of the sepsis diagnosis in patients with infection can use the quick SOFA score, where two of the three criteria can meet the criteria of sepsis. Meanwhile, septic shock is sepsis with hypotension that requires a vasopressor to maintain a minimum MAP of 65 mmHg and serum lactate above 2 mmol/L despite adequate fluid resuscitation; this condition has a mortality rate of 40% [4]. Based on the European Society of Intensive Care Medicine and the Society of Critical Care Medicine’s Third International Consensus Definition for Sepsis and Septic Shock in 2016, sepsis is defined as life-threatening organ dysfunction caused by dysregulation of the body’s response to infection. So, the criteria for sepsis must also include the three elements, namely, infection, body response and organ dysfunction. The criterion for the diagnosis of sepsis is established through a SOFA (Sequential/Sepsis-related Organ Failure Assessment) score ≥ 2 [5].
Given the significantly high mortality rates, AKI as one of the most frequent complications of sepsis is considered an important issue in clinical practice and especially for hospitalized patients treated in the ICU. This may be due to the limited understanding of the pathogenesis of SA-AKI sepsis, the lack of ability to assess kidney function in early diagnosis of AKI, and the absence of specific treatments other than supportive care [3].
AKI is characterized by a sudden decline in kidney function for several hours to days, resulting in the accumulation of creatinine, urea and other waste products. The latest definition was formulated in the consensus of Kidney Disease: Improving Global Outcome (KDIGO) in 2012, where the AKI was established if it met the criteria: an increase in serum creatinine levels ≥0.3 mg/dL (26.5 μmol/L) within 48 hours, an increase in serum creatinine at least 1.5 times the baseline value within the previous 7 days, or urine volume ≤ 0.5 ml/kg body weight for 6 hours [6].
The initial definition of AKI was the result of the international consensus of the Acute Dialysis Quality Initiative (ADQI) in 2004 that produced RIFLE (Risk, Injury, Failure, Loss, End stage Kidney disease) criteria based on an assessment of increased serum creatinine, decreased Glumerular Filtration Rate (GFR) urine production, loss if AKI lasts >4 weeks and end stage Kidney disease if AKI continues >3 months [7]. Then in 2007, the Acute Kidney Injury Network (AKIN), an international nephrological network or community in the USA and Europe, issued a more specific measure on RIFLE criteria focusing on the condition of the injury, i.e. Risk, Injury, and Failure were changed into stages (stage 1, stage 2, stage 3); Loss and end stage Kidney disease was eliminated; and an increase in serum creatinine of 0.3 mg/dL within 48 hours was added [8].
In 2012, the KDIGO issued clinical guidelines for the management of AKI and made a classification of AKI by combining RIFLE and AKIN criteria. This KDIGO-based classification defines AKI based on an increase in serum creatinine of 0.3 mg/dL within 48 hours or an increase of 1.5 x serum creatinine from baseline or urine production <0.5 ml/kg/hour for 6-12 hours. Baseline serum creatinine is the examination value obtained in the last 7 days. KDIGO also introduced the definition of Acute Kidney Disease (AKD), where an increase in serum creatinine >7 days and < 3 months. This condition occurs due to injury to the kidney and it can also occur slowly, different from AKI with a significant decrease in kidney function occurring within 7 days after the cause of injury to the kidney [9].
In patients who meet both the criteria for sepsis and AKI, it is called SA-AKI [10, 11]. Sepsis can be associated with >50% of AKI cases, and > 60% of sepsis patients can experience AKI. SA-AKI can also be interpreted as AKI which is caused or worsened by sepsis, so that it can be classified as a different condition in AKI which is usually caused by nephrotoxic regimens and ischemic conditions. The inflammatory response is more prominent in SA-AKI compared to nephrotoxic and ischemic AKI [12, 13]. SA-AKI is a clinical syndrome due to acute damage to organ function and damage. It is related to long-term adverse outcomes depending on the severity of the underlying organ damage. In general, SA-AKI should be considered a syndrome, characterized by fulfilling the criteria for sepsis and AKI [6].
Acute Kidney Injury (AKI) is a syndrome with a broad spectrum of etiology and various mechanisms; ischemia/hypoxia, nephrotoxics and inflammation play a role in the development of AKI. Among the various etiologies of AKI, sepsis is one of the main causes of AKI in the ICU. According to various reported data, 45-70% of all AKI cases are related to sepsis [8]. Among ICU patients in general, the incidence of AKI varies from 6–67% depending on the study population. The incidence of SA-AKI in patients treated in ICU varies from 13–78% depending on the severity of sepsis and the AKI criteria used. In patients with critical illness with AKI, as many as 20-67% also suffer from sepsis, severe sepsis or sepsis shock. Research conducted by Angus and others on 192,980 patients with severe sepsis from seven states in the United States found that AKI occurred in 22% of sepsis patients with a mortality rate of 38.2%. Whereas in the cohort study conducted by The Sepsis Occuring in Acutely Ill Patients (SOAP) on 3,147 patients treated in 198 ICUs throughout Europe, 37% of patients had sepsis and AKI occurred in 51% of them with a mortality rate in ICU of 41%. The FINNAKI study of 2,901 critically ill patients treated in ICU in Finland found that among 918 patients with severe sepsis, 53% met the KDIGO criteria for AKI [6].
SA-AKI is associated with a higher risk of death and mortality in hospitals. If the MMR has an overall mortality rate of 45%, the mortality rate of SA-AKI is much higher, which is above 70%. Bagshaw and others in their study found that mortality rates from SA-AKI cases in hospitals and intensive care units/ICUs had increased by 30% and 20% respectively, but it was also suggested that the severity of AKI had a positive correlation with morbidity and mortality rates of ICU patients, the higher the severity of AKI, the higher the mortality rate. Population at high risk for SA-AKI are elderly patients, females, and those with the presence of comorbidities such as diabetes mellitus, chronic kidney failure, congestive heart failure and malignancy. Sources of infection and side effects from treatment also contribute to risk factors for SA-AKI such as intra-abdominal infections, urosepsis, endocarditis and bloodstream infections [14, 15].
Acute Kidney Injury (AKI) is a syndrome with a broad spectrum of etiology. Based on the mechanism of the cause, AKI can be divided into pre-renal, renal, and post-renal AKI.
The cause of pre-renal AKI is renal hypoperfusion, due to hypovolemia or a decrease in effective circulation volume, such as in the case of sepsis and heart failure, and intrarenal haemodynamic disorders, such as the use of non-steroidal anti-inflammatory drugs.
Renal AKI is caused by abnormalities in the vascular or tubular components of the kidney directly, such as vasculitis, malignant hypertension, acute glomerular nephritis, interstitial nephritis, nephrotoxic substances, etc., causing intrarenal vasoconstriction, ischemia and decreased renal filtration rate.
Post renal AKI is usually caused by intrarenal and extra renal obstruction problems that interfere with kidney blood flow [14].
The pathophysiology of the SA-AKI is not yet fully known, and so far it has only been known from the results of studies on animal models that may be of relevance only to specific conditions in humans. From studies in animals and humans, SA-AKI occurs due to an excessive inflammatory response that causes injury to the kidneys, injury to the tubular tight junction, cell cycle arrest, cellular apoptosis and others [4].
The immune response to sepsis will cause microcirculation dysfunction (in tubular and glomerular capillaries) due to the proinflammatory response resulting in injury to endothelial cells. Vascular permiability will increase and there will be a decrease in endothelial Nitric Oxide Synthase (eNOS) activity, which functions to inhibit platelet aggregation and leukocyte activation. Meanwhile, induction of Nitric Oxyde Synthase (iNOS), which works otherwise, will increase its activity. This condition will cause ischemia and hypoxia. Inflammatory reactions will also cause a cycle cell arrest and apoptosis as a form of protection so that the damage is not widespread. As a result of ischemic and hypoxia, cells will lack energy so that the mitochondria work abnormally, causing injury to the mitochondria, so that injury to the kidneys continues and kidney function will be disrupted.
In sepsis the pathophysiological process of AKI can be caused by the following process:
Ischemic vasodilation, causing a decrease in Renal Blood Flow (pre renal AKI) due to an increase in Nitrides Oxyde induced by iNOS.
Endothelial leakage, causing edema and increased renal interstitial hydrostatic pressure (glomerulus and tubules), thereby reducing kidney filtration.
Nephrosis of the nephron due to the release of neutralizing agents triggered by the release of mediators in sepsis (the formation of ROS or the ischemic process itself causes necrosis of the nephron).
Capillary microtrombus due to coagulopathy and platelet leukocyte activation in the kidney endothelium.
Sepsis and AKI can each increase morbidity and mortality, length of stay, and treatment costs, so early detection of SA-AKI is very important to be able to intervene earlier and provide better outcomes for patients. Especially for AKI, given the definition and classification generated from the consensus, it can actually be easier to diagnose AKI by the method of assessing the increase in serum creatinine and urine production. However, this method has limitations, where changes in serum creatinine run slowly and assessment of urine production is usually only routinely done in the ICU. Therefore, several bio-markers have begun to be investigated to be able to detect SA-AKI earlier. Biomarkers can be categorized into two groups: 1. Assessment of renal function, 2. Detection of injury to kidney cells. Biomarkers for detecting SA-AKI include: Cystatin C (Cys-C), Neutrophil Gelatinase-Associated Lipocalin (NGAL), Kidney Injury Molecule-1 (KIM-1), Interleukin-18 (IL-18), Liver Type Fatty Acid -Binding (L-FABP), soluble-triggering receptor Expressed on Myeloid cells-1 (sTREM-1) and Activating Transcriptional Factor-3 (ATF-3). The sensitivity and specificity of the biomarkers varies depending on the time of measurement and the type of sample used. In general, biomarkers from blood (serum) are lower in sensitivity compared to biomarkers from urine samples [16, 17].
Neutrophil Gelatinase-Associated Lipocalin (NGAL) is currently the chosen biomarker in AKI cases, because it can be a biomarker for proximal tubular function and for kidney injury. Below (Table 1) are some biomarker studies that assess the time, sensitivity and specificity of several biomarkers derived from serum and urine to detect SA-AKI from the last few years.
Time | AUROC | Threshold value | Sensitivity | Specificity | References | |
---|---|---|---|---|---|---|
NGAL (ng/mL) | 12 hours after septic shock | 0.86 | >68 | 0.71 | 1.0 | Martensson et al. |
Cys-C (mg/L) | 8 hours after patients have been treated | 0.86 | 0.106 | 0.85 | 0.80 | Aydogdu et al. |
NGAL (ng/mL) | 7 hours after onset of sepsis | 0.86 | 402 | 0.89 | 0.74 | Fan et al. |
NGAL (ng/mL) | 24 hours after patients have been treated | 0.78 | 350 | 0.75 | 0.82 | Matsa et al. |
NGAL (ng/mL) | 12 hours after septic shock | 0.67 | >120 | 0.83 | 0.50 | Martensson et al. |
Cys-C (mg/L) | 8 hours after patients have been treated | 0.82 | 1.5 | 0.73 | 0.68 | Aydogdu et al. |
NGAL (ng/mL) | 24 hours after patients have been treated | 0.88 | 400 | 0.79 | 0.75 | Matsa et al. |
Research with NGAL and Cys-C biomarkers.
