Factors suggesting inherited cancer syndrome.
\r\n\t
",isbn:"978-1-80355-463-1",printIsbn:"978-1-80355-462-4",pdfIsbn:"978-1-80355-464-8",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,hash:"0c1bf8695b453c7d16f51eb4ec3c3ae6",bookSignature:"Dr. Redmond R. Shamshiri and Dr. Sanaz Shafian",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11343.jpg",keywords:"Digital Farming, Wireless Sensors, Internet-of-Things, Digital Twin, Cloud Computing, Big Data Analysis, Data Labeling, Data Sharing, Agriculture 4.0, Precision Technology, E-agriculture, Automated Farms",numberOfDownloads:38,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 10th 2021",dateEndSecondStepPublish:"November 18th 2021",dateEndThirdStepPublish:"January 17th 2022",dateEndFourthStepPublish:"April 7th 2022",dateEndFifthStepPublish:"June 6th 2022",remainingDaysToSecondStep:"6 months",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:"Dr. Shamshiri is a Member of the International Society of Precision Agriculture and a Member of the American Society of Agricultural and Biological Engineering. He is a scientist at the Leibniz-Institut für Agrartechnik und Bioökonomie working toward digitization of agriculture for food security.",coeditorOneBiosketch:"Sanaz is an Assistant Professor of Smart Farming at Virginia Tech University. Prior to this, she was an assistant professor at the University of Idaho. Her expertise lies in using advanced technologies and methodologies for economically and environmentally sustainable crops and trees monitoring and management. She integrates satellite/drone images and AI to develop methodologies for environmental monitoring, crop modeling, and water, and nutrient conservation.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"203413",title:"Dr.",name:"Redmond R.",middleName:null,surname:"Shamshiri",slug:"redmond-r.-shamshiri",fullName:"Redmond R. Shamshiri",profilePictureURL:"https://mts.intechopen.com/storage/users/203413/images/system/203413.png",biography:"Dr. Redmond R. Shamshiri holds a Ph.D. in agricultural automation with a focus on control systems and dynamics. He is a scientist at the Leibniz-Institut für Agrartechnik und Bioökonomie working toward digitization of agriculture for food security. His main research fields include simulation and modeling for closed-field plant production systems, LPWAN sensors, wireless control, and autonomous navigation. His work has appeared in over 100 publications, including peer-reviewed journal papers, book chapters, and conference proceedings. He is a member of the Adaptive AgroTech Consultancy Network and serves as a section editor and reviewer for various high-ranking journals in the field of smart farming.",institutionString:"Leibniz Institute of Agricultural Engineering and Bio-economy",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"7",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Leibniz Institute for Agricultural Engineering Potsdam-Bornim",institutionURL:null,country:{name:"Germany"}}}],coeditorOne:{id:"429704",title:"Dr.",name:"Sanaz",middleName:null,surname:"Shafian",slug:"sanaz-shafian",fullName:"Sanaz Shafian",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003CPbhJQAT/Profile_Picture_1629955207151",biography:"Sanaz is an Assistant Professor of Smart Farming at Virginia Tech University. Prior to this she was assistant professor at University of Idaho. Her expertise lies in remote sensing research, with a focus on using advanced technologies and methodologies for economically and environmentally sustainable crops and trees monitoring and management. She integrates satellite/drone images and AI to develop methodologies for environmental monitoring, crop modeling and water and nutrient conservation and she has published widely on these topics. She has been involved in several USDA projects. With University of Idaho, she led an educational and outreach project to initiate Precision Agriculture certificate. Sanaz is currently working on two agriculture-related projects, one mapping invasive plants in temperate forest and evaluate forest health in Virginia and another looking at developing smart tool for early detection of soybean diseases.",institutionString:"Virginia Tech",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Virginia Tech",institutionURL:null,country:{name:"United States of America"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"5",title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences"}],chapters:[{id:"80738",title:"Neutron-Gamma Analysis of Soil for Digital Agriculture",slug:"neutron-gamma-analysis-of-soil-for-digital-agriculture",totalDownloads:38,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"441704",firstName:"Ana",lastName:"Javor",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/441704/images/20009_n.jpg",email:"ana.j@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors, and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"10499",title:"Next-Generation Greenhouses for Food Security",subtitle:null,isOpenForSubmission:!1,hash:"456f82c97eafad5734cd36c48e167781",slug:"next-generation-greenhouses-for-food-security",bookSignature:"Redmond R. Shamshiri",coverURL:"https://cdn.intechopen.com/books/images_new/10499.jpg",editedByType:"Edited by",editors:[{id:"203413",title:"Dr.",name:"Redmond R.",surname:"Shamshiri",slug:"redmond-r.-shamshiri",fullName:"Redmond R. Shamshiri"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6418",title:"Hyperspectral Imaging in Agriculture, Food and Environment",subtitle:null,isOpenForSubmission:!1,hash:"9005c36534a5dc065577a011aea13d4d",slug:"hyperspectral-imaging-in-agriculture-food-and-environment",bookSignature:"Alejandro Isabel Luna Maldonado, Humberto Rodríguez Fuentes and Juan Antonio Vidales Contreras",coverURL:"https://cdn.intechopen.com/books/images_new/6418.jpg",editedByType:"Edited by",editors:[{id:"105774",title:"Prof.",name:"Alejandro Isabel",surname:"Luna Maldonado",slug:"alejandro-isabel-luna-maldonado",fullName:"Alejandro Isabel Luna Maldonado"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10359",title:"Landraces",subtitle:"Traditional Variety and Natural Breed",isOpenForSubmission:!1,hash:"0600836fb2c422f7b624363d1e854f68",slug:"landraces-traditional-variety-and-natural-breed",bookSignature:"Amr Elkelish",coverURL:"https://cdn.intechopen.com/books/images_new/10359.jpg",editedByType:"Edited by",editors:[{id:"231337",title:"Dr.",name:"Amr",surname:"Elkelish",slug:"amr-elkelish",fullName:"Amr Elkelish"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"76016",title:"Porous ZnO Nanostructures Synthesized by Microwave Hydrothermal Method for Energy Harvesting Applications",doi:"10.5772/intechopen.97060",slug:"porous-zno-nanostructures-synthesized-by-microwave-hydrothermal-method-for-energy-harvesting-applica",body:'Zinc oxide (ZnO) is an inorganic semiconductor material that has been applied in a wide range of applications over the last centuries [1]. The attraction to ZnO can be attributed to its remarkable optical and electronic characteristics. With a direct and wide bandgap of 3.37 eV and a large exciton binding energy of 60 meV at room temperature [2], ZnO has the potential to be applied in advanced electronic and optoelectronic devices with promising results, such as UV sensors [3, 4], transparent electrodes [5, 6], gas sensors [7], thin film transistors [8, 9], and solar cells [10, 11, 12]. Moreover, ZnO is a low-cost and biocompatible material with high photostability, high chemical and thermal stability, low toxicity, and a broad range of UV radiation absorption [13]. These properties allow ZnO to be applied in a wide range of applications besides electronic devices, such as skin ointments and sunscreens, rubber tires, paints, bioimaging, drug delivery, biosensors, antibacterial textiles, and photocatalysis for the degradation of pollutants in wastewaters [1, 14, 15, 16, 17, 18, 19].
Due to its piezoelectric properties, ZnO nanostructures have also been widely explored for energy harvesting applications, being an important sustainable energy source [20]. The demand for wearable devices led to a high development of new energy sources. Nanogenerators have demonstrated the capability to power small electronic devices, appearing as a good alternative to batteries [21]. The most common nanogenerators are based on piezoelectric and/or triboelectric effects. In the piezoelectric nanogenerators, mechanical energy is converted into electrical energy through piezoelectric polarization resultant from strain [1]. The triboelectric effect results from the surface charges’ generation subsequent from the friction between two different materials (with opposite triboelectric polarities) [22].
Materials with piezoelectric properties have the capability to convert mechanical energy into electrical energy [1]. Within the different piezoelectric materials, lead zirconate titanate (PZT) is the material that presented so far the highest piezoelectric coefficient (d33 = 593 pC N−1), still this material has a high toxicity [23, 24]. While presenting a much lower d33 value(≈ 10 pC N−1) [25, 26, 27], ZnO is a very good alternative, since it is not only sustainable and eco-friendly, as it can also be easily fabricated, while still presenting a good performance [28, 29].
Nanogenerators of different types of ZnO nanostructures (i.e., nanorods, nanoparticles, nanoflowers) have been reported [30, 31, 32, 33, 34]. For example, Saravanakumar et al. reported a nanogenerator fabricated using vertically grown ZnO nanowires with surrounding PDMS, with output values of 6 V/4 nA/0.39 nW cm−2 under finger bending [35]. Rahman et al. used ZnO nanoparticles dispersed into a PDMS film, achieving output values of 20 V/20 μA/20 μW, with finger tapping [36]. As another example, ZnO nanoflowers were mixed with multiwalled carbon nanotubes and PDMS, with an output of 75 V/3.2 μA/260 mW cm−2 being obtained. In this case, the devices were tested in the soles of human shoes with the force being applied by a person walking [37].
Despite all the established applications of ZnO, the research involving this semiconductor has not yet diminished, mostly due to the continuing development of new synthesis technologies and applications. For instance, ZnO nanomaterials can be easily synthesized into tailored sizes and morphologies at low temperatures (< 200 °C) by a variety of methods, including chemical bath deposition [38], electrodeposition [39], chemical vapor deposition [40], electrospinning [41], laser assisted flow deposition [42], and solvothermal [16] or hydrothermal [43, 44] synthesis, either by conventional or microwave-assisted heating [4, 45].
Porous oxide semiconductor nanomaterials, particularly two-dimensional (2D) materials with nanoscale thickness, are promising candidates due to their usually large specific surface areas that can improve their performance in several applications [46, 47, 48, 49, 50, 51]. These nanomaterials can inclusively assemble into three-dimensional (3D) hierarchically structures with controlled morphology and dimensions which can lead to novel properties and applications [52]. The self-assemble technique is a facile method to produce 3D hierarchical structures where low-dimension building units aggregate spontaneously into high-dimensional architectures. This technique offers many advantages over other methods as it can be performed at low temperatures using low-cost materials while having high yield for scale production [52].
An indirect way to produce porous 3D ZnO structures has been recently developed by thermal decomposition of layered zinc hydroxide (LZH) precursors [52]. LZHs are usually composed of positively charged zinc hydroxyl layers intercalated by anions that balance the overall charge and water molecules [53]. The anions in LZH generally include CO32−, SO42−, NO3−, Cl−, CH3COO− [50, 53, 54, 55, 56, 57, 58]. These LZH precursors are fabricated with the desired morphology and then converted into porous ZnO nanomaterials by a calcination process at high temperatures [59]. During calcination, the precursors release gaseous molecules and, consequently, the original structure contracts and pores are formed throughout the structures [52].
LZHs are typically obtained via solution techniques, mainly hydrothermal methods where the materials’ synthesis occurs in a basic medium that results from the addition of certain reagents, such as hexamethylenetetramine [60], ammonia [58, 61], and urea [52, 62, 63, 64, 65]. Although the basic structure is similar in all LZHs, the sites occupied by the anions and water molecules are different and, as a result, the final morphology, crystal structure, interlayer distances, and thermal decomposition temperature differ depending on the anion type [66]. In particular, the LZH carbonate (LZHC) is composed of zinc hydroxide layers combined with carbonate ions and water molecules. During the synthesis of this material, a well-crystallized phase is typically obtained with an invariable distance between the LZH [53]. The resulting morphology of LZHC usually consists of 2D structures stacked in a hierarchical 3D arrangement. However, the synthesis of uniform LZHC 3D morphologies through a simple and fast hydrothermal method has not yet been fully explored.
For this purpose, hydrothermal synthesis assisted by microwave irradiation offers many advantages over conventional heating. In a synthesis assisted by conventional heating, the heat transfer occurs through a combination of conductive and convective mechanisms that result in a low heating rate and, consequently, long synthesis time [67]. Conventional heating method is also dependent on the thermal conduction of the material of which the reaction vessel walls are made. Moreover, the temperature maximum occurs on the vessel wall surface, as shown in Figure 1. All these factors can lead to a non-uniform heating of the reaction medium and, subsequently, originate a heterogeneity in the obtained products [1]. On the other hand, hydrothermal synthesis assisted by microwave irradiation allows for rapid and uniform heating since the heat transfer occurs directly from the microwaves to the molecules of the reaction’s materials, as illustrated in Figure 1. This results in high reaction rates and a homogeneous and volumetric heating [68, 69].
Schematic of conventional heating versus microwave heating processes.
The porous morphology of ZnO nanostructures obtained by calcination of LZHC significantly increases the materials’ specific surface area [70] and, therefore, these ZnO nanomaterials have been used in applications that benefit from this characteristic, such as photocatalysis [51, 52, 70], gas sensors [50, 54, 71, 72, 73], surface enhanced Raman scattering (SERS) substrates [74], dye-synthesized solar cells [44, 75, 76], and battery electrodes [65].
This work aims to demonstrate the potential of high surface area porous ZnO nanostructures for energy harvesting devices, showing original and novel results regarding the characterization of nanogenerators based on these structures. For that, 3D hierarchically structures composed of LZHC nanoplates were successfully synthesized through a facile, low-cost, and low temperature hydrothermal process assisted by microwave irradiation. Porous ZnO nanostructures were obtained by calcination of the LZHC at 700 °C for 2 h in air while maintaining the LZHC hierarchical 3D structure. Porous ZnO nanostructures were then embedded in PDMS and deposited by spin-coating technique on flexible substrates. Energy harvesting based on a micro-structured composite of porous ZnO nanostructures embedded in PDMS was investigated. The combination of using the porous ZnO nanostructures, which have piezoelectric properties, and triboelectricity resultant from the micro-structuring leads to a performance improvement of the nanogenerators [37, 77]. To the best of our knowledge, porous ZnO nanostructures were for the first time used to fabricate a micro-structured PDMS/ZnO composite for energy harvesting devices.
Porous ZnO nanostructures were synthesized by hydrothermal method assisted by microwave irradiation. Zinc nitrate hexahydrate (Zn(NO3)2·6H2O, Sigma-Aldrich 98%) and urea (CH4N2O, Sigma-Aldrich 99.0–100.5%) were used without further purification. In a typical synthesis, 0.05 M of zinc nitrate was first dissolved in de-ionized water, and after its total dissolution, urea was added to the aqueous solution. The molar ratio of zinc to urea was kept at 1:5. Then, 25 mL of the obtained solution was transferred to a 35 mL Pyrex vessel which was placed in a CEM Discovery SP microwave. The synthesis was carried out at 140 °C for 15 min under a power of 100 W.
After the synthesis, the resulting white precipitates were washed with de-ionized water followed by isopropanol and centrifuged at 4500 rpm for 5 min. This washing process was repeated three times. The powders were dried in air at room temperature for 48 h and then calcinated in air in a Nabertherm muffle furnace at 700 °C for 2 h with a heating rate of 250 °C h−1.
The crystallinity of the produced nanostructures was analyzed by X-ray diffraction (XRD) using a PANalytical’s X’Pert PRO MRD X-ray diffractometer, with a monochromatic Cu Kα radiation source with wavelength 1.540598 Å. XRD measurements were carried out from 10 to 90° (2θ), with a scanning step size of 0.016°. The morphology of the LZHC precursor and porous ZnO nanostructures was evaluated by scanning electron microscopy (SEM) using a Carl Zeiss AURIGA CrossBeam FIB-SEM workstation equipped with an Oxford X-ray Energy Dispersive Spectrometer.
Differential scanning calorimetric (DSC) and thermogravimetry (TG) measurements of the synthesized product without any temperature treatment were carried out with a simultaneous thermal analyzer NETZSCH STA 449 F3 Jupiter. Approximately 20 mg of the synthesized powder was loaded into an open platinum-rhodium crucible and heated in air from room temperature to 850 °C with a heating rate of 10 °C min−1.
Diffuse reflectance measurements of the porous ZnO nanostructures were performed at room temperature using a PerkinElmer lambda 950 UV/VIS/NIR spectrophotometer with a diffuse reflectance module with a 150 mm diameter integrating sphere, internally coated with Spectralon. The calibration of the system was achieved by using a standard Spectralon reflector sample as reference. The reflectance spectra were obtained from 350 to 800 nm.
