\r\n\t
\r\n\tThis book is intended to discuss several aspects, starting from the plate tectonics to the sedimentary basins. Main aspects of the plate tectonics include the continental drift, the palaeo-magnetism and the morphologic setting of the oceans. The continental drift is linked to the name of the German geophysicist Alfred Wegener, who suspected that the continents should move laterally, observing the correspondence between the shorelines of both sides of the Atlantic Ocean.
\r\n\t
\r\n\tHe hypothesized that a great continent, namely the Pangea, broke up and was divided into great blocks, which after started to drift on the earth's surface. The isostatic adjustments of the earth's crust necessarily require vertical movements of the continental blocks in order to compensate the variations of loading on the earth's crust.The oceanic expansion has been supported by the polarity reversals, recognized for the first time in the lava flows by having directions of the palaeomagnetic field divergent of 180°. This allowed a chronological scale generation of the geomagnetic reversals, based on a uniform rate of expansion in the southern Atlantic Ocean. The topography of the oceans is characterized by three main physiographic provinces, including the oceanic ridge surrounding the oceanic basins, adjacent to the continental margins. The earth's crust is the part of the earth overlying the Moho discontinuity and may be divided in oceanic crust, transitional crust, and continental crust. This book intends to provide new insights concerning the geological implications of plate tectonics, including the sequence stratigraphy of passive continental margins, the sedimentological and palaeoceanographic aspects and the marine geology of the continental margins. New contributions on the continental margins (passive, active and transcurrent) are also acknowledged. Another main topic of this book is represented by the ophiolites, a sequence characterized by the vertical association of pillow lavas, radiolarites, and peridotites. The ophiolitic sequence is often overlain by sedimentary rocks (radiolarites, pelagic limestones) and may be associated with chromite bodies and rocky bodies, both intrusive and effusive. They represent allochtonous fragments of old oceanic crust. Also, contributions in terms of sedimentation and tectonics and their general concepts are also welcome. Finally, a basic topic of this book is represented by the sedimentary basins in different geodynamic settings, including the spreading related settings, the subduction related settings and the continental collision related settings.
The development in organic light emitting diodes (OLEDs) has been one of the fastest growing research areas because of their potential applications in lighting and flat panel displays. Some commercialization of OLED devices such as lightings and displays has already been made. In particular, OLED displays are awaiting true commercialization toward large market. However, there are still several problems to be solved. Particularly two areas require ongoing improvements, 1) light extraction and 2) polarization. In this chapter the research activities in these two areas are summarized.
As far as the material for organic light-emitting diodes (OLEDs) is concerned, semiconductor-based organic light emitters are the obvious choice because semiconducting organic light-emitting materials have reached a high level with internal quantum efficiencies of ~100% [1]. Unfortunately, however, most of this light is trapped inside OLEDs, and only 20% can be outcoupled because of the total internal reflection [2-7]. In this section, various light extraction technologies are reviewed to suppress guided light loss. In particular, the enhanced light extraction efficiency by means of photonic structures onto OLEDs is discussed in depth.
OLEDs suffer from poor external efficiency that arises from Snell’s law; i.e., light generated in a high-refractive-index layer tends to remain trapped in the layer due to total internal reflection [2,3]. In fact, whatever the internal quantum efficiency might be, the light extraction efficiency of OLEDs with flat multi-layered structures including no additional surface modifications is typically only about 20% of the internal quantum efficiency [4,5]. In such OLEDs, the extracted emission cone to air is very small and only a small fraction of the light generated in the material can be outcoupled from the device but the rest is trapped within by the total internal reflection. The emitted light has to travel from the emissive layer (
where
Resumption of at least part of the remaining trapped light (~80%) has been one of the most important issues in fabricating OLEDs for practical applications over the past years. The intense research efforts have been focused on, e.g., substrate surface roughening [10], microlenses [11,12], monolayer of silica spheres as a scattering medium [13], insertion of low-refractive-index materials [5], distributed Bragg reflectors (DBRs) [14-20], and one-dimensional (1-D) or two-dimensional (2-D) photonic structures [21-28]. The research developments in these areas are described below:
Schematic structure of OLEDs with modified substrate surface and light extraction.
To overcome this problem, an ordered monolayer of silica microspheres with a diameter 550 nm as a scattering medium has been used by Yamasaki
Schematic structure of OLEDs with a microlens and light extraction.
Insertion of low-refractive-index materials: Tsutsui et al. [5] have used ultrathin organic emissive layers as very poor waveguides with only a very few allowed modes. This allows a considerable amount of light to leak into the substrate, and eq. (1) is no longer valid. In addition, if the index of refraction of the substrate can also be lowered, the light output can be improved significantly as shown in Fig. 3. Tsutsui et al. have proposed the use of aerogels with a refractive index close to that of air (naerogel~1) and demonstrated that the out-coupling efficiency gets doubled.
Distributed Bragg reflectors (Microcavity): Another promising light extraction technique is the use of microcavity structures [18-20,31,32]. In microcavity devices, the internal emission can be effectively extracted via interference effects. In addition, microcavity provides us with spectral narrowing and spatial redistribution of the emission. Microcavity using inorganic distributed Bragg reflectors (DBRs) consisting of alternating inorganic layers with different refractive indices has been extensively studied over the past several decades. The advantage of DBRs is that they may have very high reflectivity and very low loss. These reflectors have a selective reflectivity in a specific wavelength range, which can form constructive interference, and effectively suppress other modes and induce a high reflectance over a certain range of wavelengths depending on the difference in refractive indices of constituting layers. This leads to spectral narrowing and intensity enhancement of spontaneous emission in microcavity OLEDs.
Schematic diagram of light extraction from OLED with (a) conventional structure and (b) structure with a thin active layer and a low-refractive index layer.5 Copyright 2001, Wiley-VCH.
Schematic structure of microcavity OLEDs.
The schematic structure of a microcavity is shown in Fig. 4. The total optical path difference between direct emission and emission after single-round reflection L (see Fig. 4) is given by:
where neff is the effective refractive index, ni is refractive index of ith layer, φm denotes phase shift. The first, second, and third terms stand for effective penetration depth, summation of the optical thickness in each layer, and phase shift, respectively. Usually, the total thickness of the organic materials in OLED structure is about 100 nm and the ITO thickness is determined by considering good electrical conductance and high transparence. Therefore, the optical length of the cavity can be modified by varying the second term in eq. (2). If resonant condition for constructive interference is 2L=mλ, the light with λ is selectively enhanced and the color purity is also enhanced.
Diffractive resonators: The application of Bragg grating to OLEDs has been reported by Matterson et al. [21] and Lupton et al. [22]. They have demonstrated an increase in the light extraction by Bragg-scattering of waveguided light using a corrugated photoresist layer. However, in this device structure the light must transmit through the absorptive gold and photoresist layers, which limit its absolute efficiency [24]. Later, Ziebarth et al. [23] have demonstrated a more conventional ITO-based electroluminescent (EL) device using a stamped Bragg grating into poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) layer. Even though the soft-lithography is beneficial in fabricating large-scale devices at low cost, waveguide absorption is strong in ITO and patterned PEDOT layers [24]. This results in reduction of grating effect particularly in the shorter wavelength region. Fujita et al. have also shown the improved electroluminescence from a corrugated ITO device using this concept [27,28]. They have used vacuum evaporated EL materials and square-shaped pattern substrates. Using vacuum evaporation, the organic materials deposited on patterned substrates retain their pattern shape due to the low adatom mobility of deposited organic molecules. This corrugated shape through all device structure enhances the light extraction efficiency by not only waveguided light diffraction but also surface plasmon. However, a square type pattern is not suitable for fabricating stable EL devices because of possible electrical short problems.
The enhanced light extraction from OLEDs with diffractive resonators can be explained as follows. First, waveguided light propagation along the in-plane direction of the device is emitted to the surface direction by Bragg diffraction in the grating device. Figure 5 illustrates the mechanism of how the diffracted light can be extracted by Bragg diffraction in a 1-D grating sample for simple consideration. If the light incident on a material with a refractive index of n2 from that with n1, the diffraction condition is given by
where λ is the wavelength, ni (i=1 and 2) is the effective refractive index, dc is the grating period, and m is the diffraction order. If we consider a waveguided light to have a high incident angle (θ1~90°) and diffracted light has the lowest diffraction angle (θ2~0°), then eq. (3) can be simplified as:
where neff is the effective refractive index. For m=1, first-order diffracted light can be extracted to surface normal direction resulting in an increased light extraction.
Typical structure of a diffractive resonator along one axis in the plane of the waveguide. 33 Copyright 2008, American Institute of Physics.
This diffraction relation can also be applied to the surface-emitting distributed feedback laser. Here we consider a situation where the waveguided and diffracted lights have high incident angles, i.e., θ1 = 90° and θ2 = - 90°. By substituting these angles into eq. (3), one obtains:
For m=2, second-order diffracted light makes the counter propagating mode, which results in an optical feedback for lasing. Lasing does not occur along the guided direction because of the low quality of side surfaces but it is outcoupled to the surface normal direction by first-order Bragg diffraction.
Hence, the physical meaning of this relation is that both first- and second-order Bragg diffractions of waveguided light occur simultaneously in different directions. That means waveguided light satisfying the Bragg condition is perfectly extracted toward the surface normal direction by the first-order Bragg diffraction until the second-order Bragg diffracted light decays along in-plane direction.
Nano-patterned structures are prepared to fabricate corrugated OLEDs. For periodic and quasi-periodic nano-patterned substrates, 1-D and 2-D grating and buckling structures, respectively, are prepared as described below:
Schematic illustration of surface relief grating fabrication process.
To form a 1-D surface relief grating (SRG) structure, an azobenzene polymer thin film is irradiated using two Ar+ laser (488 nm) beams. This is achieved due to the mass transport from the region of constructive interference to that of destructive interference region in azobenzene polymer, leading to a volume decrease in the highly irradiated (constructive intereference) region with the increase in the irradiation time as shown in Fig. 6. This process is quite different from the other more conventional microscopic processes such as laser ablation and chemical etching. The major advantage of this photo-fabrication approach is the possible precise control of grating depth by adjusting the light exposure energy and polarization states of writing beam.
The two recording lights are circularly polarized. Based on the following equation, the periodicity of the SRG can be controlled by changing the crossing angle between two recording laser beams.
where λlaser is the wavelength of the laser and θ is an incidence angle. The formed SRG pattern is transferred onto a UV curable epoxy or a CYTOP (perfluoropolymer, Asahi Glass Co. Ltd.,), so that a patterned substrate with an SRG is obtained.
For a buckling fabrication, standard commercial poly(dimethylsiloxane) (PDMS) materials (Wacker ELASTOSIL RT 601) are mixed with a curing agent in a weight ratio of 9:1 and then spin-coated on a pre-cleaned glass substrate. The coated PDMS is cured at 100 °C for 1 h and then an aluminum layer is deposited on it. A structure thus prepared is heated to 100 °C with an external radiation source by thermal evaporation at a pressure below 1 × 10-3 Pa. It is then cooled to the ambient temperature by keeping it in a chamber for more than 30 min and venting to atmosphere. The difference in the thermal expansion coefficients between the aluminum film and PDMS generates a buckled structure on the PDMS film. The PDMS replica is formed by pouring PDMS over the buckled PDMS master and by curing it at 100 °C for 1 h. The PDMS replica can be easily peeled off from the PDMS master. For the second deposition of a 10-nm-thick aluminum layer, the buckled PDMS replica is used as the substrate. After deposition, the buckling pattern of the replica is transferred to a glass substrate after UV curing in curable resin (Norland Optical Adhesive 81) for 10 min. For the third deposition of a 10-nm-thick aluminum layer, the buckled PDMS replica thus fabricated is used as the substrate, and the above process is repeated. After the deposition, the buckled resin master is again produced, from which, finally, the buckled PDMS replica mould for making devices is fabricated.
The method of replicating nano-patterned structures (azobenzene film and buckling) onto substrates is shown in Fig. 7 [34]. First, the patterned azobenzene polymer film or buckling pattern is converted to a master mould of PDMS. After the heat treatment at 50 °C for 1 h the silicon rubber becomes firm and it can easily be separated from azobenzene polymer substrate as a free-standing film. The CYTOP solution (CTL-109A, Asahi Glass Co. Ltd.) is drop-cast on a glass substrate and is heated under the patterned silicon rubber mould pressed on it at 60 °C for 1 h. For the UV curable epoxy (Norland Optical Adhesive 81), UV light is irradiated to harden the epoxy layer under silicon rubber mould. The patterned structure is thus replicated onto a substrate.
We fabricated OLEDs on patterned nano-structured substrates. The device structures introduced in this chapter are classified in two parts, organic and polymeric devices. The organic layers in the organic device are coated by thermal evaporation (2-D grating & buckling devices), whereas spin coating (1-D grating device) is used in the polymeric device. However, the basic concept is almost the same in both cases except for deposition method and materials used.
Schematic diagram of nano-imprint process. 34 Copyright 2008, American Institute of Physics.
We prepared ITO or Au stripes as an anode using sputter deposition or thermal evaporation. In case of organic EL devices, a two or three-layered structure consisting of (CuPc: used in 2-D grating device))/TPD/Alq3 is deposited successively by vacuum evaporation. For making the polymeric EL device, PEDOT doped with poly-(styrenesulfonate) PSS is spin coated as a hole transport layer (HTL) and heated at 60 °C for 20 min (Tg of CYTOP : 108 °C) in an oven. Then MEH-CN-PPV is spin coated as an emissive layer (EML) on the HTL successively.
After coating organic or polymeric layers using a metal mask, lithium fluoride (LiF) as an electron injection layer (EIL) and Al as a cathode are deposited. The detailed experimental conditions including thickness of each layer were explained elsewhere [33,35,36]. The pixel with a size of 3 mm×3 mm was used for electroluminescence measurements.
In this section, we examine light extraction characteristics from OLED devices with 1-D or 2-D DFB grating substrates. The waveguided light is extracted to normal direction by an imprinted low-refractive index layer (1-D DFB grating). Also, electrical characteristics in OLEDs with 2-D hexagonally nano-imprinted periodic structures are investigated to confirm the enhanced light extraction from this device (2-D DFB grating). We review previously reported results in view of light extraction characteristics and electrical characteristics from periodically corrugated OLEDs.
Optical characterization of corrugated OLEDs with periodic structures (1-D grating): Figure 8(a) shows a schematic illustration of the Bragg diffraction process of waveguided light in periodic structures. When waveguided light is incident on the grating structure, the light is reflected by a photonic band gap and simultaneously diffracted in the direction perpendicular to the photonic crystal surface because the Bragg condition is satisfied in this direction. The angle θ of the emission direction with respect to the surface normal is governed by the conservation of momentum in the plane of the waveguide [21-24,37,38] given by
where λ is the wavelength, kwg and kg are respectively the wavenumbers of the waveguided light and the grating with a period Λ, neff is the effective refractive index of the waveguide mode, k0 is the free-space wavenumber of the diffracted light, and m is the diffraction order. If Λ and neff are known, eq. (7) gives the emission angle of extracted light as a function of wavelength for the first-order Bragg diffraction of waveguided light.
a) Schematic illustration of Bragg diffraction of waveguided light. (b) AFM image of patterned azobenzene polymer. 33 Copyright 2008, American Institute of Physics.
Angular dependence of electroluminescence spectra from OLED devices with flat (green curve at θ =0°) and patterned CYTOP layer. 33 Copyright 2008, American Institute of Physics.