NGAL: Neutrophil Gelatinase-Associated Lipocalin.
Cys-C: Cystatine C.
From the above mention, it can be shown that both NGAL and Cyst C measurements from urine have higher sensitivity and specificity than serum and both of them can be detected earlier than creatinine. It can be also detected as urine biomarkers.
Signs and symptoms of sepsis vary not only with regard to organ involvement, but also from one individual to another because of the patient’s special characteristics, vulnerability, and disease. Signs of sepsis reflect the phase of the disease and vary from symptoms confined to the main organ (e.g pneumonia) to severe multi-organ dysfunction syndrome (MODS) and septic shock. Health care workers must be alert for signs of infection, sepsis or septic shock when evaluating patients for kidney failure. Conversely, it is important to frequently monitor kidney function (along with other organ involvement) in patients with documented or suspected sepsis.
Clinical studies based on physiological data and some postmortem reports have recently begun to define AKI caused by sepsis and how it differs from other types of kidney injury. Histologically, AKI induced by sepsis is characterized by heterogeneous tubular cell injury with apical vacuolization, but in the absence of tubular necrosis or even extensive apoptosis. All of these features can develop in the context of normal or increased renal blood flow (Renal Blood Flow/RBF) and represent a clinical phenotype characterized by decreased levels of glomerular filtration (GFR), creatininclearance, and uremia [18].
A diagnosis of AKI caused by sepsis requires a diagnosis of sepsis and subsequent events of AKI. This is considered a PIRO (predisposition, infection, response, organ dysfunction) system. The diagnosis of sepsis is more complex than the original. In the new definition, several other important aspects of sepsis are included such as hemodynamics and organ dysfunction [18].
A 2016 task force organized by the national community including the Society of Critical Care Medicine (SCCM) and the European Society of Intensive Care Medicine (ESICM) proposed a new definition of sepsis, called Sepsis-3. This consensus defines sepsis as life-threatening organ dysfunction caused by dysregulation of the responhost to infection. The new definition does not use the Systemic Inflammatory Response Syndrome’s (SIRS) criteria in the identification of sepsis and elimination of severe sepsis [18].
Sequential Organ Failure Assessment (SOFA) is a simple and objective score that allows for calculating both the number and severity of organ dysfunction in six organ systems (breathing, coagulation, liver, cardiovascular, kidney, and neurological), and the score can measure individual or aggregate organ dysfunction [19].
Early detection of AKI in ICU settings is very important. AKI has become a major issue with the increasing number of incidents, causing more than four million deaths per year worldwide. Also, the lack of a reliable initial biomarker for AKI causes a significant delay in starting an appropriate therapy. This is in contrast to the “biological revolution” in cardiology, which produces various markers (including troponin) for early diagnosis of heart damage that allows for early and effective treatments [19].
The diagnosis of AKI is based on an increase in serum creatinine and/or a decrease in urine output. The definition has evolved from the criteria of Risk, Injury, Failure, Loss, Endstage (RIFLE) (Table 2) in 2004 to the classification of the Acute Kidney Injury Network (AKIN) in 2007. In 2012, the two were merged, forming the Kidney Disease Improving Global Outcomes (KDIGO) classification [10].
Categories | Serum Creatinine Criteria | Urine Output Criteria |
---|---|---|
RIFLE* | ||
Risk | ↑ in SCr to 1.5 – < 2 x baseline | UO <0.5 mL/kg/hr. for 6 hrs |
Injury | ↑ in SCr to 2 – < 3 x baseline | UO <0.5 mL/kg/hr. for 12 hrs |
Failure | ↑ in SCr to ≥3 x baseline | UO <0.3 mL/kg/hr. for 24 hrs or Anuria for 12 hrs |
Loss | Loss of Kidney function for >4 wks | |
ESRD | Loss of Kidney function for >3 mos | |
AKIN** | ||
Stage 1 | ↑ in SCr to 0.3 mg/dL or to 1.5 – 2 x baseline | UO <0.5 mL/kg/hr. for >8 hrs |
Stage 2 | ↑ in SCr to >2 – 3 x baseline | UO <0.5 mL/kg/hr. for >12 hrs |
Stage 3 | ↑ in SCR to >3 x baseline or | UO <0.5 mL/kg/hr. for >24 hrs |
Stage 4 | SCr ≥ 4 mg/dL with an acute increase of ≥0.5 mg/dL | or Anuria for 12 hrs |
RIFLE and AKIN CRITERIA of AKI.
RIFLE: Risk, Injury, Failure, Loss, ESRD (End Stage Renal Disease; AKIN: Acute Kidney Injury Network.
AKIN Criteria require the increase of serum creatinine to occur within 48 hrs; SCr: Serum Creatinine; UO: Urine Output.
There are little bit differences between RIFLE and AKIN Criteria, LOSS and ESRD in RIFLE criteria are included in Stage 4 in AKIN criteria.
Combined with evidence-based medicine, KDIGO published KDIGO guidelines in March 2012 and established diagnostic criteria for AKI (Table 3): increase in serum creatinine >0.3 mg/dl (26.5 μmol/L) within 48 hours; or an increase in serum creatinine to 1.5 times the baseline, which is known or thought to have occurred within 7 days; or urine output <0.5 ml/kg/hour for 6-12 hours. According to the severity, this condition is divided into stages 1, 2, and 3, similar to the classification of AKIN [10].
Stage | Serum Creatinine and urine output criteria |
---|---|
1 | Serum creatinine increased 1.5 – 1.9 x baseline or increase ≥26.4 umol/L (0.3 mg/dL) or urinary output <0.5 ml/kg/h during a 6 hour block |
2 | Serum creatinine increased 2.0 – 2.9 x baseline or urinary output <0.5 ml/kg/h during two 6 blocks |
3 | Serum creatinine increased >3 x baseline or increased to ≥353 Umol/L (4 mg/dL) or initiation of renal replacement therapy or Urinary output <0.3 ml/kg/h during more than 24 hours or anuria For more than 12 hours |
KDIGO criteria of AKI.
KDIGO: the Kidney Disease Improving Global Outcomes.
KDIGO criteria is most simple than RIFLE and AKIN, there are only 3 stages of AKI, but still using creatinine serum and urine output criteria.
The KDIGO guidelines highlight early diagnosis and treatment of AKI and diagnostic markers remain at serum creatinine levels. Because serum creatinine tests are convenient and inexpensive, they can be used as practical clinical indicators. However, there are some limitations. Renal hypoperfusion due to prerenal causes can cause an increase in creatinine, although there is no interference with the renal parenchyma. When the renal parenchyma is injured, renal compensation can cause lag in creatinine increase. Further, injury to 50% of the kidneys can occur without an increase in creatinine levels, so diagnosis and intervention are delayed. Thus, new markers with higher sensitivity and specificity are expected to help the initial diagnosis of AKI. At present, many studies report the presence of early diagnostic markers of AKI. Some of them are clinical trials that show good sensitivity and specificity, with initial diagnostic values for AKI. In addition, different biological markers have been shown to show various mechanisms of injury [20].
Evidently, AKI occurs through complex mechanisms often due to several factors. Different mechanisms cause injury in various parts of the kidney. It is difficult to establish a clear diagnosis and accurate localization of the injury using the same marker to diagnose injury to all kidney subregions caused by all diseases. Discrete studies of certain diseases and related kidney injuries will definitely improve diagnostic accuracy. About 45 – 70% of MMR is associated with sepsis, which is one of the most important causes of MMR. Furthermore, the proportion of septic patients with secondary kidney injury is 16 – 50%, whereas the mortality of sepsis associated with AKI is up to 50 – 60%. As such, pursuing focused studies of sepsis-induced AKI and searching for biomarkers associated with early diagnosis will help in solving important clinical problems of septic patients and AKI disease [20].
As with sepsis management in general, the main therapy for SA-AKI is the provision of appropriate antibiotics and good supportive care. There are several things that must be considered in the management of SA-AKI:
Giving fluids is still fundamental in the treatment of sepsis. Patients who are responsive after being given fluids (fluid responder) can theoretically be interpreted as patients who have increased the stroke volume of 10-15% after giving a fluid challenge of 250-500 ml; in reality, there are less than 40% of sepsis patients who need fluids or fluid responder. Based on the Frank-Starling principle, if preload increases, the stroke volume will increase until it reaches the optimal preload volume. And if the preload given can no longer increase stroke volume, the volume of liquid given can be dangerous because it can increase arterial pressure, venous pressure, and ultimately pulmonary hydrostatic pressure. Further, the condition will stimulate the release of natriuretic peptide causing fluid transfer from the intravascular space to the interstitial space. Kidney function will also be affected by this condition where there is a decrease in GFR due to increased venous pressure, potentially increasing subcapsular pressure in the kidneys due to fluid transfer.
The “Fluid Expansion as Supportive Therapy” (FEAST) research can explain the dangers of giving fluid loading to patients with sepsis, where aggressive fluid therapy is associated with increased mortality.
In 2001, the concept of “early aggressive fluid resuscitation” was issued, known as the Early Goal Directed Therapy (EGDT). Following this, studies began using the EGDT protocol. It is interesting to find the reduction in mortality by reducing the volume of resuscitation fluid in the first 72 hours. Although the early sepsis phase shows an effective condition of circulating volume reduction, making it possible for fluid resuscitation to take place, the subsequent fluid therapy given can cause problems especially in the SA-AKI [21]. Besides being unable to improve septic shock, fluid therapy can also contribute to causing renal dysfunction through several mechanisms. The most rapid occurrence is an increase in venous pressure due to fluid therapy that directly increases the renal interstitial pressure and peritubular area in animal models [22]. Because the administration of large fluid boluses (20-30 ml/kg) is associated with the occurrence of fluid overload, it is currently recommended to use fluid volumes with lower volumes (200-500 ml) [22]. The 2014 Acute Dialysis Quality Initiative (ADQI) recommends giving fluid therapy to sepsis patients divided into 4 stages, namely using the rescue protocol, optimization, stabilization and de-escalation. A large liquid volume of 500 ml in a maximum of 15 minutes only at the rescue stage is given to overcome hypotension with close monitoring. At the optimization stage, a 100-200 ml fluid challenge for 5-10 minutes can be done. At the stage of stabilization, the patient is stable and fluid administration is a maintenance therapy of 1-2 ml/kg/hour.