The devices were fabricated as described in references [27, 78] and the fabrication process is illustrated in Figure 2. Briefly, composites of porous ZnO nanostructures embedded in PDMS were produced with concentrations of 20, 25, and 30 wt%. Firstly, the nanostructures were mixed with the PDMS elastomer (from Dow Corning) and a volume of ethyl acetate (from Fluka-Honeywell) enough to ensure a homogeneous mixture of elastomer and nanostructures. The mixture was stirred until the evaporation of the solvent, and then a curing agent (Sylgard 184, from Dow Corning) was added in a weight ratio to the elastomer of 1:10 while stirring to obtain a homogeneous mixture. Two types of devices were produced, unstructured and micro-structured nanogenerators. The former was fabricated by spin-coating the mixture at 250 rpm for 90 s, with an acceleration of 100 rpm·s−1, on commercial substrates of polyethylene terephthalate (PET) with a layer of indium tin oxide (ITO) deposited on top (PET/ITO, from Kintec Company), whereas the latter was obtained by depositing the mixture in a similar way on acrylic molds (5 mm thick, from Dagol). The acrylic molds used were produced as described in reference [79].
Fabrication schematic of a micro-structured nanogenerator based on a PDMS/ZnO composite film. Adapted from dos Santos et al. [
The composites were then cured at 60 °C for 1 h. After the curing process, PET/ITO electrodes were placed on top of the composite films, as shown in Figure 2. The electrical characterization of the produced nanogenerators was performed by applying a mechanical stimulus in a contact area of 0.3 cm2 with a pushing force of 2.3 N at different frequencies (0.5, 1, 1.5, and 2 pushes per second) with a home-made machine with a linear motor.
Figure 3(a) presents the X-ray diffractogram obtained from the final product of the hydrothermal synthesis prior to the calcination process. All the peaks from the diffractogram can be indexed to zinc hydroxide carbonate hydrate (Zn4(CO3)(OH)6·H2O) (ICDD 11–0287). The morphology of the precursor was observed in SEM and it is shown in Figure 3(b). The SEM image reveals that the LZHC precursor obtained after only 15 min of microwave hydrothermal synthesis consists of many flower-like structures, with a few micrometers of diameter, composed of densely packed LZHC nanoplates with a few nanometers of thickness.
(a) X-ray diffractogram, (b) SEM images and (c) TG/DSC curves of the LZHC precursor.
Differential scanning calorimetric (DSC) measurements were carried out in air from room temperature to 800 °C to analyze the conversion process of LZHC into ZnO. The DSC curve in Figure 3(c) shows two endothermic peaks at 64 °C and 266 °C. The peak at 64 °C corresponds to the removal of water that is weakly adsorbed to the LZHC nanostructures [80], resulting in a weight loss of 38.12%. The second peak at 266 °C results in a weight loss of 14.87% and it is associated with the release of water and carbon dioxide from the thermal decomposition of LZHC precursor [50, 59].
After the calcination process, the LZHC precursor was successfully converted into porous ZnO nanostructures, which can be inferred from the X-ray diffractograms of the samples obtained at 700 °C, depicted in Figure 4(a). All the peaks in the diffractogram correspond to the hexagonal wurtzite ZnO structure (ICDD 36–1451). No characteristic peaks from any other impurities were detected, indicating that the LZHC precursor was completely converted into ZnO. SEM images of the calcinated product are presented in Figure 4(b) with different magnifications. The low magnification image shows that the morphology of the final ZnO product did not suffer significant changes when compared with the LZHC precursor, since ZnO nanoplates are still assembled into flower-like structures. However, when observing the high magnification SEM images, it is possible to see that the ZnO nanoplates present a porous structure with serrate edges and a wide pore size distribution.
(a) XRD diffractogram and (b) SEM images of porous ZnO nanostructures synthesized by hydrothermal method assisted by microwave irradiation followed by calcination at 700 °C for 2 h in air.
The synthesis of LZHC precursor by urea-assisted hydrothermal method, followed by the calcination process to originate porous ZnO nanostructures, has been explained before in the literature [44, 65, 73, 80, 81]. Figure 5 shows a simple schematic of the synthesis and transformation process of LZHC precursor into porous ZnO nanostructures. During the hydrothermal synthesis, urea is hydrolyzed leading to the formation of hydroxide (OH−) and carbonate (CO32−) ions. Zn2+ ions from the added zinc salt react with both OH− and CO32− ions forming the LZHC precursor (Zn4(CO3)(OH)6·H2O). It has been reported that the surface of LZHC plates is hydrophobic whereas the lateral sides are hydrophilic, resulting in a vertical growth of this material and consequent plate-like morphology [76, 82, 83]. The agglomeration of these nanoplates into stable flower-like microstructures occurs to favor the minimization of surface energy by reducing exposed surface areas [83]. Under calcination at high temperature, LZHC is decomposed into ZnO by releasing H2O and CO2 in the form of gas, which leads to a contraction of the original structure which originates pores throughout the nanoplates and a consequent porous ZnO structure, as illustrated in Figure 5 [84].
Schematic of the hydrothermal synthesis assisted by microwave irradiation and calcination process of porous ZnO structures.
The UV–Vis diffuse reflectance of the produced ZnO samples is presented in Figure 6. The optical band gap
Reflectance spectra of the porous ZnO nanostructures with an inset graphic showing the obtained bandgap energy via the K-M function.
The K-M function (
where
Composites of porous ZnO nanostructures embedded in PDMS (PDMS/ZnO films) were fabricated. The composites were produced with a micro-structuring and in an unstructured form. SEM images of a micro-structured porous PDMS/ZnO film are presented in Figure 7(a). The array of aligned cones observed has an average height of 380 μm, an average diameter of 300 μm, and a gap around 100 μm. Figure 7(b) combines the XRD diffractogram of the porous ZnO nanostructures, the PDMS/ZnO composite film, and the pure PDMS film. As expected, even if presenting a much lower intensity, the hexagonal wurtzite ZnO structure (ICDD 36–1451) can be identified in the PDMS/ZnO composite, whereas the PDMS film presents an amorphous structure.
(a) SEM images of a micro-structured PDMS/ZnO composite film, with the insets displaying closer views of the micro-cones. (b) XRD diffractogram of porous ZnO nanostructures, PDMS/ZnO composite film, and PDMS film.
To optimize the nanogenerator output, its performance was evaluated by varying the concentration of the porous ZnO nanostructures in the PDMS film. This study was performed with unstructured composites. Three concentrations were considered to produce the devices: 20, 25, and 30 wt%. Figure 8(a) presents the peak-to-peak output voltage of the nanogenerators. The electrical characterization of the nanogenerators was performed by applying a mechanical stimulus with a pushing force of 2.3 N at frequency of 2 pushes per second with a home-made bending machine. The obtained results reveal an increase of the output voltage from 20 to 25 wt%, and then a decrease for 30 wt%. These results are in agreement to what was previously observed using the same approach for ZnO nanorods, where the optimal concentration for the nanogenerators output was also 25 wt% [78]. As such, to further characterize the nanogenerators, the concentration considered was 25 wt%.
(a) Peak-to-peak output voltage for PDMS/ZnO composites with different concentrations of porous ZnO nanostructures. Note that each point was determined using the average output of 2–6 equal devices. (b) Output voltage for an unstructured and a micro-structured nanogenerator with a porous ZnO nanostructures concentration of 25 wt%. (c) Peak-to-peak voltage for different frequencies applying a pushing force of 2.3 N. (d) Output voltage from the optimized nanogenerator for 12,000 cycles.
In previous studies from our group [27, 78], an enhanced response was achieved by micro-structuring the composite, as shown in Figure 7, and, therefore, the same approach was adopted in this study. Figure 8(b) presents the output voltage for this nanogenerator in comparison with the unstructured one. A peak-to-peak output voltage of (4.5 ± 0.3) V was obtained for the micro-structured nanogenerator against only (0.5 ± 0.2) V for the unstructured one. The micro-structuring can not only improve the force delivery into the nanostructures, leading to an increase of the piezoelectric effect, but it can also induce an extra triboelectric effect, as a consequence of the air gaps between the PDMS/ZnO composite micro-structures and the ITO electrode. These two effects originate an enhanced response of the micro-structured nanogenerator.
Considering the micro-structured nanogenerator with the best performance (25 wt%), the influence of varying the frequency of the stimulus was investigated while maintaining the applied force at 2.3 N. Figure 8(c) shows the peak-to-peak output voltage of the nanogenerator as function of the frequency, where the output voltage increases with increasing frequency. This trend has been observed by other groups, and it can be explained by the eventual accumulation of residual charges due to an inefficient neutralization of the induced charges provoked by a faster stimulation [89].
To study the potential of the nanogenerator in a daily life application, its stability along 12,000 cycles was also investigated. For this study, the stimulus was applied with a pushing force of 2.3 N while maintaining the frequency at 2 pushes per second. Figure 8(d) shows the output voltage along the pushing cycles, and no deterioration of its performance is observed. Instead, it is possible to detect a slight increase of the output voltage to (7.2 ± 0.1) V along the pushing cycles, which can also be related to charges accumulation.
To understand the applicability of the micro-structured PDMS/ZnO nanogenerator, it is important to study its performance when connected to external load resistances with different values (1 to 30 MΩ). This study was performed with a fixed pushing of 2.3 N at 2 pushes per second. Figure 9(a) presents the peak-to-peak output voltage and current, while Figure 9(b) shows the resultant instantaneous power density. An increase of the power density with increasing load resistance is observed until 10 MΩ, reaching a maximum value of 2.7 μW cm−2, after that a slight decrease is observed. Comparing to the recent results on PDMS/ZnO nanorods nanogenerators [78], the maximum power obtained here is just slightly lower, presenting the same order of magnitude. Its lower output is expected due the absence of a preferential direction for piezoelectric response (c-axes) in these nanostructures. Nevertheless, the synthesis of these porous ZnO nanostructures allows for a faster and low-cost fabrication of nanogenerators, since it is a rapid, simple, and high yield approach to obtain ZnO nanostructures.
Application of the micro-structured PDMS/ZnO nanogenerator, stimulated with a pushing force of 2.3 N at a frequency of 2 pushes per second varying the load resistance. Peak-to-peak (a) voltage and current outputs, and (b) correspondent power density for several load resistances. Note that each peak-to-peak value is an average of 5 measurements. (c and d) Nanogenerator directly lighting up a blue LED by applying manual force.
Additionally, the nanogenerator output is very satisfactory, proven to be enough to light up a blue LED (2.8–4 V, 20 mA), by directly connecting the nanogenerator to the LED and manually stimulating the energy harvester, as shown in Figures 9(c) and (d) and Video 1 available from (can be viewed at) https://youtu.be/JCT60ozKCX8. These results prove not only the applicability of these nanogenerators in simple daily life applications but also demonstrate their potential to power wearable sensors or multifunctional platforms where these porous ZnO nanostructures are employed in more than one application.
In summary, porous ZnO nanostructures were successfully synthesized via a facile and fast hydrothermal method assisted by microwave irradiation and calcinated at 700 °C for 2 h in air. The effect of calcination temperature on the morphological, structural, and optical properties of the porous ZnO nanostructures was investigated. Nanogenerators based on a micro-structured composite of PDMS with embedded porous ZnO structures were successfully produced, reaching an output voltage of (4.5 ± 0.3) V. The devices proved to be very robust and stable by presenting no deterioration of their performance after 12,000 pushing cycles. An external load of 10 MΩ optimized the nanogenerators performance, reaching a power density of 2.7 μW cm−2. The capability of these nanogenerators to lighting up commercial LEDs, through direct connection and with a manual stimulus, was shown, demonstrating their potential for daily life applications.
This work is funded by National Funds through FCT - Portuguese Foundation for Science and Technology, Reference UIDB/50025/2020-2023 and FCT/MCTES. This work also received funding from the European Community’s H2020 programme under grant agreement No. 787410 (ERC-2018-AdG DIGISMART), No. 716510 (ERC-2016-StG TREND) and No. 952169 (SYNERGY, H2020-WIDESPREAD-2020-5, CSA). S. H. F. acknowledges the Portuguese Foundation for Science and Technology for the AdvaMTech PhD program scholarship PD/BD/114086/2015 and IDS-FunMat-INNO-2 project FPA2016/EIT/EIT RawMaterials Grant Agreement 17184.
The authors declare no conflict of interest.
The authors would like to thank Ana Pimentel for the TG-DSC measurement and Daniela Nunes for the SEM images.
Kidney cancer is the 16th most common cancer worldwide with over 400,000 cases in 2018 representing approximately 2.2% of all diagnosed malignancies worldwide [1]. The majority of primary renal malignancies are renal cell carcinomas (RCCs) with most of the remaining comprising upper tract urothelial carcinoma (UTUC). The mean age of onset of RCC is approximately 60–70 years. The most common kidney tumor of childhood is Wilms’ tumor (nephroblastoma). In the European Union, the estimated annual number of new kidney cancers is approximately 46,000 [2]. Etiologic risk factors for kidney cancer development are male sex, obesity, and tobacco, in addition to hypertension [3, 4, 5], acquired cystic kidney disease [6], and inherited susceptibility. Prognostic factors of different protein and gene expressions in RCC have been studied [7, 8].
According to the latest knowledge, hereditary kidney cancers may account for 5–8% of all kidney cancers [9], and it may be more common than previously thought [10]. In those RCC patients without clear cell RCC (ccRCC) subtype, the amount of germline high-risk mutations is greater, 12% [11]. Susceptibility to kidney cancer may be caused by high-risk, moderate-risk, or low-risk gene mutation [12]. Even the carriership of high-risk gene mutation does not always lead to kidney cancer. The risk for kidney cancer (penetrance) varies in different syndromes. In some cases, the predisposed genetic factor to kidney cancer is chromosomal aberration, for example, as in constitutional chromosomal 3 translocation with 6 or 8 of family (Table 2). In hereditary cancer, the impact of environmental factors is small.
More than 15 syndromes with inherited susceptibility to kidney cancer are known, and there are over 25 known genes associated with them. Most of these are dominantly inherited in which the offspring of the proband has a 50% chance of inheriting a gene mutation with susceptibility to kidney cancer.
Hereditary kidney cancer syndrome is often characterized by an early age of onset (approximately 45 years) [30], typical histological pattern, and frequently the bilaterality and multicentricity of the primary tumor (Table 1). By evaluating the family history of diagnosed cancer cases, benign tumors, and diagnostic gene test results, it is possible to identify families with hereditary kidney cancer (Tables 2 and 3).
Multiple close relatives with benign or malign tumors of the syndrome |
Atypically young age of onset for tumors of the syndrome |
Relative with two tumors of the syndrome (two examples below)
|
Typical histological finding (e.g., rare subtype or multiplicity) or clinical picture |
Factors suggesting inherited cancer syndrome.
von Hippel-Lindau (VHL) | Hereditary papillary RCC (HPRC) | Hereditary leiomyomatosis and RCC (HLRCC) | Birt-Hogg-Dubé (BHD) | Constitutional chromosomal 3 translocation | |
---|---|---|---|---|---|
RCC subtype | Clear cell carcinoma | Papillary type 1 | Papillary type 2, collecting duct | Most often chromophobe ± oncocytoma | Clear cell carcinoma |
Risk for RCC | 40% | Nearly 100% | 20–30% | 30% | 30% |
Gene | |||||
Typical age of onset for RCC | 40 years | 50–70 years | Less than 40 years | 50 years | |
Biology of RCC | Bilaterality, multiple tumors | Bilaterality, multiple tumors, microscopic lesions as much as 1000 | Unilaterality, solitarity, aggressive, highly potential to metastasize | Bilaterality, multiple tumors | Bilaterality, multiple tumors |
Typical surgery | Minimal invasive | Minimal invasive or radical nephrectomy | Radical nephrectomy | Minimal invasive | |
Other signs of the syndrome than RCC | Retinal hemangioma/CNS hemangioblastoma, pheochromocytoma | None | Uterine leiomyomas in almost every patient, uterine leiomyosarcoma, cutaneous leiomyomas | Cutaneous hair follicle benign tumors and pulmonary cysts in almost every patient | Thyroid, bladder, pancreatic and gastric cancer |
Reference | [13, 14] | [15, 16] | [17, 18, 19, 20] | [21, 22] | [23] |
Hereditary cancer syndromes in which the kidney cancer risk is high.