Figure 9 shows the angle dependence of EL spectra for the two EL devices with and without the grating structure. For measuring the EL spectra, a detector with a diameter of 5 mm is located 10 cm apart from the device surface. A sharp peak (632 nm) has been observed in the normal direction (θ =0°), and a peak splitting has been found to occur by increasing the detection angle because the grating diffracted waveguided light travels in the opposite direction. The wavelengths of the separated two peaks have been measured as a function of the detection angle as shown in Fig. 10(a). The measured wavelength positions agree well with the lines given by eq. (8) with θ3, which is given by
considering all refractions in PPFVB/glass/air, as shown in Fig. 10(b). This means that extraction angle of Bragg diffracted light is closely related to refractive indices of stacked materials.
a) Measured extraction angles of Bragg diffracted light. θ1 and θ3 denote calculated extraction angles in CYTOP and air, respectively. (b) Schematic illustration for refraction of Bragg diffracted light in each stacked material. 33 Copyright 2008, American Institute of Physics.
To compare the effects of refractive indices of imprinted materials, we have calculated light extraction angles from materials with various refractive indices, as shown in Fig. 11. The wavelength of vertically emitted light is assumed to be 632 nm. According to eq. (8), as the refractive index becomes high, the light extraction angle becomes wider. For n=1.80, the extraction angle of light with wavelength of 800 nm is 65°, whereas the total light extraction angle is only 23° for n=1.00. In the case of CYTOP (n=1.34), the total light extraction angle is 35°. Thus nano-imprinted CYTOP layer can extract waveguided light with high directionality. Such characteristics provide an advantage for small- or medium-size OLEDs, which are mainly viewed from the forward direction [39].
Calculated extraction angles in imprinted materials with various refractive indices as a function of wavelength. 33 Copyright 2008, American Institute of Physics.
The effect of a grating on normally-directed EL has been observed by collecting EL spectra between ±18.4°, as shown in Fig. 12. The enhancement of EL spectra in the device with patterned CYTOP layer has been observed over the wavelength range from 540 nm to 728 nm. However, it should be noted that the highest EL intensity is observed only around 650 nm, whereas vertically directed emission peak position is 632 nm. This results from different transmittance of ITO at various wavelengths as shown in Fig. 12. Because the wavelength of the highest EL intensity is closely related to both natural fluorescence and waveguide absorption in ITO layer, the light can be extracted more efficiently due to the high transmittance and fluorescence at 650 nm. Hence, the grating effect is higher in longer wavelength region which has higher transmittance. If ITO with high transparency is possible to be deposited at room temperature, the grating effect of CYTOP with high transmittance will be increased.
Overall EL spectra within ±18.4° from OLEDs with flat and patterned CYTOP layers. Two dotted lines show transmittance of CYTOP/Glass and ITO/CYTOP/Glass, respectively.33 Copyright 2008, American Institute of Physics.
Electrical characterization of corrugated OLEDs with periodic structures (2-D grating): The current–voltage (I-V) characteristics of an EL device with a 2-D grating (2-D grating device) has been measured and compared with those of an EL device without grating (non-grating device). The 2-D grating device shows a higher current level compared to the non-grating device, as shown in Fig. 13(a). Both EL devices show a power-law dependence of I~V6-7 over a large current and voltage range. Because of large trap concentration and low mobility in organic semiconductors, the carrier transport in OLEDs is trap-charge-limited current (TCLC) [40], which is known to show power law dependence.
a) Current-voltage plot measured from a 2-D grating and non-grating devices. (b) Magnified current-voltage plots in low voltage region.35 Copyright 2008, The Japan Society of Applied Physics.
One may intuitively think that higher current effect in 2-D grating devices is simply due to the increase of interface contact area by corrugation between electrode and organic semiconductors. However, this cannot explain the increase of transition voltage (Vtr) at which the conduction model changes from ohmic to TCLC, as indicated by two arrows in Fig. 13(a). If the increase in the interface contact area is a major effect, Vtr in the grating device must be shifted to a voltage lower than that of the non-grating device because higher current must satisfy TCLC conduction more quickly.
At low voltages, low-mobility ohmic conduction via thermally generated free charge is observed. In this case, the current density J is described by
where q is the electronic charge, μn is electron mobility, n0 is a thermally generated background free charge density, V is the applied voltage, and dt is the organic layer thickness. In order to find what induces the low voltage ohmic current, we have examined the I-V plot in the low voltage range. According to Fig. 13(b), the 2-D grating device shows a higher ohmic current than that of the non-grating device. This means that the 2-D grating device has a lower total resistance Rtotal which is a sum of junction resistance (RJ), bulk resistance (RB) of organic layers and electrode resistance (REL) and is given by:
Here the ohmic resistance induced by Al and Au (REL) and the junction resistance (RJ) induced by interfacial barrier between electrode and organic layer are the same in both samples. Hence RB in the 2-D grating device must be smaller than that in the non-grating device. This result may be understood from the concept of ‘partial reduction thickness of organic layers’ proposed by Fujita et al. [27,28]. They have observed improved electroluminescence from a corrugated ITO where the reduction of thickness of organic layers is effectively induced by each edge of Al and ITO square-shape patterned electrodes shown as black areas in Fig. 14(a). At the edge of each patterned electrode, a higher electric field develops (See Fig. 14 (a)) and this results in reduction of operating voltage. Thus, the increased low voltage current in the 2-D grating device may be explained due to the lower bulk resistance (RB) and hence the lower total serial resistance.
Calculated static field distribution between (a) square- and (b) sinusoidal-shape patterned electrodes. (c) AFM image of a patterned UV epoxy layer. (d) Depth profile along a red line in (c).35 Copyright 2008, The Japan Society of Applied Physics.
Even though the depth of patterned shape is only 50 nm, the 2-D grating device does not show any breakdown during applying voltage. Generally thin EL devices can easily suffer from breakdowns because the internal field distribution is very sensitive to interface roughness and dust particles. It is therefore very important that the patterned electrode shape must be optimized for the stability of EL devices. Otherwise, the patterned electrode may result in worse device condition without realizing any high light extraction efficiency. Because of this reason, one should use those patterned electrode structures which give minimal ‘partial reduction thickness of organic layers’. This means that if the field distribution between cathode and anode is uniform, the possibility of breakdown may be reduced even when the depth of patterned shape is high. For studying the effect of the shape of patterned electrodes, we have calculated the static field distribution in EL devices for patterned electrodes of square and sinusoidal shapes. Although the light is diffracted by 500-nm-pitched lines, which has the same width as the interfered periodicity of the two Ar+ laser beams (Fig. 6(b)), the electric field distribution is related to the distance between closest protrusions. Hence the distance used for the calculation is 580 nm. (See Fig. 14(c)). As shown in Fig. 14(a), a high electric field gets localized at the edges of square-shaped cathode and anode electrodes. However, if the patterned electrodes are of sinusoidal shapes the field distribution becomes almost uniform. Figure 14(b) shows static field distribution in sinusoidal-shaped electrode. Note that we use different ranges of relative field intensity in Fig. 14(a) and (b) to clearly visualize the field distribution as color variations. Although the field is concentrated in the intermediate regions between the top and bottom of the patterned electrodes (see Fig. 14(b)), the field distribution becomes much more uniform compared with the case of Fig. 14(a). Figure 14(d) represents the depth profile of a patterned azobenzene film obtained along a red line in the AFM image shown in Fig. 14(c). The shape at the upper region is approximated as sinusoidal. This shape results in no breakdown of 2-D grating devices even though leakage current is high.
Next, we describe the relationship among the reduction of thicknesses, current efficiency, and diffraction effects. Figure 15(a) displays the external current efficiency versus current density. In the 2-D grating device, a higher efficiency is obtained in a high current density region. However, below a current density of 3×10-5A/cm2, the efficiency of the non-grating device is found to be slightly higher than that of the 2-D grating device, as shown in Fig. 15(b). How can we explain this? As mentioned above, the major difference between a 2-D grating device and a non-grating device is in RB or effective thickness of the bulk layer; i.e., RB is lower and the layer is thinner in the 2-D grating device than that in the non-grating device. Hence, we should discuss the dependence of current efficiency on the emitter thickness [41]. For this purpose, the recombination probability (Prec), which is directly proportional to the EL yield, is considered. Prec is defined by the ratio of the recombination time τrec and the transit time τt of the charge carriers as:
This gives Prec = 1 when τrec/τt=0 and Prec decreases with increasing τrec/τt. The thickness dependence in τt comes only from:
where dt is the emitter layer thickness, μ the carrier mobility, and F the applied electric field operating on the sample. According to eqs. (11) and (12), at a given electric field, increasing emitting layer thickness will increase τt and hence Prec. Employing this theory, 2-D grating device must show lower current efficiency due to the short transit time by reduction of thickness.
a) Extracted current efficiency against current density measured from a 2-D grating and non-grating devices. (b) Magnified extracted efficiency vs current density in low current density region. 35 Copyright 2008, The Japan Society of Applied Physics.
It should be noted, however, that a higher current efficiency in the 2-D grating device increases even though the non recombined current is higher. The enhanced current efficiency in the 2-D grating device can be explained as follows. First, the waveguided light propagating along the in-plane direction of the device is emitted to the surface direction by Bragg diffraction in the 2-D grating device. Figure 16(a) shows how the diffracted light can be extracted by Bragg diffraction in a 1-D grating sample for simple consideration. If the light incident on a material with the refractive index of n2 from that of n1, the diffraction condition is given by
where dc is a periodic distance and m is a diffraction order. Because the refractive indices are n1=1.7 and n2=1.5 in EL layer and epoxy/glass, respectively, the 1st-order diffracted light (m = 1) can be emitted, as shown in Fig. 16(b) and (c). In flat devices without grating, only EL
a) Schematic illustration of diffraction of the guided light. (b) Schematic illustration of the angle range for total reflection and diffraction at 500 nm wavelength. (c) The diffraction limit of incidence angle θ1 for the first diffraction as a function of wavelength. 35 Copyright 2008, The Japan Society of Applied Physics.
light to an angle below the critical angle (61°) can be emitted due to the total internal reflection. However, in grating devices, the incident light within the angle range between θ1 and 90° is diffracted and then emitted at an angle between θ2 and -90°. For example, in the case of a light with 500 nm wavelength, θ1 and θ2 are 0° and 7.6°, respectively. This means that the incident light within the angle range between 0° and 90° can be emitted at an angle in the range between 7.6° and -90°. It should be noted that an incident light within 61°~90° cannot be emitted in flat devices without a grating. In other words, the light diffracted from the incidence angle in the range between 61° and 90° contributes to additional light extraction in 2-D grating devices obtained, resulting in an increase in the of light output.
Another aspect of enhancing the light extraction in a 2-D grating device is by recovering the quenched light coupled with surface plasmon mode. This effect can be observed in an Alq3-based system because the excitons have no preferred orientation in an Alq3 layer, whereas conjugated polymer systems show a lower effect because the dipole moments lie in the plane of the film due to spin casting. Hobson et al. [42] have found that a further recovery of the trapped light can be obtained by the surface plasmon with the help of a periodic grating formed on substrate particularly in Alq3-based EL devices. This effect can also explain the increased current efficiency in Alq3-based EL devices because the corrugation remains intact on the Al electrode layer.
Buckling patterns are produced spontaneously by thermal evaporation of Al films on poly(dimethylsiloxane) (PDMS) substrates preheated to 100 °C using an external heat source. Al layers with a thickness of 10 nm are deposited on thermally expanded PDMS. After cooling to ambient temperature, the buckling process spontaneously occurs, releasing the compressive stress induced by the difference between the thermal expansion coefficients of PDMS and Al films [43-45]. Figure 17(a), (b) and (c) shows atomic force microscopy (AFM) images of buckles formed by a 10-nm-thick Al layer applied once, twice and three times, respectively. The vague symmetric ring in the fast Fourier transform (FFT) pattern shows that the buckling structure has a characteristic wavelength with a wide distribution and without preferred orientation of the periodic structure. The characteristic wavelength can be obtained by the power spectrum of FFT as a function of wavenumber k=2π/λ. Figure 17(d) presents the power spectra of various buckles plotted against the wavelength instead of the wavenumber for direct comparison with outcoupled spectra of OLEDs. The buckling structure of the 10-nm-thick Al layer shows a peak periodicity at wavelengths of ~400 nm (Fig. 17d), resulting in a ~1.4% increase in the surface area ratio of the buckled to flat PDMS with a buckle depth as low as 25–30 nm as shown in Fig. 17(a).
In general, the depth of buckling structure D depends on the buckling periodicity λ, which is proportional to the thickness d of thin films and the imposed compressive strain (stress) Δ as D~λ Δ1/2 [46,47]. The buckles need to have a large depth for efficient diffraction and require a shorter buckling periodicity than that shown in Fig. 17(a) to be effective for an emission peak at a wavelength of ~525 nm. However, there is a trade-off between these factors, because D is proportional to λ. We have therefore adopted an alternative method assuming that the larger the compressive stress, the deeper are the buckles at a constant wavelength [48]. We have introduced additional compressive stresses by further deposition of a 10-nm-thick Al layer, once or twice more, on a buckled PDMS replica fabricated from a buckled PDMS mould after the first deposition of an Al layer (Figs. 17(b) and (c)).
AFM analysis of buckling pattern. (a) Buckled structure formed by a 10-nm-thick Al layer. (b),(c) Buckled structures formed by deposition of a 10-nm-thick Al layer twice and three times, respectively. Resin layers imprinted with a buckled PDMS replica were used for measurement. Inset: FFT patterns of each image. (d) Power spectra from FFTs as a function of wavelength for buckled patterns obtained with deposition of a 10-nm-thick Al layer once (black), twice (red) and three times (blue).36 Copyright 2010, Nature Publishing Group.
The observation that the FFT ring patterns are of similar size indicates that the characteristic wavelength does not change after redeposition. Moreover, the FFT ring patterns after multiple deposition processes display more diffuse patterns, indicating a broader distribution. The power spectra in Fig. 17(d) represent the unchanged peak wavelengths at ~410 nm and the broader distributions in the long wavelength side for the multiple depositions. In addition, the surface area ratio after deposition twice and three times significantly increases from ~1.4% to ~9.0% and 11.3% corresponding to depths of 40–70 nm and 50–70 nm, respectively.
The devices with buckling show higher current density (J) and luminance (L) than those without buckling and a device with triple buckling shows higher J and L than that with only double buckling (Fig. 18(a)). It has been reported that the larger J in the corrugated device mainly results from a stronger electric field because of the partially reduced organic layer thickness in the intermediate region between the peak and valley of the sinusoidal patterned gratings [27,35]. Measurements have also been made on devices without buckling but with the organic layer thickness decreased by 20% and 40%. As mentioned in 2.3, current density (J) for these devices is shown by dotted and dashed curves in Fig. 18. The current density in the device with triple buckling lies between that in the reference devices and in devices with thinner organic layers. This suggests that the thickness of the organic layers on buckling is partially reduced by ~20–40%. In the devices with double, triple and without buckling, the
Device performance. (a) Current density–luminance–voltage characteristics of typical OLEDs without buckling (black) and with double (red) and triple (blue) buckling. The dotted and dashed lines represent the current density of devices without buckling but with the organic layer thickness decreased by 20% and 40%, respectively. (b) Current efficiency (cd/A) and power efficiency (lm/W) as a function of luminance (cd/m2) for OLEDs without buckling (black) and with double (red) and triple (blue) buckling. 36 Copyright 2010, Nature Publishing Group.
current efficiencies are found to be 3.05 cd/A (double buckling), 3.65 cd/A (triple buckling) and 1.67 cd/A (without buckling), and the power efficiencies 1.64, 2.1 and 0.73 lm/W, respectively, at a luminance of 2,000 cd/m2. These efficiency increases correspond to enhancements of ~83% with double buckling, and 120% with triple buckling in the current efficiency and 120% with the double buckling and 190% with triple buckling in the power efficiency (Fig. 18(b)). We attribute the greater enhancement of efficiencies in the devices with triple buckling than those in double buckling to an increase in the optical confinement factor due to the greater buckling depth [28]. The observed enhancement in the power efficiency higher than in the current efficiency may be attributed to the reduction in operating voltage due to the partial decrease in the organic layer thickness in the corrugated structure (see Fig. 18(a)). One may expect that the decreased thickness of the N,N\'-bis(3-methylphenyl)-N,N\'-diphenylbenzidine (TPD) and Alq3 layers may lead to a better charge balance with a better internal quantum efficiency because of the stronger electric field dependence of electron mobility in the Alq3 layer than that of hole mobility in the TPD layer. However, the devices without buckling but with decreased thickness of the organic layer show no improvement in the current efficiency. The device with a decrease in thickness of 40% shows a significantly decreased current efficiency of 0.86 cd/A at 2,000 cd/m2. This is consistent with the reported studies in which, as the Alq3 layer thickness decreases below 30 nm, the carrier recombination probability decreases and the exciton-quenching effects at the Al cathode increase, thereby decreasing the internal quantum efficiency of the devices [25,40,49,50]. Therefore, the great enhancement of current and power efficiency in the devices with buckling is obviously caused not by a change of internal quantum efficiency, but by an increase in the outcoupling efficiency, that is, enhanced extraction of the waveguide light.