The three stages above are followed by de-escalation, which is the stage to reduce total body fluids with the help of diuretics or Renal Replacement Therapy (RRT) with the target of negative cumulative fluid balance. Assessment of volume status during fluid therapy can proceed with the Passive Leg Raising method combined with measurement of stroke volume in real-time. This procedure is proven to be the most precise in assessing volume status clinically. The availability of ultrasound equipment in the ICU can prevent fluid overload by assessing the B-line on the Lung Ultrasound and the vena cava collapsibility index to assess the fluid responder. The MAP target of 65 – 75 mmHg is an adequate target for maintaining renal perfusion [22].
Fluid selection is also a consideration in the SA-AKI. Normal 0.9% saline is actually a non-physiological fluid and is less well administered to SA-AKI than other crystalloids. Normal saline can cause hyperchloremic metabolic acidosis, which can cause a decrease in Renal Blood Flow (RBF) by activating the mechanism of tubuloglumerular feedback and afferent vasoconstriction so as to increase the risk of further kidney injury. In a retrospective study involving 60734 adults with septic shock, normal single saline can increase mortality compared with crystalloid balance solution. Albumin has also been investigated for its use in sepsis patients with the risk of SA-AKI in the SAFE study, showing that albumin was not effective in reducing mortality and RRT requirements when compared with crystalloid fluids [23]. So that until now albumin cannot be recommended as a resuscitation fluid in SA-AKI. Hydroxyethyl Starches (HES) is not recommended and should not be used on SA-AKI.
Norepinephrine is still the main therapy for septic shock and has been shown to increase MAP and improve perfusion to the kidneys. Norepinephrine itself is the first choice in various clinical studies and provides better outcomes and fewer side effects than other vasopressors. However, due to animal studies showing that norepinephrine can cause medullary hypoxia renal in SA-AKI, researchers have begun to look for other vasopressors in the condition of sepsis and SA-AKI. Vasopressin is the most desirable vasopressor to study; Vasopressin and Septic Shock (VAST) research tries to compare norepinephrine with vasopressin with the same results on the outcome and no side effects are obtained. Further, VANISH research proceeds, the results of which showing the absence of AKI events and side effects of both. Based on these data, vasopressin is the second-line choice of the current vasopressor and has been included in the latest sepsis guidelines. Angiotensin II is a hormone in the renin-angiotensin-aldosterone system which has also begun to be studied in shock conditions. Angiotensin II for the Treatment of High Output Shock (ATHOS) study in 344 patients with shock due to vasodilation (259 with sepsis) found that Angiotensin II significantly increased MAP. Improvements were also seen in SOFA cardiovascular scores. Another smaller study of patients who needed RRT showed that patients who received angiotensin II had a greater 28-day survival rate and were free of RRT on the seventh day more than placebo. If these results can be validated by larger studies, there is a possibility that angiotensin II can be a meaningful therapy for SA-AKI [23].
Levosimendan is a calcium sensitizing drug and has an inotropic effect that is often used in cord decompensation. One small study showed an increase in creatinine clearance and urine production compared to dobutamine. However, in a larger scale study comparing it with placebo (MAKE-28), there was no difference in outcomes in the kidney. So, there is no data to support its use in the SA-AKI [24].
The survival rate in sepsis patients will decrease by 7.6% per hour if no appropriate antibiotic therapy is given. Regarding AKI, vancomycin antibiotics are reported to cause AKI even at the recommended dosage for infections caused by methicillin-resistance
There are several aspects that must be considered in kidney replacement therapy, namely indication, time, modality and dosage given. Clinical indications that have been known so far, which are Acidosis, Electrolyte disturbances, Intoxication, O-fluid Overload and Uremia (A-E-I-O-U), can be applied to SA-AKI. Severe metabolic acidosis, fluid overload and uremia are the three most common indications of RRT in SA-AKI [24].
Criteria for Renal Replacement Therapy (hemodialysis) in critically ill patients with AKI include:
Oligouria: urine output <2000 ml in 12 hours
Anuria: urine production <50 ml in 12 hours
Hyperkalemia: potassium levels>6.5 mmol/L
Severe acidemia (acid poisoning): pH <7.0
Azotemia: urea levels>30 mmol/L
Uremic encephalopathy
Uteric neuropathy/myopathy
Uremic pericarditis
Abnormalities of plasma sodium concentration > 155 mmol/L or < 120 mmol/L
Hypertemia
Drug poisoning
At the time of the RRT initiation, the available data give different answers. Although undesirable effects have been reported due to the late initiation of the RRT, leading to increased mortality and poor outcomes in the SA-AKI [25]. Up until this, the RRT initiation is still individual. Bouman et al. showed no significant difference in renal outcomes in early and late hemofiltration in patients who were able to survive. There are two large studies, with conflicting conclusions, specifically designed to determine the time of initiation of RRT in the condition of critically ill patients. The ELAIN study comparing early versus late initiation of the RRT shows the benefits of early strategy in reducing mortality. While in the AKIKI study, the results show the opposite, i.e. early strategy gives negative results. In both of these studies there were differences in inclusion criteria; in the ELAIN study, patients were in KDIGO stage 2 with a SOFA score of 15.6-16.0 while in the AKIKI study patients were in KDIGO stage 3 with a SOFA score of 10.8-10.9. Perhaps because of these different inclusion criteria, the opposite results were obtained. But at the moment there is an ongoing study, the STARRT-AKI study (standard vs. accelerated initiation of renal replacement therapy in acute kidney injury) that might reveal the best RRT initiation time. The most appropriate RRT modalities for SA-AKI are also still different. Some studies show the advantages of Continuous Renal Replacement Therapy (CRRT) compared to Intermittent Hemodialysis (IHD) on survival rates and time spent for the kidney function to improve. Although CRRT is superior to IHD based on its fluid removal ability, with a lack of hypotension in patients, it is more expensive than IHD.
The current CRRT dose is sourced from two large studies with sepsis patients but not specific to SA-AKI, which is 20-25 ml/kg/hour. In the condition of the SA-AKI, the dose given is 30–35 ml/kg/hour. Several studies have shown that increasing the CRRT dose does not provide benefits and improve patient survival.
CRRT significantly influences the pharmacokinetics and pharmacodynamics of most antimicrobial agents. This is not sufficiently anticipated by the currently recommended dosage guidelines. Patients are significantly at risk of receiving lower doses (underdosing), potentially causing treatment failure and increasing resistance.
The use of diuretics to induce or increase urine production in the absence of hypervolemia is associated with increased mortality. KDIGO does not recommend the use of diuretics in the prevention or treatment of AKI. Conversely, diuretics can be used to improve outcomes when fluid balance remains positive or in the case of excess fluid (volume overload). Research by Ho and Power reviewed the use of furosemide in AKI and found no beneficial effect in reducing mortality.
Compared with other AKI etiologies, SA-AKI may have specific prognostic implications. In most reports, this is associated with higher short-term mortality rates. In the analysis of the BEST Kidney trial subgroup, the likelihood of hospital death is 50% higher in SA-AKI compared to non-SA-AKI. Obviously, the different prognosis between SA-AKI and non-SA-AKI is largely influenced by the composition of the non-sepsis group and its proportion from conditions with a poor prognosis (such as cardiogenic shock). In addition, the confusing role in the relationship between SA-AKI and mortality needs to be overcome because all studies consistently report higher disease severity at onset, with patients requiring RRT more frequently [6].
In contrast, for patients who survive in the hospital, SA-AKI has been associated with improved kidney improvement compared to other etiologies of AKI. In the BEST Kidney study, there was a tendency for lower serum creatinine and RRT dependence (9 vs. 14%, P = 0.052). Clearly, many other factors may play a role in kidney recovery such as RRT modality, RRT time, and further nephrotoxic or ischemic inhibition. Kidney recovery is also strongly influenced by premorbid conditions as illustrated by a French multicentric observational study, which shows that diabetic patients with SA-AKI who have survived going to the hospital tend to need more long-term RRT and have higher serum creatinine levels. Apart from short-term recovery, however, it is now clear that even one episode of AKI is associated with a greater risk of subsequent CKD and even end-stage renal disease [4].
SA-AKI is a clinical syndrome due to acute damage to function and organ damage associated with long-term adverse outcomes depending on the severity of the underlying organ damage. Generally clinical manifestations of AKI are more dominated by factors of precipitation or its main disease. The main purpose of managing AKI is to prevent further kidney damage and keep the patient alive until his kidney physiology returns to normal function. SA-AKI is a condition that is often faced by patients with sepsis in the ICU. Understanding of sepsis and endotoxins that can cause SA-AKI is not yet fully known. Some evidence suggests that renal microcirculation hypoperfusion, lack of energy for cells, mitochondrial dysfunction, endothelial injury and cycle cell arrest can cause SA-AKI. Rapid identification of SA-AKI events, antibiotics and appropriate fluid therapy are crucial actions in the management of SA-AKI. The availability of modality for organ support such as CRRT in ICU care can help patients with sepsis, due to kidney failure that often occurs, survive. Further studies related to SA-AKI are still continuing and are expected to be the basis for making a clinical guide in the management of SA-AKI.
Our journals are currently in their launching issue. They will be applied to all relevant indexes as soon as they are eligible. These include (but are not limited to): Web of Science, Scopus, PubMed, MEDLINE, Database of Open Access Journals (DOAJ), Google Scholar and Inspec.
