\r\n\tAnother area of uncertainty is the potential effect following the suspension/ interruption of some chronic therapies in defined clinical situations.
\r\n\r\n\t
\r\n\tThe purpose of this text is to highlight both the positive and negative aspects of polytherapy in elderly subjects and when it should be necessary to take into consideration the regulated suspension (deprescribing) of one or more drugs. In particular, it would be important reducing or avoiding the prevalence of negative effects, which can even accelerate cognitive or physical decay, leading sometimes to premature death.
The internet of things (IoT) can connect the enormous offline world with people through the Internet. To achieve this, developed sensors are used to collect data from connected smart objects in the physical world. The gathered data are then uploaded into the cloud and become big data. These data are then integrated and utilized for the development of intelligent systems. Therefore, the IoT is one of the core technologies that is driving the Fourth Industrial Revolution. Moreover, intelligent systems are continually being developed to process big data through the IoT. One of the special characteristics of these intelligent processing-based services and products is the capacity for customization and personalization. Consequently, new and potent values can now be created in smart systems using smart technologies, including the IoT, for a dynamic smart world.
\nIn the early 2000s, during the advent of the IoT, radio frequency identification (RFID) technology was developed for logistic and inventory management applications. It was mainly applied to reduce product distribution and factory production costs. It was also utilized to trace the locations of products being delivered using location-based information systems. RFID technology then continuously evolved and developed into machine-to-machine (M2M) applications, which enable direct communications, monitoring, and controls between devices with a remote application infrastructure using communication channels. More recent M2M communication has expanded into the Internet. Specifically, utilizing wired or wireless communication channels between IP networks, it transmits data between humans and things and between things and other things, such as between household appliances. The Internet itself has also evolved into the IoT as the third generation of the Internet. The first generation of the Internet was developed to be enterprise oriented as the Internet of Computers (IoC), and the second generation of the Internet focused on customers as the Internet of People (IoP) [1]. Eventually, the internet of things (IoT) became an advanced form of M2M.
\nIn 1999, the term “the Internet of Things” was first coined by Kevin Ashton [2]. Initially, the term referred to a type of computer network that can gather a lot, and a wide variety, of data from all of the physical things in the offline world. In order to obtain these data, these things have embedded sensors that record data and transmit them through connections to the Internet using IP networks. According to Kevin Ashton [2], the unique importance of the IoT comprises the following factors. First, the IoT was introduced as a new and powerful method to gather information that was not possible to be gathered in the past. From these tremendous amounts of collected data, the IoT enables the discovery of an almost infinite amount of previously inaccessible facts. Consequently, many manufacturing companies are now attempting to transform themselves from manufacturing to service-based companies, such as the General Electric (GE) Company. Predix is GE’s cloud-based platform (PaaS) for industrial Internet applications that combine people, machines, big data, and analytics [3]. Applications of IoT technology are manifold and diverse. For example, government organizations can use discovered data extracted from the IoT to discover and prevent terrorist attacks. It is also easy to extend IoT-based systems due to good scalability and flexibility. In fact, IoT-based systems can be extended as much as the Internet itself has been extended. For example, new services that are based on IoT applications, such as IoT-based new car-sharing services or parking lot searching services, can be added to previously built systems, leading to the possibility of an infinite extension of the services. Indeed, with relatively little effort, systems and services can be expanded to create new and massively powerful values and opportunities. It is anticipated that the world will witness exponential expansion of diverse applications of the IoT in the near future.