To investigate the outcoupling of the TE0 and TM0 modes, we have measured the electroluminescence spectra of these devices. Contrary to the enhancement emerging as new sharp peaks in conventional corrugated OLEDs [21-24,27,28,33], our buckled devices exhibit enhancement over the entire electroluminescence spectrum (Fig. 19(a)). We have evaluated
Electroluminescence spectral characteristics. (a) Electroluminescence spectra of devices without buckling (black) and double (red) and triple (blue) buckling, measured from the surface normal at a current density of 5 mA/cm2. (b) Enhancement ratio of intensity by buckling as a function of emission wavelength, obtained by dividing the spectrum of the device with double (red) and triple (blue) buckling by that without buckling. The wavelengths of the TE0 and TM0 modes are indicated by arrows at 655 and 720 nm, respectively. (c) Angular dependence of light intensity for devices without buckling (black) and with double (red) and triple (blue) buckling. All data were normalized with the intensity of the devices without buckling in the normal direction. Each dashed line represents a guide to the ideal Lambertian emission pattern. All devices with and without buckling show the Lambertian emission pattern with a maximum intensity in the normal direction. 36 Copyright 2010, Nature Publishing Group.
the wavelength dependence of the enhanced emission by considering the intensity ratio of the two spectra in the devices with and without buckling (Fig. 19(b)). The calculated peak wavelengths of the TE0 and TM0 modes for the first-order diffraction are consistent with the broad peak intensities in Fig. 19(b), although the enhancement due to the TM0 mode is not distinct because of the weak emission intensity above 700 nm. The relatively flat enhancement by a factor of ~2.2 around λ0=525 nm in the devices with triple buckling is partially due to the relatively weak first- and second-order diffraction TE0 and TM0 modes, whereas the remarkable enhancement (factor of 4.0) around 655 nm is mainly due to the strong first-order diffraction in TE0 and TM0 modes (see Fig. 19(b)). These results indicate that a further enhancement of more than a factor of at least 2.2 can be expected if the peak wavelength of the buckles is optimized for the TE0 and TM0 modes to be diffracted at around 525 nm in the normal direction. Moreover, the broad distribution of periodicity in the buckling structure suggests that the entire emission wavelength range over blue, green and red in white OLEDs can be simultaneously outcoupled by only one grating structure. The angular dependence of the light intensity for the devices is shown in Fig. 19(c). It is interesting to note that all devices with and without buckling show a Lambertian emission pattern with a maximum intensity in the normal direction. According to the Bragg equation, the first-order diffraction angles of the TE0 and TM0 modes around the main emission wavelength of 525 nm by the grating period of 410 nm are expected to be between 20° and 40°. However, because kG has random orientation and broad periodicity due to the buckling, it is distributed over all azimuthal directions in contrast to one- or two-directional kG in conventional corrugated OLEDs [21-24,27,28,33]. Thus, the outcoupled emission concentrates into the normal direction, resulting in the Lambertian emission pattern.
The polarization control of light is important for optical information processing, display and storage devices. Although linearly polarized light has already been applied to various optical devices, there are only a few reports on circularly polarized devices. However, the potential applications of circularly polarized light have been suggested for optical data storages and flat panel displays. Recently, the research for active devices that can emit polarized light has gained attention [51-58]. Peeter et al. [56] have first demonstrated circularly polarized (CP) EL from a polymer LED using a chiral π-conjugated poly(p-phenylenevinylene) (PPV) derivative as an active layer, although the degree of circular polarization was very low. Later, Oda et al. [57] have succeeded in obtaining a high CP-EL using main-chain polymer liquid crystals (LCs) and chiral-substituted polyfluorenes (PF) as an active layer. However, the degree of circular polarization was still insufficient for applications in optical devices. More recently, Grell et al. [58] have proposed a new idea for CP-EL without using chiral active materials and succeeded in achieving high degree of circular polarization. They used a simple CP-EL device that can be driven by nonchiral polymer LED using “photon recycling” concept developed by Belayev et al. [59]. Belayev et al. and Grell et al. used a chiral nematic liquid crystal (cholesteric liquid crystal; CLC) cell attached to the glass side of polymer LED and obtained a high degree of circular polarization at the center of the stop band. However, the degree of circular polarization outside of the stop band rapidly decreased, because the emissive material had wider emission band than the stop band width formed.
For evaluating the degree of circular polarization at a certain wavelength λ, a g-factor is used which is defined as:
where IL/R is the intensity of left/right-handed CP (L-CP, R-CP) light, and r is the left/right-handed intensity ratio, IL(λ)/IR(λ). It is evident that |g(λ)| is zero for nonpolarized light (r(λ)=1) and is equal to -2 for pure, single-handed circularly polarized light (r(λ)= ∞ or 0). The g(λ) values found were 0.001 [56], 0.25 [57], and 1.6 [58], but only in a narrow wavelength range. Woon et al. and Geng et al. respectively reported circularly polarized PL [60] and EL [61] with a constant g(λ) value over a wide spectral range covering most of the emission band. However, the bandwidth [60] and g(λ) value [61] were still insufficient for application to commonly used emissive materials with wide emission band.
To achieve a tunable polarization of electroluminescence, we have used combination of voltage dependent nematic liquid crystal (NLC) phase retarders and photon recycling concept [62,63]. The phase retardation arises between two optical eigenmodes during light propagation in an anisotropic medium as a phase retarder. Upon emerging from the phase retarder, the relative phase of the two eigenmodes is found to be different from that at the incidence, and thus their polarization state becomes different as well [64-66]. Now suppose we apply a voltage (V) across the cell filled with NLC, by which the liquid crystal molecules change their orientation toward the field direction, if the NLC has positive dielectric anisotropy. With increasing the voltage, the birefringence
We have introduced another polarization characteristics, namely polarization conversion in surface plasmon (SP) coupled emission by buckling structures. In section 2.4, we have demonstrated that the quasi-periodic buckling structures with broad distribution and directional randomness can effectively enhance the light-extraction efficiency by outcoupling the waveguide modes without introducing spectral changes and directionality [36]. In this study, however, we could not differentiate the outcoupling of transverse electric (TE) mode from that of the surface-plasmon (SP) mode (transverse magnetic (TM) mode) by buckles because of the broad periodicity of the buckling structure and the similar propagation vectors of the TE and SP modes. The explanation of polarization conversion in the surface-plasmon-coupled emission presented here is based on a trial method for distinguishing TE and TM modes in light enhancement in OLEDs with buckling pattern. However in this trial approach, an interesting phenomenon of polarization conversion in SP coupling has been observed.
In this section, we have summarized and introduced our studies regarding not only circularly polarized EL and its tunability but also the polarization conversion in surface coupled emission from corrugated OLEDs with buckling structures.
We have fabricated multi-layered polymer CLC (PCLC) films for using them as wide-band reflectors or single-layered films for polarization-tunable OLEDs. As an experimental method for fabricating single-layered PCLC films is a part of fabricating multi-layered PCLC films, we introduce here only the fabrication of multi-layered films and skip the fabrication of single-layer films.
The fabrication process of multi-layered polymer PCLC films is shown in Fig. 20. Mixtures of two aromatic polyester liquid crystalline polymers (Nippon Oil Corporation; currently, JX Nippon Oil & Energy Corporation) are used to make PCLCs. One of the polymers (chiral polymer) contains 25% chiral units in its chemical composition and the other contains no chiral unit. By changing the ratio of the amounts of the two polymers, the helical pitch of PCLC (photonic band gap wavelength) is controlled.
Fabrication process of multi-layered PCLC films.
For fabricating three-layered PCLC films for use as a wide band reflector, the PCLC (λp=610 nm; chiral polymer 72 wt%) is spin-cast on glass substrates with unidirectionally rubbed polyimide (PI ; AL1256, JSR). Then, aqueous solution of polyvinyl alcohol (PVA) is spin-cast and the film surface is rubbed again unidirectionally. Another PCLC (λp= 510 nm; chrial polymer 87 wt%) is spin-cast on the rubbed PVA surface. The same procedure is repeated for preparing the third PCLC film (λp= 530 nm; chrial polymer 82 wt%). Finally PCLC films thus fabricated are cured for 30 min at 160 °C.
The fabrication method of a tunable phase retarder is as follows. The single-layered PCLC films are fabricated by spin coating the solution onto ITO glass substrates coated with PI rubbed unidirectionally at room temperature. The coated PCLC films are cured for 30 min at a temperature over 160 °C in a bake oven, and then quenched to room temperature. The sample cell is made of L-PCLC and PI coated glass substrates and is sustained by spacer. The NLC (ZLI2293, Merck) is introduced into an empty cell using capillary action. The illustration of the fabrication of the final cell is shown in Fig. 21\n\t\t\t\t
The OLED structure used here is fabricated in the same way as described in section 2.2. The vacuum evaporated OLEDs with structure of ITO/CuPc/TPD/Alq3/LiF/Al are described in section 3.2, an spin-coated OLEDs with structure of ITO/PEDOT:PSS/MEH-CN-PPV/LiF/Al are given in section 3.3.
Schematic illustration of tunable phase retarder. 63 Copyright 2008, American Institute of Physics.
The device configuration for highly CP-EL from OLEDs is illustrated in Fig. 22. We have simply attached an L-PCLC reflector to an OLED device. After generating the unpolarized light by electrical pumping, the R-CP-EL transmits through the PCLC reflector, whereas L-CP-EL is reflected by the selective reflection of the L-PCLC. This reflected light by the PCLC is still L-CP and changes the polarization to R-CP by getting reflected at the metal surface, and gets transmitted trough the L- PCLC reflector. Thus all the transmitted light has the same sense of rotation, R-CP.
In comparison with the previous work [58] here the band width of the reflector is wider. For fabricating a wide-band CLC reflector, the use of PCLCs has two advantages compared with general low-molecular-weight CLCs. First advantage is that PCLCs used here have higher optical anisotropy (ne-no=0.22), resulting in a wider photonic band gap (PBG). The second advantage is that PCLC films can be easily stacked to multi-layered films by spin-casting. Using these technical advantages we have fabricated a wide-band PCLC reflector using multi-layered PCLC films with different selective reflection bands.
The structure of a three-layered PCLC film with a wide stopband width is shown in Fig. 23(a). The fabrication method of multi-layered PCLC films is already explained in section 3.1. Figure 23(b) shows the reflectance spectra of single-layered and three-layered PCLC films and the emission spectrum of the active EL material, Alq3 (see below). A wider selective reflection band formed due to the overlap of the selective reflection bands of the three-layered PCLC films extends to the whole emission band, although the selective reflection band of the single-layered PCLC film covers only the emission peak region.
Schematic illustration of a ‘photon recycling’ device. 62 Copyright 2007, American Institute of Physics.
a) The structure of a three-layered PCLC film. (b) Normalized electroluminescence spectrum of Alq3 and reflectance spectra of single-layered and three-layered PCLC films. 62 Copyright 2007, American Institute of Physics.
To evaluate the degree of circular polarization quantitatively, R-polarizer and L-polarizer are inserted between the EL device and detector. We confirmed that R- and L-polarized EL intensities are almost the same in OLEDs without a PCLC reflector. In contrast, OLEDs with narrow (single-layered)-PCLC and with wide (three-layered)-PCLC reflectors emit high intensity R-circularly polarized EL within the stopband of PCLC as shown in Fig. 24(a) and 24(b). The R- and L-CP-EL spectra from OLEDs with the narrow-PCLC film are almost the same as that with the wide-PCLC film in the selective reflection region of narrow-PCLC (480nm–560nm) as a result of ‘photon recycling’. Outside of the stopband of narrow-PCLC, however, both R- and L-CP components from the narrow-PCLC device do not show any prior circularly polarization characteristics due to the lack of ‘photon recycling’ (Fig. 24(a)), whereas the wide-PCLC device shows the highly R-circularly polarized light over the whole emission spectrum range, as shown in Fig. 24(b).
It is also noted that the degree of circular polarization is high in the wide-PCLC device over the whole emission band. Figure 25 shows the wavelength dependence of the g-factor [eq. (14)] for light emitted from each device. At the center of the stopband, |g(λ)| approaches to 1.67 in both the devices with PCLC films. However, the difference is that |g(λ)| remains same over the whole emission band in the wide-PCLC device but it suddenly decreases outside of the stopband in the narrow-PCLC device.
R- and L-CP-EL spectra from OLED devices with (a) narrow- and (b) wide-PCLC films. Reflection spectra for the narrow- and wide-PCLC films are also shown using dotted curves.62 Copyright 2007, American Institute of Physics.
Calculated g-factor values in each device over the whole wavelength range of the emission band of Alq3.62 Copyright 2007, American Institute of Physics.
In this section, we examine the electro-tunable polarization of electroluminescence by combination of circularly polarized OLEDs (same concept as explained in section 3.2) and tunable phase retarder. A voltage controllable liquid crystal cell is adopted as a tunable phase retarder for tunable polarization characteristics.
The device configuration for polarization-tunable OLEDs with a phase retarder is shown in Fig. 26. For the phase retardation, NLC is filled between the glass substrates with a rubbed PI layer. The phase retarder is simply attached to one of the glass sides of OLEDs. After the generation of unpolarized light from OLED, the whole EL light is extracted as R-CPL by photon recycling. This R-CP-EL can be transformed into arbitrary polarizations by changing the orientation of NLC through applying a voltage. The phase retardation Δφ at a wavelength λ can be expressed by:
where d is cell thickness and Δn is birefringence of NLC.
Schematic illustration of the principle of polarization-tunable OLED and polarized light with different polarization.63 Copyright 2008, American Institute of Physics.
If the wavelength and cell thickness are constant, phase retardation between e- and o-waves can be varied by applying an electric field. Then the effective birefringence of NLC Δn(θ) is determined by the angle between the director and the substrate surface; i.e., Δn(θ=0°)= Δn and Δn(θ=90°)=0. If dΔn(θ) is equal to
Figure 27 shows the voltage dependence of transmittance spectra through R-, L- circular and linear polarizers with the direction of +45° and -45°. The applied voltages of 0, 4.5, 6 and 7.5 V correspond to 3λ/2, 5λ/4, λ, 3λ/4 wave plates, respectively. When the R-polarizer is inserted, the spectrum shows a selective reflection band at 0 V (=3λ/2) as shown in Fig. 27(a). This is because the transmitted R-CPL changes its polarization to L-CPL through L-PCLC, and the transmittance decreases down to 0.15 within the selective reflection band. As the voltage increases up to 6 V (=λ), the spectral shape shows no selective reflection band because the phase retarder acts as a full-wave plate. On the other hand, the situation is reversed in L-polarizer as shown in Fig. 27(b).