Lynch syndrome | Cowden syndrome | Hyperparathyroid jaw tumor syndrome | Hereditary pheochromocytoma and paraganglioma | Li-Fraumeni syndrome | BAP1 tumor predisposition syndrome | |
---|---|---|---|---|---|---|
Kidney cancer subtype | Upper tract urothelial carcinoma | Clear cell, papillary, chromophobe | Papillary type 1 RCC, adult Wilms’ tumor | Clear cell RCC, chromophobe RCC, oncocytoma | RCC and Wilms’ tumor | Clear cell RCC |
Risk for kidney cancer | Multiple | 15% | Uncommon | 10% | Low | 10% |
Gene | ||||||
Other signs of the syndrome than RCC | Bowel cancer, uterine, ovarian cancer | Mucocutaneous papules, hamartomas, macrocephaly, thyroid cancer, uterine cancer, intestinal polyps | Ossifying jaw fibromas, renal cysts, parathyroid adenoma/carcinoma, uterine tumors | Paragangliomas, pheochromocytoma, GIST | Brain tumor, sarcoma, leukemia and other cancer types | Uveal and cutaneous melanoma, mesothelioma |
Reference | [24] | [25] | [26] | [27] | [28] | [29] |
Hereditary cancer syndromes in which the kidney cancer risk is moderate or low.
It is possible that there exists only a single hereditary cancer syndrome case in the family due to de novo mutations (autosomal dominant) which means that the person’s parents do not have the same mutation. There are hot spot regions in genes where mutation can easier develop during meiosis of germ cells. In addition to this, the risk of hereditary kidney cancer is linked to some congenital multisystem syndromes, such as Beckwith-Wiedemann syndrome and tuberous sclerosis (Table 4). When such a multisystemic syndrome is detected, appropriate follow-up care is provided as with hereditary kidney cancer families.
Tuberous sclerosis | Beckwith-Wiedemann syndrome | Perlman syndrome | |
---|---|---|---|
Kidney cancer subtype | Clear cell, papillary, chromophobe | Wilms’ tumor | Wilms’ tumor |
Risk for kidney cancer | Less than 5% | Around 5% | 30–60% |
Gene | |||
Typical age of onset for kidney cancer | 35 years | Primarily in the first 8 years of life | Neonatally |
Inheritance | Autosomal dominant | Autosomal dominant, sporadic | Autosomal recessive |
Other signs of the syndrome than kidney cancer | Renal angiomyolipomas, hypopigmentation, seizures, learning difficulties, angiofibromas, shagreen patches, oral mucosal lesions, subependymal giant cell astrocytoma | Neonatal hypoglycemia, macrosomia, macroglossia, hemihyperplasia, omphalocele, renal abnormalities | Fetal ascites, macrosomia, visceromegaly, generalized hypotonia |
References | [31, 32] | [33] | [33] |
Congenital multisystem syndromes with susceptibility for the kidney cancer.
It is suspected that hereditary kidney cancer is underdiagnosed. Identifying the families with increased risk for kidney cancer allows clinicians to improve the prognosis of persons with genetic cancer susceptibility. This review discussed the characteristics of inherited kidney cancer and how to improve their prognosis (Table 5).
The aim is to improve the early detection of cancer |
Occurrence can be prevented by removing the precursors identified in the monitoring
|
Occurrence can be prevented by surgical procedures
|
Sometimes genetic information can guide the choice of medication
|
How to improve prognosis in the carriers of hereditary gene mutation.
In hereditary and sporadic cancer, the normal genome regulation is impaired [34], and cancer susceptibility is caused by both inherited germline gene mutations and somatic gene mutations in tissue that occurred over time. However, in sporadic cases the inherited gene mutations cause low risk for kidney cancer [35]. Of all clear cell-type RCCs (sporadic or hereditary), 75% have a somatic mutation in the von Hippel-Lindau tumor suppressor gene (VHL) in the short arm of chromosome [36]. According to Vogelstein’s research group, chance has a major impact in the development of cancer-causing mutations during DNA replication in normal, noncancerous stem cells [37]. Current understanding is that about four to seven mutations in key driver genes is sufficient to cause cancer to develop [38].
Genes associated with cancer predisposition are oncogenes or tumor suppressor genes. Oncogenes act as gain of function. Mutation in the other allele is sufficient to produce the altered protein. An example of this is the
Caretaker genes are responsible for genomic stability by detecting damage to the genome, such as single- or double-stranded DNA breaks [40]. Disruption in these genes leads to genomic instability: an increase in the number of spontaneous mutations that cause new mutations in oncogenes and growth restriction genes. Mutations in the caretaker genes are responsible for a number of cancer susceptibility syndromes. For example, germline mutation in the growth restriction gene
Genetics of cancer is only partially known. Advanced technological methods can detect previously unknown mutations in germline and tumors. Knowledge of the biology of hereditary cancer also increases the understanding of sporadic cancers, as the same disease genes are found in hereditary and non-hereditary cancers: e.g., mutated
It is important to identify hereditary cancer susceptibility, because the risk of cancer, morbidity, and mortality in the mutation carriers can be reduced both in cancer patients and healthy relatives in the family. If the family mutation is known, healthy family members with mutation can participate in preventive studies. If the person does not have the known family mutation, there is no need to have follow-up care because the risk of the cancer is the same as for an average population.
Diagnostic gene testing on cancer patients is carried out in the clinical genetic units, but diagnostic genetic testing can also be ordered by a treating oncologist or surgeon for patients with kidney cancer. There are established principles for considering genetic testing in the case of suspected hereditary cancer susceptibility (Table 6) [43]. If there is a genetic test that is appropriate for the situation, the American Society of Clinical Oncology (ASCO) recommends access to genetic testing. Before testing the individuals, informed consent should be requested after adequate information and counseling [44]. For genetic testing the patient’s peripheral blood, lymphocyte DNA is examined for identifying a possible hereditary mutation.
Hereditary cancer is suspected |
The result of the gene test should be adequately interpreted |
Gene testing has one of the following benefits:
|
ASCO 2010 criteria for genetic testing.
The ASCO has provided guidance on when genetic testing for cancer families should be considered [43]. The following three conditions should be met. If the family mutation is found, the access for healthy relatives to genetic counseling should be arranged.
The investigation for finding the family mutation is always started with the affected person. A medical geneticist will determine who could have mutation with increased kidney cancer risk in the family. If there are no surviving cancer patients in the family, with the permission of the relative, from the pathology department, a sample of the deceased person may be requested to have healthy tissue DNA for genetic examination.
The result of the genetic testing gives information about the cancer risk of relatives. Healthy at-risk relatives should have access to genetic counseling and predictive genetic testing after counseling if they decide (Council of Europe’s The Convention on Human Rights and Biomedicine in Article 12, 1997). The clinical genetics units offer this service. The geneticist will have the opportunity to provide the laboratory with reliable information about the family mutation and arrange for the laboratory the DNA sample of the family’s index patient, which is a control sample, positive control, to obtain a reliable test result. Counseling before predictive genetic testing is nondirective and includes insight of the patient and the family. In counseling, the patient and family receive not only information but also support. Increased anxiety or distress has been documented in both counselors and their families around testing when investigating hereditary VHL susceptibility [45]. The Genetic Information Nondiscrimination Act of the Council of Europe’s Convention in Article 11, in 1997, was passed to prevent forms of genetic discrimination by employment and health insurance. The Council of Europe’s Convention prohibits the transfer of genetic information to employers in order to prevent employment discrimination. Insurance discrimination is discussed in counseling. In Finland, genetic testing is organized by public health care, which is why very few gene tests are conducted privately.
Participation in predictive genetic testing has been studied in the Finnish Lynch syndrome families, which are at high risk for colorectal cancer and endometrial carcinoma in the uterus. Approximately 80% of the members of the family participated in genetic counseling, and 95% of them performed genetic prediction [46]. The main reasons for participating in predictive genetic testing are the potential for cancer detection in surveillance monitoring, improved treatment options in many Lynch syndrome cancer types, and improved cancer prognosis.
After the genetic testing, the counselor should always receive an interpretation of the significance of the genetic test result [43, 44]. Different mutations in the same disease gene, for example, in the inherited VHL gene, can have varying effects on cancer risk and prognosis [47]. The genetic practitioner will assess the significance of the result for each family separately. It is useful to wait until the age of 18 to allow an offspring to reach an age of consent in those inherited syndromes in which the age of onset is in adulthood. However, the early age of onset in condition like VHL could have devastating complications without early detection and management, and therefore in this syndrome predictive testing is recommended to at-risk children in family.
Multigene next generation sequencing (NGS) panel technology allows genes of interest to be studied quickly and cost-effectively. By focused massive parallel sequencing, it is possible to examine those exons of the genome’s genes that are of interest in diagnosing the cause of inherited kidney cancer. The method can also investigate boundaries between exons and introns. A gene panel for hereditary kidney cancer covers approximately 25 genes and can be ordered from different companies. Clinical picture may sometimes indicate a mutation in particular gene or genes, which can be separately examined. However, often hereditary mutation may be in many different genes according to patient and family history, and then multigene panel-based NGS will be more economical than Sanger or NGS sequencing of several different genes. Sequencing results are obtained in about 4 weeks. The gene content of the panels is regularly updated by laboratories as information on genes associated with kidney cancer is published continuously. A limitation of parallel sequencing is that they cannot recognize large intrinsic deletions or duplicates, and for this another method is required that investigates exome CNVs. A majority of hereditary mutations are located in the exome region. The whole genome NGS is not yet a routine method, but it is used in scientific studies. By the NGS method, the diagnostic utility of hereditary cancers has been hugely improved.
Information on the clinical significance associated with mutations is reviewed in registers (e.g., InSiGHT and ClinVar) [48]. With the development of research techniques, more variants of uncertain significance (VUS) are now observed. Currently, these are also variants of which it is unknown whether they are benign or pathogenic and explain the patient’s predisposition to cancer. In some situations, the variant may be classified as likely pathogenic. Prediction programs can be used to evaluate a variant’s ability to cause disease (in silico analysis) [49, 50]. For example, the ExAC database can be used to check the prevalence of the variant in the population. As techniques evolve, it is increasingly possible to study the functional change in RNA structure caused by VUS alteration, which would be relevant to the quality of the resulting protein. In order to clarify the nature of the uncertain variants, the geneticist may arrange the so-called segregation analysis in family [49]. Finding the same hereditary variant from several relatives with cancer would strengthen the conclusion that the variant explains the cases in the family. Information is being collected internationally as laboratories collect VUS they observe into databases and doctors publish case reports. However, in already well-known genes such as BRCA and Lynch syndrome genes, VUS alterations are relatively rarely detected.
During counseling, the geneticist will inform what is known about the significance of the identified variant. If the significance of the variant remains open, the geneticist and laboratory experts may reclassify the change after few years. The increased use of multigene NGS panels in patient work expands the knowledge on the different pathogenic variants in the human DNA. The number of VUS changes will therefore decrease in the next few years [50]. It is important that counseling provides reliable information on the examination results and therefore VUS modifications are not used as a basis for prophylactic surgery or to determine the risk of relatives’ cancer.
For several RCC syndromes, studies have found that conservative management appears to preserve renal function without increased mortality. In certain syndromes, such as HLRCC, early and aggressive treatment may be preferable [17, 20]. Each subtype of RCC may need to be treated differently by systemic therapy, but no phase III clinical trial data exist from distinct treatments [51, 52]. The prognosis was inferior for papillary metastatic RCC (mRCC) compared to clear cell mRCC when patients were treated with the same evidence-based treatment in a study by Staehler [52]. The understanding of the metabolic and epigenetic abnormalities underlying the symptoms of hereditary kidney cancer-associated genes may lead to the development of novel diagnostic biomarkers and novel treatment modalities for kidney cancer [53].
Recommendations for follow-up care should correspond to the level of risk associated with the genetic variant tested [43]. The aim of the monitoring is to improve the early detection of cancer in families with hereditary renal cancer. Monitoring recommendations includes regular kidney imaging: the healthy carrier of a gene mutation predisposing to kidney cancer will usually undergo abdominal MRI scans on a regular basis (Table 7). The frequency of follow-up depends on the biological nature of the family syndrome. Several monitoring planes have been proposed for hereditary kidney cancer syndromes, for example, by Freifeld [54] and Carlo [10]. Also, PDQ Cancer Information Summaries [55] has a suggestion for surveillance in certain syndromes predisposing to hereditary renal cancer.
von Hippel-Lindau (VHL) | Hereditary papillary RCC (HPRC) | Hereditary leiomyomatosis and RCC (HLRCC) | Birt-Hogg-Dubé (BHD) | |
---|---|---|---|---|
RCC subtype | Clear cell carcinoma | Papillary type 1 | Papillary type 2, collecting duct | Most often chromophobe ± oncocytoma |
Risk for RCC | 40% | Nearly 100% | 20–30% | 30% |
Gene | ||||
Typical age of onset for RCC | 40 years | 50–70 years | Less than 40 years | 50 years |
Abdominal magnetic imaging | Annually starting at the age of 10 | Annually starting at the age of 30 | Annually starting at the age of 5–20 years | Annually starting at the age of 20 years |
Other surveillance | Biannual brain and spine MRI starting at the age of 11 Ophthalmological and audiological exam Plasma-free metanephrines/urinary metanephrines | None | Dermatological and gynecological exam | Dermatological exam and CT of the chest |
Tracking intervals may be less frequent, for example, for HPRC, and more frequent for others, such as HLRCC in the case of an early onset of 10 years [56] and several reported cases among children. However, the estimated risk of developing RCC before age 20 is estimated to be only around 1–2%, whereas the lifetime risk of RCC among
In Lynch syndrome, which is a high risk for upper tract ureotelic carcinoma, the risk of colorectal cancer can be reduced by removing intestinal adenomas at regular checkups, which results in the same mortality to colorectal cancer in the carriers of Lynch gene mutation as in the general population.
The contents of routine gene panels are based on the knowledge on kidney cancer susceptibility genes. If a patient’s DNA sequencing has failed to identify the hereditary mutation, RNA sequencing may identify the specific diagnosis [57]. If there are three patients in the family, trio exome analysis may be a pivotal method. Potentially, tumor tissue-only test would be a useful method to find out novel kidney cancer susceptibility genes and mutations in kidney cancer patients, as the knowledge on hereditary kidney cancer genes is still limited. This investigation is not available currently.
Tumor tissue-only gene tests by next generation sequencing with targeted genes may be soon routinely used for cancer patients’ pharmacogenetic genotyping and analyzing their tumor tissue’s somatic mutations to tailor their medical treatment [58]. The same method could be also a first step analysis for identifying the hereditary cancer mutation in a gene that is known in literature as a susceptibility gene. An additional test of patient’s peripheral lymphocyte should then be used to confirm the susceptive mutation as hereditary mutation.
The growing knowledge on the biology of hereditary kidney cancer produces information about driver genes in kidney cancer tumorigenesis and may develop diagnostics and therapeutic methods for kidney cancer in general [59]. Knowledge on evidence-based medicine in metastatic hereditary kidney cancer [60] is under active study. Analysis of induced pluripotent stem cells (iPSC) from HPRC pointed that drug screening and precision medicine are possible for hereditary kidney cancer [61]. Preventive medicine may be achieved for healthy persons with familial mutation predisposing to kidney cancer [61].
Prospective studies about the method of follow-up in healthy persons with family kidney cancer susceptibility mutation are warranted. The optimal onset to start follow-up in
Knowledge on the clinical significance of mutations helps to improve prognosis in families with hereditary cancer. Understanding of hereditary kidney cancer syndromes on their molecular basis improves the utility of specific diagnosis [64]. In the future, increased knowledge of cancer genetics is likely to enable the development of targeted drug therapies. Today, hereditary mutations are detected by DNA testing of white blood cell lymphocytes. Tumor tissue-only tests to identify the hereditary kidney cancer are not yet available.
As an Open Access publisher, IntechOpen is dedicated to maintaining the highest ethical standards and principles in publishing. In addition, IntechOpen promotes the highest standards of integrity and ethical behavior in scientific research and peer-review. To maintain these principles IntechOpen has developed basic guidelines to facilitate the avoidance of Conflicts of Interest.
",metaTitle:"Conflicts of Interest Policy",metaDescription:"As an Open Access publisher, IntechOpen is dedicated to maintaining the highest ethical standards and principles in publishing. In addition, IntechOpen promotes the highest standards of integrity and ethical behavior in scientific research and peer-review.",metaKeywords:null,canonicalURL:"/page/conflicts-of-interest-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"In each instance of a possible Conflict of Interest, IntechOpen aims to disclose the situation in as transparent a way as possible in order to allow readers to judge whether a particular potential Conflict of Interest has influenced the Work of any individual Author, Editor, or Reviewer. IntechOpen takes all possible Conflicts of Interest into account during the review process and ensures maximum transparency in implementing its policies.