\nUsing big data collected, processed, and integrated through the IoT, intelligent systems have been developed to connect intelligent things. The IoT is thus closely related to intelligent systems because its development is based on the enormous amount of collected data. Generated data in the online and offline world can be propagated and shared in real time by anyone who needs or wants it. They can be also used and analyzed to provide products or services in business and public sectors. Using the IoT, it is possible to collect personalized data, such as at what time someone came to a physical location, in what he or she is interested in, and how long he or she remained in that place. After data analysis, customized and personalized services can be generated that are dynamically developed depending on users’ analyzed characteristics, as well as requirements. To analyze data and generate a relevant service, it is also necessary to utilize intelligent applications and systems. For instance, Amazon’s Dash Button device uses Wi-Fi and Bluetooth technology. It is enabled by a mobile phone, collects personalized data, and provides a corresponding customized service. To do this, the Button technology must be connected to the IoT, intelligent systems, big data, cloud, etc. It processes different contents each time that the button is pushed through the use of smartphone apps to send and receive information. In this way, it provides valuable customized content. In this system, big data technology is also requisite because data are accumulated each time that the button is pushed. By using this button system, it is possible to connect the online to the offline world by gathering so much data from the offline world. Therefore, the IoT is clearly different from previously developed electronics and technologies because it can create new opportunities, services, businesses, and platforms by connections and communications with the online to the offline world.
\nThis chapter is organized as follows. In Section 2, we introduce the global growth of the IoT, trends in the global markets, and current and potential uses of the IoT in government and business sectors. Section 3 introduces sensors, networks, and service interfaces of IoT-based technologies and created services. In Section 4, we discuss IoT-based service applications, such as smart workplaces, smart factories, smart healthcare systems, etc., as well as an example of a smart city application and potential hazards of the IoT. Finally, we present some conclusions.
\nIn the global market, a variety of expectations exist regarding the internet of things (IoT). These expectations are related to how IoT devices will be connected, what are the services and values that will be created, how it can be used to increase a company’s market share, etc. Although forecasts may vary slightly regarding the ubiquity of the IoT, it is obvious that it is growing dramatically. This rapid growth is attributable to the creation of new service markets, the expansion of the IoT devices, and the ease with which the IoT can be applied to industry, governments, products, and services. It is also clear that the growth of the service market, in particular, will comprise a major portion of the IoT market.
\nConcerning this IoT device market, Gartner predicts that, by 2020, the number of connected things will reach 25 billion and the service market will grow to USD $ 300 billion by the same year [4]. In Directions 2016 [5], the IDC forecasts that the number of terminals connected to the Internet will reach approximately 80 billion units in 2025. In addition, Cisco expects that, by 2030, there will be over 37 billion Internet units, the number of IoT devices will reach 50 billion, and the IoT will develop into the Internet of Everything (IoE) [6]. Gartner also predicts that China, North America, and Western Europe will be most active in adopting IoT devices, which will account for 67% of all Internet devices in 2017 [1].
\nIn addition, the service market is also expected to occupy a large proportion of the IoT market. According to Gartner, in 2020, more than half of all existing Internet devices will connect with regular customers. Moreover, the number of customers using home automation systems and entertainment information will amount to 13 billion [7]. Cisco also predicts that 250 million people will be connected to the Internet by 2020. According to IDC, the expected IoT market will be USD $ 1.46 trillion by that same year [8]. These forecasts are based on the development of IoT-related products and the increase of related software and applications. Business and labor markets associated with data centers and management infrastructures will also be expanded to manage increasing data traffic. The consumer segment is predicted to comprise 5.2 billion units, accounting for 63% of the total installed capacity, leading to the ubiquitous use of IoT devices. Moreover, the business sector is anticipated to reach 3.1 billion connected units by 2017 [9]. To leverage the IoT, Mckinsey [10] defined nine key relevant environments: factories, cities, healthcare, retail stores, workplaces, logistics, transportation, housing, and offices. Economic effects range from USD $ 3.9 trillion to USD $ 11.1 trillion, depending on the availability of the IoT [10]. Machina Research (2015) predicts that the global market for the IoT will reach USD $ 1.2 trillion by 2022 [11]. In 2013, the market was USD $ 200 billion, but Machina Research forecasts that the market will grow 22% annually [11]. In addition, market size is expected to increase in the order of terminal, platform, and service by 2022. The average annual growth rate of service and platforms from 2013 to 2022 is expected to be 90.0 and 66.1%, respectively.