Polarization characteristics of voltage dependent transmittance spectra of a phase retarder. Transmittance spectra of (a) R-CPL, (b) L-CPL, (c) LPL(+45°) and (d) LPL(-45°) under fields of 0, 6, 4.5 and 7.5 V, respectively. 63 Copyright 2008, American Institute of Physics.
Conversion to linearly polarized light is also possible by 4.5 (=5λ/4) and 7.5 V (=3λ/4) applications. If the phase retardation is a quarter-wave, R-CPL changes the polarization condition to linearly-polarized light (LPL). Figure 27(c) and (d) shows LPL with electric field direction of +45° and -45°, respectively. At 4.5 V, the phase retardation is 5λ/4 resulting in a LPL (+45°) as shown in Fig. 27(c). The transmitted R-CPL changes into LPL (-45°) and shows a selective reflection band when the direction of linear polarizer is +45°. On the other hand, if the phase retardation is 3λ/4 (=7.5 V), the transmitted R-CPL changes into LPL (+45°) after transmitted through the linear polarizer. As a result, no selective reflection is observed in the transmittance spectrum. Reversed situation is also observed when the direction of linear polarizer is -45°, as shown in Fig. 27(d).
In order to apply this concept to OLEDs, we have attached a phase retarder to an EL device. This situation is different from the transmittance measurement system because here the EL device has a metallic mirror as a cathode. The output of EL light is R-CP-EL, as explained in Fig. 26. Hence different polarization states are also possible by controlling the birefringence of the NLC layer. To evaluate the degree of polarization quantitatively, R-, L-circular or linear polarizer with the direction of +45° and -45° is inserted in the emissive EL devices between the phase retarder and detector. The output of EL light transmitted from the L-PCLC is R-CP-EL within the wavelength range corresponding to the stopband. The emitted R-CP-EL can be changed into a different polarization by the phase retardation. Figure 28 shows the polarized EL spectra with different polarizations as applied voltage increases from 0 (Fig. 28(a)) to 4.5 (Fig. 28(c)), 6 (Fig. 28(b)), and 7.5 V (Fig. 28(d)). Thus EL light with different polarizations can be selectively emitted by varying the voltage. Outside of the stopband of PCLC, the intensity of opposite polarized light becomes higher because the stopband of PCLC cannot cover a wide wavelength range. It should be noted, however, if a multilayered-PCLC with different pitches is used, the polarization rate can be high over all wavelength [62,67].
Measured polarized electroluminescence from OLED. Selectively emitted light of (a) L-CP-EL, (b) R-CP-EL, (c) LP-EL(+45°) and (d) LP-EL(-45°) under fields of 0, 6, 4.5, and 7.5 V, respectively. 63 Copyright 2008, American Institute of Physics.
The fabrication process of buckling and OLED devices is almost the same as described in section 2.2. The only difference is the use of a thinner ITO (40 nm) than previous one (120 nm) to extract TM mode preferentially by a surface plasmon coupled emission [68].
To characterize the outcoupled SP mode by buckles, we have calculated its in-plane propagation vectors and plotted the grating period for the emission angles of 0°, 20°, 40°, and 60° as a function of the wavelength of the outcoupled light in Fig. 29(a). Considering the distribution maximum of the buckling periodicity at ~410 nm, it is reasonable that the main diffraction of the SP mode for the normal direction occurs at the emission wavelength of ~690 nm. In addition the FWHM of the periodicity distribution from 300–600 nm allows outcoupling of the SP mode over the entire emission wavelengths by the first- and second-order diffractions. As the emission angle increases, the main diffraction wavelength shifts from ~690 nm for 0° to ~580 nm, ~490 nm, and ~440 nm for 20°, 40°, and 60°, respectively.
We have measured the linearly polarized electroluminescence spectra of the devices with and without buckles at the emission angles of 0°, 20°, 40°, and 60°, and then calculated the light-enhancement ratio (the intensity ratio of the two spectra in the devices with and without buckles) as a function of emission wavelength. Figure 29(b) presents the enhancement ratio of the TM-polarized light. The broad peak intensities for each emission angle are consistent with the main diffraction wavelengths calculated in Fig. 29(a), as indicated by arrows. It is very interesting to note that the TE-polarized light also gets enhanced by buckles as shown in Fig. 29(c). This enhancement is even greater than that for TM-polarized light, particularly at larger emission angles, although generally the SP mode is considered to be excited only by TM-polarized light and the diffraction gratings do not convert the polarization state of an incident light upon diffraction. However, it is also known that the polarization conversion can occur if the grating wavevector is not parallel to the plane of incidence [69-73]. So-called conical diffraction occurs at 0°–90° azimuthal angles by the grating with different wavevectors with respect to the incidence plane, where even TE-polarized light may excite the SP mode because of the existence of the electric field component parallel to the grating vector. In other words, the SP mode excited by a TM-polarized light can be outcoupled to the TE- as well as TM-modes radiation. As the azimuthal angle increases from 0° to 90°, the outcoupled TM mode decreases and the outcoupled TE mode increases by the conical diffractions [69,70]. As far as we know, this was the first report on the polarization state of the extracted SP mode, although a qualitative description on the polarization state can be found for the outcoupled SP mode from a silver cathode with a 2-D corrugated structure [74].
Because the grating vectors in a buckling structure are random over all azimuthal angles, the SP mode in the device with buckles also experiences conical diffractions at all azimuthal angles and then the polarization conversion of the outcoupled light occurs. For example, k0sinθ, kSP, and kG for the emission wavelength at 600 nm are graphically presented in Fig. 30. Here only one grating wavevector from a 1-D grating with a periodicity of 410 nm is assumed. The radius of the solid circle (blue) corresponds to kSP, the momentum space
a) Relation between the outcoupled emission wavelength and the grating period for the emission angles of 0° (black), 20° (red), 40° (green), and 60° (blue), satisfying the first- and second-order (only for 0°) diffractions condition. The dashed horizontal line represents the peak wavelength of 410 nm in the periodicity of the buckles used as the grating. (b) Enhancement ratios of TM-polarized light by buckles at the same angles as (a), 0° (black), 20° (red), 40° (green), and 60° (blue) from top to bottom, obtained by dividing the spectrum (measured through a polarizer) of the device with buckles by that without buckles. (c) Enhancement ratios of TE-polarized light by buckles with the same information as (b). 68 Copyright 2011, Wiley-VCH.
within the solid circle (black) represents the escape zone to air mode, and that between the dotted and solid circle (black) indicates the glass mode. As the azimuthal angle of the SP vector increases, the polar and azimuthal angles of the outcoupled light increase and simultaneously the polarization conversion to the TE mode becomes strong. At an angle of 35°, below the azimuthal angle, the SP mode is outcoupled to the air mode by the grating, between 35°–55° it is trapped to the glass substrate, and above 55° it propagates into the ITO/organic layer with the highly TE-converted polarization. In such a restricted condition of a one-directional grating with a definite periodicity, this ITO/organic mode does not outcouple. However, a conical diffraction to air is expected to occur in our buckling structure over all the possible azimuthal angles, 0–360° because of the grating wavevector distributed over all azimuthal directions. Therefore, the enhancement of the TE-polarized light is observed as shown in Fig. 29(c). However, the greater enhancement of the TE-polarized light than that of the TM-polarized light for all polar angles indicates that more TE-polarized light must be outcoupled to the air mode through the diffraction by buckles, because of the polarization conversion to the TE mode being weak at low azimuthal angles below 35°. Considering the dimension of the emitting area (3 mm × 3 mm) and glass thickness (1.0 mm), most light propagating to the glass substrate cannot undergo reflection or scattering at the corrugated Al layer. Hence the scattering of the glass mode by buckles can be ignored. We believe that the TE-converted light propagating to the ITO/organic layer by the diffraction at an azimuthal angle above 55° can be coupled to the TE0 leaky guided mode [75], which can then be outcoupled again by the diffraction through the grating vectors with different directions. The broad periodicity and random orientation of buckles contribute to the additional extraction of the TE-polarized light for all polar angles, thereby producing a higher enhancement of the TE-polarized light over all polar angles.
Momentum representations of SP mode (blue circle, kSP), glass light-line (black dotted circle), air light-line (black solid line), grating wave vector (red arrow, kG), and the outcoupled light to air mode (black arrow, k0sinθ) for the emission wavelength of 600 nm. θ and φ represent the polar and azimuthal angle, respectively. Only one-directional grating vector from one-dimensional grating with a periodicity of 410 nm is assumed. 68 Copyright 2011, Wiley-VCH.
To confirm the polarization conversion by buckles on diffraction, a buckled resin layer on a glass substrate, coated with a 100-nm-thick Al layer, is irradiated using a linearly polarized He–Ne laser (632.8 nm) at an incident angle of 60° and the scattered light from the surface normal observed through a linear polarizer. We have found that the incident TM-polarized light is largely converted into the TE mode upon diffraction. The ratio of TE- to TM-polarized light intensities was around 0.7, irrespective of the incident azimuthal angle. This result is consistent with the enhancement of the TE-polarized light by buckles in the device structure shown in Fig. 29(c).
After summarizing methods for enhanced outcoupling in OLED devices, we reviewed enhancement methods using photonic structures at a surface. As explained in sections 2.3 and 2.4, corrugated EL devices with periodic or quasi-periodic nanostructures show enhanced light extraction performance compared with the reference flat device without such structures. The principle of light extraction is the same in both device configurations; however, periodically corrugated EL device shows higher light extraction only at a specific wavelength because of the well-defined corrugation pitch. This anisotropic angular dependence does not satisfy the Lambertian emission pattern, which is an important requirement in the lighting technologies. On the other hand, spontaneously formed buckling patterns on OLEDs towards air are effectively used as a quasi-periodic structure to extract light from the waveguide modes. The characteristics of the broad periodicity distribution and randomly oriented wave vectors of buckles provide an invaluable advantage of possible outcoupling of the waveguide light propagating along any direction with a wide spectral range. Namely a buckling device shows a Lambertian emission pattern with an increase in emission angle, which satisfies the requirement of OLED lighting. In particular, it enhances the outcoupling of waveguide modes at various wavelength ranges due to the broad distribution of the periodicity that can be applied to white OLEDs. We may conclude that the buckling device structure overcomes the limitation of periodic nanostructures and it can be used in the development of white OLEDs for lighting.
We have also demonstrated the generation of highly circularly polarized EL and its tunability using a liquid crystal phase retarder. A wide-band reflector has enabled us to obtain high ratio of brightness between R-CP-EL and L-CP-EL with the overall intensity ratio of about 10 and g-factor of about 1.6 over the whole emission band. Also, using a voltage dependent phase retarder, we have confirmed that there is no limitation for choosing emissive materials to obtain the tunable polarized EL light. We have also shown that the devices with buckles have double current and power efficiencies over the entire emission wavelengths and emission angles. This is achieved without any spectral changes even though ITO thickness is thin (40 nm) to outcouple the only SP (TM) mode which would otherwise be lost into the Al cathode layer of OLED devices. It is also found that the diffraction of the SP mode by buckles causes polarization conversion to the TE mode with a higher light intensity than in the TM mode, which occurs due to the random orientation of the buckling structure.
Natural animal surroundings provide a variety of external sensory stimuli. Consequently, the brain must dynamically integrate each presented feature with changes in internal patterns of responses which manifests as a change in an animal’s behavioral state [1, 2]. For instance, many studies suggest that visual processing should be optimized and adapted to the properties of the stimulus. Thus, visual object representation arises from the activation of functional domains in the cerebral cortex that encodes feature-specific information such as orientation, color, and motion direction [3, 4, 5, 6, 7, 8]. Such feature-specific units have specific parallel networks [9] and therefore visual processing is based on the activation of multiple circuits. Many manipulations such as visual adaptation or antidepressant applications such as ketamine can alter the neuron’s inherent proprieties, and this might result in a change in correlated and uncorrelated neural activity through changes in firing rates. The effect of ketamine results in NMDAR (
Plasticity phenomena in the adult cerebral cortex are known to be heavily correlated to the brain’s capacity for recovery after injuries [10, 11, 12, 13], memory storage [14, 15], and learning [16, 17, 18, 19]. In addition, throughout an animal’s life, cortical representations are continuously modified by experience. In experimental animals, alterations in cortical representations appear following manipulations of inputs and depending on the information locally and globally available to the cortical cells [20, 21, 22]. Many investigations show that the properties of visual cortical neurons are not fixed and can be altered in adulthood [20, 23, 24]. This neuroplasticity has been well documented, as a modification that occurs at many levels from system to molecular, going through the network, cellular and synaptic levels. In this chapter, the experimental electrophysiological work was done in the primary visual cortex of adult cat and mouse so that the responses of visual cortical cells as well as the modification of the cell’s output under different manipulations, particularly antidepressant application, was measured. This has made the visual system a preferred field for experimentation and analysis. Investigations suggest that the enormous architecture of the visual cortex is genetically preprogrammed, however, a minor proportion is shaped by experience and subject to the brain’s plasticity.
We do not yet know exactly the ultrastructural connectome of the primary visual cortex and how it processes information. However, there are some general principles of V1 architecture and processing. Visual inputs reach V1 from the lateral geniculate nucleus (LGN). The thalamocortical connections terminate mainly in layer 4 (L4) and less in supra-(L5/6) and infragranular layers (L2/3). This flow of sensory information is common to all the sensory areas. In contrast to this classic scheme, a recent investigation in mouse using an intersectional viral tracing method for ultrastructural connectivity described labeled thalamocortical synapses in all cortical layers with prevalence in L2/3 [25]. The principal vertical flow of information through the cortical layers may be from the granular layer to infragranular (L2/3) to supragranular (L5/6) [26, 27]. Considering that each layer is a level of cortical processing, one might have expected that a proportion of complex cells with larger receptive fields and more complex responses are outside of L4. Hence, at a given stage, each unit is a sampling from a broader input extent, receiving convergent information from the preceding stage, diverging out to the following stage, and in this process, establishing larger and more complex integrated receptive fields, with emerging sharper response properties [28, 29]. In parallel to this vertical flow of information, there is a horizontal connectivity. At each layer, most excitatory projections seem to originate from intra- and interlaminar pyramidal cells. The horizontal connectivity arises from L2/3 and L5 and project to infra- and supragranular levels [30, 31].
The brain processes complex visual information along with different feature aspects, such as orientation, visual motion, color or curvature [32]. Hence, visual inputs are parceled out to different extrastriatal cortical areas for further analysis. The extrastriate visual cortex receives strong direct projections from primary visual cortex which leads to a first-pass computation in the visual processing. The main outputs of V1 are to V2, V3, V4, and V5 (MT). The assumption is that the extrastriate areas which connect with V1 are in lower positions in the processing hierarchy than the extrastriate areas which connect with other extrastriate areas. This idea is superimposed on a recent concept of parallel pathways of visual areas that are implicated in some common dimensions of visual processing, i.e., “what” processing (ventral pathway), or “where” processing (dorsal pathway). From these extrastriate areas, visual inputs are then transferred back by feedback connections to areas V1 and V2 [33]. Visual object recognition depends on developing during processing across a hierarchy of visual areas both selectivity and invariance at each stage. Both simple and complex cells are selective but only complex cells are invariant to a range of object transformations. This invariance allows an object to be recognized even when some of its features (size, orientation, position, etc.) change [34].