\\n\\nA Conflict of Interest is a situation in which a person's professional judgment may be influenced by a range of factors, including financial gain, material interest, or some other personal or professional interest. For IntechOpen as a publisher, it is essential that all possible Conflicts of Interest are avoided. Each contributor, whether an Author, Editor, or Reviewer, who suspects they may have a Conflict of Interest, is obliged to declare that concern in order to make the publisher and the readership aware of any potential influence on the work being undertaken.
\\n\\nA Conflict of Interest can be identified at different phases of the publishing process.
\\n\\nIntechOpen requires:
\\n\\nCONFLICT OF INTEREST - AUTHOR
\\n\\nAll Authors are obliged to declare every existing or potential Conflict of Interest, including financial or personal factors, as well as any relationship which could influence their scientific work. Authors must declare Conflicts of Interest at the time of manuscript submission, although they may exceptionally do so at any point during manuscript review. For jointly prepared manuscripts, the corresponding Author is obliged to declare potential Conflicts of Interest of any other Authors who have contributed to the manuscript.
\\n\\nCONFLICT OF INTEREST – ACADEMIC EDITOR
\\n\\nEditors can also have Conflicts of Interest. Editors are expected to maintain the highest standards of conduct, which are outlined in our Best Practice Guidelines (templates for Best Practice Guidelines). Among other obligations, it is essential that Editors make transparent declarations of any possible Conflicts of Interest that they might have.
\\n\\nAvoidance Measures for Academic Editors of Conflicts of Interest:
\\n\\nFor manuscripts submitted by the Academic Editor (or a scientific advisor), an appropriate person will be appointed to handle and evaluate the manuscript. The appointed handling Editor's identity will not be disclosed to the Author in order to maintain impartiality and anonymity of the review.
\\n\\nIf a manuscript is submitted by an Author who is a member of an Academic Editor's family or is personally or professionally related to the Academic Editor in any way, either as a friend, colleague, student or mentor, the work will be handled by a different Academic Editor who is not in any way connected to the Author.
\\n\\nCONFLICT OF INTEREST - REVIEWER
\\n\\nAll Reviewers are required to declare possible Conflicts of Interest at the beginning of the evaluation process. If a Reviewer feels he or she might have any material, financial or any other conflict of interest with regards to the manuscript being reviewed, he or she is required to declare such concern and, if necessary, request exclusion from any further involvement in the evaluation process. A Reviewer's potential Conflicts of Interest are declared in the review report and presented to the Academic Editor, who then assesses whether or not the declared potential or actual Conflicts of Interest had, or could be perceived to have had, any significant impact on the review itself.
\\n\\nEXAMPLES OF CONFLICTS OF INTEREST:
\\n\\nFINANCIAL AND MATERIAL
\\n\\nNON-FINANCIAL
\\n\\nAuthors are required to declare all potentially relevant non-financial, financial and material Conflicts of Interest that may have had an influence on their scientific work.
\\n\\nAcademic Editors and Reviewers are required to declare any non-financial, financial and material Conflicts of Interest that could influence their fair and balanced evaluation of manuscripts. If such conflict exists with regards to a submitted manuscript, Academic Editors and Reviewers should exclude themselves from handling it.
\\n\\nAll Authors, Academic Editors, and Reviewers are required to declare all possible financial and material Conflicts of Interest in the last five years, although it is advisable to declare less recent Conflicts of Interest as well.
\\n\\nEXAMPLES:
\\n\\nAuthors should declare if they were or they still are Academic Editors of the publications in which they wish to publish their work.
\\n\\nAuthors should declare if they are board members of an organization that could benefit financially or materially from the publication of their work.
\\n\\nAcademic Editors should declare if they were coauthors or they have worked on the research project with the Author who has submitted a manuscript.
\\n\\nAcademic Editors should declare if the Author of a submitted manuscript is affiliated with the same department, faculty, institute, or company as they are.
\\n\\nPolicy last updated: 2016-06-09
\\n"}]'},components:[{type:"htmlEditorComponent",content:"In each instance of a possible Conflict of Interest, IntechOpen aims to disclose the situation in as transparent a way as possible in order to allow readers to judge whether a particular potential Conflict of Interest has influenced the Work of any individual Author, Editor, or Reviewer. IntechOpen takes all possible Conflicts of Interest into account during the review process and ensures maximum transparency in implementing its policies.
\n\nA Conflict of Interest is a situation in which a person's professional judgment may be influenced by a range of factors, including financial gain, material interest, or some other personal or professional interest. For IntechOpen as a publisher, it is essential that all possible Conflicts of Interest are avoided. Each contributor, whether an Author, Editor, or Reviewer, who suspects they may have a Conflict of Interest, is obliged to declare that concern in order to make the publisher and the readership aware of any potential influence on the work being undertaken.
\n\nA Conflict of Interest can be identified at different phases of the publishing process.
\n\nIntechOpen requires:
\n\nCONFLICT OF INTEREST - AUTHOR
\n\nAll Authors are obliged to declare every existing or potential Conflict of Interest, including financial or personal factors, as well as any relationship which could influence their scientific work. Authors must declare Conflicts of Interest at the time of manuscript submission, although they may exceptionally do so at any point during manuscript review. For jointly prepared manuscripts, the corresponding Author is obliged to declare potential Conflicts of Interest of any other Authors who have contributed to the manuscript.
\n\nCONFLICT OF INTEREST – ACADEMIC EDITOR
\n\nEditors can also have Conflicts of Interest. Editors are expected to maintain the highest standards of conduct, which are outlined in our Best Practice Guidelines (templates for Best Practice Guidelines). Among other obligations, it is essential that Editors make transparent declarations of any possible Conflicts of Interest that they might have.
\n\nAvoidance Measures for Academic Editors of Conflicts of Interest:
\n\nFor manuscripts submitted by the Academic Editor (or a scientific advisor), an appropriate person will be appointed to handle and evaluate the manuscript. The appointed handling Editor's identity will not be disclosed to the Author in order to maintain impartiality and anonymity of the review.
\n\nIf a manuscript is submitted by an Author who is a member of an Academic Editor's family or is personally or professionally related to the Academic Editor in any way, either as a friend, colleague, student or mentor, the work will be handled by a different Academic Editor who is not in any way connected to the Author.
\n\nCONFLICT OF INTEREST - REVIEWER
\n\nAll Reviewers are required to declare possible Conflicts of Interest at the beginning of the evaluation process. If a Reviewer feels he or she might have any material, financial or any other conflict of interest with regards to the manuscript being reviewed, he or she is required to declare such concern and, if necessary, request exclusion from any further involvement in the evaluation process. A Reviewer's potential Conflicts of Interest are declared in the review report and presented to the Academic Editor, who then assesses whether or not the declared potential or actual Conflicts of Interest had, or could be perceived to have had, any significant impact on the review itself.
\n\nEXAMPLES OF CONFLICTS OF INTEREST:
\n\nFINANCIAL AND MATERIAL
\n\nNON-FINANCIAL
\n\nAuthors are required to declare all potentially relevant non-financial, financial and material Conflicts of Interest that may have had an influence on their scientific work.
\n\nAcademic Editors and Reviewers are required to declare any non-financial, financial and material Conflicts of Interest that could influence their fair and balanced evaluation of manuscripts. If such conflict exists with regards to a submitted manuscript, Academic Editors and Reviewers should exclude themselves from handling it.
\n\nAll Authors, Academic Editors, and Reviewers are required to declare all possible financial and material Conflicts of Interest in the last five years, although it is advisable to declare less recent Conflicts of Interest as well.
\n\nEXAMPLES:
\n\nAuthors should declare if they were or they still are Academic Editors of the publications in which they wish to publish their work.
\n\nAuthors should declare if they are board members of an organization that could benefit financially or materially from the publication of their work.
\n\nAcademic Editors should declare if they were coauthors or they have worked on the research project with the Author who has submitted a manuscript.
\n\nAcademic Editors should declare if the Author of a submitted manuscript is affiliated with the same department, faculty, institute, or company as they are.
\n\nPolicy last updated: 2016-06-09
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{id:"965887@"},profiles:[],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6601},{group:"region",caption:"Middle and South America",value:2,count:5906},{group:"region",caption:"Africa",value:3,count:2400},{group:"region",caption:"Asia",value:4,count:12541},{group:"region",caption:"Australia and Oceania",value:5,count:1008},{group:"region",caption:"Europe",value:6,count:17561}],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"6"},books:[{type:"book",id:"11643",title:"Genetic Diversity - Recent Advances and Applications",subtitle:null,isOpenForSubmission:!0,hash:"0b1e679fcacdec2448603a66df71ccc7",slug:null,bookSignature:"Prof. Mahmut Çalışkan and Dr. Sevcan Aydin",coverURL:"https://cdn.intechopen.com/books/images_new/11643.jpg",editedByType:null,editors:[{id:"51528",title:"Prof.",name:"Mahmut",surname:"Çalışkan",slug:"mahmut-caliskan",fullName:"Mahmut Çalışkan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11644",title:"Structural and Molecular Aspects of DNA Repair",subtitle:null,isOpenForSubmission:!0,hash:"83dfefc2400d2d037281f1e25bbc544b",slug:null,bookSignature:"Prof. Subrata Kumar Dey",coverURL:"https://cdn.intechopen.com/books/images_new/11644.jpg",editedByType:null,editors:[{id:"31178",title:"Prof.",name:"Subrata",surname:"Dey",slug:"subrata-dey",fullName:"Subrata Dey"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11645",title:"Neural Tube Defects",subtitle:null,isOpenForSubmission:!0,hash:"08d6ba70d97767769a97cfeeb52dac78",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11645.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11669",title:"Fatty Acids - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"9117bd12dc904ced43404e3383b6591a",slug:null,bookSignature:"Assistant Prof. Erik Froyen",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",editedByType:null,editors:[{id:"415310",title:"Assistant Prof.",name:"Erik",surname:"Froyen",slug:"erik-froyen",fullName:"Erik Froyen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11670",title:"Chitin-Chitosan - Isolation, Properties, and Applications",subtitle:null,isOpenForSubmission:!0,hash:"69f009be08998711eecfb200adc7deca",slug:null,bookSignature:"Dr. Brajesh Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/11670.jpg",editedByType:null,editors:[{id:"176093",title:"Dr.",name:"Brajesh",surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11672",title:"Chemokines Updates",subtitle:null,isOpenForSubmission:!0,hash:"c00855833476a514d37abf7c846e16e9",slug:null,bookSignature:"Prof. Murat Şentürk",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",editedByType:null,editors:[{id:"14794",title:"Prof.",name:"Murat",surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11673",title:"Stem Cell Research",subtitle:null,isOpenForSubmission:!0,hash:"13092df328080c762dd9157be18ca38c",slug:null,bookSignature:"Ph.D. Diana Kitala",coverURL:"https://cdn.intechopen.com/books/images_new/11673.jpg",editedByType:null,editors:[{id:"203598",title:"Ph.D.",name:"Diana",surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11674",title:"Updates on Endoplasmic Reticulum",subtitle:null,isOpenForSubmission:!0,hash:"5d7d49bd80f53dad3761f78de4a862c6",slug:null,bookSignature:"Dr. Gaia Favero",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",editedByType:null,editors:[{id:"238047",title:"Dr.",name:"Gaia",surname:"Favero",slug:"gaia-favero",fullName:"Gaia Favero"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11676",title:"Recent Advances in Homeostasis",subtitle:null,isOpenForSubmission:!0,hash:"63eb775115bf2d6d88530b234a1cc4c2",slug:null,bookSignature:"Dr. Gaffar Sarwar Zaman",coverURL:"https://cdn.intechopen.com/books/images_new/11676.jpg",editedByType:null,editors:[{id:"203015",title:"Dr.",name:"Gaffar",surname:"Zaman",slug:"gaffar-zaman",fullName:"Gaffar Zaman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11804",title:"CRISPR Technology",subtitle:null,isOpenForSubmission:!0,hash:"4051570f538bd3315e051267180abe37",slug:null,bookSignature:"Dr. Yuan-Chuan Chen",coverURL:"https://cdn.intechopen.com/books/images_new/11804.jpg",editedByType:null,editors:[{id:"185559",title:"Dr.",name:"Yuan-Chuan",surname:"Chen",slug:"yuan-chuan-chen",fullName:"Yuan-Chuan Chen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11805",title:"Genome-Wide Association Studies - Trends and Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"006916e730c66d3b84d3ec036f769e00",slug:null,bookSignature:"Prof. Rafael Trindade Trindade Maia, Dr. Magnólia De Araújo Campos and Dr. Marco Antônio Alves Schetino",coverURL:"https://cdn.intechopen.com/books/images_new/11805.jpg",editedByType:null,editors:[{id:"212393",title:"Prof.",name:"Rafael",surname:"Trindade Maia",slug:"rafael-trindade-maia",fullName:"Rafael Trindade Maia"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12174",title:"Genetic Polymorphisms",subtitle:null,isOpenForSubmission:!0,hash:"5922df051a2033c98d2edfb31dd84f8c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12174.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:5},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:21},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:62},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:29},{group:"topic",caption:"Mathematics",value:15,count:10},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:23},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4387},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3340,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1845,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1096,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:995,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3791,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:2982,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",publishedDate:"May 18th 2022",numberOfDownloads:559,editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",publishedDate:"May 18th 2022",numberOfDownloads:546,editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",publishedDate:"May 18th 2022",numberOfDownloads:539,editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",publishedDate:"May 18th 2022",numberOfDownloads:535,editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"409",title:"Bacteriology",slug:"biochemistry-genetics-and-molecular-biology-microbiology-bacteriology",parent:{id:"59",title:"Microbiology",slug:"biochemistry-genetics-and-molecular-biology-microbiology"},numberOfBooks:18,numberOfSeries:0,numberOfAuthorsAndEditors:433,numberOfWosCitations:840,numberOfCrossrefCitations:528,numberOfDimensionsCitations:1253,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"409",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10331",title:"Salmonella spp",subtitle:"A Global Challenge",isOpenForSubmission:!1,hash:"131535f5d2ebf6c7cfd85fd229bbfd0e",slug:"salmonella-spp-a-global-challenge",bookSignature:"Alexandre Lamas, Patricia Regal and Carlos Manuel Franco",coverURL:"https://cdn.intechopen.com/books/images_new/10331.jpg",editedByType:"Edited by",editors:[{id:"194841",title:"Dr.",name:"Alexandre",middleName:null,surname:"Lamas",slug:"alexandre-lamas",fullName:"Alexandre Lamas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8133",title:"Pathogenic Bacteria",subtitle:null,isOpenForSubmission:!1,hash:"b26e69f94525a38ead8ac88e3c68631a",slug:"pathogenic-bacteria",bookSignature:"Sahra Kırmusaoğlu and Sonia Bhonchal Bhardwaj",coverURL:"https://cdn.intechopen.com/books/images_new/8133.jpg",editedByType:"Edited by",editors:[{id:"179460",title:"Associate Prof.",name:"Sahra",middleName:null,surname:"Kırmusaoğlu",slug:"sahra-kirmusaoglu",fullName:"Sahra