\nIt should be noted that the growth of the service market is intimately related to semiconductor chipsets, communication modules, terminals, platforms including systems and solutions, and communication and service applications for device markets that support the IoT. From 2013 to 2022, each of these markets is forecast to have 19.2, 18.7, 8.8, 66.1, 17.0, and 90.0% of the compound average annual growth rate (CAGR). Global consulting firms, Gartner and IDC, forecast that the global IoT market will grow at a CAGR of 31.4 and 17.5% in 2013 and 2020, respectively. According to Cisco, the market value created by IoT corporations is expected to be USD $ 14.4 trillion over the next 10 years, and the public sector will be approximately USD $ 4.6 trillion. IDC expects that the IoT market will increase from approximately USD $ 2 trillion in 2013 to USD $ 7 trillion in 2020. Demands related to software applications, services, and devices for the IoT will also continue to increase. Consequently, in accordance with this demand, service markets from smart factories, smart healthcare systems, connected services, etc. [12] will also grow.
\nCurrently, in order to realize economic and social innovations, governments and public sectors are also focusing on the internet of things (IoT) as a means of announcing policies that they want to promote. Through this, national governments around the world are rapidly establishing public goals, such as strengthening national competitiveness, improving people’s quality of life, and taking actions that will catalyze major economic development. Certain large countries, based on developed information and communications technology (ICT), are strongly supporting the development of the IoT as a national project, including the USA, Japan, China, Europe, and South Korea. China, for example, established the Sensor Network Information Center in 2009 and the Intelligent Things Communications Center in 2010. Through these two institutions and others, China is announcing, establishing, and promoting various national projects. One of them is the “12-5 Plan for Development of the IoT” as part of the twelfth 5-year plan from 2011 to 2015 in 2011. It is building IoT pilot complexes targeted at facilitating the use of the IoT and the cloud as strategic measures [13]. The EU has also announced an implementation plan, including the 2009 IoT Detailed Treatment Plan. The UK is increasing IoT development funds and has announced that it is planning to invest $ 100 billion in the development of IoT technology by 2025. In 2008, the USA focused on building a hyper-connected network infrastructure to extend its existing communication infrastructure to the IoT. In early 2000, Japan accelerated national projects related to the IoT. In 2013, Japan implemented major ICT strategies, such as building smart towns, smart grids, and remote monitoring capabilities. In 2013, South Korea announced a comprehensive IoT plan for the development of technology and related market creation.
\nMany large global companies are actively participating in technology development and building ecosystems of technology focused on the internet of things (IoT) market. For example, Google has announced an ambitious plan to include the smartphone operating system “Android” on all major devices, such as televisions, automobiles, and watches. The company is also continuing strategic mergers and acquisitions (M&As) with related companies, e.g., the Nest company, which provides control services for room temperature, and Dropcam, an Internet surveillance camera manufacturer. Cisco has also led the IoT platform with IOx as an environment for the execution of IoT applications. In addition, Cisco recently announced that it had acquired Tail-f Systems, as a provider of network management solutions, and will acquire Assemblage, a real-time collaboration solution provider. Cisco, as the global market leader in networking equipment, has built an “Interloud” for the entire Internet of Everything (IoE) and is actively pursuing the IoT business through its “Smart Connected Communities” project. In addition, Qualcomm leads the open-source object Internet framework to connect devices with AllJoyn. General Electric (GE), as a leading equipment manufacturer, has announced that it will create new value with the “Industrial Internet Consortium” in connection with the IoT. In GE, the adopted IoT is available to provide new types of services or events. For example, GE’s Predix collects data to monitor factories or systems, estimate possible faults during factory or system operations, and provide appropriate solutions for these faults [3]. AT&T is also working with Cisco, GE, IBM, Intel, and IoT network providers that connect all devices [12]. In recent years, M&As have also been increasing in global IT companies, such as Cisco and Google. This has been identified as a major activity that is preparing for the dominance of the IoT era. Therefore, it is important to ensure competitiveness in each service industry, including distribution, healthcare, security, and finance. It is also essential to possess the capabilities of an IoT value chain, such as content, platform, networks, and devices. For example, platform vendors, such as Microsoft and Oracle, are working to take advantage of their platforms, Microsoft Azure (Azure) and Java ME (Java Platform, Micro Edition), respectively, to prepare for a strong position in the IoT platform market. Moreover, Qualcomm, Intel, and other chipset vendors have focused their devices on the IoT network through AllJoyn and Quark. They are specifically focused on wearable devices and smart homes in the IoT market [12].
