Conventional perovskite solar cells utilize a combination of a compact and mesoporous layer of TiO2 or SnO2 as the electron transport layer. This structure is vulnerable to massive loss of photogenerated carriers due to grain boundary resistance in the layer. In this chapter, we will discuss a potential electron transport layer that might drive higher power conversion efficiency, i.e., thin and single-crystalline 2D transition metal dichalcogenide. Because of their ultimate thin structure, they facilitate rapid electron transport and enhanced carrier extraction in the solar cells device. We will also discuss the current state of the art of 2D transition metal dichalcogenide atomic layer application as an electron transport layer in the perovskite solar cells as well as our recent attempt in this field.
Part of the book: Chalcogenides