In addition to this classical visual cortical hierarchy, it was shown that the stimulus context modulates a cell’s response which suggests the implication of other [33] areas in addition to the higher order of the visual cortical hierarchy [35, 36]. Since a big number of stimuli are present in the visual field at the same time, bottom-up and top-down mechanisms, as visual spatial attention, bias the processing toward a particularly salient stimuli [37].
A key element in the role V1 plays in visual perception is the ability of V1 neurons to integrate information over larger parts of the visual field, since most of them are activated by stimulation of each eye. It was shown that a single oriented bar can induce a V1 neuron to fire. This property of orientation tuning selectivity, first described by Hubel and Wiesel (1968), is an emergent property of V1, seen in an optimal response of a given neuron to a single preferred orientation of the line segment or gratings. Although, orientation selectivity (OS) was shown in retinal ganglion cells, this tuning preference has received much less attention then in the cortex because most retinal ganglion cells are selective only to cardinal orientations: horizontal (pigeon retina) [38], and vertical (rabbit retina) [39]. It was reported that zebrafish retina contains cells with oblique preference in addition to the cardinal types [40].
In addition to the orientation tuning, neurons in primary visual cortex are highly sensitive to other visual stimulus properties such as contrast, the direction of movement, and temporal and spatial frequency. These stimulus properties can interact and influence neuronal responses. For example, it was revealed in ferret visual cortex, that a cell’s orientation-tuning is not affected by contrast level and the temporal-frequency of the visual stimulus. However, direction selectivity decreases, and sometimes reverses, at nonpreferred temporal frequencies [41, 42]. These investigations might support the idea that invariance of OS is a prime aspect of visual processing. However, in the next section, we will see that manipulation and the use of ketamine can alter this intrinsic propriety of V1.
OS is a salient propriety of V1. In anesthetized cats, electrophysiological studies using extracellular recordings of V1 cells reveal that neurons are orientation selective (Figure 1). To study OS of neurons, stimulation can be accomplished using blocks of 25 trials of each of eight black–white oriented sine gratings placed in the cat receptive field and covering a span of 157.5° equally spaced at 22.5° (Figure 1a). Spike sorting method allows the separation of a cell’s spikes from multi-unit activity. First, spike-waveforms have to be verified qualitatively by visual control, then the spike sorting is continued by cluster-isolation using first principal components analyses, autocorrelograms (AG) showing absence of events at 0 s on the time-scale (refractory period), peri-stimulus time histograms, (PSTH) and raster plots (RP), denoting for each trial the cell’s spontaneous activity (before the 0 s: stimulus trigger time) and its response to the stimulus presentation (Figure 1b). Based on the raw data, neurons’ responses are determined using Gaussian function that allows precise determination of the preferred orientation of each isolated neuron [43]. Whereas the strength of the OS can be measured by the orientation selectivity index (OSI), whose value is between 0 (orientation-nonselective) and 1(strongest OS) [44, 45], the sharpness of the tuning curve around its peak is measured by the orientation bandwidth from the Gaussian fit based on the full width at half height [46]. In cats, most V1 cells show a strong OS and sharp tuning curves. It was reported that over 82% of V1 neurons were well-tuned to stimulus orientation [47], and all the orientations were represented covering the full 180° [48]. In cats, V1 neurons with similar OS preferences are assembled in orientation columns. This columnar organization, where all cells through all six cortical layers have the same orientation preference, is a well-known characteristic that is shared by cats with ferrets and primates. Such cortical architecture, suggesting a vertical integration of feature selectivity through V1 layers, could reduce cable length, economizing the volume, and maintenance cost of V1 [49, 50]. OS is embedded in a retinotopic map in which information from neighboring locations in the visual field is coded in neighboring locations in the brain onto a two-dimensional surface that retains the image’s spatial organization. In addition, the cortical organization of cats and primates is known as a pinwheel OS map because different orientations columns are organized radially around a central point (showed by a star in Figure 1a) in the retinotopic map.
Experimental procedures and spike sorting method. (a) V1 stimulation (shown as black and white gratings) and V1 architecture in mouse and cat (shown as cylinders, the black star shows the convergence of different orientations in cat). (b) Spike sorting process on the left for mouse and on the right for cat (from top to bottom): Multiunit activity (MUA), spike wave forms (cyan in mouse and red in cat), principal component analysis of the dissociated waveforms, auto-correlograms, peri-stimulus time histograms, and raster plots for the separated single units.
Unlike cats and primates where the columnar organization is an apparent characteristic of the neocortex, rodents and rabbits have a salt-and-pepper OS map, that is a random distribution of orientation-selective neurons. Hence, cells with different orientation preferences are juxtaposed horizontally across the retinotopic map and vertically through the six cortical layers in a random fashion [51, 52, 53, 54, 55] (Figure 1). Despite the lack of the columnar organization, it was shown, using extracellular recordings, that neurones in V1 of mice are sharply tuned to orientation of drifting gratings but the percentage of orientation-nonselective cells, whose orientation tuning curves were not unimodal, was bigger (63,33% of sorted cells) than in cats (18%) [24, 47]. Therefore, neuronal feature selectivity might be related to the activation of a specific cortical cell’s subtype more than the cortical architecture. Indeed, it was reported that optogenetic activation of parvalbumin-positive (PV+) interneurons in the mouse primary visual cortex (V1), that is, the increase of their firing rate, markedly sharpened OS and enhanced perceptual discrimination of nearby neurons [46]. Even in V1, neurons’ responses are well known for their orientation tuning, the results of a recent study in mice seemed to leave little doubt that, in vision, the prominent role of V1 is encoding simple visual stimuli as oriented bars or gratings. It seems that in addition to a simple discrimination between light and dark oriented bars, V1 is involved in learning processes such as categorizing visual stimuli based on perceptual features, functional (semantic) relations, or a combination of both. Hence, the formation of a neuronal category representation in mice occurs in the first stages of visual information processing in the neocortex together with higher cortical association areas [56]. Despite the notion that the salt-and-pepper map is considered the most likely ancestral state, neurons can maintain high values of OS, and they are involved in complex visual processing, such as categorization. It seems that this organization in rodents was favored by their small brain size, that is in this case, the reduced visual field coverage might outweigh the potential advantage of a pinwheel OS map. However, recent studies show that cortical orientation columns perhaps are miniaturized in mouse V1 since orientation preference maps with pinwheel arrangement comparable to the macaque were described in mouse lemur [49, 57]. Hence, the V1 of rodents might represent micro-scale precursors of primate-type functional orientation columns [57]. It is likely that the relative thickness of cortical layers was a predictor for the functional organization. Indeed, an anatomical study showed that layers 2/3 are thicker in carnivores and primates than in rodents, while layers 5/6 are thicker in rodents than in carnivores and primates. The study exhibited that out of the total cortical thickness on average 44% in primates and 35% on average in carnivores were occupied by layers 2/3, but only 26% on average in rodents. In contrast, 34% of the total cortical thickness in primates and 39% in carnivores were occupied by layers 5/6, but 54% in rodents [49] . These anatomical differences between these species might affect intralaminar and cross-laminar networks and the visual cortex organization which evolved to be different in rodents versus primates and carnivores. The question that arises is whether the mechanisms of cortical plasticity, which operate at the level of single cells and the network are similar in mice and cats’ V1, and so independent of the presence of columnar organization. In the next section, we will try to investigate the effect of ketamine on the OS and the synaptic weight between cells in V1 in cats and mice.
Antidepressant drugs are often used to treat mental and affective disorders such as maladaptive responses to stress. Although the drugs have different mechanisms of action, the “monoaminergic hypothesis” is commonly accepted to underline the antidepressant effect [58]. Ketamine is a rapidly-acting antidepressant, and its effect is profound and sustainable [59, 60]. It is used for treatment-resistant symptoms of mood disorders in patients who are resistant to typical antidepressants [45, 59, 61]. Ketamine is a blocker of glutamatergic NMDAR (N-methyl-D-aspartate receptor) activity as it acts as a non-competitive antagonist. Many findings reveal that ketamine, in addition to its antidepressant effect, induces visual cortical plasticity. It was shown, in adult mouse, that single-dose ketamine promotes functional recovery of visual acuity from amblyopia [62]. Another investigation provided evidence that ketamine enhanced visual sensory-evoked Long-Term Potentiation (LTP) in depressive patients [63]. By contrast, other investigations showed that ketamine altered or blocked some visual processing and disturbed cortical plasticity. For example, it was reported that ketamine blocked the induction of LTP in layer 2/3 of the adult rat visual cortex in vitro [64]. In addition, in kitten, it prevented the ocular dominance shift toward the open eye which suggests a retrograde effect on cortical plasticity [65]. Moreover, in humans, ketamine interfering with top-down processes distorted object recognition [66], and it altered the neuronal processing of facial emotion recognition due to the reduced activity in visual brain regions involved in emotion processing [67]. The effect of ketamine on the brain remains uncertain and sometimes contradictory according to investigations. This might be due to several variables such as the region of interest in the brain, the dose administrated, the administration mode (local, intraveinal, acute, or chronic, etc.) or the animal model. The effect of ketamine on the OS of V1 cells was tested in cat and mice and is explained in the next section.
To examine the impact of the antidepressant on the orientation preferences of V1 cells, the drug can be applied locally over the animal’s cortex. Ketamine application can be executed using a strip of filter paper (1 × 1 mm) impregnated with the drug (10 mM) and placed next to the recording sites. Test orientations can be presented, and recordings can be performed in the control conditions and ten minutes after ketamine administration [68]. As a result, cortical neurons selectively responding to the exposed orientations were altered by ketamine in that the cells acquired a new preference and showed a shift in the peak of their tuning curve. Based on the simulation results, we obtained evidence that ketamine induced orientation plasticity in mice (Figure 2a) and cat V1. It is shown that the ketamine effect on V1 cells is local since it does not exceed 0.7 mm, and transient since a recovery state was observed [68]. The question is whether the observed changes of the cells’ tuning properties were observed after visual adaptation, that is, could ketamine alter the adaptation effects? To implement adaptation, an imposed orientation can be exposed for several minutes. Results showed that restricted exposure of V1 cells to vertical orientation (90°) for 12 minutes shifted their original preferred orientations toward the exposed orientation (attractive shift). Contrarily, the tuning curve peaks of a few cells shifted away from the original preferred orientation (repulsive shift). Dual mechanisms have been proposed for repulsive and attractive shifts in cat. While the repulsive shift results in a decrease of excitation at the adapted flank of the tuning curve, the attractive shift is the result of the parallel facilitation of responses on the adapted flank and a depression on the opposite flank [69]. This effect of adaptation is known as a push–pull mechanism [69, 70]. In cats, Dragoi et al. [23] reported larger repulsive shifts near the pinwheels of orientation maps than in an iso-orientation domain in cats. This systematic change in V1 was attributed to a higher degree of plasticity near pinwheels because of the convergence of a broad spectrum of orientation inputs [23]. Comparing the cells’ orientation preferences in control, post-adaptation, and post-ketamine, the collected data showed that ketamine abolished the adaptation effects, that it changes the new preferred orientation. Apart from this general effect, electrophysiological studies reveal a more varied scenario. Indeed, the effect of ketamine categorizes cells into two groups according to the amplitude of the adaptation-induced shift: for cells exhibiting large shifts (superior to 24°), ketamine decreases the post-adaptation shift amplitude in that it alters their new preferred orientations toward the original preference, but for cells exhibiting small shifts (inferior to 24°), ketamine increases the post-adaptation shifts. Thus, while ketamine facilitates the cell’s recovery for large shifts, it potentiates the small shifts (Figure 2b). This might suggest that ketamine application leads to weakening or amplifying the adaptation effects according to the amplitude of the adaptation-induced shift.
Effect of ketamine on orientation selectivity in the mouse. (a) The control preferred orientation of cells changes after ketamine application. (b) The effect of ketamine on post-adaptation preferred orientation depends on the post-adaptation shifts. Shifts inferior to 24° are amplified under ketamine while shifts superior to 24° are reduced, that is, ketamine favors cells’ recovery.
Because the results are similar in mouse and cat, we assumed that the mechanisms of cortical plasticity induced by ketamine, which operate at the level of single cells, are similar, independent of the presence of columnar organization.
Cross-correlogram (CCG) analysis is an efficient tool to reveal the putative functional coupling between neurons that display time relationships between their respective spike trains [71, 72, 73, 74, 75]. The stimulus-dependent synchrony should be suppressed in the shift-corrected cross-correlation histograms [76]; this allowed the measurement of synchrony excluding latencies evoked by stimuli onset. The CCG is performed between simultaneously recorded spike trains of two neurons where one cell is set as reference and the second as target. In CCGs, the time axis (X axis) is divided into bins of 1 ms and the
where
In cat and mouse, CCG analysis performed before and following ketamine application shows that this drug alters the putative synaptic links between neurons following visual adaptation. Thus, ketamine modulates the neuronal assembly by strengthening or weakening synaptic weight and/or adding new cells to connectomes (Figure 3c). The redistribution of synaptic weights between neurons after ketamine application suggests a reassignment of functions of each neuron pair inside the microcircuits. Ketamine not only enables altering the original network but also the post-adaptation microcircuits. This implies that when a single unit changes its selectivity after experience-dependent plasticity, its wiring changes according to its new preferred orientation (Figure 3c and d).
Ketamine might disturb cells’ activity which in turn redeploys the strength of projections between cells to restructure the entire wiring-dynamic of the neuronal assembly. We conclude that, despite the organizational difference between mouse and cat, ketamine remaps the connectivity of visual cortex microcircuits, and leads to a new configuration of the functional networks.
In this section, the network-dynamics of the assembly are related to the orientation changes in each condition (control, post-adaptation, post-ketamine). Thus, we investigated whether the strength of connections between units in an assembly is related to stimulus orientation. Results, in cat and mouse, show a unique network was activated at every orientation whatever the condition. Therefore, feature-specific connectivity was generated for each input stimulus. Thus, connections are activated or deactivated depending on the feature stimulus. Figure 3c-e illustrates the dynamic interactions between neurons within an assembly in response to different orientations in cat and mouse. In short, in mouse, as shown in Figure 3d, some connections were largely maintained despite the change in orientation, whereas, and independently of the condition, other links emerged specifically for some orientations (e.g., unit (e)—unit (c) at 67.5°). The connection disclosed between (f) and (d) units at 0° disappeared at other grating orientations. Furthermore, some connections were characterized by a change in their peak-strength (p) from one orientation to another as depicted by the changing colors in the connectivity matrices (Figure 3d) and the weights numbers over connecting lines (Figure 3e). For instance, the connection between unit (a) and unit (b) (p = 3.5% at 45°) weakens (p = 1.4% at 67.5°) as shown in Figure 3e.
Cell assembly dynamics. (a) The functional network between a reference cell (green) and a target cell (orange on the left and cyan on the right) revealed by CCG analysis. (b) Neuronal synchrony revealed by a significant bin within the time window −1 to +1 ms adjoining the central zero point. In (a) and (b) the confidence limit is shown by the red curved line. (c and d) Strength matrices of a cells (6 × 6 cells simultaneously) in mouse, at all the tested gratings and in all conditions: Control (C), and post-ketamine (K) in c, and control (C), post-adaptation (a), and post-ketamine (K) in d. the colored scale (to the right) represents normalized peaks-strengths of connections. (e and f) Functional network between neurons according to the presented orientation in mouse (e) and in cat (f). The number above the black line indicates the probability of the connection between two units. For cat, cells were simultaneously recorded from two layers (L2/3) and (L5/6) separated in the scheme by the interrupted black line.