Kırmusaoğlu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8032",title:"Staphylococcus and Streptococcus",subtitle:null,isOpenForSubmission:!1,hash:"b9ddbf132ac8ea9d2a7613836e5a27ca",slug:"staphylococcus-and-streptococcus",bookSignature:"Sahra Kırmusaoğlu",coverURL:"https://cdn.intechopen.com/books/images_new/8032.jpg",editedByType:"Edited by",editors:[{id:"179460",title:"Associate Prof.",name:"Sahra",middleName:null,surname:"Kırmusaoğlu",slug:"sahra-kirmusaoglu",fullName:"Sahra Kırmusaoğlu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7240",title:"Growing and Handling of Bacterial Cultures",subtitle:null,isOpenForSubmission:!1,hash:"a76c3ef7718c0b72d0128817cdcbe6e3",slug:"growing-and-handling-of-bacterial-cultures",bookSignature:"Madhusmita Mishra",coverURL:"https://cdn.intechopen.com/books/images_new/7240.jpg",editedByType:"Edited by",editors:[{id:"204267",title:"Dr.",name:"Madhusmita",middleName:null,surname:"Mishra",slug:"madhusmita-mishra",fullName:"Madhusmita Mishra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8038",title:"Pseudomonas Aeruginosa",subtitle:"An Armory Within",isOpenForSubmission:!1,hash:"308d6be5ffbb4b2caa0a7c4146a7737d",slug:"pseudomonas-aeruginosa-an-armory-within",bookSignature:"Dinesh Sriramulu",coverURL:"https://cdn.intechopen.com/books/images_new/8038.jpg",editedByType:"Edited by",editors:[{id:"91317",title:"Dr.",name:"Dinesh",middleName:null,surname:"Sriramulu",slug:"dinesh-sriramulu",fullName:"Dinesh Sriramulu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6965",title:"Helicobacter Pylori",subtitle:"New Approaches of an Old Human Microorganism",isOpenForSubmission:!1,hash:"acf3954c4d9d440038f3074fb81d7411",slug:"helicobacter-pylori-new-approaches-of-an-old-human-microorganism",bookSignature:"Bruna Maria Roesler",coverURL:"https://cdn.intechopen.com/books/images_new/6965.jpg",editedByType:"Edited by",editors:[{id:"54995",title:"Dr.",name:"Bruna Maria",middleName:null,surname:"Roesler",slug:"bruna-maria-roesler",fullName:"Bruna Maria Roesler"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6970",title:"The Universe of Escherichia coli",subtitle:null,isOpenForSubmission:!1,hash:"92027ca0bca1f8ae2971739a4ae6af84",slug:"the-universe-of-escherichia-coli",bookSignature:"Marjanca Starčič Erjavec",coverURL:"https://cdn.intechopen.com/books/images_new/6970.jpg",editedByType:"Edited by",editors:[{id:"58980",title:"Dr.",name:"Marjanca",middleName:null,surname:"Starčič Erjavec",slug:"marjanca-starcic-erjavec",fullName:"Marjanca Starčič Erjavec"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6580",title:"Staphylococcus Aureus",subtitle:null,isOpenForSubmission:!1,hash:"2e820aab20964b63f185451d9a7b73f8",slug:"-i-staphylococcus-aureus-i-",bookSignature:"Hassan Hemeg, Hani Ozbak and Farhat Afrin",coverURL:"https://cdn.intechopen.com/books/images_new/6580.jpg",editedByType:"Edited by",editors:[{id:"187330",title:"Dr.",name:"Hassan",middleName:null,surname:"Hemeg",slug:"hassan-hemeg",fullName:"Hassan Hemeg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6685",title:"Basic Biology and Applications of Actinobacteria",subtitle:null,isOpenForSubmission:!1,hash:"301e66d4a6b29d4326c39ff2922ec420",slug:"basic-biology-and-applications-of-actinobacteria",bookSignature:"Shymaa Enany",coverURL:"https://cdn.intechopen.com/books/images_new/6685.jpg",editedByType:"Edited by",editors:[{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",slug:"shymaa-enany",fullName:"Shymaa Enany"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6764",title:"Cyanobacteria",subtitle:null,isOpenForSubmission:!1,hash:"87c7d8f86f7c1185aa4dd47c6492951a",slug:"cyanobacteria",bookSignature:"Archana Tiwari",coverURL:"https://cdn.intechopen.com/books/images_new/6764.jpg",editedByType:"Edited by",editors:[{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6354",title:"Salmonella",subtitle:"A Re-emerging Pathogen",isOpenForSubmission:!1,hash:"e18481d5470f967439dde815fcd52b57",slug:"salmonella-a-re-emerging-pathogen",bookSignature:"Maria Teresa Mascellino",coverURL:"https://cdn.intechopen.com/books/images_new/6354.jpg",editedByType:"Edited by",editors:[{id:"156556",title:"Prof.",name:"Maria Teresa",middleName:null,surname:"Mascellino",slug:"maria-teresa-mascellino",fullName:"Maria Teresa Mascellino"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6425",title:"Probiotics",subtitle:"Current Knowledge and Future Prospects",isOpenForSubmission:!1,hash:"129bd046ff0fb4db6584e5afeebe98fa",slug:"probiotics-current-knowledge-and-future-prospects",bookSignature:"Shymaa Enany",coverURL:"https://cdn.intechopen.com/books/images_new/6425.jpg",editedByType:"Edited by",editors:[{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",slug:"shymaa-enany",fullName:"Shymaa Enany"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:18,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"49873",doi:"10.5772/62329",title:"An Introduction to Actinobacteria",slug:"an-introduction-to-actinobacteria",totalDownloads:7999,totalCrossrefCites:27,totalDimensionsCites:97,abstract:"Actinobacteria, which share the characteristics of both bacteria and fungi, are widely distributed in both terrestrial and aquatic ecosystems, mainly in soil, where they play an essential role in recycling refractory biomaterials by decomposing complex mixtures of polymers in dead plants and animals and fungal materials. They are considered as the biotechnologically valuable bacteria that are exploited for its secondary metabolite production. Approximately, 10,000 bioactive metabolites are produced by Actinobacteria, which is 45% of all bioactive microbial metabolites discovered. Especially Streptomyces species produce industrially important microorganisms as they are a rich source of several useful bioactive natural products with potential applications. Though it has various applications, some Actinobacteria have its own negative effect against plants, animals, and humans. On this context, this chapter summarizes the general characteristics of Actinobacteria, its habitat, systematic classification, various biotechnological applications, and negative impact on plants and animals.",book:{id:"5056",slug:"actinobacteria-basics-and-biotechnological-applications",title:"Actinobacteria",fullTitle:"Actinobacteria - Basics and Biotechnological Applications"},signatures:"Ranjani Anandan, Dhanasekaran Dharumadurai and Gopinath\nPonnusamy Manogaran",authors:[{id:"48914",title:"Dr.",name:"Dharumadurai",middleName:null,surname:"Dhanasekaran",slug:"dharumadurai-dhanasekaran",fullName:"Dharumadurai Dhanasekaran"}]},{id:"42319",doi:"10.5772/50364",title:"Lactic Acid Bacteria in Hydrogen-Producing Consortia: On Purpose or by Coincidence?",slug:"lactic-acid-bacteria-in-hydrogen-producing-consortia-on-purpose-or-by-coincidence-",totalDownloads:3766,totalCrossrefCites:29,totalDimensionsCites:85,abstract:null,book:{id:"2796",slug:"lactic-acid-bacteria-r-d-for-food-health-and-livestock-purposes",title:"Lactic Acid Bacteria",fullTitle:"Lactic Acid Bacteria - R & D for Food, Health and Livestock Purposes"},signatures:"Anna Sikora, Mieczysław Błaszczyk, Marcin Jurkowski and Urszula Zielenkiewicz",authors:[{id:"143688",title:"Dr.",name:"Urszula",middleName:null,surname:"Zielenkiewicz",slug:"urszula-zielenkiewicz",fullName:"Urszula Zielenkiewicz"},{id:"146985",title:"Dr.",name:"Anna",middleName:null,surname:"Sikora",slug:"anna-sikora",fullName:"Anna Sikora"},{id:"162424",title:"Prof.",name:"Mieczysław",middleName:null,surname:"Błaszczyk",slug:"mieczyslaw-blaszczyk",fullName:"Mieczysław Błaszczyk"},{id:"162425",title:"Mr.",name:"Marcin",middleName:null,surname:"Jurkowski",slug:"marcin-jurkowski",fullName:"Marcin Jurkowski"}]},{id:"42328",doi:"10.5772/47766",title:"Lactic Acid Bacteria as Source of Functional Ingredients",slug:"lactic-acid-bacteria-as-source-of-functional-ingredients",totalDownloads:7580,totalCrossrefCites:21,totalDimensionsCites:50,abstract:null,book:{id:"2796",slug:"lactic-acid-bacteria-r-d-for-food-health-and-livestock-purposes",title:"Lactic Acid Bacteria",fullTitle:"Lactic Acid Bacteria - R & D for Food, Health and Livestock Purposes"},signatures:"Panagiota Florou-Paneri, Efterpi Christaki and Eleftherios Bonos",authors:[{id:"140984",title:"Prof.",name:"Panagiota",middleName:null,surname:"Florou-Paneri",slug:"panagiota-florou-paneri",fullName:"Panagiota Florou-Paneri"},{id:"142773",title:"Dr.",name:"Efterpi",middleName:null,surname:"Christaki",slug:"efterpi-christaki",fullName:"Efterpi Christaki"},{id:"142774",title:"Dr.",name:"Eleftherios",middleName:null,surname:"Bonos",slug:"eleftherios-bonos",fullName:"Eleftherios Bonos"}]},{id:"42337",doi:"10.5772/50839",title:"Exopolysaccharides of Lactic Acid Bacteria for Food and Colon Health Applications",slug:"exopolysaccharides-of-lactic-acid-bacteria-for-food-and-colon-health-applications",totalDownloads:6363,totalCrossrefCites:18,totalDimensionsCites:46,abstract:null,book:{id:"2796",slug:"lactic-acid-bacteria-r-d-for-food-health-and-livestock-purposes",title:"Lactic Acid Bacteria",fullTitle:"Lactic Acid Bacteria - R & D for Food, Health and Livestock Purposes"},signatures:"Tsuda Harutoshi",authors:[{id:"141928",title:"Dr.",name:"Harutoshi",middleName:null,surname:"Tsuda",slug:"harutoshi-tsuda",fullName:"Harutoshi Tsuda"}]},{id:"42322",doi:"10.5772/51282",title:"The Current Status and Future Expectations in Industrial Production of Lactic Acid by Lactic Acid Bacteria",slug:"the-current-status-and-future-expectations-in-industrial-production-of-lactic-acid-by-lactic-acid-ba",totalDownloads:9076,totalCrossrefCites:18,totalDimensionsCites:46,abstract:null,book:{id:"2796",slug:"lactic-acid-bacteria-r-d-for-food-health-and-livestock-purposes",title:"Lactic Acid Bacteria",fullTitle:"Lactic Acid Bacteria - R & D for Food, Health and Livestock Purposes"},signatures:"Sanna Taskila and Heikki Ojamo",authors:[{id:"139705",title:"Dr.",name:null,middleName:null,surname:"Taskila",slug:"taskila",fullName:"Taskila"},{id:"142916",title:"Prof.",name:"Heikki",middleName:null,surname:"Ojamo",slug:"heikki-ojamo",fullName:"Heikki Ojamo"}]}],mostDownloadedChaptersLast30Days:[{id:"49873",title:"An Introduction to Actinobacteria",slug:"an-introduction-to-actinobacteria",totalDownloads:7968,totalCrossrefCites:27,totalDimensionsCites:96,abstract:"Actinobacteria, which share the characteristics of both bacteria and fungi, are widely distributed in both terrestrial and aquatic ecosystems, mainly in soil, where they play an essential role in recycling refractory biomaterials by decomposing complex mixtures of polymers in dead plants and animals and fungal materials. They are considered as the biotechnologically valuable bacteria that are exploited for its secondary metabolite production. Approximately, 10,000 bioactive metabolites are produced by Actinobacteria, which is 45% of all bioactive microbial metabolites discovered. Especially Streptomyces species produce industrially important microorganisms as they are a rich source of several useful bioactive natural products with potential applications. Though it has various applications, some Actinobacteria have its own negative effect against plants, animals, and humans. On this context, this chapter summarizes the general characteristics of Actinobacteria, its habitat, systematic classification, various biotechnological applications, and negative impact on plants and animals.",book:{id:"5056",slug:"actinobacteria-basics-and-biotechnological-applications",title:"Actinobacteria",fullTitle:"Actinobacteria - Basics and Biotechnological Applications"},signatures:"Ranjani Anandan, Dhanasekaran Dharumadurai and Gopinath\nPonnusamy Manogaran",authors:[{id:"48914",title:"Dr.",name:"Dharumadurai",middleName:null,surname:"Dhanasekaran",slug:"dharumadurai-dhanasekaran",fullName:"Dharumadurai Dhanasekaran"}]},{id:"55303",title:"Classification of Anti‐Bacterial Agents and Their Functions",slug:"classification-of-anti-bacterial-agents-and-their-functions",totalDownloads:9090,totalCrossrefCites:10,totalDimensionsCites:18,abstract:"Bacteria that cause bacterial infections and disease are called pathogenic bacteria. They cause diseases and infections when they get into the body and begin to reproduce and crowd out healthy bacteria or to grow into tissues that are normally sterile. To cure infectious diseases, researchers discovered antibacterial agents, which are considered to be the most promising chemotherapeutic agents. Keeping in mind the resistance phenomenon developing against antibacterial agents, new drugs are frequently entering into the market along with the existing drugs. In this chapter, we discussed a revised classification and function of the antibacterial agent based on a literature survey. The antibacterial agents can be classified into five major groups, i.e. type of action, source, spectrum of activity, chemical structure, and function.",book:{id:"5867",slug:"antibacterial-agents",title:"Antibacterial Agents",fullTitle:"Antibacterial Agents"},signatures:"Hamid Ullah and Saqib Ali",authors:[{id:"201024",title:"Dr.",name:"Hamid",middleName:null,surname:"Ullah",slug:"hamid-ullah",fullName:"Hamid Ullah"},{id:"202624",title:"Dr.",name:"Saqib",middleName:null,surname:"Ali",slug:"saqib-ali",fullName:"Saqib Ali"}]},{id:"58507",title:"Probiotics and Ruminant Health",slug:"probiotics-and-ruminant-health",totalDownloads:2775,totalCrossrefCites:5,totalDimensionsCites:8,abstract:"Probiotics are viable microorganisms with beneficial health effects for humans and animals. They are formulated into many functional foods and animal feed. There is a growing research interest in the application and benefits of probiotics in ruminant production. Several recent studies have evaluated the potential of probiotics in animal nutrition and health. In this chapter, we have reviewed current research on the benefits of probiotics on gut microbial communities in ruminants and their impact on ruminant production, health and overall wellbeing.",book:{id:"6425",slug:"probiotics-current-knowledge-and-future-prospects",title:"Probiotics",fullTitle:"Probiotics - Current Knowledge and Future Prospects"},signatures:"Sarah Adjei-Fremah, Kingsley Ekwemalor, Mulumebet Worku and\nSalam Ibrahim",authors:[{id:"107905",title:"Prof.",name:"Salam",middleName:null,surname:"Ibrahim",slug:"salam-ibrahim",fullName:"Salam Ibrahim"},{id:"218786",title:"Dr.",name:'Mulumebet "Millie"',middleName:null,surname:"Worku",slug:'mulumebet-"millie"-worku',fullName:'Mulumebet "Millie" Worku'},{id:"218789",title:"Dr.",name:"Kingsley",middleName:null,surname:"Ekwemalor",slug:"kingsley-ekwemalor",fullName:"Kingsley Ekwemalor"},{id:"223195",title:"Dr.",name:"Sarah",middleName:null,surname:"Adjei-Fremah",slug:"sarah-adjei-fremah",fullName:"Sarah Adjei-Fremah"}]},{id:"49285",title:"Morphological Identification of Actinobacteria",slug:"morphological-identification-of-actinobacteria",totalDownloads:8456,totalCrossrefCites:18,totalDimensionsCites:43,abstract:"Actinobacteria is a phylum of gram-positive bacteria with high G+C content. Among gram-positive bacteria, actinobacteria exhibit the richest morphological differentiation, which is based on a filamentous degree of organization like filamentous fungi. The actinobacteria morphological characteristics are basic foundation and information of phylogenetic systematics. Classic actinomycetes have well-developed radial mycelium, which can be divided into substrate mycelium and aerial mycelium according to morphology and function. Some actinobacteria can form complicated structures, such as spore, spore chain, sporangia, and sporangiospore. The structure of hyphae and ultrastructure of spore or sporangia can be observed with microscopy. Actinobacteria have different cultural characteristics in various kinds of culture media, which are important in the classification identification, general with spores, aerial hyphae, with or without color and the soluble pigment, different growth condition on various media as the main characteristics. The morphological differentiation of actinobacteria, especially streptomycetes, is controlled by relevant genes. Both morphogenesis and antibiotic production in the streptomycetes are initiated in response to starvation, and these events are coupled.",book:{id:"5056",slug:"actinobacteria-basics-and-biotechnological-applications",title:"Actinobacteria",fullTitle:"Actinobacteria - Basics and Biotechnological Applications"},signatures:"Qinyuan Li, Xiu Chen, Yi Jiang and Chenglin Jiang",authors:[{id:"175852",title:"Dr.",name:"Chen",middleName:null,surname:"Jiang",slug:"chen-jiang",fullName:"Chen Jiang"}]},{id:"68772",title:"Multidrug-Resistant Bacterial Foodborne Pathogens: Impact on Human Health and Economy",slug:"multidrug-resistant-bacterial-foodborne-pathogens-impact-on-human-health-and-economy",totalDownloads:1030,totalCrossrefCites:3,totalDimensionsCites:7,abstract:"The drug abuse known to occur during growth of animals intended for food production, because of their use as either a prophylactic or therapeutic treatment, promotes the emergence of bacterial drug resistance. It has been reported that at least 25% of the foodborne isolates show drug resistance to one or more classes of antimicrobials (FAO 2018). There are diverse mechanisms that promote drug resistance. It is known that the use of sub-therapeutic doses of antibiotics in animals intended for food production promotes