\n\nIntechOpen books are indexed by the following abstracting and indexing services:
",metaTitle:"Indexing and Abstracting",metaDescription:"IntechOpen was built by scientists, for scientists. We understand the community we serve, but to bring an even better service to the table for IntechOpen Authors and Academic Editors, we partnered with the leading companies and associations in the industry and beyond.",metaKeywords:null,canonicalURL:"/page/indexing-and-abstracting",contentRaw:'[{"type":"htmlEditorComponent","content":"Clarivate Web Of Science - Book Citation Index
\\n\\nCroatian Library (digital NSK)
\\n\\nOCLC (Online Computer Library Center) - WorldCat® Digital Collection Gateway
\\n\\n\\n\\n
\\n"}]'},components:[{type:"htmlEditorComponent",content:'
Clarivate Web Of Science - Book Citation Index
\n\nCroatian Library (digital NSK)
\n\nOCLC (Online Computer Library Center) - WorldCat® Digital Collection Gateway
\n\n\n\n
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6601},{group:"region",caption:"Middle and South America",value:2,count:5906},{group:"region",caption:"Africa",value:3,count:2400},{group:"region",caption:"Asia",value:4,count:12541},{group:"region",caption:"Australia and Oceania",value:5,count:1008},{group:"region",caption:"Europe",value:6,count:17561}],offset:12,limit:12,total:132763},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"16,19,25"},books:[{type:"book",id:"11814",title:"Liposomes - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"62d8542d18b8cddcf507f7948b2ae74b",slug:null,bookSignature:"Dr. Rajeev K. Tyagi",coverURL:"https://cdn.intechopen.com/books/images_new/11814.jpg",editedByType:null,editors:[{id:"269120",title:"Dr.",name:"Rajeev",surname:"Tyagi",slug:"rajeev-tyagi",fullName:"Rajeev Tyagi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11878",title:"Advances in the Auditory and Vestibular Systems",subtitle:null,isOpenForSubmission:!0,hash:"a664ad52eded5aa2ca06403e76bab30a",slug:null,bookSignature:"Prof. Stavros Hatzopoulos and Dr. Andrea Ciorba",coverURL:"https://cdn.intechopen.com/books/images_new/11878.jpg",editedByType:null,editors:[{id:"174266",title:"Prof.",name:"Stavros",surname:"Hatzopoulos",slug:"stavros-hatzopoulos",fullName:"Stavros Hatzopoulos"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11580",title:"Recent Advances in Canine Medicine",subtitle:null,isOpenForSubmission:!0,hash:"1806716f60b9be14fc05682c4a912b41",slug:null,bookSignature:"Dr. Carlos Eduardo Fonseca-Alves",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",editedByType:null,editors:[{id:"258334",title:"Dr.",name:"Carlos Eduardo",surname:"Fonseca-Alves",slug:"carlos-eduardo-fonseca-alves",fullName:"Carlos Eduardo Fonseca-Alves"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11873",title:"Arthroplasty - Advanced Techniques and Future Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"ced605018c59717c3e55f59474339ca9",slug:null,bookSignature:"M.D. Alessandro Rozim Zorzi",coverURL:"https://cdn.intechopen.com/books/images_new/11873.jpg",editedByType:null,editors:[{id:"80871",title:"M.D.",name:"Alessandro Rozim",surname:"Zorzi",slug:"alessandro-rozim-zorzi",fullName:"Alessandro Rozim Zorzi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11600",title:"Recent Update on Multiple Myeloma\ufeff",subtitle:null,isOpenForSubmission:!0,hash:"c8e2b12df4fc2d313aced448fe08a63e",slug:null,bookSignature:"Dr. Khalid Ahmed Al-Anazi",coverURL:"https://cdn.intechopen.com/books/images_new/11600.jpg",editedByType:null,editors:[{id:"37255",title:"Dr.",name:"Khalid",surname:"Al-Anazi",slug:"khalid-al-anazi",fullName:"Khalid Al-Anazi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11586",title:"Schizophrenia - Recent Advances and Patient-Centered Treatment Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"2ba14221aca01660b2547004d9b5c2d9",slug:null,bookSignature:"Dr. Jane Yip",coverURL:"https://cdn.intechopen.com/books/images_new/11586.jpg",editedByType:null,editors:[{id:"156214",title:"Dr.",name:"Jane",surname:"Yip",slug:"jane-yip",fullName:"Jane Yip"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11597",title:"Glioblastoma - Current Evidences",subtitle:null,isOpenForSubmission:!0,hash:"da69711754eb5ed95bdea15fcfab0b2a",slug:null,bookSignature:"Prof. Amit Agrawal",coverURL:"https://cdn.intechopen.com/books/images_new/11597.jpg",editedByType:null,editors:[{id:"100142",title:"Prof.",name:"Amit",surname:"Agrawal",slug:"amit-agrawal",fullName:"Amit Agrawal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11655",title:"Atrial Fibrillation - Diagnosis and Management in the 21st Century",subtitle:null,isOpenForSubmission:!0,hash:"a0ecc730df6b37a0e1cb00968a5be34d",slug:null,bookSignature:"Prof. Ozgur Karcioglu and Associate Prof. Funda Karbek Akarca",coverURL:"https://cdn.intechopen.com/books/images_new/11655.jpg",editedByType:null,editors:[{id:"221195",title:"Prof.",name:"Ozgur",surname:"Karcioglu",slug:"ozgur-karcioglu",fullName:"Ozgur Karcioglu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11691",title:"Orthognathic Surgery and Dentofacial Deformities",subtitle:null,isOpenForSubmission:!0,hash:"413b0d1441beac767fe0fbf7c0e98622",slug:null,bookSignature:"Dr. H. Brian Sun",coverURL:"https://cdn.intechopen.com/books/images_new/11691.jpg",editedByType:null,editors:[{id:"184302",title:"Dr.",name:"H. Brian",surname:"Sun",slug:"h.-brian-sun",fullName:"H. Brian Sun"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11595",title:"Recent Understanding of Colorectal Cancer Treatment",subtitle:null,isOpenForSubmission:!0,hash:"1c5db5892553734d258782d03d4384bb",slug:null,bookSignature:"Dr. Keun-Yeong Jeong",coverURL:"https://cdn.intechopen.com/books/images_new/11595.jpg",editedByType:null,editors:[{id:"258919",title:"Dr.",name:"Keun-Yeong",surname:"Jeong",slug:"keun-yeong-jeong",fullName:"Keun-Yeong Jeong"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11660",title:"Supportive and Palliative Care for Cancer Patients",subtitle:null,isOpenForSubmission:!0,hash:"8be27d28bfeb3b3719120ac4c3e5a647",slug:null,bookSignature:"Dr. Bassam Abdul Rasool Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11660.jpg",editedByType:null,editors:[{id:"155124",title:"Dr.",name:"Bassam",surname:"Hassan",slug:"bassam-hassan",fullName:"Bassam Hassan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11705",title:"Estrogens - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"528a15fa0d821fb8bf4ffac5c3cc19f4",slug:null,bookSignature:"Dr. Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/11705.jpg",editedByType:null,editors:[{id:"255491",title:"Dr.",name:"Courtney",surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:6},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:21},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:62},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:29},{group:"topic",caption:"Mathematics",value:15,count:10},{group:"topic",caption:"Medicine",value:16,count:123},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:134},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4387},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3340,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1845,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1096,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:995,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3791,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:2982,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",publishedDate:"May 18th 2022",numberOfDownloads:559,editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",publishedDate:"May 18th 2022",numberOfDownloads:546,editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",publishedDate:"May 18th 2022",numberOfDownloads:539,editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",publishedDate:"May 18th 2022",numberOfDownloads:535,editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"640",title:"Economic Geology",slug:"economic-geology",parent:{id:"104",title:"Geology and Geophysics",slug:"geology-and-geophysics"},numberOfBooks:1,numberOfSeries:0,numberOfAuthorsAndEditors:6,numberOfWosCitations:5,numberOfCrossrefCitations:7,numberOfDimensionsCitations:10,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"640",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"1551",title:"Mining Methods",subtitle:null,isOpenForSubmission:!1,hash:"0992b82f531fb76fb833acf59850e37d",slug:"mining-methods",bookSignature:"Turgay Onargan",coverURL:"https://cdn.intechopen.com/books/images_new/1551.jpg",editedByType:"Edited by",editors:[{id:"104892",title:"Prof.",name:"Turgay",middleName:null,surname:"Onargan",slug:"turgay-onargan",fullName:"Turgay Onargan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"30795",doi:"10.5772/39172",title:"Surface Coal Mining Methods in Australia",slug:"surface-coal-mining-methods-in-australia",totalDownloads:18503,totalCrossrefCites:3,totalDimensionsCites:5,abstract:null,book:{id:"1551",slug:"mining-methods",title:"Mining Methods",fullTitle:"Mining Methods"},signatures:"Rudrajit Mitra and Serkan Saydam",authors:[{id:"138736",title:"Prof.",name:"Serkan",middleName:null,surname:"Saydam",slug:"serkan-saydam",fullName:"Serkan Saydam"}]},{id:"30796",doi:"10.5772/35061",title:"Surface Coal Mining Methods in China",slug:"surface-coal-mining-methods-in-china",totalDownloads:4183,totalCrossrefCites:2,totalDimensionsCites:3,abstract:null,book:{id:"1551",slug:"mining-methods",title:"Mining Methods",fullTitle:"Mining Methods"},signatures:"Changsheng Ji",authors:[{id:"102822",title:"Prof.",name:"Changsheng",middleName:null,surname:"Ji",slug:"changsheng-ji",fullName:"Changsheng Ji"}]},{id:"30797",doi:"10.5772/39174",title:"Ground Control for Underground Evaporite Mine in Turkey",slug:"ground-control-for-underground-evaporite-mine-in-turkey",totalDownloads:3619,totalCrossrefCites:1,totalDimensionsCites:1,abstract:null,book:{id:"1551",slug:"mining-methods",title:"Mining Methods",fullTitle:"Mining Methods"},signatures:"T. Onargan, K. Kucuk, A. Deliormanli, S. Saydam and M.Y. Koca",authors:[{id:"104892",title:"Prof.",name:"Turgay",middleName:null,surname:"Onargan",slug:"turgay-onargan",fullName:"Turgay Onargan"}]},{id:"30798",doi:"10.5772/39171",title:"Longhole Stoping at the Asikoy Underground Copper Mine in Turkey",slug:"longhole-stoping-at-the-asikoy-underground-copper-mine-in-turkey",totalDownloads:5745,totalCrossrefCites:1,totalDimensionsCites:1,abstract:null,book:{id:"1551",slug:"mining-methods",title:"Mining Methods",fullTitle:"Mining Methods"},signatures:"Alper Gönen",authors:[{id:"138734",title:"Dr.",name:"Alper",middleName:null,surname:"Gonen",slug:"alper-gonen",fullName:"Alper Gonen"}]},{id:"30799",doi:"10.5772/36151",title:"Leak Tightness of Underground Carbon Dioxide Storage Sites and Safety of Underground CO2 Storage by Example of the Upper Silesian Coal Basin (Poland)",slug:"tightness-of-underground-carbon-dioxide-storage-sites-and-safety-of-underground-co2-",totalDownloads:2129,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"1551",slug:"mining-methods",title:"Mining Methods",fullTitle:"Mining Methods"},signatures:"Eleonora Solik-Heliasz",authors:[{id:"107268",title:"Dr.",name:"Eleonora",middleName:null,surname:"Solik-Heliasz",slug:"eleonora-solik-heliasz",fullName:"Eleonora Solik-Heliasz"}]}],mostDownloadedChaptersLast30Days:[{id:"30795",title:"Surface Coal Mining Methods in Australia",slug:"surface-coal-mining-methods-in-australia",totalDownloads:18503,totalCrossrefCites:3,totalDimensionsCites:5,abstract:null,book:{id:"1551",slug:"mining-methods",title:"Mining Methods",fullTitle:"Mining Methods"},signatures:"Rudrajit Mitra and Serkan Saydam",authors:[{id:"138736",title:"Prof.",name:"Serkan",middleName:null,surname:"Saydam",slug:"serkan-saydam",fullName:"Serkan Saydam"}]},{id:"30796",title:"Surface Coal Mining Methods in