Similarly, in cat, some links were maintained at all presented orientations, implying the stability of distinctive connections between specific neurons (dark and light gray units), others were activated (black cell—light gray cell at 0°) or deactivated only at some orientations (the connectivity between dark gray cell—white cell disappeared at 45°, 67.5° and 90° (Figure 3f). All previous examples were drawn from the control condition. However, similar results were observed following adaptation and ketamine, depending on the orientation applied. We conclude that the functional links between pairs at a particular orientation (here 0°) show a unique network activated by a particular condition. Thus, adaptation changes the initial network and induces a new one; in addition, these cellular relationship modifications occur in both supra- and infra-granular layers (separated by the dotted horizontal black lines). This network acquired following adaptation was modified after ketamine application and a new pattern of connections emerges. It is worth mentioning that the effect of ketamine on the network dynamics is reversible since after recovery the connections between reference and targets return to the original pattern.
The change in the probabilities of connection (p) from one grating to another reflects a modification of synaptic weights between neurons in the assembly [78], wherein new neurons join and others leave in relation to the presented orientation. Accordingly, the unit output is the result of synaptic weights distributed over its dendritic tree for each grating. It was reported that within a cell-assembly, some connections are weak, therefore their feeble activation might confer flexibility to the assembly as the stimulus changes [79]. Thus, in the cortex, the functional units are neuronal ensembles rather than individual cells [80] and because of the synaptic flexibility of these neuronal groups, a dynamic salient microcircuit is involved for each visual stimulus. In line with a previous report [81], the encoding sensory stimuli might require a coordinated activity of specific groups of neurons that represent the building block of visual processing. Conclusively, all the above findings imply that the flexibility of the neuronal circuit keeps it permanently ready to receive the input efficiently and that the output is related to the assembly organization. In mouse, the proximity of neurons with different orientation preferences (salt-and-pepper organization) may favor each orientation grating, the activation of a specific group of synapses, and thus the emergence of a specific functional microcircuit. It is worth noting the activation of a specific functional network between co-active neurons as the orientation changes is a general property of stimulus processing that would be applicable to all mammals. It must be underlined that connectivity weights are independent of firing rates [79].
To investigate the effect of ketamine on the pair-wise synchrony, a computation of the number of connections and the CCG magnitudes of all summed pairs was performed at all presented orientations and compared between control, post-adaptation, and post-ketamine conditions. Results show that, contrasting with adaptation, under ketamine, the magnitude and the number of synchronous inputs was increased in cat but not in mouse. This increase might reflect a more coordinate activity of the recipient units with each other [82], which might lead to expand and upgrade the cortical processing and thus more efficient information transfer. Synchrony is energy demanding. Indeed, neuronal synchrony requires resources to time firing initiation accurately, aligned anatomical pathways to transfer the spikes, and energy expenditures for redundant action potentials [83]. Since in biological systems, the costs should not outweigh benefits, these energy costs should be counterbalanced by an information rate increase and more efficient information transfer. Moreover, it has been shown previously that in addition to the firing rate, the precise timing of firing potentially encoded visual information (the visual information is encoded in temporal patterns of firing) [84, 85, 86]. It seems that columnar, and not salt-pepper organization where cells with different orientation preferences are locally intermixed, favors the pair-wise synchrony. In the cat visual cortex, neurons with similar features are clustered together, forming columns, and are likely to be interconnected [78, 87, 88]. Thus, it is more likely to encounter close neurons with similar tuning then in mouse and this organization favors synchronization since it was shown that the latter is due in part to specific horizontal connections between cortical domains having similar tuning properties. Indeed, it was reported that cells exhibiting similar orientation preference showed a significant pair-wise synchrony [89].
Antidepressants, in particular ketamine, influence neurotransmission since it blocks NMDAR activity. Investigators have made many important strides toward understanding the molecular mechanisms governing the induction of plasticity by ketamine in stimulus processing.
It was reported that excitation (
In the primary cortical areas, cells are fed by the feedforward thalamic drive while their intrinsic properties are further shaped through the local recurrent network. The most striking effects of ketamine are the imposition of new intrinsic properties of individual neurons and the abolition of adaptation effects. The core of the representational question is whether the changes in synaptic strengths, under ketamine, constitute an engram of a new encoding of inputs in the visual processing. Experimental findings show that in parallel to tuning shifts of V1 orientation-selective cells, ketamine reorganizes the connectomes, that is, cells modifying their synaptic weight, and therefore a change of the synaptic links between units was observed. These results might implicitly provide that synaptic rewiring plasticity underlies cortical map reorganization and that the modification of a cell’s selectivity by ketamine may be better viewed in relationship to neuronal connections. In the cat primary visual cortex, it was reported that long-range horizontal axons preferentially bind to distant columns of similar tuning preferences which favors synchrony of cells’ activity under ketamine. This could suggest that ketamine through activity-dependent synaptic plasticity can redistribute connections to preferentially link neurons with similar response properties.
We acknowledge the Conseil de Recherche en Sciences Naturelles et en Genie du Canada (CRSNG) to support the completion of this study and Steve Itaya for his comments on the early version of the manuscript.
Authors declare that they have no conflict of interest
At IntechOpen, we not only specialize in the publication of Book Chapters as part of our Edited Volumes, but also the publication and dissemination of longer manuscripts, known as Long Form Monographs. Monographs allow Authors to focus on presenting a single subject or a specific aspect of that subject and publish their research in detail.
\n\nEven if you have an area of research that does not at first sight fit within a previously defined IntechOpen project, we can still offer support and help you in publishing your individual research. Publishing your IntechOpen book in the form of a Long Form Monograph is a viable alternative.
",metaTitle:"Publish a Whole Book",metaDescription:"At IntechOpen, we not only specialize in the publication of book chapters as part of our Edited Volumes, but also the publication and dissemination of long form manuscripts, known as monographs. Monographs allow authors to focus on presenting a single subject or a specific aspect of that subject and publish their research at length.\n\nPerhaps you have an area of research that does not fit within a previously defined IntechOpen project, but rather need help in publishing your individual research? Publishing your IntechOpen book in the form of a long form monograph is a great alternative.",metaKeywords:null,canonicalURL:"/page/publish-a-whole-book",contentRaw:'[{"type":"htmlEditorComponent","content":"MONOGRAPH - LONG FORM MANUSCRIPT
\\n\\nFORMATS
\\n\\nCOST
\\n\\n10,000 GBP Monograph - Long Form
\\n\\nThe final price includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\\n\\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applied in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\nOptional Services
\\n\\nIntechOpen has collaborated with Enago, through its sister brand, Ulatus, which is one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work to readers from across the globe in a language they understand. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book and their high degree of linguistic and subject expertise enables them to deliver a superior quality output.
\\n\\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation services. To find out more information or obtain a quote, please visit: https://www.enago.com/intech.
\\n\\nFUNDING
\\n\\nWe feel that financial barriers should never prevent researchers from publishing their work. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\\n\\nBENEFITS
\\n\\nPUBLISHING PROCESS STEPS
\\n\\nFor a complete overview of all publishing process steps and descriptions, go to How Open Access Publishing Works.
\\n\\nSEND YOUR PROPOSAL
\\n\\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\\n\\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'MONOGRAPH - LONG FORM MANUSCRIPT
\n\nFORMATS
\n\nCOST
\n\n10,000 GBP Monograph - Long Form
\n\nThe final price includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\n\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applied in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\n\nOptional Services
\n\nIntechOpen has collaborated with Enago, through its sister brand, Ulatus, which is one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work to readers from across the globe in a language they understand. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book and their high degree of linguistic and subject expertise enables them to deliver a superior quality output.
\n\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation services. To find out more information or obtain a quote, please visit: https://www.enago.com/intech.
\n\nFUNDING
\n\nWe feel that financial barriers should never prevent researchers from publishing their work. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\n\nBENEFITS
\n\nPUBLISHING PROCESS STEPS
\n\nFor a complete overview of all publishing process steps and descriptions, go to How Open Access Publishing Works.
\n\nSEND YOUR PROPOSAL
\n\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\n\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{regionId:"4",sort:"featured,name"},profiles:[{id:"58592",title:"Dr.",name:"Arun",middleName:null,surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/58592/images/1664_n.jpg",biography:"Arun K. Shanker is serving as a Principal Scientist (Plant Physiology) with the Indian Council of Agricultural Research (ICAR) at the Central Research Institute for Dryland Agriculture in Hyderabad, India. He is working with the ICAR as a full time researcher since 1993 and has since earned his Advanced degree in Crop Physiology while in service. He has been awarded the prestigious Member of the Royal Society of Chemistry (MRSC), by the Royal Society of Chemistry, London in 2015. Presently he is working on systems biology approach to study the mechanism of abiotic stress tolerance in crops. His main focus now is to unravel the mechanism of drought and heat stress response in plants to tackle climate change related threats in agriculture.",institutionString:null,institution:{name:"Indian Council of Agricultural Research",country:{name:"India"}}},{id:"4782",title:"Prof.",name:"Bishnu",middleName:"P",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4782/images/system/4782.jpg",biography:"Bishnu P. Pal is Professor of Physics at Mahindra École\nCentrale Hyderabad India since July 1st 2014 after retirement\nas Professor of Physics from IIT Delhi; Ph.D.’1975 from IIT\nDelhi; Fellow of OSA and SPIE; Senior Member IEEE;\nHonorary Foreign Member Royal Norwegian Society for\nScience and Arts; Member OSA Board of Directors (2009-\n11); Distinguished Lecturer IEEE Photonics Society (2005-\n07).",institutionString:null,institution:{name:"Indian Institute of Technology Delhi",country:{name:"India"}}},{id:"69653",title:"Dr.",name:"Chusak",middleName:null,surname:"Limsakul",slug:"chusak-limsakul",fullName:"Chusak Limsakul",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Prince of Songkla University",country:{name:"Thailand"}}},{id:"23804",title:"Dr.",name:"Hamzah",middleName:null,surname:"Arof",slug:"hamzah-arof",fullName:"Hamzah Arof",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/23804/images/5492_n.jpg",biography:"Hamzah Arof received his BSc from Michigan State University, and PhD from the University of Wales. Both degrees were in electrical engineering. His current research interests include signal processing and photonics. Currently he is affiliated with the Department of Electrical Engineering, University of Malaya, Malaysia.",institutionString:null,institution:{name:"University of Malaya",country:{name:"Malaysia"}}},{id:"41989",title:"Prof.",name:"He",middleName:null,surname:"Tian",slug:"he-tian",fullName:"He Tian",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"East China University of Science and Technology",country:{name:"China"}}},{id:"33351",title:null,name:"Hendra",middleName:null,surname:"Hermawan",slug:"hendra-hermawan",fullName:"Hendra Hermawan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/33351/images/168_n.jpg",biography:null,institutionString:null,institution:{name:"Institut Teknologi Bandung",country:{name:"Indonesia"}}},{id:"11981",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Ishiguro",slug:"hiroshi-ishiguro",fullName:"Hiroshi Ishiguro",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRglaQAC/Profile_Picture_1626411846553",biography:"Hiroshi Ishiguro is an award-winning roboticist and innovator. As the Director of the Intelligent Robotics Laboratory, which is part of the Department of Systems Innovation in the Graduate School of Engineering Science at Osaka University, Japan, Ishiguro concentrates on making robots that are similar as possible to humans to understand the human species. A notable project of his laboratory is the Actroid, a humanoid robot with a lifelike appearance and observable behavior such as facial movements. (Sources: http://www.geminoid.jp/en/index.html, https://en.wikipedia.org/wiki/Hiroshi_Ishiguro)",institutionString:null,institution:{name:"Osaka University",country:{name:"Japan"}}},{id:"45747",title:"Dr.",name:"Hsin-I",middleName:null,surname:"Chang",slug:"hsin-i-chang",fullName:"Hsin-I Chang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Chiayi University",country:{name:"Taiwan"}}},{id:"61581",title:"Dr.",name:"Joy Rizki Pangestu",middleName:null,surname:"Djuansjah",slug:"joy-rizki-pangestu-djuansjah",fullName:"Joy Rizki Pangestu Djuansjah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/61581/images/237_n.jpg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"94249",title:"Prof.",name:"Junji",middleName:null,surname:"Kido",slug:"junji-kido",fullName:"Junji Kido",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Yamagata University",country:{name:"Japan"}}},{id:"12009",title:"Dr.",name:"Ki Young",middleName:null,surname:"Kim",slug:"ki-young-kim",fullName:"Ki Young Kim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12009/images/system/12009.jpg",biography:"Http://m80.knu.ac.kr/~doors",institutionString:null,institution:{name:"National Cheng Kung University",country:{name:"Taiwan"}}},{id:"132595",title:"Prof.",name:"Long",middleName:null,surname:"Wang",slug:"long-wang",fullName:"Long Wang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Peking University",country:{name:"China"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6630},{group:"region",caption:"Middle and South America",value:2,count:5913},{group:"region",caption:"Africa",value:3,count:2404},{group:"region",caption:"Asia",value:4,count:12563},{group:"region",caption:"Australia and Oceania",value:5,count:1009},{group:"region",caption:"Europe",value:6,count:17574}],offset:12,limit:12,total:12563},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"-dateEndThirdStepPublish",src:"N-T-0-T1"},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12196",title:"Sepsis - New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"3590e6f6047122bd96d1d57da29c4054",slug:null,bookSignature:"Dr. Lixing Huang, Dr. Youyu Zhang and Dr. Lingbin Sun",coverURL:"https://cdn.intechopen.com/books/images_new/12196.jpg",editedByType:null,editors:[{id:"333148",title:"Dr.",name:"Lixing",surname:"Huang",slug:"lixing-huang",fullName:"Lixing Huang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12208",title:"Metformin - A Prospective Alternative for the Treatment of Chronic Diseases",subtitle:null,isOpenForSubmission:!0,hash:"6c00637f80ef05f5f46217dcbeaaa6e9",slug:null,bookSignature:"Prof. Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/12208.jpg",editedByType:null,editors:[{id:"41865",title:"Prof.",name:"Farid A.",surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12112",title:"The Colorectal Surgery",subtitle:null,isOpenForSubmission:!0,hash:"21c65e742d31d5b69fb681ef78cfa0be",slug:null,bookSignature:"Dr. Muhammad Shamim",coverURL:"https://cdn.intechopen.com/books/images_new/12112.jpg",editedByType:null,editors:[{id:"235128",title:"Dr.",name:"Muhammad",surname:"Shamim",slug:"muhammad-shamim",fullName:"Muhammad Shamim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12058",title:"Future Housing",subtitle:null,isOpenForSubmission:!0,hash:"e7f4a1e57fab392b61156956c1247b9e",slug:null,bookSignature:"Dr. Ivan Oropeza-Perez and Dr. Astrid Helena Petzold-Rodríguez",coverURL:"https://cdn.intechopen.com/books/images_new/12058.jpg",editedByType:null,editors:[{id:"282172",title:"Dr.",name:"Ivan",surname:"Oropeza-Perez",slug:"ivan-oropeza-perez",fullName:"Ivan Oropeza-Perez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11606",title:"Asteraceae - Characterization, Recent Advances and Applications",subtitle:null,isOpenForSubmission:!0,hash:"910ecf8411098a42bb250c87a978f1b9",slug:null,bookSignature:"Dr. Mohamed A. El-Esawi",coverURL:"https://cdn.intechopen.com/books/images_new/11606.jpg",editedByType:null,editors:[{id:"191770",title:"Dr.",name:"Mohamed A.",surname:"El-Esawi",slug:"mohamed-a.-el-esawi",fullName:"Mohamed A. El-Esawi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11857",title:"Updates on Excitons",subtitle:null,isOpenForSubmission:!0,hash:"8a2fd9bbbbae283bf115881d9d5cc47a",slug:null,bookSignature:"Dr. Ashim Kumar Dutta",coverURL:"https://cdn.intechopen.com/books/images_new/11857.jpg",editedByType:null,editors:[{id:"277477",title:"Dr.",name:"Ashim",surname:"Dutta",slug:"ashim-dutta",fullName:"Ashim Dutta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11559",title:"Photocatalysts - New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"fc9a28dbceaeccb8991b24aec1decd32",slug:null,bookSignature:"Prof. Nasser S Awwad and Dr. Ahmed Alomary",coverURL:"https://cdn.intechopen.com/books/images_new/11559.jpg",editedByType:null,editors:[{id:"145209",title:"Prof.",name:"Nasser",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12172",title:"Health Risks of Food Additives - Recent Developments and Trends in Food Sector",subtitle:null,isOpenForSubmission:!0,hash:"f6aa23b1045d266d0928fcef04fa3417",slug:null,bookSignature:"Dr. Muhammad Sajid Arshad and Mr. Waseem Khalid",coverURL:"https://cdn.intechopen.com/books/images_new/12172.jpg",editedByType:null,editors:[{id:"192998",title:"Dr.",name:"Muhammad Sajid",surname:"Arshad",slug:"muhammad-sajid-arshad",fullName:"Muhammad Sajid Arshad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11999",title:"Earthquakes - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"b2af07109b13b76e5af9583532ab5bee",slug:null,bookSignature:"Dr. Walter Salazar",coverURL:"https://cdn.intechopen.com/books/images_new/11999.jpg",editedByType:null,editors:[{id:"236461",title:"Dr.",name:"Walter",surname:"Salazar",slug:"walter-salazar",fullName:"Walter Salazar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12006",title:"Advances in Clay Science and Technology",subtitle:null,isOpenForSubmission:!0,hash:"64e16abe1a29e6bf30c582970a5bc1ed",slug:null,bookSignature:"Prof. Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/12006.jpg",editedByType:null,editors:[{id:"7153",title:"Prof.",name:"Gustavo",surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11464",title:"Carbon Nanotubes - Recent Advances, New Perspectives and Potential Applications",subtitle:null,isOpenForSubmission:!0,hash:"ce526ec78ed00c4f5f08ffb4548ff388",slug:null,bookSignature:"Prof. Mohammed Muzibur Rahman, Dr. Abdullah Mohammed Ahmed Asiri and Prof. Mohammad Asaduzzaman Chowdhury",coverURL:"https://cdn.intechopen.com/books/images_new/11464.jpg",editedByType:null,editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:24},{group:"topic",caption:"Computer and Information Science",value:9,count:19},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:19},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:11},{group:"topic",caption:"Materials Science",value:14,count:29},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:128},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:3},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:12,limit:12,total:431},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4387},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3385,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1875,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3842,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3008,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1109,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1010,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3918,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",publishedDate:"May 11th 2022",numberOfDownloads:1654,editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7686,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3444,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10522",title:"Coding Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"6357e1dd7d38adeb519ca7a10dc9e5a0",slug:"coding-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Sudhakar Radhakrishnan and Sudev Naduvath",coverURL:"https://cdn.intechopen.com/books/images_new/10522.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10821",title:"Automation and Control",subtitle:"Theories and Applications",isOpenForSubmission:!1,hash:"18463c2291ba306c4dcbabd988227eea",slug:"automation-and-control-theories-and-applications",bookSignature:"Elmer P. Dadios",coverURL:"https://cdn.intechopen.com/books/images_new/10821.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11348",title:"Mutagenesis and Mitochondrial-Associated Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"001972b3c5b49367314b13025a449232",slug:"mutagenesis-and-mitochondrial-associated-pathologies",bookSignature:"Michael Fasullo and Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/11348.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"258231",title:"Dr.",name:"Michael",middleName:"Thomas",surname:"Fasullo",slug:"michael-fasullo",fullName:"Michael Fasullo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11123",title:"Epoxy-Based Composites",subtitle:null,isOpenForSubmission:!1,hash:"c1c5447cf3b9d6c7688276ac30e80de6",slug:"epoxy-based-composites",bookSignature:"Samson Jerold Samuel Chelladurai, Ramesh Arthanari and M.R.Meera",coverURL:"https://cdn.intechopen.com/books/images_new/11123.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"247421",title:"Dr.",name:"Samson Jerold Samuel",middleName:null,surname:"Chelladurai",slug:"samson-jerold-samuel-chelladurai",fullName:"Samson Jerold Samuel Chelladurai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10632",title:"Theory and Practice of Tunnel Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ba17749f9d0b6a62d584a3c320a1f49",slug:"theory-and-practice-of-tunnel-engineering",bookSignature:"Hasan Tosun",coverURL:"https://cdn.intechopen.com/books/images_new/10632.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"79083",title:"Prof.",name:"Hasan",middleName:null,surname:"Tosun",slug:"hasan-tosun",fullName:"Hasan Tosun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10906",title:"Fungal Reproduction and Growth",subtitle:null,isOpenForSubmission:!1,hash:"f84de0280d54f3b52e3e4585cff24ac1",slug:"fungal-reproduction-and-growth",bookSignature:"Sadia Sultan and Gurmeet Kaur Surindar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10906.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"176737",title:"Dr.",name:"Sadia",middleName:null,surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10914",title:"Effective Elimination of Structural Racism",subtitle:null,isOpenForSubmission:!1,hash:"f6a2562646c0fd664aca8335bc3b3e69",slug:"effective-elimination-of-structural-racism",bookSignature:"Erick Guerrero",coverURL:"https://cdn.intechopen.com/books/images_new/10914.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"294761",title:"Dr.",name:"Erick",middleName:null,surname:"Guerrero",slug:"erick-guerrero",fullName:"Erick Guerrero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,isOpenForSubmission:!1,hash:"2d66af42fb17d0a6556bb9ef28e273c7",slug:"animal-reproduction",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10940",title:"Plant Hormones",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"5aae8a345f8047ed528914ff3491f643",slug:"plant-hormones-recent-advances-new-perspectives-and-applications",bookSignature:"Christophe Hano",coverURL:"https://cdn.intechopen.com/books/images_new/10940.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10207",title:"Sexual Abuse",subtitle:"An Interdisciplinary Approach",isOpenForSubmission:!1,hash:"e1ec1d5a7093490df314d7887e0b3809",slug:"sexual-abuse-an-interdisciplinary-approach",bookSignature:"Ersi Kalfoğlu and Sotirios Kalfoglou",coverURL:"https://cdn.intechopen.com/books/images_new/10207.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"68678",title:"Dr.",name:"Ersi",middleName:null,surname:"Kalfoglou",slug:"ersi-kalfoglou",fullName:"Ersi Kalfoglou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"722",title:"Fuzzy Logic",slug:"engineering-control-engineering-fuzzy-logic",parent:{id:"115",title:"Control Engineering",slug:"engineering-control-engineering"},numberOfBooks:3,numberOfSeries:0,numberOfAuthorsAndEditors:97,numberOfWosCitations:194,numberOfCrossrefCitations:111,numberOfDimensionsCitations:199,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"722",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"3135",title:"Recent Advances on Meta-Heuristics and Their Application to Real Scenarios",subtitle:null,isOpenForSubmission:!1,hash:"3dfd9b1d407d9b6bd43cddc277d2678c",slug:"recent-advances-on-meta-heuristics-and-their-application-to-real-scenarios",bookSignature:"Javier Del Ser",coverURL:"https://cdn.intechopen.com/books/images_new/3135.jpg",editedByType:"Edited by",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1918",title:"Fuzzy Inference System",subtitle:"Theory and Applications",isOpenForSubmission:!1,hash:"f9e83f062ef44d6d01a2ac38a75f3dd5",slug:"fuzzy-inference-system-theory-and-applications",bookSignature:"Mohammad Fazle Azeem",coverURL:"https://cdn.intechopen.com/books/images_new/1918.jpg",editedByType:"Edited by",editors:[{id:"104293",title:"Dr.",name:"Mohammad Fazle",middleName:null,surname:"Azeem",slug:"mohammad-fazle-azeem",fullName:"Mohammad Fazle Azeem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2273",title:"Fuzzy Logic",subtitle:"Controls, Concepts, Theories and Applications",isOpenForSubmission:!1,hash:"08592e2ab59a5ef109adc99aa41b2ba2",slug:"fuzzy-logic-controls-concepts-theories-and-applications",bookSignature:"Elmer P. Dadios",coverURL:"https://cdn.intechopen.com/books/images_new/2273.jpg",editedByType:"Edited by",editors:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:3,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"34221",doi:"10.5772/36321",title:"A Mamdani Type Fuzzy Logic Controller",slug:"a-mamdani-type-fuzzy-logic-controller",totalDownloads:12524,totalCrossrefCites:40,totalDimensionsCites:67,abstract:null,book:{id:"2273",slug:"fuzzy-logic-controls-concepts-theories-and-applications",title:"Fuzzy Logic",fullTitle:"Fuzzy Logic - Controls, Concepts, Theories and Applications"},signatures:"Ion Iancu",authors:[{id:"107854",title:"Prof.",name:"Ion",middleName:null,surname:"Iancu",slug:"ion-iancu",fullName:"Ion Iancu"}]},{id:"34207",doi:"10.5772/36358",title:"Application of Fuzzy Logic in Mobile Robot Navigation",slug:"application-of-fuzzy-logic-in-mobile-robot-navigation",totalDownloads:5457,totalCrossrefCites:2,totalDimensionsCites:14,abstract:null,book:{id:"2273",slug:"fuzzy-logic-controls-concepts-theories-and-applications",title:"Fuzzy Logic",fullTitle:"Fuzzy Logic - Controls, Concepts, Theories and Applications"},signatures:"Tang Sai Hong, Danial Nakhaeinia and Babak Karasfi",authors:[{id:"107973",title:"Ph.D.",name:"Danial",middleName:null,surname:"Nakhaeinia",slug:"danial-nakhaeinia",fullName:"Danial Nakhaeinia"},{id:"138107",title:"Dr.",name:"Sai Hong",middleName:null,surname:"Tang",slug:"sai-hong-tang",fullName:"Sai Hong Tang"},{id:"138108",title:"PhD.",name:"Babak",middleName:null,surname:"Karasfi",slug:"babak-karasfi",fullName:"Babak Karasfi"}]},{id:"42284",doi:"10.5772/53606",title:"A Two-Step Optimisation Method for Dynamic Weapon Target Assignment Problem",slug:"a-two-step-optimisation-method-for-dynamic-weapon-target-assignment-problem",totalDownloads:2731,totalCrossrefCites:9,totalDimensionsCites:14,abstract:null,book:{id:"3135",slug:"recent-advances-on-meta-heuristics-and-their-application-to-real-scenarios",title:"Recent Advances on Meta-Heuristics and Their Application to Real Scenarios",fullTitle:"Recent Advances on Meta-Heuristics and Their Application to Real Scenarios"},signatures:"Cédric Leboucher, Hyo-Sang Shin, Patrick Siarry, Rachid Chelouah, Stéphane Le Ménec and Antonios Tsourdos",authors:[{id:"161176",title:"Prof.",name:"Patrick",middleName:null,surname:"Siarry",slug:"patrick-siarry",fullName:"Patrick Siarry"},{id:"161183",title:"Mr.",name:"Cédric",middleName:null,surname:"Leboucher",slug:"cedric-leboucher",fullName:"Cédric Leboucher"},{id:"161184",title:"Dr.",name:"Hyo-Sang",middleName:null,surname:"Shin",slug:"hyo-sang-shin",fullName:"Hyo-Sang Shin"},{id:"161186",title:"Dr.",name:"Stéphane",middleName:null,surname:"Le Ménec",slug:"stephane-le-menec",fullName:"Stéphane Le Ménec"},{id:"161187",title:"Dr.",name:"Antonios",middleName:null,surname:"Tsourdos",slug:"antonios-tsourdos",fullName:"Antonios Tsourdos"},{id:"161190",title:"Dr.",name:"Rachid",middleName:null,surname:"Chelouah",slug:"rachid-chelouah",fullName:"Rachid Chelouah"}]},{id:"34208",doi:"10.5772/37584",title:"Modular Fuzzy Logic Controller for Motion Control of Two-Wheeled Wheelchair",slug:"modular-fuzzy-logic-control-for-two-wheeled-wheelchair-motion-control",totalDownloads:3294,totalCrossrefCites:6,totalDimensionsCites:9,abstract:null,book:{id:"2273",slug:"fuzzy-logic-controls-concepts-theories-and-applications",title:"Fuzzy Logic",fullTitle:"Fuzzy Logic - Controls, Concepts, Theories and Applications"},signatures:"Salmiah Ahmad, N. H. Siddique and M. O. Tokhi",authors:[{id:"110412",title:"Dr.",name:"Nazmul",middleName:null,surname:"Siddique",slug:"nazmul-siddique",fullName:"Nazmul Siddique"},{id:"113396",title:"Dr.",name:"Salmiah",middleName:null,surname:"Ahmad",slug:"salmiah-ahmad",fullName:"Salmiah Ahmad"},{id:"114563",title:"Dr.",name:"M. O.",middleName:null,surname:"Tokhi",slug:"m.-o.-tokhi",fullName:"M. O. Tokhi"}]},{id:"36647",doi:"10.5772/36914",title:"Neural Network and Adaptive Neuro-Fuzzy Inference System Applied to Civil Engineering Problems",slug:"neuro-fuzzy-and-neural-network-models-for-civil-engineering",totalDownloads:4774,totalCrossrefCites:1,totalDimensionsCites:7,abstract:null,book:{id:"1918",slug:"fuzzy-inference-system-theory-and-applications",title:"Fuzzy Inference System",fullTitle:"Fuzzy Inference System - Theory and Applications"},signatures:"Mohammed A. Mashrei",authors:[{id:"110425",title:"Dr.",name:"Mohammed",middleName:"A.",surname:"Mashrei",slug:"mohammed-mashrei",fullName:"Mohammed Mashrei"}]}],mostDownloadedChaptersLast30Days:[{id:"34221",title:"A Mamdani Type Fuzzy Logic Controller",slug:"a-mamdani-type-fuzzy-logic-controller",totalDownloads:12524,totalCrossrefCites:40,totalDimensionsCites:67,abstract:null,book:{id:"2273",slug:"fuzzy-logic-controls-concepts-theories-and-applications",title:"Fuzzy Logic",fullTitle:"Fuzzy Logic - Controls, Concepts, Theories and Applications"},signatures:"Ion Iancu",authors:[{id:"107854",title:"Prof.",name:"Ion",middleName:null,surname:"Iancu",slug:"ion-iancu",fullName:"Ion Iancu"}]},{id:"42289",title:"Meta-Heuristic Optimization Techniques and Its Applications in Robotics",slug:"meta-heuristic-optimization-techniques-and-its-applications-in-robotics",totalDownloads:3459,totalCrossrefCites:2,totalDimensionsCites:3,abstract:null,book:{id:"3135",slug:"recent-advances-on-meta-heuristics-and-their-application-to-real-scenarios",title:"Recent Advances on Meta-Heuristics and Their Application to Real Scenarios",fullTitle:"Recent Advances on Meta-Heuristics and Their Application to Real Scenarios"},signatures:"Alejandra Cruz-Bernal",authors:[{id:"157525",title:"M.Sc.",name:"Alejandra",middleName:null,surname:"Cruz-Bernal",slug:"alejandra-cruz-bernal",fullName:"Alejandra Cruz-Bernal"}]},{id:"34208",title:"Modular Fuzzy Logic Controller for Motion Control of Two-Wheeled Wheelchair",slug:"modular-fuzzy-logic-control-for-two-wheeled-wheelchair-motion-control",totalDownloads:3294,totalCrossrefCites:6,totalDimensionsCites:9,abstract:null,book:{id:"2273",slug:"fuzzy-logic-controls-concepts-theories-and-applications",title:"Fuzzy Logic",fullTitle:"Fuzzy Logic - Controls, Concepts, Theories and Applications"},signatures:"Salmiah Ahmad, N. H. Siddique and M. O. Tokhi",authors:[{id:"110412",title:"Dr.",name:"Nazmul",middleName:null,surname:"Siddique",slug:"nazmul-siddique",fullName:"Nazmul Siddique"},{id:"113396",title:"Dr.",name:"Salmiah",middleName:null,surname:"Ahmad",slug:"salmiah-ahmad",fullName:"Salmiah Ahmad"},{id:"114563",title:"Dr.",name:"M. O.",middleName:null,surname:"Tokhi",slug:"m.