This study aimed to determine the resistance of diarrheagenic Escherichia coli (DEC) strains to β-lactams antibiotics and to perform the molecular characterization of extended-spectrum β-lactamases (ESBLs) and integrons genes. It was carried out from August 2013 to October 2015 and involved 31 DEC strains isolated from diarrheal stools samples collected from children less than 5 years. The identification and characterization of DEC strains were done through the standard biochemical tests that were confirmed using API 20E and polymerase chain reaction (PCR). The antibiogram was realized by the disk diffusion method, then an amplification of the β-lactamase resistance genes and integrons by PCR was done. Out of the 419 E. coli, 31 isolates (7.4%) harbored the DEC virulence genes. From these DEC, 21 (67.7%) were ESBL-producing E. coli. Susceptibility to ESBL-producing E. coli showed that the majority of isolates were highly resistant to amoxicillin (77.4%), amoxicillin-clavulanic acid (77.4%), and piperacillin (64.5%). The following antibiotic resistance genes and integron were identified: blaTEM (6.5%), blaSHV (19.4%), blaOXA (38.7%), blaCTX-M (9.7%), Int1 (58.1%), and Int3 (19.4%). No class 2 integron (Int2) was characterized. Because of the high prevalence of multidrug-resistant ESBL organisms found, there is a need of stringent pediatric infection control measures.
Part of the book: Benign Anorectal Disorders