China",slug:"surface-coal-mining-methods-in-china",totalDownloads:4183,totalCrossrefCites:2,totalDimensionsCites:3,abstract:null,book:{id:"1551",slug:"mining-methods",title:"Mining Methods",fullTitle:"Mining Methods"},signatures:"Changsheng Ji",authors:[{id:"102822",title:"Prof.",name:"Changsheng",middleName:null,surname:"Ji",slug:"changsheng-ji",fullName:"Changsheng Ji"}]},{id:"30799",title:"Leak Tightness of Underground Carbon Dioxide Storage Sites and Safety of Underground CO2 Storage by Example of the Upper Silesian Coal Basin (Poland)",slug:"tightness-of-underground-carbon-dioxide-storage-sites-and-safety-of-underground-co2-",totalDownloads:2129,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"1551",slug:"mining-methods",title:"Mining Methods",fullTitle:"Mining Methods"},signatures:"Eleonora Solik-Heliasz",authors:[{id:"107268",title:"Dr.",name:"Eleonora",middleName:null,surname:"Solik-Heliasz",slug:"eleonora-solik-heliasz",fullName:"Eleonora Solik-Heliasz"}]},{id:"30798",title:"Longhole Stoping at the Asikoy Underground Copper Mine in Turkey",slug:"longhole-stoping-at-the-asikoy-underground-copper-mine-in-turkey",totalDownloads:5745,totalCrossrefCites:1,totalDimensionsCites:1,abstract:null,book:{id:"1551",slug:"mining-methods",title:"Mining Methods",fullTitle:"Mining Methods"},signatures:"Alper Gönen",authors:[{id:"138734",title:"Dr.",name:"Alper",middleName:null,surname:"Gonen",slug:"alper-gonen",fullName:"Alper Gonen"}]},{id:"30797",title:"Ground Control for Underground Evaporite Mine in Turkey",slug:"ground-control-for-underground-evaporite-mine-in-turkey",totalDownloads:3619,totalCrossrefCites:1,totalDimensionsCites:1,abstract:null,book:{id:"1551",slug:"mining-methods",title:"Mining Methods",fullTitle:"Mining Methods"},signatures:"T. Onargan, K. Kucuk, A. Deliormanli, S. Saydam and M.Y. Koca",authors:[{id:"104892",title:"Prof.",name:"Turgay",middleName:null,surname:"Onargan",slug:"turgay-onargan",fullName:"Turgay Onargan"}]}],onlineFirstChaptersFilter:{topicId:"640",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517",scope:"Paralleling similar advances in the medical field, astounding advances occurred in Veterinary Medicine and Science in recent decades. These advances have helped foster better support for animal health, more humane animal production, and a better understanding of the physiology of endangered species to improve the assisted reproductive technologies or the pathogenesis of certain diseases, where animals can be used as models for human diseases (like cancer, degenerative diseases or fertility), and even as a guarantee of public health. Bridging Human, Animal, and Environmental health, the holistic and integrative “One Health” concept intimately associates the developments within those fields, projecting its advancements into practice. This book series aims to tackle various animal-related medicine and sciences fields, providing thematic volumes consisting of high-quality significant research directed to researchers and postgraduates. It aims to give us a glimpse into the new accomplishments in the Veterinary Medicine and Science field. By addressing hot topics in veterinary sciences, we aim to gather authoritative texts within each issue of this series, providing in-depth overviews and analysis for graduates, academics, and practitioners and foreseeing a deeper understanding of the subject. Forthcoming texts, written and edited by experienced researchers from both industry and academia, will also discuss scientific challenges faced today in Veterinary Medicine and Science. In brief, we hope that books in this series will provide accessible references for those interested or working in this field and encourage learning in a range of different topics.",coverUrl:"https://cdn.intechopen.com/series/covers/13.jpg",latestPublicationDate:"May 18th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:10,editor:{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"19",title:"Animal Science",coverUrl:"https://cdn.intechopen.com/series_topics/covers/19.jpg",isOpenForSubmission:!0,editor:{id:"259298",title:"Dr.",name:"Edward",middleName:null,surname:"Narayan",slug:"edward-narayan",fullName:"Edward Narayan",profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",biography:"Dr. Edward Narayan graduated with Ph.D. degree in Biology from the University of the South Pacific and pioneered non-invasive reproductive and stress endocrinology tools for amphibians - the novel development and validation of non-invasive enzyme immunoassays for the evaluation of reproductive hormonal cycle and stress hormone responses to environmental stressors. \nDr. Narayan leads the Stress Lab (Comparative Physiology and Endocrinology) at the University of Queensland. A dynamic career research platform which is based on the thematic areas of comparative vertebrate physiology, stress endocrinology, reproductive endocrinology, animal health and welfare, and conservation biology. \nEdward has supervised 40 research students and published over 60 peer reviewed research.",institutionString:null,institution:{name:"University of Queensland",institutionURL:null,country:{name:"Australia"}}},editorTwo:null,editorThree:null},{id:"20",title:"Animal Nutrition",coverUrl:"https://cdn.intechopen.com/series_topics/covers/20.jpg",isOpenForSubmission:!0,editor:{id:"175967",title:"Dr.",name:"Manuel",middleName:null,surname:"Gonzalez Ronquillo",slug:"manuel-gonzalez-ronquillo",fullName:"Manuel Gonzalez Ronquillo",profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",biography:"Dr. Manuel González Ronquillo obtained his doctorate degree from the University of Zaragoza, Spain, in 2001. He is a research professor at the Faculty of Veterinary Medicine and Animal Husbandry, Autonomous University of the State of Mexico. He is also a level-2 researcher. He received a Fulbright-Garcia Robles fellowship for a postdoctoral stay at the US Dairy Forage Research Center, Madison, Wisconsin, USA in 2008–2009. He received grants from Alianza del Pacifico for a stay at the University of Magallanes, Chile, in 2014, and from Consejo Nacional de Ciencia y Tecnología (CONACyT) to work in the Food and Agriculture Organization’s Animal Production and Health Division (AGA), Rome, Italy, in 2014–2015. He has collaborated with researchers from different countries and published ninety-eight journal articles. He teaches various degree courses in zootechnics, sheep production, and agricultural sciences and natural resources.\n\nDr. Ronquillo’s research focuses on the evaluation of sustainable animal diets (StAnD), using native resources of the region, decreasing carbon footprint, and applying meta-analysis and mathematical models for a better understanding of animal production.",institutionString:null,institution:{name:"Universidad Autónoma del Estado de México",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"28",title:"Animal Reproductive Biology and Technology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/28.jpg",isOpenForSubmission:!0,editor:{id:"177225",title:"Prof.",name:"Rosa Maria Lino Neto",middleName:null,surname:"Pereira",slug:"rosa-maria-lino-neto-pereira",fullName:"Rosa Maria Lino Neto Pereira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9wkQAC/Profile_Picture_1624519982291",biography:"Rosa Maria Lino Neto Pereira (DVM, MsC, PhD and) is currently a researcher at the Genetic Resources and Biotechnology Unit of the National Institute of Agrarian and Veterinarian Research (INIAV, Portugal). She is the head of the Reproduction and Embryology Laboratories and was lecturer of Reproduction and Reproductive Biotechnologies at Veterinary Medicine Faculty. She has over 25 years of experience working in reproductive biology and biotechnology areas with a special emphasis on embryo and gamete cryopreservation, for research and animal genetic resources conservation, leading research projects with several peer-reviewed papers. Rosa Pereira is member of the ERFP-FAO Ex situ Working Group and of the Management Commission of the Portuguese Animal Germplasm Bank.",institutionString:"The National Institute for Agricultural and Veterinary Research. Portugal",institution:null},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:19,paginationItems:[{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"79909",title:"Cryopreservation Methods and Frontiers in the Art of Freezing Life in Animal Models",doi:"10.5772/intechopen.101750",signatures:"Feda S. Aljaser",slug:"cryopreservation-methods-and-frontiers-in-the-art-of-freezing-life-in-animal-models",totalDownloads:167,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"79782",title:"Avian Reproduction",doi:"10.5772/intechopen.101185",signatures:"Kingsley Omogiade Idahor",slug:"avian-reproduction",totalDownloads:151,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Kingsley O.",surname:"Idahor"}],book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}}]},overviewPagePublishedBooks:{paginationCount:10,paginationItems:[{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}]},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}]},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",biography:"Naceur M’HAMDI is Associate Professor at the National Agronomic Institute of Tunisia, University of Carthage. He is also Member of the Laboratory of genetic, animal and feed resource and member of Animal science Department of INAT. He graduated from Higher School of Agriculture of Mateur, University of Carthage, in 2002 and completed his masters in 2006. Dr. M’HAMDI completed his PhD thesis in Genetic welfare indicators of dairy cattle at Higher Institute of Agronomy of Chott-Meriem, University of Sousse, in 2011. He worked as assistant Professor of Genetic, biostatistics and animal biotechnology at INAT since 2013.",institutionString:null,institution:null}]},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",biography:"Juan Carlos Gardón Poggi received University degree from the Faculty of Agrarian Science in Argentina, in 1983. Also he received Masters Degree and PhD from Córdoba University, Spain. He is currently a Professor at the Catholic University of Valencia San Vicente Mártir, at the Department of Medicine and Animal Surgery. He teaches diverse courses in the field of Animal Reproduction and he is the Director of the Veterinary Farm. He also participates in academic postgraduate activities at the Veterinary Faculty of Murcia University, Spain. His research areas include animal physiology, physiology and biotechnology of reproduction either in males or females, the study of gametes under in vitro conditions and the use of ultrasound as a complement to physiological studies and development of applied biotechnologies. Routinely, he supervises students preparing their doctoral, master thesis or final degree projects.",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}]}]},openForSubmissionBooks:{paginationCount:5,paginationItems:[{id:"11576",title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",hash:"5a01644fb0b4ce24c2f947913d154abe",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 26th 2022",isOpenForSubmission:!0,editors:[{id:"76041",title:"Prof.",name:"Pier Paolo",surname:"Piccaluga",slug:"pier-paolo-piccaluga",fullName:"Pier Paolo Piccaluga"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11577",title:"Tick-Borne Diseases - A Review and an Update of Knowledge on Infections in Human and Animal Population",coverURL:"https://cdn.intechopen.com/books/images_new/11577.jpg",hash:"3d72ae651ee2a04b2368bf798a3183ca",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 29th 2022",isOpenForSubmission:!0,editors:[{id:"51521",title:"Prof.",name:"Elisa",surname:"Pieragostini",slug:"elisa-pieragostini",fullName:"Elisa Pieragostini"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11570",title:"Influenza - New Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11570.jpg",hash:"157b379b9d7a4bf5e2cc7a742f155a44",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"139889",title:"Dr.",name:"Seyyed Shamsadin",surname:"Athari",slug:"seyyed-shamsadin-athari",fullName:"Seyyed Shamsadin Athari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11569",title:"Bacterial Sexually Transmitted Infections - New Findings, Diagnosis, Treatment, and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/11569.jpg",hash:"069d6142ecb0d46d14920102d48c0e9d",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"May 31st 2022",isOpenForSubmission:!0,editors:[{id:"189561",title:"Dr.",name:"Mihaela Laura",surname:"Vica",slug:"mihaela-laura-vica",fullName:"Mihaela Laura Vica"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11568",title:"Staphylococcal Infections - Recent Advances and Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11568.jpg",hash:"92c881664d1921c7f2d0fee34b78cd08",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"59719",title:"Dr.",name:"Jaime",surname:"Bustos-Martínez",slug:"jaime-bustos-martinez",fullName:"Jaime Bustos-Martínez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:17,paginationItems:[{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81557",title:"Object Tracking Using Adapted Optical Flow",doi:"10.5772/intechopen.102863",signatures:"Ronaldo Ferreira, Joaquim José de Castro Ferreira and António José Ribeiro Neves",slug:"object-tracking-using-adapted-optical-flow",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81558",title:"Thresholding Image Techniques for Plant Segmentation",doi:"10.5772/intechopen.104587",signatures:"Miguel Ángel Castillo-Martínez, Francisco Javier Gallegos-Funes, Blanca E. Carvajal-Gámez, Guillermo Urriolagoitia-Sosa and Alberto J. Rosales-Silva",slug:"thresholding-image-techniques-for-plant-segmentation",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81471",title:"Semantic Map: Bringing Together Groups and Discourses",doi:"10.5772/intechopen.103818",signatures:"Theodore Chadjipadelis and Georgia Panagiotidou",slug:"semantic-map-bringing-together-groups-and-discourses",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79491",title:"Fuzzy Perceptron Learning for Non-Linearly Separable Patterns",doi:"10.5772/intechopen.101312",signatures:"Raja Kishor Duggirala",slug:"fuzzy-perceptron-learning-for-non-linearly-separable-patterns",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Raja Kishor",surname:"Duggirala"}],book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81234",title:"Cognitive Visual Tracking of Hand Gestures in Real-Time RGB Videos",doi:"10.5772/intechopen.103170",signatures:"Richa Golash and Yogendra Kumar Jain",slug:"cognitive-visual-tracking-of-hand-gestures-in-real-time-rgb-videos",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81331",title:"Machine Learning Algorithm-Based Contraceptive Practice among Ever-Married Women in Bangladesh: A Hierarchical Machine Learning Classification Approach",doi:"10.5772/intechopen.103187",signatures:"Iqramul Haq, Md. Ismail Hossain, Md. Moshiur Rahman, Md. Injamul Haq Methun, Ashis Talukder, Md. Jakaria Habib and Md. Sanwar Hossain",slug:"machine-learning-algorithm-based-contraceptive-practice-among-ever-married-women-in-bangladesh-a-hie",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Machine Learning and Data Mining - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11422.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81321",title:"Velocity Planning via Model-Based Reinforcement Learning: Demonstrating Results on PILCO for One-Dimensional Linear Motion with Bounded Acceleration",doi:"10.5772/intechopen.103690",signatures:"Hsuan-Cheng Liao, Han-Jung Chou and Jing-Sin Liu",slug:"velocity-planning-via-model-based-reinforcement-learning-demonstrating-results-on-pilco-for-one-dime",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Applied Intelligence - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11418.jpg",subseries:{id:"22",title:"Applied Intelligence"}}},{id:"80937",title:"Assessing Heterogeneity of Two-Part Model via Bayesian Model-Based Clustering with Its Application to Cocaine Use Data",doi:"10.5772/intechopen.103089",signatures:"Ye-Mao Xia, Qi-Hang Zhu and Jian-Wei Gou",slug:"assessing-heterogeneity-of-two-part-model-via-bayesian-model-based-clustering-with-its-application-t",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}}]},subseriesFiltersForOFChapters:[{caption:"Applied Intelligence",value:22,count:1,group:"subseries"},{caption:"Computer Vision",value:24,count:8,group:"subseries"},{caption:"Machine Learning and Data Mining",value:26,count:8,group:"subseries"}],publishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",publishedDate:"October 6th 2021",editedByType:"Edited by",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",hash:"6c3ddcc13626110de289b57f2516ac8f",volumeInSeries:22,fullTitle:"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",institutionString:"Hacettepe University",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9753",title:"Terpenes and Terpenoids",subtitle:"Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/9753.jpg",slug:"terpenes-and-terpenoids-recent-advances",publishedDate:"July 28th 2021",editedByType:"Edited by",bookSignature:"Shagufta Perveen and Areej Mohammad Al-Taweel",hash:"575689df13c78bf0e6c1be40804cd010",volumeInSeries:21,fullTitle:"Terpenes and Terpenoids - Recent Advances",editors:[{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9403",title:"Human Microbiome",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9403.jpg",slug:"human-microbiome",publishedDate:"June 16th 2021",editedByType:"Edited by",bookSignature:"Natalia V. Beloborodova and Andrey V. Grechko",hash:"c31366ba82585ba3ac91d21eb1cf0a4d",volumeInSeries:20,fullTitle:"Human Microbiome",editors:[{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",slug:"oxidoreductase",publishedDate:"February 17th 2021",editedByType:"Edited by",bookSignature:"Mahmoud Ahmed Mansour",hash:"852e6f862c85fc3adecdbaf822e64e6e",volumeInSeries:19,fullTitle:"Oxidoreductase",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour",profilePictureURL:"https://mts.intechopen.com/storage/users/224662/images/system/224662.jpg",institutionString:"King Saud bin Abdulaziz University for Health Sciences",institution:{name:"King Saud bin Abdulaziz University for Health Sciences",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9742",title:"Ubiquitin",subtitle:"Proteasome Pathway",coverURL:"https://cdn.intechopen.com/books/images_new/9742.jpg",slug:"ubiquitin-proteasome-pathway",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"af6880d3a5571da1377ac8f6373b9e82",volumeInSeries:18,fullTitle:"Ubiquitin - Proteasome Pathway",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9002",title:"Glutathione System and Oxidative Stress in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9002.jpg",slug:"glutathione-system-and-oxidative-stress-in-health-and-disease",publishedDate:"August 26th 2020",editedByType:"Edited by",bookSignature:"Margarete Dulce Bagatini",hash:"127defed0a50ad5ed92338dc96e1e10e",volumeInSeries:17,fullTitle:"Glutathione System and Oxidative Stress in Health and Disease",editors:[{id:"217850",title:"Dr.",name:"Margarete Dulce",middleName:null,surname:"Bagatini",slug:"margarete-dulce-bagatini",fullName:"Margarete Dulce Bagatini",profilePictureURL:"https://mts.intechopen.com/storage/users/217850/images/system/217850.jpeg",institutionString:"Universidade Federal da Fronteira Sul",institution:{name:"Universidade Federal da Fronteira Sul",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:3},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:8},{group:"subseries",caption:"Chemical Biology",value:15,count:10}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:3},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:25,paginationItems:[{id:"429683",title:"Dr.",name:"Bilal",middleName:null,surname:"Khalid",slug:"bilal-khalid",fullName:"Bilal Khalid",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/429683/images/system/429683.png",biography:"Dr. Bilal Khalid received a Ph.D. in Industrial Business Administration from KMITL Business School, Bangkok, in 2021, and a master’s in International Business Management from Stamford International University, Bangkok, in 2017. Dr. Khalid\\'s research interests include leadership and negotiations, digital transformations, gamification, eLearning, blockchain, Big Data, and management of information technology. Dr. Bilal Khalid also serves as an academic editor at Education Research International and a reviewer for international journals.",institutionString:"KMITL Business School",institution:{name:"King Mongkut's Institute of Technology Ladkrabang",country:{name:"Thailand"}}},{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",biography:"Dr. Muhammad Mohiuddin is an Associate Professor of International Business at Laval University, Canada. He has taught at Thompson Rivers University, Canada; University of Paris-Est, France; Osnabruck University of Applied Science, Germany; and Shanghai Institute of Technology and Tianjin University of Technology, China. He has published research in Research Policy, Applied Economics, Review of Economic Philosophy, Strategic Change, International Journal of Logistics, Sustainability, Journal of Environmental Management, Journal of Global Information Management, Journal of Cleaner Production, M@N@GEMENT, and more. He is a member of CEDIMES Institut (France), Academy of International Business (AIB), Strategic Management Society (SMS), Academy of Management (AOM), Administrative Science Association of Canada (ASAC), and Canadian council of small business and entrepreneurship (CCSBE). He is currently the director of the Research Group on Contemporary Asia (GERAC) at Laval University. He is also co-managing editor of Transnational Corporations Review and a guest editor for Electronic Commerce Research and Journal of Internet Technology.",institutionString:null,institution:{name:"Université Laval",country:{name:"Canada"}}},{id:"189147",title:"Dr.",name:"Hailan",middleName:null,surname:"Salamun",slug:"hailan-salamun",fullName:"Hailan Salamun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/189147/images/19274_n.jpeg",biography:"Hailan Salamun, (Dr.) was born in Selangor, Malaysia and graduated from Tunku Ampuan Jamaah Religious High School at Shah Alam. Obtained a degree from the International Islamic University (UIA), Gombak in the field of Islamic Revealed Knowledge and Heritage. Next, I furthered my studies to the professional level to obtain a Diploma in Education at UIA. After serving for several years in school, I furthered my studies to the Master of Dakwah and Leadership at Universiti Kebangsaan Malaysia (UKM), Bangi. I graduated with a Doctor of Philosophy in Principalship Leadership from the University of Malaya (UM) in 2010. I am currently a senior lecturer in the Department of Nationalism and Civilization, Center for Basic and Continuing Education, Universiti Malaysia Terengganu. Prior to that, I had served in several educational institutions such as schools, the Institute of Teacher Education (IPG), and also the University of Malaya. I am also actively involved in paper presentation, writing and publishing. My research interests are focused on leadership, education, society and Islamic civilization. This area of research requires a detailed understanding of Islamic studies and research studies in leadership. Another research interest that I have explored recently is the politics of the Malay community and also the leadership of the mosque.",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"442081",title:"Dr.",name:"Audrey",middleName:null,surname:"Addy",slug:"audrey-addy",fullName:"Audrey Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kwame