-o.-tokhi",fullName:"M. O. Tokhi"}]},{id:"34207",title:"Application of Fuzzy Logic in Mobile Robot Navigation",slug:"application-of-fuzzy-logic-in-mobile-robot-navigation",totalDownloads:5457,totalCrossrefCites:2,totalDimensionsCites:14,abstract:null,book:{id:"2273",slug:"fuzzy-logic-controls-concepts-theories-and-applications",title:"Fuzzy Logic",fullTitle:"Fuzzy Logic - Controls, Concepts, Theories and Applications"},signatures:"Tang Sai Hong, Danial Nakhaeinia and Babak Karasfi",authors:[{id:"107973",title:"Ph.D.",name:"Danial",middleName:null,surname:"Nakhaeinia",slug:"danial-nakhaeinia",fullName:"Danial Nakhaeinia"},{id:"138107",title:"Dr.",name:"Sai Hong",middleName:null,surname:"Tang",slug:"sai-hong-tang",fullName:"Sai Hong Tang"},{id:"138108",title:"PhD.",name:"Babak",middleName:null,surname:"Karasfi",slug:"babak-karasfi",fullName:"Babak Karasfi"}]},{id:"34218",title:"Fuzzy Control Applied to Aluminum Smelting",slug:"fuzzy-control-applied-to-aluminium-smelting-process",totalDownloads:4452,totalCrossrefCites:1,totalDimensionsCites:3,abstract:null,book:{id:"2273",slug:"fuzzy-logic-controls-concepts-theories-and-applications",title:"Fuzzy Logic",fullTitle:"Fuzzy Logic - Controls, Concepts, Theories and Applications"},signatures:"Vanilson G. Pereira, Roberto C.L. De Oliveira and Fábio M. Soares",authors:[{id:"104491",title:"MSc.",name:"Fabio",middleName:null,surname:"Soares",slug:"fabio-soares",fullName:"Fabio Soares"},{id:"104698",title:"Mr.",name:"Roberto",middleName:null,surname:"Oliveira",slug:"roberto-oliveira",fullName:"Roberto Oliveira"},{id:"114623",title:"MSc.",name:"Vanilson",middleName:null,surname:"Pereira",slug:"vanilson-pereira",fullName:"Vanilson Pereira"}]}],onlineFirstChaptersFilter:{topicId:"722",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],testimonialsList:[]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 26th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:51,paginationItems:[{id:"81545",title:"Physiochemical Properties of Essential Oils and Applications",doi:"10.5772/intechopen.104112",signatures:"Sunil Kumar Yadav",slug:"physiochemical-properties-of-essential-oils-and-applications",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:null,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}}]},overviewPagePublishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science and Technology from the Department of Chemistry, National University of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013. She relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the National Institute of Fundamental Studies from April 2013 to October 2016. She was a senior lecturer on a temporary basis at the Department of Food Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is currently Deputy Principal of the Australian College of Business and Technology – Kandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI) Ambassador to Sri Lanka.",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"11579",title:"Animal Welfare - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11579.jpg",hash:"12e4f41264cbe99028655e5463fa941a",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"51520",title:"Dr.",name:"Shao-Wen",surname:"Hung",slug:"shao-wen-hung",fullName:"Shao-Wen Hung"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11578",title:"Antibiotics and Probiotics in Animal Food - Impact and Regulation",coverURL:"https://cdn.intechopen.com/books/images_new/11578.jpg",hash:"3731c009f474c6ed4293f348ca7b27ac",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 3rd 2022",isOpenForSubmission:!0,editors:[{id:"225390",title:"Dr.",name:"Asghar Ali",surname:"Kamboh",slug:"asghar-ali-kamboh",fullName:"Asghar Ali Kamboh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:0,paginationItems:[]},subseriesFiltersForOFChapters:[],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{}},subseries:{item:{id:"38",type:"subseries",title:"Pollution",keywords:"Human activity, Pollutants, Reduced risks, Population growth, Waste disposal, Remediation, Clean environment",scope:"\r\n\tPollution is caused by a wide variety of human activities and occurs in diverse forms, for example biological, chemical, et cetera. In recent years, significant efforts have been made to ensure that the environment is clean, that rigorous rules are implemented, and old laws are updated to reduce the risks towards humans and ecosystems. However, rapid industrialization and the need for more cultivable sources or habitable lands, for an increasing population, as well as fewer alternatives for waste disposal, make the pollution control tasks more challenging. Therefore, this topic will focus on assessing and managing environmental pollution. It will cover various subjects, including risk assessment due to the pollution of ecosystems, transport and fate of pollutants, restoration or remediation of polluted matrices, and efforts towards sustainable solutions to minimize environmental pollution.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/38.jpg",hasOnlineFirst:!1,hasPublishedBooks:!0,annualVolume:11966,editor:{id:"110740",title:"Dr.",name:"Ismail M.M.",middleName:null,surname:"Rahman",slug:"ismail-m.m.-rahman",fullName:"Ismail M.M. Rahman",profilePictureURL:"https://mts.intechopen.com/storage/users/110740/images/2319_n.jpg",biography:"Ismail Md. Mofizur Rahman (Ismail M. M. Rahman) assumed his current responsibilities as an Associate Professor at the Institute of Environmental Radioactivity, Fukushima University, Japan, in Oct 2015. He also has an honorary appointment to serve as a Collaborative Professor at Kanazawa University, Japan, from Mar 2015 to the present. \nFormerly, Dr. Rahman was a faculty member of the University of Chittagong, Bangladesh, affiliated with the Department of Chemistry (Oct 2002 to Mar 2012) and the Department of Applied Chemistry and Chemical Engineering (Mar 2012 to Sep 2015). Dr. Rahman was also adjunctly attached with Kanazawa University, Japan (Visiting Research Professor, Dec 2014 to Mar 2015; JSPS Postdoctoral Research Fellow, Apr 2012 to Mar 2014), and Tokyo Institute of Technology, Japan (TokyoTech-UNESCO Research Fellow, Oct 2004–Sep 2005). \nHe received his Ph.D. degree in Environmental Analytical Chemistry from Kanazawa University, Japan (2011). He also achieved a Diploma in Environment from the Tokyo Institute of Technology, Japan (2005). Besides, he has an M.Sc. degree in Applied Chemistry and a B.Sc. degree in Chemistry, all from the University of Chittagong, Bangladesh. \nDr. Rahman’s research interest includes the study of the fate and behavior of environmental pollutants in the biosphere; design of low energy and low burden environmental improvement (remediation) technology; implementation of sustainable waste management practices for treatment, handling, reuse, and ultimate residual disposition of solid wastes; nature and type of interactions in organic liquid mixtures for process engineering design applications.",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorTwo:{id:"201020",title:"Dr.",name:"Zinnat Ara",middleName:null,surname:"Begum",slug:"zinnat-ara-begum",fullName:"Zinnat Ara Begum",profilePictureURL:"https://mts.intechopen.com/storage/users/201020/images/system/201020.jpeg",biography:"Zinnat A. Begum received her Ph.D. in Environmental Analytical Chemistry from Kanazawa University in 2012. She achieved her Master of Science (M.Sc.) degree with a major in Applied Chemistry and a Bachelor of Science (B.Sc.) in Chemistry, all from the University of Chittagong, Bangladesh. Her work affiliations include Fukushima University, Japan (Visiting Research Fellow, Institute of Environmental Radioactivity: Mar 2016 to present), Southern University Bangladesh (Assistant Professor, Department of Civil Engineering: Jan 2015 to present), and Kanazawa University, Japan (Postdoctoral Fellow, Institute of Science and Engineering: Oct 2012 to Mar 2014; Research fellow, Venture Business Laboratory, Advanced Science and Social Co-Creation Promotion Organization: Apr 2018 to Mar 2021). The research focus of Dr. Zinnat includes the effect of the relative stability of metal-chelator complexes in the environmental remediation process designs and the development of eco-friendly soil washing techniques using biodegradable chelators.",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorThree:null,series:{id:"25",title:"Environmental Sciences",doi:"10.5772/intechopen.100362",issn:"2754-6713"},editorialBoard:[{id:"252368",title:"Dr.",name:"Meng-Chuan",middleName:null,surname:"Ong",slug:"meng-chuan-ong",fullName:"Meng-Chuan Ong",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRVotQAG/Profile_Picture_2022-05-20T12:04:28.jpg",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",institutionURL:null,country:{name:"Malaysia"}}},{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}},{id:"187907",title:"Dr.",name:"Olga",middleName:null,surname:"Anne",slug:"olga-anne",fullName:"Olga Anne",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBE5QAO/Profile_Picture_2022-04-07T09:42:13.png",institutionString:null,institution:{name:"Klaipeda State University of Applied Sciences",institutionURL:null,country:{name:"Lithuania"}}}]},onlineFirstChapters:{paginationCount:0,paginationItems:[]},publishedBooks:{paginationCount:4,paginationItems:[{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",slug:"animal-reproduction",publishedDate:"May 25th 2022",editedByType:"Edited by",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",hash:"2d66af42fb17d0a6556bb9ef28e273c7",volumeInSeries:11,fullTitle:"Animal Reproduction",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt",profilePictureURL:"https://mts.intechopen.com/storage/users/90846/images/system/90846.jpg",institutionString:"İskenderun Technical University",institution:{name:"İskenderun Technical University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",editedByType:"Edited by",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",hash:"13aaddf5fdbbc78387e77a7da2388bf6",volumeInSeries:6,fullTitle:"Animal Reproduction in Veterinary Medicine",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral",profilePictureURL:"https://mts.intechopen.com/storage/users/25600/images/system/25600.jpg",institutionString:"Independent Researcher",institution:{name:"Harran University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[{id:"22",title:"Applied Intelligence",scope:"This field is the key in the current industrial revolution (Industry 4.0), where the new models and developments are based on the knowledge generation on applied intelligence. The motor of the society is the industry and the research of this topic has to be empowered in order to increase and improve the quality of our lives.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",keywords:"Machine Learning, Intelligence Algorithms, Data Science, Artificial Intelligence, Applications on Applied Intelligence"},{id:"23",title:"Computational Neuroscience",scope:"Computational neuroscience focuses on biologically realistic abstractions and models validated and solved through computational simulations to understand principles for the development, structure, physiology, and ability of the nervous system. This topic is dedicated to biologically plausible descriptions and computational models - at various abstraction levels - of neurons and neural systems. This includes, but is not limited to: single-neuron modeling, sensory processing, motor control, memory, and synaptic plasticity, attention, identification, categorization, discrimination, learning, development, axonal patterning, guidance, neural architecture, behaviors, and dynamics of networks, cognition and the neuroscientific basis of consciousness. Particularly interesting are models of various types of more compound functions and abilities, various and more general fundamental principles (e.g., regarding architecture, organization, learning, development, etc.) found at various spatial and temporal levels.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",keywords:"Single-Neuron Modeling, Sensory Processing, Motor Control, Memory and Synaptic Pasticity, Attention, Identification, Categorization, Discrimination, Learning, Development, Axonal Patterning and Guidance, Neural Architecture, Behaviours and Dynamics of Networks, Cognition and the Neuroscientific Basis of Consciousness"},{id:"24",title:"Computer Vision",scope:"The scope of this topic is to disseminate the recent advances in the rapidly growing field of computer vision from both the theoretical and practical points of view. Novel computational algorithms for image analysis, scene understanding, biometrics, deep learning and their software or hardware implementations for natural and medical images, robotics, VR/AR, applications are some research directions relevant to this topic.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",keywords:"Image Analysis, Scene Understanding, Biometrics, Deep Learning, Software Implementation, Hardware Implementation, Natural Images, Medical Images, Robotics, VR/AR"},{id:"25",title:"Evolutionary Computation",scope:"Evolutionary computing is a paradigm that has grown dramatically in recent years. This group of bio-inspired metaheuristics solves multiple optimization problems by applying the metaphor of natural selection. It so far has solved problems such as resource allocation, routing, schedule planning, and engineering design. Moreover, in the field of machine learning, evolutionary computation has carved out a significant niche both in the generation of learning models and in the automatic design and optimization of hyperparameters in deep learning models. This collection aims to include quality volumes on various topics related to evolutionary algorithms and, alternatively, other metaheuristics of interest inspired by nature. For example, some of the issues of interest could be the following: Advances in evolutionary computation (Genetic algorithms, Genetic programming, Bio-inspired metaheuristics, Hybrid metaheuristics, Parallel ECs); Applications of evolutionary algorithms (Machine learning and Data Mining with EAs, Search-Based Software Engineering, Scheduling, and Planning Applications, Smart Transport Applications, Applications to Games, Image Analysis, Signal Processing and Pattern Recognition, Applications to Sustainability).",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",keywords:"Genetic Algorithms, Genetic Programming, Evolutionary Programming, Evolution Strategies, Hybrid Algorithms, Bioinspired Metaheuristics, Ant Colony Optimization, Evolutionary Learning, Hyperparameter Optimization"},{id:"26",title:"Machine Learning and Data Mining",scope:"The scope of machine learning and data mining is immense and is growing every day. It has become a massive part of our daily lives, making predictions based on experience, making this a fascinating area that solves problems that otherwise would not be possible or easy to solve. This topic aims to encompass algorithms that learn from experience (supervised and unsupervised), improve their performance over time and enable machines to make data-driven decisions. It is not limited to any particular applications, but contributions are encouraged from all disciplines.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",keywords:"Intelligent Systems, Machine Learning, Data Science, Data Mining, Artificial Intelligence"},{id:"27",title:"Multi-Agent Systems",scope:"Multi-agent systems are recognised as a state of the art field in Artificial Intelligence studies, which is popular due to the usefulness in facilitation capabilities to handle real-world problem-solving in a distributed fashion. The area covers many techniques that offer solutions to emerging problems in robotics and enterprise-level software systems. Collaborative intelligence is highly and effectively achieved with multi-agent systems. Areas of application include swarms of robots, flocks of UAVs, collaborative software management. Given the level of technological enhancements, the popularity of machine learning in use has opened a new chapter in multi-agent studies alongside the practical challenges and long-lasting collaboration issues in the field. It has increased the urgency and the need for further studies in this field. We welcome chapters presenting research on the many applications of multi-agent studies including, but not limited to, the following key areas: machine learning for multi-agent systems; modeling swarms robots and flocks of UAVs with multi-agent systems; decision science and multi-agent systems; software engineering for and with multi-agent systems; tools and technologies of multi-agent systems.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",keywords:"Collaborative Intelligence, Learning, Distributed Control System, Swarm Robotics, Decision Science, Software Engineering"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:{title:"Artificial Intelligence",id:"14"},selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/45105",hash:"",query:{},params:{id:"45105"},fullPath:"/profiles/45105",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()