mutations of some chromosomal genes such as gyrA-parC and mphA, which are responsible for quinolone and azithromycin resistance, respectively. Also, the horizontal transfer of resistance genes as groups (“cassettes”) or plasmids makes the spread of resistance to different bacterial genera possible, among which there could be pathogens. The World Health Organization considers the emergence of multidrug-resistant pathogenic bacteria as a health problem, since the illnesses caused by them complicate the treatment and increase the morbidity and mortality rates. The complication in the illness treatment caused by a multidrug-resistant pathogen causes economic losses to patients for the payment of long stays in hospitals and also causes economic losses to companies due to the absenteeism of their workers.",book:{id:"8133",slug:"pathogenic-bacteria",title:"Pathogenic Bacteria",fullTitle:"Pathogenic Bacteria"},signatures:"Lilia M. Mancilla-Becerra, Teresa Lías-Macías, Cristina L. Ramírez-Jiménez and Jeannette Barba León",authors:[{id:"81852",title:"D.Sc.",name:"Jeannette",middleName:null,surname:"Barba-León",slug:"jeannette-barba-leon",fullName:"Jeannette Barba-León"},{id:"307705",title:"MSc.",name:"Lilia Mercedes",middleName:null,surname:"Mancilla-Becerra",slug:"lilia-mercedes-mancilla-becerra",fullName:"Lilia Mercedes Mancilla-Becerra"},{id:"307706",title:"BSc.",name:"Teresa",middleName:null,surname:"Lías-Macías",slug:"teresa-lias-macias",fullName:"Teresa Lías-Macías"},{id:"307707",title:"BSc.",name:"Cristina Lizbeth",middleName:null,surname:"Ramírez-Jiménez",slug:"cristina-lizbeth-ramirez-jimenez",fullName:"Cristina Lizbeth Ramírez-Jiménez"}]}],onlineFirstChaptersFilter:{topicId:"409",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 18th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:0,paginationItems:[]},overviewPageOFChapters:{paginationCount:0,paginationItems:[]},overviewPagePublishedBooks:{paginationCount:0,paginationItems:[]},openForSubmissionBooks:{paginationCount:5,paginationItems:[{id:"11669",title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",hash:"9117bd12dc904ced43404e3383b6591a",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 3rd 2022",isOpenForSubmission:!0,editors:[{id:"415310",title:"Assistant Prof.",name:"Erik",surname:"Froyen",slug:"erik-froyen",fullName:"Erik Froyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11672",title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",hash:"c00855833476a514d37abf7c846e16e9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"14794",title:"Prof.",name:"Murat",surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11674",title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",hash:"5d7d49bd80f53dad3761f78de4a862c6",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"238047",title:"Dr.",name:"Gaia",surname:"Favero",slug:"gaia-favero",fullName:"Gaia Favero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11670",title:"Chitin-Chitosan - Isolation, Properties, and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11670.jpg",hash:"69f009be08998711eecfb200adc7deca",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"May 26th 2022",isOpenForSubmission:!0,editors:[{id:"176093",title:"Dr.",name:"Brajesh",surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11673",title:"Stem Cell Research",coverURL:"https://cdn.intechopen.com/books/images_new/11673.jpg",hash:"13092df328080c762dd9157be18ca38c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 8th 2022",isOpenForSubmission:!0,editors:[{id:"203598",title:"Ph.D.",name:"Diana",surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:17,paginationItems:[{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81766",title:"Evolution of Organoids in Oncology",doi:"10.5772/intechopen.104251",signatures:"Allen Thayakumar Basanthakumar, Janitha Chandrasekhar Darlybai and Jyothsna Ganesh",slug:"evolution-of-organoids-in-oncology",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81547",title:"Organoids and Commercialization",doi:"10.5772/intechopen.104706",signatures:"Anubhab Mukherjee, Aprajita Sinha, Maheshree Maibam, Bharti Bisht and Manash K. Paul",slug:"organoids-and-commercialization",totalDownloads:33,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81412",title:"Mathematical Morphology and the Heart Signals",doi:"10.5772/intechopen.104113",signatures:"Taouli Sidi Ahmed",slug:"mathematical-morphology-and-the-heart-signals",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81360",title:"Deep Learning Algorithms for Efficient Analysis of ECG Signals to Detect Heart Disorders",doi:"10.5772/intechopen.103075",signatures:"Sumagna Dey, Rohan Pal and Saptarshi Biswas",slug:"deep-learning-algorithms-for-efficient-analysis-of-ecg-signals-to-detect-heart-disorders",totalDownloads:31,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81294",title:"Applications of Neural Organoids in Neurodevelopment and Regenerative Medicine",doi:"10.5772/intechopen.104044",signatures:"Jing Gong, Jiahui Kang, Minghui Li, Xiao Liu, Jun Yang and Haiwei Xu",slug:"applications-of-neural-organoids-in-neurodevelopment-and-regenerative-medicine",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81318",title:"Retinal Organoids over the Decade",doi:"10.5772/intechopen.104258",signatures:"Jing Yuan and Zi-Bing Jin",slug:"retinal-organoids-over-the-decade",totalDownloads:39,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81068",title:"Characteristic Profiles of Heart Rate Variability in Depression and Anxiety",doi:"10.5772/intechopen.104205",signatures:"Toshikazu Shinba",slug:"characteristic-profiles-of-heart-rate-variability-in-depression-and-anxiety",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80691",title:"Applications of Quantum Mechanics, Laws of Classical Physics, and Differential Calculus to Evaluate Source Localization According to the Electroencephalogram",doi:"10.5772/intechopen.102831",signatures:"Kristin S. Williams",slug:"applications-of-quantum-mechanics-laws-of-classical-physics-and-differential-calculus-to-evaluate-so",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},subseriesFiltersForOFChapters:[{caption:"Bioinformatics and Medical Informatics",value:7,count:13,group:"subseries"}],publishedBooks:{paginationCount:0,paginationItems:[]},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{paginationCount:249,paginationItems:[{id:"274452",title:"Dr.",name:"Yousif",middleName:"Mohamed",surname:"Abdallah",slug:"yousif-abdallah",fullName:"Yousif Abdallah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274452/images/8324_n.jpg",biography:"I certainly enjoyed my experience in Radiotherapy and Nuclear Medicine, particularly it has been in different institutions and hospitals with different Medical Cultures and allocated resources. Radiotherapy and Nuclear Medicine Technology has always been my aspiration and my life. As years passed I accumulated a tremendous amount of skills and knowledge in Radiotherapy and Nuclear Medicine, Conventional Radiology, Radiation Protection, Bioinformatics Technology, PACS, Image processing, clinically and lecturing that will enable me to provide a valuable service to the community as a Researcher and Consultant in this field. My method of translating this into day to day in clinical practice is non-exhaustible and my habit of exchanging knowledge and expertise with others in those fields is the code and secret of success.",institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",biography:"Bartłomiej Płaczek, MSc (2002), Ph.D. (2005), Habilitation (2016), is a professor at the University of Silesia, Institute of Computer Science, Poland, and an expert from the National Centre for Research and Development. His research interests include sensor networks, smart sensors, intelligent systems, and image processing with applications in healthcare and medicine. He is the author or co-author of more than seventy papers in peer-reviewed journals and conferences as well as the co-author of several books. He serves as a reviewer for many scientific journals, international conferences, and research foundations. Since 2010, Dr. Placzek has been a reviewer of grants and projects (including EU projects) in the field of information technologies.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"35000",title:"Prof.",name:"Ulrich H.P",middleName:"H.P.",surname:"Fischer",slug:"ulrich-h.p-fischer",fullName:"Ulrich H.P Fischer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/35000/images/3052_n.jpg",biography:"Academic and Professional Background\nUlrich H. P. has Diploma and PhD degrees in Physics from the Free University Berlin, Germany. He has been working on research positions in the Heinrich-Hertz-Institute in Germany. Several international research projects has been performed with European partners from France, Netherlands, Norway and the UK. He is currently Professor of Communications Systems at the Harz University of Applied Sciences, Germany.\n\nPublications and Publishing\nHe has edited one book, a special interest book about ‘Optoelectronic Packaging’ (VDE, Berlin, Germany), and has published over 100 papers and is owner of several international patents for WDM over POF key elements.\n\nKey Research and Consulting Interests\nUlrich’s research activity has always been related to Spectroscopy and Optical Communications Technology. Specific current interests include the validation of complex instruments, and the application of VR technology to the development and testing of measurement systems. He has been reviewer for several publications of the Optical Society of America\\'s including Photonics Technology Letters and Applied Optics.\n\nPersonal Interests\nThese include motor cycling in a very relaxed manner and performing martial arts.",institutionString:null,institution:{name:"Charité",country:{name:"Germany"}}},{id:"341622",title:"Ph.D.",name:"Eduardo",middleName:null,surname:"Rojas Alvarez",slug:"eduardo-rojas-alvarez",fullName:"Eduardo Rojas Alvarez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/341622/images/15892_n.jpg",biography:null,institutionString:null,institution:{name:"University of Cuenca",country:{name:"Ecuador"}}},{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",biography:"Muhammad Sarfraz is a professor in the Department of Information Science, Kuwait University, Kuwait. His research interests include optimization, computer graphics, computer vision, image processing, machine learning, pattern recognition, soft computing, data science, and intelligent systems. Prof. Sarfraz has been a keynote/invited speaker at various platforms around the globe. He has advised/supervised more than 110 students for their MSc and Ph.D. theses. He has published more than 400 publications as books, journal articles, and conference papers. He has authored and/or edited around seventy books. Prof. Sarfraz is a member of various professional societies. He is a chair and member of international advisory committees and organizing committees of numerous international conferences. He is also an editor and editor in chief for various international journals.",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"32650",title:"Prof.",name:"Lukas",middleName:"Willem",surname:"Snyman",slug:"lukas-snyman",fullName:"Lukas Snyman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/32650/images/4136_n.jpg",biography:"Lukas Willem Snyman received his basic education at primary and high schools in South Africa, Eastern Cape. He enrolled at today's Nelson Metropolitan University and graduated from this university with a BSc in Physics and Mathematics, B.Sc Honors in Physics, MSc in Semiconductor Physics, and a Ph.D. in Semiconductor Physics in 1987. After his studies, he chose an academic career and devoted his energy to the teaching of physics to first, second, and third-year students. After positions as a lecturer at the University of Port Elizabeth, he accepted a position as Associate Professor at the University of Pretoria, South Africa.\r\n\r\nIn 1992, he motivates the concept of 'television and computer-based education” as means to reach large student numbers with only the best of teaching expertise and publishes an article on the concept in the SA Journal of Higher Education of 1993 (and later in 2003). The University of Pretoria subsequently approved a series of test projects on the concept with outreach to Mamelodi and Eerste Rust in 1993. In 1994, the University established a 'Unit for Telematic Education ' as a support section for multiple faculties at the University of Pretoria. In subsequent years, the concept of 'telematic education” subsequently becomes well established in academic circles in South Africa, grew in popularity, and is adopted by many universities and colleges throughout South Africa as a medium of enhancing education and training, as a method to reaching out to far out communities, and as a means to enhance study from the home environment.\r\n\r\nProfessor Snyman in subsequent years pursued research in semiconductor physics, semiconductor devices, microelectronics, and optoelectronics.\r\n\r\nIn 2000 he joined the TUT as a full professor. Here served for a period as head of the Department of Electronic Engineering. Here he makes contributions to solar energy development, microwave and optoelectronic device development, silicon photonics, as well as contributions to new mobile telecommunication systems and network planning in SA.\r\n\r\nCurrently, he teaches electronics and telecommunications at the TUT to audiences ranging from first-year students to Ph.D. level.\r\n\r\nFor his research in the field of 'Silicon Photonics” since 1990, he has published (as author and co-author) about thirty internationally reviewed articles in scientific journals, contributed to more than forty international conferences, about 25 South African provisional patents (as inventor and co-inventor), 8 PCT international patent applications until now. Of these, two USA patents applications, two European Patents, two Korean patents, and ten SA patents have been granted. A further 4 USA patents, 5 European patents, 3 Korean patents, 3 Chinese patents, and 3 Japanese patents are currently under consideration.\r\n\r\nRecently he has also published an extensive scholarly chapter in an internet open access book on 'Integrating Microphotonic Systems and MOEMS into standard Silicon CMOS Integrated circuitry”.\r\n\r\nFurthermore, Professor Snyman recently steered a new initiative at the TUT by introducing a 'Laboratory for Innovative Electronic Systems ' at the Department of Electrical Engineering. The model of this laboratory or center is to primarily combine outputs as achieved by high-level research with lower-level system development and entrepreneurship in a technical university environment. Students are allocated to projects at different levels with PhDs and Master students allocated to the generation of new knowledge and new technologies, while students at the diploma and Baccalaureus level are allocated to electronic systems development with a direct and a near application for application in industry or the commercial and public sectors in South Africa.