Nkrumah University of Science and Technology",country:{name:"Ghana"}}},{id:"437993",title:"Mr.",name:"Job",middleName:null,surname:"Jackson",slug:"job-jackson",fullName:"Job Jackson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Management College of Southern Africa",country:{name:"South Africa"}}},{id:"428495",title:"Prof.",name:"Asyraf",middleName:null,surname:"Ab Rahman",slug:"asyraf-ab-rahman",fullName:"Asyraf Ab Rahman",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"429650",title:"Dr.",name:"Jacqueline",middleName:null,surname:"Kareem",slug:"jacqueline-kareem",fullName:"Jacqueline Kareem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Christ University",country:{name:"India"}}},{id:"421041",title:"Dr.",name:"Sunil",middleName:null,surname:"Kumar Ramdas",slug:"sunil-kumar-ramdas",fullName:"Sunil Kumar Ramdas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jain University",country:{name:"India"}}},{id:"421833",title:"Mr.",name:"Eugene",middleName:null,surname:"Owusu-Acheampong",slug:"eugene-owusu-acheampong",fullName:"Eugene Owusu-Acheampong",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"239876",title:"Ph.D.",name:"Luciana",middleName:null,surname:"Mourão",slug:"luciana-mourao",fullName:"Luciana Mourão",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Salgado de Oliveira",country:{name:"Brazil"}}},{id:"421735",title:"Dr.",name:"elizabeth",middleName:null,surname:"addy",slug:"elizabeth-addy",fullName:"elizabeth addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"442083",title:"Dr.",name:"James",middleName:null,surname:"Addy",slug:"james-addy",fullName:"James Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437991",title:"Prof.",name:"Muhammad",middleName:null,surname:"Hoque",slug:"muhammad-hoque",fullName:"Muhammad Hoque",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421006",title:"Dr.",name:"Anna",middleName:null,surname:"Uster",slug:"anna-uster",fullName:"Anna Uster",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470243",title:"Dr.",name:"Md Samim",middleName:null,surname:"Al Azad",slug:"md-samim-al-azad",fullName:"Md Samim Al Azad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470244",title:"Dr.",name:"Slimane",middleName:null,surname:"Ed-dafali",slug:"slimane-ed-dafali",fullName:"Slimane Ed-dafali",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421011",title:"Dr.",name:"Afatakpa",middleName:null,surname:"Fortune",slug:"afatakpa-fortune",fullName:"Afatakpa Fortune",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"446057",title:"Mr.",name:"Okedare",middleName:null,surname:"David Olubukunmi",slug:"okedare-david-olubukunmi",fullName:"Okedare David Olubukunmi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421778",title:"Dr.",name:"Fatimah",middleName:"Saeed",surname:"AlAhmari",slug:"fatimah-alahmari",fullName:"Fatimah AlAhmari",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421024",title:"Prof.",name:"Harold Andrew",middleName:null,surname:"Patrick",slug:"harold-andrew-patrick",fullName:"Harold Andrew Patrick",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421065",title:"Ms.",name:"Euzália",middleName:null,surname:"do Rosário Botelho Tomé",slug:"euzalia-do-rosario-botelho-tome",fullName:"Euzália do Rosário Botelho Tomé",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421053",title:"Associate Prof.",name:"Ken",middleName:null,surname:"Kalala Ndalamba",slug:"ken-kalala-ndalamba",fullName:"Ken Kalala Ndalamba",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421826",title:"Dr.",name:"Inusah",middleName:null,surname:"Salifu",slug:"inusah-salifu",fullName:"Inusah Salifu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"420823",title:"Prof.",name:"Gardênia da Silva",middleName:null,surname:"Abbad",slug:"gardenia-da-silva-abbad",fullName:"Gardênia da Silva Abbad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437613",title:"MSc.",name:"Juliana",middleName:null,surname:"Legentil",slug:"juliana-legentil",fullName:"Juliana Legentil",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]}},subseries:{item:{id:"28",type:"subseries",title:"Animal Reproductive Biology and Technology",keywords:"Animal Reproduction, Artificial Insemination, Embryos, Cryopreservation, Conservation, Breeding, Epigenetics",scope:"The advances of knowledge on animal reproductive biology and technologies revolutionized livestock production. Artificial insemination, for example, was the first technology applied on a large scale, initially in dairy cattle and afterward applied to other species. Nowadays, embryo production and transfer are used commercially along with other technologies to modulate epigenetic regulation. Gene editing is also emerging as an innovative tool. This topic will discuss the potential use of these techniques, novel strategies, and lines of research in progress in the fields mentioned above.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/28.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11417,editor:{id:"177225",title:"Prof.",name:"Rosa Maria Lino Neto",middleName:null,surname:"Pereira",slug:"rosa-maria-lino-neto-pereira",fullName:"Rosa Maria Lino Neto Pereira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9wkQAC/Profile_Picture_1624519982291",biography:"Rosa Maria Lino Neto Pereira (DVM, MsC, PhD and) is currently a researcher at the Genetic Resources and Biotechnology Unit of the National Institute of Agrarian and Veterinarian Research (INIAV, Portugal). She is the head of the Reproduction and Embryology Laboratories and was lecturer of Reproduction and Reproductive Biotechnologies at Veterinary Medicine Faculty. She has over 25 years of experience working in reproductive biology and biotechnology areas with a special emphasis on embryo and gamete cryopreservation, for research and animal genetic resources conservation, leading research projects with several peer-reviewed papers. Rosa Pereira is member of the ERFP-FAO Ex situ Working Group and of the Management Commission of the Portuguese Animal Germplasm Bank.",institutionString:"The National Institute for Agricultural and Veterinary Research. Portugal",institution:null},editorTwo:null,editorThree:null,series:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517"},editorialBoard:[{id:"90066",title:"Dr.",name:"Alexandre",middleName:"Rodrigues",surname:"Silva",slug:"alexandre-silva",fullName:"Alexandre Silva",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRt8pQAC/Profile_Picture_1622531020756",institutionString:null,institution:{name:"Universidade Federal Rural do Semi-Árido",institutionURL:null,country:{name:"Brazil"}}},{id:"176987",title:"Ph.D.",name:"María-José",middleName:"Carrascosa",surname:"Argente",slug:"maria-jose-argente",fullName:"María-José Argente",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9vOQAS/Profile_Picture_1630330499537",institutionString:null,institution:{name:"Miguel Hernandez University",institutionURL:null,country:{name:"Spain"}}},{id:"321396",title:"Prof.",name:"Muhammad Subhan",middleName:null,surname:"Qureshi",slug:"muhammad-subhan-qureshi",fullName:"Muhammad Subhan Qureshi",profilePictureURL:"https://mts.intechopen.com/storage/users/321396/images/system/321396.jpg",institutionString:null,institution:{name:"University of Agriculture",institutionURL:null,country:{name:"Pakistan"}}},{id:"183723",title:"Prof.",name:"Xiaojun",middleName:null,surname:"Liu",slug:"xiaojun-liu",fullName:"Xiaojun Liu",profilePictureURL:"https://mts.intechopen.com/storage/users/183723/images/system/183723.jpg",institutionString:null,institution:{name:"Henan Agricultural University",institutionURL:null,country:{name:"China"}}}]},onlineFirstChapters:{paginationCount:13,paginationItems:[{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81412",title:"Mathematical Morphology and the Heart Signals",doi:"10.5772/intechopen.104113",signatures:"Taouli Sidi Ahmed",slug:"mathematical-morphology-and-the-heart-signals",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81360",title:"Deep Learning Algorithms for Efficient Analysis of ECG Signals to Detect Heart Disorders",doi:"10.5772/intechopen.103075",signatures:"Sumagna Dey, Rohan Pal and Saptarshi Biswas",slug:"deep-learning-algorithms-for-efficient-analysis-of-ecg-signals-to-detect-heart-disorders",totalDownloads:31,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81068",title:"Characteristic Profiles of Heart Rate Variability in Depression and Anxiety",doi:"10.5772/intechopen.104205",signatures:"Toshikazu Shinba",slug:"characteristic-profiles-of-heart-rate-variability-in-depression-and-anxiety",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80691",title:"Applications of Quantum Mechanics, Laws of Classical Physics, and Differential Calculus to Evaluate Source Localization According to the Electroencephalogram",doi:"10.5772/intechopen.102831",signatures:"Kristin S. Williams",slug:"applications-of-quantum-mechanics-laws-of-classical-physics-and-differential-calculus-to-evaluate-so",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80643",title:"EEG Authentication System Using Fuzzy Vault Scheme",doi:"10.5772/intechopen.102699",signatures:"Fatima M. Baqer and Salah Albermany",slug:"eeg-authentication-system-using-fuzzy-vault-scheme",totalDownloads:35,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80529",title:"Effective EEG Artifact Removal from EEG Signal",doi:"10.5772/intechopen.102698",signatures:"Vandana Roy",slug:"effective-eeg-artifact-removal-from-eeg-signal",totalDownloads:66,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80505",title:"Soft Tissue Image Reconstruction Using Diffuse Optical Tomography",doi:"10.5772/intechopen.102463",signatures:"Umamaheswari K, Shrichandran G.V. and Jebaderwin D.",slug:"soft-tissue-image-reconstruction-using-diffuse-optical-tomography",totalDownloads:47,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"79881",title:"Control of Cytoskeletal Dynamics in Cancer through a Combination of Cytoskeletal Components",doi:"10.5772/intechopen.101624",signatures:"Ban Hussein Alwash, Rawan Asaad Jaber Al-Rubaye, Mustafa Mohammad Alaaraj and Anwar Yahya Ebrahim",slug:"control-of-cytoskeletal-dynamics-in-cancer-through-a-combination-of-cytoskeletal-components",totalDownloads:104,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"79580",title:"Dotting the “i” of Interoperability in FAIR Cancer-Registry Data Sets",doi:"10.5772/intechopen.101330",signatures:"Nicholas Nicholson, Francesco Giusti, Luciana Neamtiu, Giorgia Randi, Tadeusz Dyba, Manola Bettio, Raquel Negrao Carvalho, Nadya Dimitrova, Manuela Flego and Carmen Martos",slug:"dotting-the-i-of-interoperability-in-fair-cancer-registry-data-sets",totalDownloads:102,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"79550",title:"Urologic Cancer Molecular Biology",doi:"10.5772/intechopen.101381",signatures:"Pavel Onofrei, Viorel Dragoș Radu, Alina-Alexandra Onofrei, Stoica Laura, Doinita Temelie-Olinici, Ana-Emanuela Botez, Vasile Bogdan Grecu and Elena Carmen Cotrutz",slug:"urologic-cancer-molecular-biology",totalDownloads:97,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"79450",title:"Identification of Biomarkers Associated with Cancer Using Integrated Bioinformatic Analysis",doi:"10.5772/intechopen.101432",signatures:"Arpana Parihar, Shivani Malviya and Raju Khan",slug:"identification-of-biomarkers-associated-with-cancer-using-integrated-bioinformatic-analysis",totalDownloads:156,totalCrossrefCites:1,totalDimensionsCites:1,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},publishedBooks:{paginationCount:8,paginationItems:[{type:"book",id:"7999",title:"Free Radical Medicine and Biology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7999.jpg",slug:"free-radical-medicine-and-biology",publishedDate:"July 