\nSensors play a critical role in the internet of things (IoT). Sensors collect data on the Internet by smart devices, which are then used to upload information to the cloud. To achieve this, sensors are embedded in physical devices or exist in the form of external devices. Sensing technology is utilized to acquire a broad range of information, such as position, motion, images, etc. They can also collect surrounding environmental data, including temperature, humidity, heat, atmosphere composition, light, and sound. The IoT is also used to remotely control air conditioning, heating, and lighting. It is important to note that many physical sensors are also evolving into smart sensors with built-in standard interfaces for improving information-processing capabilities and applicable functions. Sensors can also include virtual sensing functions that extract specific information from the sensed and accumulated data. Moreover, virtual sensing technology can be implemented in the actual IoT service interface. Using multidisciplinary sensor technology, which is one-dimensional higher than existing independent sensors, it is also possible to extract more intelligent and high-dimensional information.
\nFor the connection of sensors, the network interface plays the role of connecting physical network devices. For wired and wireless IoT networks, physical devices include wireless personal area networks (WPAN), Wi-Fi, 3G, 4G, LTE, Bluetooth, Ethernet, broadband convergence network (BcN), satellite communication, microwaves, serial communication, and PLC. These and other advanced communications systems enable the possibility for people, things, and services to become closely and rapidly connected.
\nThe devices, such as sensors and network modules, are fixed on terminal devices for the collection of data. In other words, the development of sensor technology is essential to collect and extract data from objects. In addition, it is obviously necessary for network modules to communicate with these sensors, constituting an interworking of Internet communication, an application system, and an embedded system for providing user interfaces (UI). For activating the IoT, optimization and evolution of network technology are very important. The IoT can be connected to a network in a variety of ways. For example, things can be directly connected to a wireless network or connected to a smartphone through communication systems, such as Bluetooth. In the case of non-portable products, it can be connected to a protocol such as Wi-Fi, which is fixed in a certain place, such as a smart home or Industry 4.0.
\nIt is important to note that the IoT service interface differs from traditional network interfaces. The primary aim of the IoT service interface is to offer value-added services through transformation, processing, extraction, and accumulation of sensed data. Additionally, it must make it possible to judge, contextualize, recognize, protect privacy, ensure security, authenticate, allow, discover, shape, etc., for the creation of services. The IoT service interface interlocks three major components: people, things, and services. For the application services to perform specific functions, the IoT must provide some interfaces for accumulating, processing, and transforming data for services, such as ontology-based semantics, open-sensor APIs, augmentation, virtualization, location identification, process management, open platform technology, etc.
\nThe new types of value chains can be created based on the sensor devices, networks, and services in the IoT environment. This means that it can create new types of services that are based on different types of value chains on a data platform that is based on the particular device’s sensing technology. The IoT contributes greatly to the derivation and creation of services based on connections between devices, things, and people. Ultimately, the created services, operations, and products will be based on convergence between data and services using data collected through sensors.
\nThe processed data can also be accumulated in a cloud computing environment as big data. It is obviously critical to integrate data collected from distributed things through the IoT for the creation of advanced services. To achieve this, a data platform that can integrate distributed, collected, and aggregated data is requisite. This platform enables the creation of services that can generate value from different types of data. Service applications on such a data platform are introduced in the next section.
\nThe internet of things (IoT) is expanding the service market that is focused on public safety and distribution through merging with various industries. It is anticipated to be expanded to intelligent transportation services; social infrastructure, such as buildings and bridges; remote management services, existing healthcare, and smart energy-related fields. If the IoT becomes firmly established, its influence is expected to include everyday life, as well as all industries, due to the development and increased use of certain technologies, such as wireless networks, communication modules, sensors, and smart terminals. Furthermore, medical, transportation, manufacturing, distribution, education, and other fields will bring significant changes to existing processes and services.