\r\n\r\nProfessor Snyman received the WIRSAM Award of 1983 and the WIRSAM Award in 1985 in South Africa for best research papers by a young scientist at two international conferences on electron microscopy in South Africa. He subsequently received the SA Microelectronics Award for the best dissertation emanating from studies executed at a South African university in the field of Physics and Microelectronics in South Africa in 1987. In October of 2011, Professor Snyman received the prestigious Institutional Award for 'Innovator of the Year” for 2010 at the Tshwane University of Technology, South Africa. This award was based on the number of patents recognized and granted by local and international institutions as well as for his contributions concerning innovation at the TUT.",institutionString:null,institution:{name:"University of South Africa",country:{name:"South Africa"}}},{id:"317279",title:"Mr.",name:"Ali",middleName:"Usama",surname:"Syed",slug:"ali-syed",fullName:"Ali Syed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/317279/images/16024_n.png",biography:"A creative, talented, and innovative young professional who is dedicated, well organized, and capable research fellow with two years of experience in graduate-level research, published in engineering journals and book, with related expertise in Bio-robotics, equally passionate about the aesthetics of the mechanical and electronic system, obtained expertise in the use of MS Office, MATLAB, SolidWorks, LabVIEW, Proteus, Fusion 360, having a grasp on python, C++ and assembly language, possess proven ability in acquiring research grants, previous appointments with social and educational societies with experience in administration, current affiliations with IEEE and Web of Science, a confident presenter at conferences and teacher in classrooms, able to explain complex information to audiences of all levels.",institutionString:null,institution:{name:"Air University",country:{name:"Pakistan"}}},{id:"75526",title:"Ph.D.",name:"Zihni Onur",middleName:null,surname:"Uygun",slug:"zihni-onur-uygun",fullName:"Zihni Onur Uygun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75526/images/12_n.jpg",biography:"My undergraduate education and my Master of Science educations at Ege University and at Çanakkale Onsekiz Mart University have given me a firm foundation in Biochemistry, Analytical Chemistry, Biosensors, Bioelectronics, Physical Chemistry and Medicine. After obtaining my degree as a MSc in analytical chemistry, I started working as a research assistant in Ege University Medical Faculty in 2014. In parallel, I enrolled to the MSc program at the Department of Medical Biochemistry at Ege University to gain deeper knowledge on medical and biochemical sciences as well as clinical chemistry in 2014. In my PhD I deeply researched on biosensors and bioelectronics and finished in 2020. Now I have eleven SCI-Expanded Index published papers, 6 international book chapters, referee assignments for different SCIE journals, one international patent pending, several international awards, projects and bursaries. In parallel to my research assistant position at Ege University Medical Faculty, Department of Medical Biochemistry, in April 2016, I also founded a Start-Up Company (Denosens Biotechnology LTD) by the support of The Scientific and Technological Research Council of Turkey. Currently, I am also working as a CEO in Denosens Biotechnology. The main purposes of the company, which carries out R&D as a research center, are to develop new generation biosensors and sensors for both point-of-care diagnostics; such as glucose, lactate, cholesterol and cancer biomarker detections. My specific experimental and instrumental skills are Biochemistry, Biosensor, Analytical Chemistry, Electrochemistry, Mobile phone based point-of-care diagnostic device, POCTs and Patient interface designs, HPLC, Tandem Mass Spectrometry, Spectrophotometry, ELISA.",institutionString:null,institution:{name:"Ege University",country:{name:"Turkey"}}},{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",biography:"Jaya T. Varkey, PhD, graduated with a degree in Chemistry from Cochin University of Science and Technology, Kerala, India. She obtained a PhD in Chemistry from the School of Chemical Sciences, Mahatma Gandhi University, Kerala, India, and completed a post-doctoral fellowship at the University of Minnesota, USA. She is a research guide at Mahatma Gandhi University and Associate Professor in Chemistry, St. Teresa’s College, Kochi, Kerala, India.\nDr. Varkey received a National Young Scientist award from the Indian Science Congress (1995), a UGC Research award (2016–2018), an Indian National Science Academy (INSA) Visiting Scientist award (2018–2019), and a Best Innovative Faculty award from the All India Association for Christian Higher Education (AIACHE) (2019). She Hashas received the Sr. Mary Cecil prize for best research paper three times. She was also awarded a start-up to develop a tea bag water filter. \nDr. Varkey has published two international books and twenty-seven international journal publications. She is an editorial board member for five international journals.",institutionString:"St. Teresa’s College",institution:null},{id:"250668",title:"Dr.",name:"Ali",middleName:null,surname:"Nabipour Chakoli",slug:"ali-nabipour-chakoli",fullName:"Ali Nabipour Chakoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/250668/images/system/250668.jpg",biography:"Academic Qualification:\r\n•\tPhD in Materials Physics and Chemistry, From: Sep. 2006, to: Sep. 2010, School of Materials Science and Engineering, Harbin Institute of Technology, Thesis: Structure and Shape Memory Effect of Functionalized MWCNTs/poly (L-lactide-co-ε-caprolactone) Nanocomposites. Supervisor: Prof. Wei Cai,\r\n•\tM.Sc in Applied Physics, From: 1996, to: 1998, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Determination of Boron in Micro alloy Steels with solid state nuclear track detectors by neutron induced auto radiography, Supervisors: Dr. M. Hosseini Ashrafi and Dr. A. Hosseini.\r\n•\tB.Sc. in Applied Physics, From: 1991, to: 1996, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Design of shielding for Am-Be neutron sources for In Vivo neutron activation analysis, Supervisor: Dr. M. Hosseini Ashrafi.\r\n\r\nResearch Experiences:\r\n1.\tNanomaterials, Carbon Nanotubes, Graphene: Synthesis, Functionalization and Characterization,\r\n2.\tMWCNTs/Polymer Composites: Fabrication and Characterization, \r\n3.\tShape Memory Polymers, Biodegradable Polymers, ORC, Collagen,\r\n4.\tMaterials Analysis and Characterizations: TEM, SEM, XPS, FT-IR, Raman, DSC, DMA, TGA, XRD, GPC, Fluoroscopy, \r\n5.\tInteraction of Radiation with Mater, Nuclear Safety and Security, NDT(RT),\r\n6.\tRadiation Detectors, Calibration (SSDL),\r\n7.\tCompleted IAEA e-learning Courses:\r\nNuclear Security (15 Modules),\r\nNuclear Safety:\r\nTSA 2: Regulatory Protection in Occupational Exposure,\r\nTips & Tricks: Radiation Protection in Radiography,\r\nSafety and Quality in Radiotherapy,\r\nCourse on Sealed Radioactive Sources,\r\nCourse on Fundamentals of Environmental Remediation,\r\nCourse on Planning for Environmental Remediation,\r\nKnowledge Management Orientation Course,\r\nFood Irradiation - Technology, Applications and Good Practices,\r\nEmployment:\r\nFrom 2010 to now: Academic staff, Nuclear Science and Technology Research Institute, Kargar Shomali, Tehran, Iran, P.O. Box: 14395-836.\r\nFrom 1997 to 2006: Expert of Materials Analysis and Characterization. Research Center of Agriculture and Medicine. Rajaeeshahr, Karaj, Iran, P. O. Box: 31585-498.",institutionString:"Atomic Energy Organization of Iran",institution:{name:"Atomic Energy Organization of Iran",country:{name:"Iran"}}},{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",biography:"Monika Elżbieta Machoy, MD, graduated with distinction from the Faculty of Medicine and Dentistry at the Pomeranian Medical University in 2009, defended her PhD thesis with summa cum laude in 2016 and is currently employed as a researcher at the Department of Orthodontics of the Pomeranian Medical University. She expanded her professional knowledge during a one-year scholarship program at the Ernst Moritz Arndt University in Greifswald, Germany and during a three-year internship at the Technical University in Dresden, Germany. She has been a speaker at numerous orthodontic conferences, among others, American Association of Orthodontics, European Orthodontic Symposium and numerous conferences of the Polish Orthodontic Society. She conducts research focusing on the effect of orthodontic treatment on dental and periodontal tissues and the causes of pain in orthodontic patients.",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",country:{name:"Poland"}}},{id:"252743",title:"Prof.",name:"Aswini",middleName:"Kumar",surname:"Kar",slug:"aswini-kar",fullName:"Aswini Kar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252743/images/10381_n.jpg",biography:"uploaded in cv",institutionString:null,institution:{name:"KIIT University",country:{name:"India"}}},{id:"204256",title:"Dr.",name:"Anil",middleName:"Kumar",surname:"Kumar Sahu",slug:"anil-kumar-sahu",fullName:"Anil Kumar Sahu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204256/images/14201_n.jpg",biography:"I have nearly 11 years of research and teaching experience. I have done my master degree from University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh India. I have published 16 review and research articles in international and national journals and published 4 chapters in IntechOpen, the world’s leading publisher of Open access books. I have presented many papers at national and international conferences. I have received research award from Indian Drug Manufacturers Association in year 2015. My research interest extends from novel lymphatic drug delivery systems, oral delivery system for herbal bioactive to formulation optimization.",institutionString:null,institution:{name:"Chhattisgarh Swami Vivekanand Technical University",country:{name:"India"}}},{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null},{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"254463",title:"Prof.",name:"Haisheng",middleName:null,surname:"Yang",slug:"haisheng-yang",fullName:"Haisheng Yang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/254463/images/system/254463.jpeg",biography:"Haisheng Yang, Ph.D., Professor and Director of the Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology. He received his Ph.D. degree in Mechanics/Biomechanics from Harbin Institute of Technology (jointly with University of California, Berkeley). Afterwards, he worked as a Postdoctoral Research Associate in the Purdue Musculoskeletal Biology and Mechanics Lab at the Department of Basic Medical Sciences, Purdue University, USA. He also conducted research in the Research Centre of Shriners Hospitals for Children-Canada at McGill University, Canada. Dr. Yang has over 10 years research experience in orthopaedic biomechanics and mechanobiology of bone adaptation and regeneration. He earned an award from Beijing Overseas Talents Aggregation program in 2017 and serves as Beijing Distinguished Professor.",institutionString:"Beijing University of Technology",institution:null},{id:"255757",title:"Dr.",name:"Igor",middleName:"Victorovich",surname:"Lakhno",slug:"igor-lakhno",fullName:"Igor Lakhno",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255757/images/system/255757.jpg",biography:"Lakhno Igor Victorovich was born in 1971 in Kharkiv (Ukraine). \nMD – 1994, Kharkiv National Medical Univesity.\nOb&Gyn; – 1997, master courses in Kharkiv Medical Academy of Postgraduate Education.\nPhD – 1999, Kharkiv National Medical Univesity.\nDSc – 2019, PL Shupik National Academy of Postgraduate Education \nLakhno Igor has been graduated from an international training courses on reproductive medicine and family planning held in Debrecen University (Hungary) in 1997. Since 1998 Lakhno Igor has worked as an associate professor of the department of obstetrics and gynecology of VN Karazin National University and an associate professor of the perinatology, obstetrics and gynecology department of Kharkiv Medical Academy of Postgraduate Education. Since June 2019 he’s a professor of the department of obstetrics and gynecology of VN Karazin National University and a professor of the perinatology, obstetrics and gynecology department of Kharkiv Medical Academy of Postgraduate Education . He’s an author of about 200 printed works and there are 17 of them in Scopus or Web of Science databases. Lakhno Igor is a rewiever of Journal of Obstetrics and Gynaecology (Taylor and Francis), Informatics in Medicine Unlocked (Elsevier), The Journal of Obstetrics and Gynecology Research (Wiley), Endocrine, Metabolic & Immune Disorders-Drug Targets (Bentham Open), The Open Biomedical Engineering Journal (Bentham Open), etc. He’s defended a dissertation for DSc degree \\'Pre-eclampsia: prediction, prevention and treatment”. Lakhno Igor has participated as a speaker in several international conferences and congresses (International Conference on Biological Oscillations April 10th-14th 2016, Lancaster, UK, The 9th conference of the European Study Group on Cardiovascular Oscillations). His main scientific interests: obstetrics, women’s health, fetal medicine, cardiovascular medicine.",institutionString:"V.N. Karazin Kharkiv National University",institution:{name:"Kharkiv Medical Academy of Postgraduate Education",country:{name:"Ukraine"}}},{id:"89721",title:"Dr.",name:"Mehmet",middleName:"Cuneyt",surname:"Ozmen",slug:"mehmet-ozmen",fullName:"Mehmet Ozmen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/89721/images/7289_n.jpg",biography:null,institutionString:null,institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"243698",title:"M.D.",name:"Xiaogang",middleName:null,surname:"Wang",slug:"xiaogang-wang",fullName:"Xiaogang Wang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243698/images/system/243698.png",biography:"Dr. Xiaogang Wang, a faculty member of Shanxi Eye Hospital specializing in the treatment of cataract and retinal disease and a tutor for postgraduate students of Shanxi Medical University, worked in the COOL Lab as an international visiting scholar under the supervision of Dr. David Huang and Yali Jia from October 2012 through November 2013. Dr. Wang earned an MD from Shanxi Medical University and a Ph.D. from Shanghai Jiao Tong University. Dr. Wang was awarded two research project grants focused on multimodal optical coherence tomography imaging and deep learning in cataract and retinal disease, from the National Natural Science Foundation of China. He has published around 30 peer-reviewed journal papers and four book chapters and co-edited one book.",institutionString:"Shanxi Eye Hospital",institution:{name:"Shanxi Eye Hospital",country:{name:"China"}}},{id:"242893",title:"Ph.D. Student",name:"Joaquim",middleName:null,surname:"De Moura",slug:"joaquim-de-moura",fullName:"Joaquim De Moura",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/242893/images/7133_n.jpg",biography:"Joaquim de Moura received his degree in Computer Engineering in 2014 from the University of A Coruña (Spain). In 2016, he received his M.Sc degree in Computer Engineering from the same university. He is currently pursuing his Ph.D degree in Computer Science in a collaborative project between ophthalmology centers in Galicia and the University of A Coruña. His research interests include computer vision, machine learning algorithms and analysis and medical imaging processing of various kinds.",institutionString:null,institution:{name:"University of A Coruña",country:{name:"Spain"}}},{id:"267434",title:"Dr.",name:"Rohit",middleName:null,surname:"Raja",slug:"rohit-raja",fullName:"Rohit Raja",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRZkkQAG/Profile_Picture_2022-05-09T12:55:18.jpg",biography:null,institutionString:null,institution:null},{id:"294334",title:"B.Sc.",name:"Marc",middleName:null,surname:"Bruggeman",slug:"marc-bruggeman",fullName:"Marc Bruggeman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/294334/images/8242_n.jpg",biography:"Chemical engineer graduate, with a passion for material science and specific interest in polymers - their near infinite applications intrigue me. \n\nI plan to continue my scientific career in the field of polymeric biomaterials as I am fascinated by intelligent, bioactive and biomimetic materials for use in both consumer and medical applications.",institutionString:null,institution:null},{id:"244950",title:"Dr.",name:"Salvatore",middleName:null,surname:"Di Lauro",slug:"salvatore-di-lauro",fullName:"Salvatore Di Lauro",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0030O00002bSF1HQAW/ProfilePicture%202021-12-20%2014%3A54%3A14.482",biography:"Name:\n\tSALVATORE DI LAURO\nAddress:\n\tHospital Clínico Universitario Valladolid\nAvda Ramón y Cajal 3\n47005, Valladolid\nSpain\nPhone number: \nFax\nE-mail:\n\t+34 983420000 ext 292\n+34 983420084\nsadilauro@live.it\nDate and place of Birth:\nID Number\nMedical Licence \nLanguages\t09-05-1985. Villaricca (Italy)\n\nY1281863H\n474707061\nItalian (native language)\nSpanish (read, written, spoken)\nEnglish (read, written, spoken)\nPortuguese (read, spoken)\nFrench (read)\n\t\t\nCurrent position (title and company)\tDate (Year)\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. Private practise.\t2017-today\n\n2019-today\n\t\n\t\nEducation (High school, university and postgraduate training > 3 months)\tDate (Year)\nDegree in Medicine and Surgery. University of Neaples 'Federico II”\nResident in Opthalmology. Hospital Clinico Universitario Valladolid\nMaster in Vitreo-Retina. IOBA. University of Valladolid\nFellow of the European Board of Ophthalmology. Paris\nMaster in Research in Ophthalmology. University of Valladolid\t2003-2009\n2012-2016\n2016-2017\n2016\n2012-2013\n\t\nEmployments (company and positions)\tDate (Year)\nResident in Ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl.\nFellow in Vitreo-Retina. IOBA. University of Valladolid\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. \n\t2012-2016\n2016-2017\n2017-today\n\n2019-Today\n\n\n\t\nClinical Research Experience (tasks and role)\tDate (Year)\nAssociated investigator\n\n' FIS PI20/00740: DESARROLLO DE UNA CALCULADORA DE RIESGO DE\nAPARICION DE RETINOPATIA DIABETICA BASADA EN TECNICAS DE IMAGEN MULTIMODAL EN PACIENTES DIABETICOS TIPO 1. Grant by: Ministerio de Ciencia e Innovacion \n\n' (BIO/VA23/14) Estudio clínico multicéntrico y prospectivo para validar dos\nbiomarcadores ubicados en los genes p53 y MDM2 en la predicción de los resultados funcionales de la cirugía del desprendimiento de retina regmatógeno. Grant by: Gerencia Regional de Salud de la Junta de Castilla y León.\n' Estudio multicéntrico, aleatorizado, con enmascaramiento doble, en 2 grupos\nparalelos y de 52 semanas de duración para comparar la eficacia, seguridad e inmunogenicidad de SOK583A1 respecto a Eylea® en pacientes con degeneración macular neovascular asociada a la edad' (CSOK583A12301; N.EUDRA: 2019-004838-41; FASE III). Grant by Hexal AG\n\n' Estudio de fase III, aleatorizado, doble ciego, con grupos paralelos, multicéntrico para comparar la eficacia y la seguridad de QL1205 frente a Lucentis® en pacientes con degeneración macular neovascular asociada a la edad. (EUDRACT: 2018-004486-13). Grant by Qilu Pharmaceutical Co\n\n' Estudio NEUTON: Ensayo clinico en fase IV para evaluar la eficacia de aflibercept en pacientes Naive con Edema MacUlar secundario a Oclusion de Vena CenTral de la Retina (OVCR) en regimen de tratamientO iNdividualizado Treat and Extend (TAE)”, (2014-000975-21). Grant by Fundacion Retinaplus\n\n' Evaluación de la seguridad y bioactividad de anillos de tensión capsular en conejo. Proyecto Procusens. Grant by AJL, S.A.