15th 2020",editedByType:"Edited by",bookSignature:"Kusal Das, Swastika Das, Mallanagouda Shivanagouda Biradar, Varaprasad Bobbarala and S. Subba Tata",hash:"083e5d427097d368a3f8a02bd6c76bf8",volumeInSeries:10,fullTitle:"Free Radical Medicine and Biology",editors:[{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBDeQAO/Profile_Picture_1623411145568",institutionString:"BLDE (Deemed to be University), India",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8762",title:"Melatonin",subtitle:"The Hormone of Darkness and its Therapeutic Potential and Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/8762.jpg",slug:"melatonin-the-hormone-of-darkness-and-its-therapeutic-potential-and-perspectives",publishedDate:"June 24th 2020",editedByType:"Edited by",bookSignature:"Marilena Vlachou",hash:"bfbc5538173f11acb0f9549a85b70489",volumeInSeries:9,fullTitle:"Melatonin - The Hormone of Darkness and its Therapeutic Potential and Perspectives",editors:[{id:"246279",title:"Associate Prof.",name:"Marilena",middleName:null,surname:"Vlachou",slug:"marilena-vlachou",fullName:"Marilena Vlachou",profilePictureURL:"https://mts.intechopen.com/storage/users/246279/images/system/246279.jpg",institutionString:"National and Kapodistrian University of Athens",institution:{name:"National and Kapodistrian University of Athens",institutionURL:null,country:{name:"Greece"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8002",title:"Tumor Progression and Metastasis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8002.jpg",slug:"tumor-progression-and-metastasis",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Ahmed Lasfar and Karine Cohen-Solal",hash:"db17b0fe0a9b6e80ff02b81a93bafa4e",volumeInSeries:8,fullTitle:"Tumor Progression and Metastasis",editors:[{id:"32546",title:"Dr.",name:"Ahmed",middleName:null,surname:"Lasfar",slug:"ahmed-lasfar",fullName:"Ahmed Lasfar",profilePictureURL:"https://mts.intechopen.com/storage/users/32546/images/system/32546.png",institutionString:"Rutgers, The State University of New Jersey",institution:{name:"Rutgers, The State University of New Jersey",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6897",title:"Biophysical Chemistry",subtitle:"Advance Applications",coverURL:"https://cdn.intechopen.com/books/images_new/6897.jpg",slug:"biophysical-chemistry-advance-applications",publishedDate:"February 19th 2020",editedByType:"Edited by",bookSignature:"Mohammed A. A. Khalid",hash:"0ad18ab382e2ffb9ff202d15282297eb",volumeInSeries:7,fullTitle:"Biophysical Chemistry - Advance Applications",editors:[{id:"137240",title:"Prof.",name:"Mohammed",middleName:null,surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid",profilePictureURL:"https://mts.intechopen.com/storage/users/137240/images/system/137240.png",institutionString:"Taif University",institution:{name:"Taif University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8008",title:"Antioxidants",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8008.jpg",slug:"antioxidants",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Emad Shalaby",hash:"76361b4061e830906267933c1c670027",volumeInSeries:5,fullTitle:"Antioxidants",editors:[{id:"63600",title:"Prof.",name:"Emad",middleName:null,surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby",profilePictureURL:"https://mts.intechopen.com/storage/users/63600/images/system/63600.png",institutionString:"Cairo University",institution:{name:"Cairo University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6924",title:"Adenosine Triphosphate in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6924.jpg",slug:"adenosine-triphosphate-in-health-and-disease",publishedDate:"April 24th 2019",editedByType:"Edited by",bookSignature:"Gyula Mozsik",hash:"04106c232a3c68fec07ba7cf00d2522d",volumeInSeries:3,fullTitle:"Adenosine Triphosphate in Health and Disease",editors:[{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",institutionString:"University of Pécs",institution:{name:"University of Pecs",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6925",title:"Endoplasmic Reticulum",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6925.jpg",slug:"endoplasmic-reticulum",publishedDate:"April 17th 2019",editedByType:"Edited by",bookSignature:"Angel Català",hash:"a9e90d2dbdbc46128dfe7dac9f87c6b4",volumeInSeries:2,fullTitle:"Endoplasmic Reticulum",editors:[{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/196544/images/system/196544.jpg",institutionString:"Universidad Nacional de La Plata",institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7264",title:"Calcium and Signal Transduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7264.jpg",slug:"calcium-and-signal-transduction",publishedDate:"October 24th 2018",editedByType:"Edited by",bookSignature:"John N. Buchholz and Erik J. Behringer",hash:"e373a3d1123dbd45fddf75d90e3e7c38",volumeInSeries:1,fullTitle:"Calcium and Signal Transduction",editors:[{id:"89438",title:"Dr.",name:"John N.",middleName:null,surname:"Buchholz",slug:"john-n.-buchholz",fullName:"John N. Buchholz",profilePictureURL:"https://mts.intechopen.com/storage/users/89438/images/6463_n.jpg",institutionString:null,institution:{name:"Loma Linda University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"4",title:"Fungal Infectious Diseases",scope:"Fungi are ubiquitous and there are almost no non-pathogenic fungi. Fungal infectious illness prevalence and prognosis are determined by the exposure between fungi and host, host immunological state, fungal virulence, and early and accurate diagnosis and treatment. \r\nPatients with both congenital and acquired immunodeficiency are more likely to be infected with opportunistic mycosis. Fungal infectious disease outbreaks are common during the post- disaster rebuilding era, which is characterised by high population density, migration, and poor health and medical conditions.\r\nSystemic or local fungal infection is mainly associated with the fungi directly inhaled or inoculated in the environment during the disaster. The most common fungal infection pathways are human to human (anthropophilic), animal to human (zoophilic), and environment to human (soilophile). Diseases are common as a result of widespread exposure to pathogenic fungus dispersed into the environment. \r\nFungi that are both common and emerging are intertwined. In Southeast Asia, for example, Talaromyces marneffei is an important pathogenic thermally dimorphic fungus that causes systemic mycosis. Widespread fungal infections with complicated and variable clinical manifestations, such as Candida auris infection resistant to several antifungal medicines, Covid-19 associated with Trichoderma, and terbinafine resistant dermatophytosis in India, are among the most serious disorders. \r\nInappropriate local or systemic use of glucocorticoids, as well as their immunosuppressive effects, may lead to changes in fungal infection spectrum and clinical characteristics. Hematogenous candidiasis is a worrisome issue that affects people all over the world, particularly ICU patients. CARD9 deficiency and fungal infection have been major issues in recent years. Invasive aspergillosis is associated with a significant death rate. Special attention should be given to endemic fungal infections, identification of important clinical fungal infections advanced in yeasts, filamentous fungal infections, skin mycobiome and fungal genomes, and immunity to fungal infections.\r\nIn addition, endemic fungal diseases or uncommon fungal infections caused by Mucor irregularis, dermatophytosis, Malassezia, cryptococcosis, chromoblastomycosis, coccidiosis, blastomycosis, histoplasmosis, sporotrichosis, and other fungi, should be monitored. \r\nThis topic includes the research progress on the etiology and pathogenesis of fungal infections, new methods of isolation and identification, rapid detection, drug sensitivity testing, new antifungal drugs, schemes and case series reports. It will provide significant opportunities and support for scientists, clinical doctors, mycologists, antifungal drug researchers, public health practitioners, and epidemiologists from all over the world to share new research, ideas and solutions to promote the development and progress of medical mycology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",keywords:"Emerging Fungal Pathogens, Invasive Infections, Epidemiology, Cell Membrane, Fungal Virulence, Diagnosis, Treatment"},{id:"5",title:"Parasitic Infectious Diseases",scope:"Parasitic diseases have evolved alongside their human hosts. In many cases, these diseases have adapted so well that they have developed efficient resilience methods in the human host and can live in the host for years. Others, particularly some blood parasites, can cause very acute diseases and are responsible for millions of deaths yearly. Many parasitic diseases are classified as neglected tropical diseases because they have received minimal funding over recent years and, in many cases, are under-reported despite the critical role they play in morbidity and mortality among human and animal hosts. The current topic, Parasitic Infectious Diseases, in the Infectious Diseases Series aims to publish studies on the systematics, epidemiology, molecular biology, genomics, pathogenesis, genetics, and clinical significance of parasitic diseases from blood borne to intestinal parasites as well as zoonotic parasites. We hope to cover all aspects of parasitic diseases to provide current and relevant research data on these very important diseases. In the current atmosphere of the Coronavirus pandemic, communities around the world, particularly those in different underdeveloped areas, are faced with the growing challenges of the high burden of parasitic diseases. At the same time, they are faced with the Covid-19 pandemic leading to what some authors have called potential syndemics that might worsen the outcome of such infections. Therefore, it is important to conduct studies that examine parasitic infections in the context of the coronavirus pandemic for the benefit of all communities to help foster more informed decisions for the betterment of human and animal health.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",keywords:"Blood Borne Parasites, Intestinal Parasites, Protozoa, Helminths, Arthropods, Water Born Parasites, Epidemiology, Molecular Biology, Systematics, Genomics, Proteomics, Ecology"},{id:"6",title:"Viral Infectious Diseases",scope:"The Viral Infectious Diseases Book Series aims to provide a comprehensive overview of recent research trends and discoveries in various viral infectious diseases emerging around the globe. The emergence of any viral disease is hard to anticipate, which often contributes to death. A viral disease can be defined as an infectious disease that has recently appeared within a population or exists in nature with the rapid expansion of incident or geographic range. This series will focus on various crucial factors related to emerging viral infectious diseases, including epidemiology, pathogenesis, host immune response, clinical manifestations, diagnosis, treatment, and clinical recommendations for managing viral infectious diseases, highlighting the recent issues with future directions for effective therapeutic strategies.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",keywords:"Novel Viruses, Virus Transmission, Virus Evolution, Molecular Virology, Control and Prevention, Virus-host Interaction"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:{title:"Infectious Diseases",id:"6"},selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/452567",hash:"",query:{},params:{id:"452567"},fullPath:"/profiles/452567",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var t;(t=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(t)}()