\nThe smart workplace constitutes a new paradigm for working that will greatly increase collaboration, communication, and intelligent decision-making. It is based on connected, knowledge-based, integrated, and intelligent work facilities that depend on the new technology platform. One of the core technologies involved in creating smart work places is the IoT [7, 14]. Software applications that will be supported by the IoT have also been developed to support smart workplace environments, such as videoconferencing, new knowledge-sharing capabilities, and tracking the location of key mobile business assets.
\nThe smart factory is not the automation-based factory system that existed in the Third Industrial Revolution, but is rather an intelligent system to support customization according to customers’ requirements. This results in greatly increased production efficiency, more accurate and less expensive inventory systems, etc. Smart factories are developed by intelligent systems that are based on collected data from intelligent devices, integration of the collected data for the creation of services, and uploading the data to the cloud. In factories, it is important to interconnect facilities, such as overall systems, processes, and machines, in order to enable advanced services, such as innovation of production processes and cost reduction in supply chains. The IoT has also assumed a role in monitoring and maintaining infrastructure in smart factories.
\nFor smart health, hospital information systems usually use the internet of things (IoT) to monitor and connect patients, doctors, medical devices, and application systems, such as X-rays, using sensors. Some healthcare systems, such as IBM Watson, possess partnerships between people and systems. For example, instead of always requiring the presence of a medical doctor, in some cases, IBM Watson can treat patients by itself because it possesses expert knowledge and constitutes an intelligent system. In this type of case, the IoT is used to track, collect, and integrate remote data and the location of mobile assets in order to create and provide intelligent and advanced medical services. It is also applied to greatly increase the efficiency of healthcare infrastructure and resource usage. It is important to note that the developed applications can also substantially increase profits. Consequently, the more resources that can be saved, the greater the likelihood that new services will be developed. In fact, eight out of ten healthcare leaders (80%) stated that innovation has expanded since the advent of IoT use [7, 14].
\nNearly half of retailers worldwide allow network access on individual mobile devices to build the internet of things (IoT). This can create many new experiences and services for customers. For example, such applications of the IoT use a store’s location service to provide customized information about products. It also assists in obtaining and retaining customers due to customization systems based on collected, accumulated, and processed data concerning individual customers. Currently, the retailing process is changing from a supplier-based value chain to a value-added value chain that is based on customer-centric services. Through the IoT, it is now possible to collect customers’ personalized information, and the accumulated data can be applied to develop new types of services that can be based on intelligent systems. Since the IoT can facilitate more beneficial and customized services for individual customers, developing such services is currently very popular.
\nRecently, with smart farms, many countries and farmers are actively attempting to utilize the Internet, nano-based devices, and robot technology. In 2014, the National Weather Service and the Department of Agriculture established an open data policy and developed various smart agricultural services [15]. For example, Fujitsu grows hydroponic lettuce using its Internet technology platform (Akisai) and is developing it as a new type of farm. In agriculture, food seeds, seedlings, and information about them can be sent directly to consumers, allowing people to grow agricultural products themselves at home. Of course, commercial farmers can also use such services supported by the information provided by the IoT. In addition, by using the IoT, it is now possible to remotely monitor and control conditions for crops and farms. It can monitor and control essential factors, such as humidity, sunshine, temperature, etc.
\nUnlike in the past, automobiles can be now viewed as a digital mobile software system and not as a machine with an engine. Accordingly, such modern cars are often termed “connected cars.” In fact, advanced cars have more than 100 million lines of source code, which supports autonomous operation, self-parking, control, infotainment, safety, performance monitoring with built-in sensors, and inter-vehicle communication. Gartner predicts that, by 2020, connected cars will deliver a new in-vehicle maintenance service and autonomous navigation capability. It is further expected that there will be more than 250 million such units, and one out of five vehicles globally will be connected to a wireless network through the internet of things (IoT) [16]. This rapid increase in vehicle connectivity will affect the overall functionality of telematics, autonomous navigation, infotainment, as well as mobile services, such as mobile banking and remote offices. Over the next 5 years, the proportion of new vehicles with these features is anticipated to increase at a truly dramatic rate, and connected cars will constitute a major part of the IoT [17].