\n\n'Estudio epidemiológico, prospectivo, multicéntrico y abierto\\npara valorar la frecuencia de la conjuntivitis adenovírica diagnosticada mediante el test AdenoPlus®\\nTest en pacientes enfermos de conjuntivitis aguda”\\n. National, multicenter study. Grant by: NICOX.\n\nEuropean multicentric trial: 'Evaluation of clinical outcomes following the use of Systane Hydration in patients with dry eye”. Study Phase 4. Grant by: Alcon Labs'\n\nVLPs Injection and Activation in a Rabbit Model of Uveal Melanoma. Grant by Aura Bioscience\n\nUpdating and characterization of a rabbit model of uveal melanoma. Grant by Aura Bioscience\n\nEnsayo clínico en fase IV para evaluar las variantes genéticas de la vía del VEGF como biomarcadores de eficacia del tratamiento con aflibercept en pacientes con degeneración macular asociada a la edad (DMAE) neovascular. Estudio BIOIMAGE. IMO-AFLI-2013-01\n\nEstudio In-Eye:Ensayo clínico en fase IV, abierto, aleatorizado, de 2 brazos,\nmulticçentrico y de 12 meses de duración, para evaluar la eficacia y seguridad de un régimen de PRN flexible individualizado de 'esperar y extender' versus un régimen PRN según criterios de estabilización mediante evaluaciones mensuales de inyecciones intravítreas de ranibizumab 0,5 mg en pacientes naive con neovascularización coriodea secunaria a la degeneración macular relacionada con la edad. CP: CRFB002AES03T\n\nTREND: Estudio Fase IIIb multicéntrico, randomizado, de 12 meses de\nseguimiento con evaluador de la agudeza visual enmascarado, para evaluar la eficacia y la seguridad de ranibizumab 0.5mg en un régimen de tratar y extender comparado con un régimen mensual, en pacientes con degeneración macular neovascular asociada a la edad. CP: CRFB002A2411 Código Eudra CT:\n2013-002626-23\n\n\n\nPublications\t\n\n2021\n\n\n\n\n2015\n\n\n\n\n2021\n\n\n\n\n\n2021\n\n\n\n\n2015\n\n\n\n\n2015\n\n\n2014\n\n\n\n\n2015-16\n\n\n\n2015\n\n\n2014\n\n\n2014\n\n\n\n\n2014\n\n\n\n\n\n\n\n2014\n\nJose Carlos Pastor; Jimena Rojas; Salvador Pastor-Idoate; Salvatore Di Lauro; Lucia Gonzalez-Buendia; Santiago Delgado-Tirado. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical\nconsequences. Progress in Retinal and Eye Research. 51, pp. 125 - 155. 03/2016. DOI: 10.1016/j.preteyeres.2015.07.005\n\n\nLabrador-Velandia S; Alonso-Alonso ML; Di Lauro S; García-Gutierrez MT; Srivastava GK; Pastor JC; Fernandez-Bueno I. Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures.Experimental Eye Research. 185, 17/05/2019. DOI: 10.1016/j.exer.2019.05.011\n\nSalvatore Di Lauro; Maria Teresa Garcia Gutierrez; Ivan Fernandez Bueno. Quantification of pigment epithelium-derived factor (PEDF) in an ex vivo coculture of retinal pigment epithelium cells and neuroretina.\nJournal of Allbiosolution. 2019. ISSN 2605-3535\n\nSonia Labrador Velandia; Salvatore Di Lauro; Alonso-Alonso ML; Tabera Bartolomé S; Srivastava GK; Pastor JC; Fernandez-Bueno I. Biocompatibility of intravitreal injection of human mesenchymal stem cells in immunocompetent rabbits. Graefe's archive for clinical and experimental ophthalmology. 256 - 1, pp. 125 - 134. 01/2018. DOI: 10.1007/s00417-017-3842-3\n\n\nSalvatore Di Lauro, David Rodriguez-Crespo, Manuel J Gayoso, Maria T Garcia-Gutierrez, J Carlos Pastor, Girish K Srivastava, Ivan Fernandez-Bueno. A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells. Molecular Vision. 2016 - 22, pp. 243 - 253. 01/2016.\n\nSalvatore Di Lauro. Classifications for Proliferative Vitreoretinopathy ({PVR}): An Analysis of Their Use in Publications over the Last 15 Years. Journal of Ophthalmology. 2016, pp. 1 - 6. 01/2016. DOI: 10.1155/2016/7807596\n\nSalvatore Di Lauro; Rosa Maria Coco; Rosa Maria Sanabria; Enrique Rodriguez de la Rua; Jose Carlos Pastor. Loss of Visual Acuity after Successful Surgery for Macula-On Rhegmatogenous Retinal Detachment in a Prospective Multicentre Study. Journal of Ophthalmology. 2015:821864, 2015. DOI: 10.1155/2015/821864\n\nIvan Fernandez-Bueno; Salvatore Di Lauro; Ivan Alvarez; Jose Carlos Lopez; Maria Teresa Garcia-Gutierrez; Itziar Fernandez; Eva Larra; Jose Carlos Pastor. Safety and Biocompatibility of a New High-Density Polyethylene-Based\nSpherical Integrated Porous Orbital Implant: An Experimental Study in Rabbits. Journal of Ophthalmology. 2015:904096, 2015. DOI: 10.1155/2015/904096\n\nPastor JC; Pastor-Idoate S; Rodríguez-Hernandez I; Rojas J; Fernandez I; Gonzalez-Buendia L; Di Lauro S; Gonzalez-Sarmiento R. Genetics of PVR and RD. Ophthalmologica. 232 - Suppl 1, pp. 28 - 29. 2014\n\nRodriguez-Crespo D; Di Lauro S; Singh AK; Garcia-Gutierrez MT; Garrosa M; Pastor JC; Fernandez-Bueno I; Srivastava GK. Triple-layered mixed co-culture model of RPE cells with neuroretina for evaluating the neuroprotective effects of adipose-MSCs. Cell Tissue Res. 358 - 3, pp. 705 - 716. 2014.\nDOI: 10.1007/s00441-014-1987-5\n\nCarlo De Werra; Salvatore Condurro; Salvatore Tramontano; Mario Perone; Ivana Donzelli; Salvatore Di Lauro; Massimo Di Giuseppe; Rosa Di Micco; Annalisa Pascariello; Antonio Pastore; Giorgio Diamantis; Giuseppe Galloro. Hydatid disease of the liver: thirty years of surgical experience.Chirurgia italiana. 59 - 5, pp. 611 - 636.\n(Italia): 2007. ISSN 0009-4773\n\nChapters in books\n\t\n' Salvador Pastor Idoate; Salvatore Di Lauro; Jose Carlos Pastor Jimeno. PVR: Pathogenesis, Histopathology and Classification. Proliferative Vitreoretinopathy with Small Gauge Vitrectomy. Springer, 2018. ISBN 978-3-319-78445-8\nDOI: 10.1007/978-3-319-78446-5_2. \n\n' Salvatore Di Lauro; Maria Isabel Lopez Galvez. Quistes vítreos en una mujer joven. Problemas diagnósticos en patología retinocoroidea. Sociedad Española de Retina-Vitreo. 2018.\n\n' Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor Jimeno. iOCT in PVR management. OCT Applications in Opthalmology. pp. 1 - 8. INTECH, 2018. DOI: 10.5772/intechopen.78774.\n\n' Rosa Coco Martin; Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor. amponadores, manipuladores y tinciones en la cirugía del traumatismo ocular.Trauma Ocular. Ponencia de la SEO 2018..\n\n' LOPEZ GALVEZ; DI LAURO; CRESPO. OCT angiografia y complicaciones retinianas de la diabetes. PONENCIA SEO 2021, CAPITULO 20. (España): 2021.\n\n' Múltiples desprendimientos neurosensoriales bilaterales en paciente joven. Enfermedades Degenerativas De Retina Y Coroides. SERV 04/2016. \n' González-Buendía L; Di Lauro S; Pastor-Idoate S; Pastor Jimeno JC. Vitreorretinopatía proliferante (VRP) e inflamación: LA INFLAMACIÓN in «INMUNOMODULADORES Y ANTIINFLAMATORIOS: MÁS ALLÁ DE LOS CORTICOIDES. RELACION DE PONENCIAS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGIA. 10/2014.",institutionString:null,institution:null},{id:"265335",title:"Mr.",name:"Stefan",middleName:"Radnev",surname:"Stefanov",slug:"stefan-stefanov",fullName:"Stefan Stefanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/265335/images/7562_n.jpg",biography:null,institutionString:null,institution:null},{id:"318905",title:"Prof.",name:"Elvis",middleName:"Kwason",surname:"Tiburu",slug:"elvis-tiburu",fullName:"Elvis Tiburu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"336193",title:"Dr.",name:"Abdullah",middleName:null,surname:"Alamoudi",slug:"abdullah-alamoudi",fullName:"Abdullah Alamoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"318657",title:"MSc.",name:"Isabell",middleName:null,surname:"Steuding",slug:"isabell-steuding",fullName:"Isabell Steuding",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"318656",title:"BSc.",name:"Peter",middleName:null,surname:"Kußmann",slug:"peter-kussmann",fullName:"Peter Kußmann",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"338222",title:"Mrs.",name:"María José",middleName:null,surname:"Lucía Mudas",slug:"maria-jose-lucia-mudas",fullName:"María José Lucía Mudas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}},{id:"147824",title:"Mr.",name:"Pablo",middleName:null,surname:"Revuelta Sanz",slug:"pablo-revuelta-sanz",fullName:"Pablo Revuelta Sanz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}}]}},subseries:{item:{id:"4",type:"subseries",title:"Fungal Infectious Diseases",keywords:"Emerging Fungal Pathogens, Invasive Infections, Epidemiology, Cell Membrane, Fungal Virulence, Diagnosis, Treatment",scope:"Fungi are ubiquitous and there are almost no non-pathogenic fungi. Fungal infectious illness prevalence and prognosis are determined by the exposure between fungi and host, host immunological state, fungal virulence, and early and accurate diagnosis and treatment. \r\nPatients with both congenital and acquired immunodeficiency are more likely to be infected with opportunistic mycosis. Fungal infectious disease outbreaks are common during the post- disaster rebuilding era, which is characterised by high population density, migration, and poor health and medical conditions.\r\nSystemic or local fungal infection is mainly associated with the fungi directly inhaled or inoculated in the environment during the disaster. The most common fungal infection pathways are human to human (anthropophilic), animal to human (zoophilic), and environment to human (soilophile). Diseases are common as a result of widespread exposure to pathogenic fungus dispersed into the environment. \r\nFungi that are both common and emerging are intertwined. In Southeast Asia, for example, Talaromyces marneffei is an important pathogenic thermally dimorphic fungus that causes systemic mycosis. Widespread fungal infections with complicated and variable clinical manifestations, such as Candida auris infection resistant to several antifungal medicines, Covid-19 associated with Trichoderma, and terbinafine resistant dermatophytosis in India, are among the most serious disorders. \r\nInappropriate local or systemic use of glucocorticoids, as well as their immunosuppressive effects, may lead to changes in fungal infection spectrum and clinical characteristics. Hematogenous candidiasis is a worrisome issue that affects people all over the world, particularly ICU patients. CARD9 deficiency and fungal infection have been major issues in recent years. Invasive aspergillosis is associated with a significant death rate. Special attention should be given to endemic fungal infections, identification of important clinical fungal infections advanced in yeasts, filamentous fungal infections, skin mycobiome and fungal genomes, and immunity to fungal infections.\r\nIn addition, endemic fungal diseases or uncommon fungal infections caused by Mucor irregularis, dermatophytosis, Malassezia, cryptococcosis, chromoblastomycosis, coccidiosis, blastomycosis, histoplasmosis, sporotrichosis, and other fungi, should be monitored. \r\nThis topic includes the research progress on the etiology and pathogenesis of fungal infections, new methods of isolation and identification, rapid detection, drug sensitivity testing, new antifungal drugs, schemes and case series reports. It will provide significant opportunities and support for scientists, clinical doctors, mycologists, antifungal drug researchers, public health practitioners, and epidemiologists from all over the world to share new research, ideas and solutions to promote the development and progress of medical mycology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",hasOnlineFirst:!1,hasPublishedBooks:!1,annualVolume:11400,editor:{id:"174134",title:"Dr.",name:"Yuping",middleName:null,surname:"Ran",slug:"yuping-ran",fullName:"Yuping Ran",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9d6QAC/Profile_Picture_1630330675373",biography:"Dr. Yuping Ran, Professor, Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China. Completed the Course Medical Mycology, the Centraalbureau voor Schimmelcultures (CBS), Fungal Biodiversity Centre, Netherlands (2006). International Union of Microbiological Societies (IUMS) Fellow, and International Emerging Infectious Diseases (IEID) Fellow, Centers for Diseases Control and Prevention (CDC), Atlanta, USA. Diploma of Dermatological Scientist, Japanese Society for Investigative Dermatology. Ph.D. of Juntendo University, Japan. Bachelor’s and Master’s degree, Medicine, West China University of Medical Sciences. Chair of Sichuan Medical Association Dermatology Committee. General Secretary of The 19th Annual Meeting of Chinese Society of Dermatology and the Asia Pacific Society for Medical Mycology (2013). In charge of the Annual Medical Mycology Course over 20-years authorized by National Continue Medical Education Committee of China. Member of the board of directors of the Asia-Pacific Society for Medical Mycology (APSMM). Associate editor of Mycopathologia. Vice-chief of the editorial board of Chinses Journal of Mycology, China. Board Member and Chair of Mycology Group of Chinese Society of Dermatology.",institutionString:null,institution:{name:"Sichuan University",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null,series:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188"},editorialBoard:[{id:"302145",title:"Dr.",name:"Felix",middleName:null,surname:"Bongomin",slug:"felix-bongomin",fullName:"Felix Bongomin",profilePictureURL:"https://mts.intechopen.com/storage/users/302145/images/system/302145.jpg",institutionString:null,institution:{name:"Gulu University",institutionURL:null,country:{name:"Uganda"}}},{id:"45803",title:"Ph.D.",name:"Payam",middleName:null,surname:"Behzadi",slug:"payam-behzadi",fullName:"Payam Behzadi",profilePictureURL:"https://mts.intechopen.com/storage/users/45803/images/system/45803.jpg",institutionString:"Islamic Azad University, Tehran",institution:{name:"Islamic Azad University, Tehran",institutionURL:null,country:{name:"Iran"}}}]},onlineFirstChapters:{paginationCount:8,paginationItems:[{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81471",title:"Semantic Map: Bringing Together Groups and Discourses",doi:"10.5772/intechopen.103818",signatures:"Theodore Chadjipadelis and Georgia Panagiotidou",slug:"semantic-map-bringing-together-groups-and-discourses",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79491",title:"Fuzzy Perceptron Learning for Non-Linearly Separable Patterns",doi:"10.5772/intechopen.101312",signatures:"Raja Kishor Duggirala",slug:"fuzzy-perceptron-learning-for-non-linearly-separable-patterns",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Raja Kishor",surname:"Duggirala"}],book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81331",title:"Machine Learning Algorithm-Based Contraceptive Practice among Ever-Married Women in Bangladesh: A Hierarchical Machine Learning Classification Approach",doi:"10.5772/intechopen.103187",signatures:"Iqramul Haq, Md. Ismail Hossain, Md. Moshiur Rahman, Md. Injamul Haq Methun, Ashis Talukder, Md. Jakaria Habib and Md. Sanwar Hossain",slug:"machine-learning-algorithm-based-contraceptive-practice-among-ever-married-women-in-bangladesh-a-hie",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Machine Learning and Data Mining - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11422.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"80937",title:"Assessing Heterogeneity of Two-Part Model via Bayesian Model-Based Clustering with Its Application to Cocaine Use Data",doi:"10.5772/intechopen.103089",signatures:"Ye-Mao Xia, Qi-Hang Zhu and Jian-Wei Gou",slug:"assessing-heterogeneity-of-two-part-model-via-bayesian-model-based-clustering-with-its-application-t",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"78846",title:"Clustering Algorithms: An Exploratory Review",doi:"10.5772/intechopen.100376",signatures:"R.S.M. Lakshmi Patibandla and Veeranjaneyulu N",slug:"clustering-algorithms-an-exploratory-review",totalDownloads:136,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"78463",title:"Clustering by Similarity of Brazilian Legal Documents Using Natural Language Processing Approaches",doi:"10.5772/intechopen.99875",signatures:"Raphael Souza de Oliveira and Erick Giovani Sperandio Nascimento",slug:"clustering-by-similarity-of-brazilian-legal-documents-using-natural-language-processing-approaches",totalDownloads:142,totalCrossrefCites:1,totalDimensionsCites:1,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"7437",title:"Nanomedicines",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7437.jpg",slug:"nanomedicines",publishedDate:"February 13th 2019",editedByType:"Edited by",bookSignature:"Muhammad Akhyar Farrukh",hash:"0e1f5f6258f074c533976c4f4d248568",volumeInSeries:5,fullTitle:"Nanomedicines",editors:[{id:"63182",title:"Dr.",name:"Muhammad Akhyar",middleName:null,surname:"Farrukh",slug:"muhammad-akhyar-farrukh",fullName:"Muhammad Akhyar Farrukh",profilePictureURL:"https://mts.intechopen.com/storage/users/63182/images/system/63182.png",institutionString:"Forman Christian College",institution:{name:"Forman Christian College",institutionURL:null,country:{name:"Pakistan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/424861",hash:"",query:{},params:{id:"424861"},fullPath:"/profiles/424861",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()