\nHall [18] defines a smart city as a city that “monitors and integrates conditions of all of its critical infrastructures, including roads, bridges, tunnels, rails, subways, airports, seaports, communications, water, power, even major buildings, can better optimize its resources, plan its preventive maintenance activities, and monitor security aspects while maximizing services to its citizens.” According to Harrison et al. [19], the smart city is defined by “connecting the physical infrastructure, the IT infrastructure, the social infrastructure, and the business infrastructure to leverage the collective intelligence of the city.” Recently, the definition of the smart city has been expanded to include not only physical aspects, such as city infrastructure, but also concepts that comprise nonphysical factors, such as the environment and governance. The United Nations Conference on Trade and Development (UNCTAD) [20] defines the smart city as smart mobility, smart economy, smart living, smart governance, smart people, and smart environment. Data for smart cities originate from all infrastructure and things in the city based on internet of things (IoT) technology. Services are then developed to enable citizens to have greatly expanded and personalized options in their lives by using the collected data. The IoT overall was developed for the purposes of connecting various things to exchange information and realize value-added information services. Consequently, if the IoT is intelligently applied to cities’ facilities, management, and security, city functions could be performed much faster and more efficiently than was previously the case. If a hyper-connected society that connects things and cities becomes a reality in the near future, we will experience truly smart cities that can integrate city management systems that were previously operated individually.
\nAs progress has been made in IoT uses and applications, public sectors are linking building security systems (57%), street lighting (32%), and automobiles (20%) to create an organic technological environment that will support the smart city of the future. The most widely deployed IoT applications in this sector comprises remote monitoring and control of urban devices (27% responded that this is the main application) and constitutes an essential step toward actualizing the smart city’s integrated infrastructure.
\nPaul Manwaring [21], cofounder of the IoT Living Laboratory in Amsterdam, stated that “we need to empower communities to solve their own problems.” Certainly, problems still exist that need to be solved to achieve sustainable development. These problems are mainly due to industrialization activities that are based on digital technology.
\nThe internet of things (IoT) has been identified as a core technology for building smart cities. Therefore, many countries around the world are promoting smart cities to obtain various benefits. As one of the efforts to solve the abovementioned problems, we focus now on trash cans equipped with IoT sensors to assess load quantity in real time. In early 2016, 76 IoT sensors were attached to trash cans in major commercial districts in Seoul, Korea. In June 2017, Goyang city built a smart collection management system based on the IoT [22] as the IoT demonstration complex. The IoT sensors are installed in the trash cans in various locations along city streets and in resident public trash cans to manage loads in real time. A load detection sensor, a solar compression device, and a garbage collection tracker and system are installed in the trash cans. The IoT trash can with the load-sensing control is equipped with a sensor inside of the trash can’s lid to measure the load in the trash can in real time, and the compression trash can is automatically compressed to prevent trash can overflow when too much garbage accumulates. In addition, the sensor is powered by solar energy. In garbage collection vehicles, a tracker is installed, and the vehicle position and collection routes are displayed in real time. The amount of garbage collected by each vehicle in the landfill can also be quantified and systematically managed. The measured data in the smart trash can are transmitted to the Goyang city demonstration center server and to environment-friendly smartphones. Finally, garbage-loading information can be checked and managed in real time. This is an example of using the IoT to successfully solve a generally occurring problem in most cities.
\nIt is certain that the internet of things (IoT) will provide tremendous opportunities in manifold regions and industries. However, a fundamental gap still exists between understanding and preparing for the anticipated ubiquity of the IoT. For example, although 98% of organizations that have adopted the IoT claim to be able to analyze data, almost all respondents (97%) stated that it is still difficult to generate value from these data. In fact, more than one-third of companies are not extracting and analyzing corporate network data and using these insights to improve business decisions. One of the biggest limitations is security of data and information to protect IoT-based systems from external threats.
\nIn this chapter, we introduced the internet of things (IoT), which is a new type of a network that connects device to device, device to people, device to place, etc. The network communications are based on an Internet protocol (IP), such as that used for the Internet. The communications are conducted using embedding or external sensors in devices or objects. Through these communications, tremendous amounts of data are generated. These data are termed big data and are uploaded to a cloud system. This enormous amount of data can then be utilized to create valuable new services and products. In addition, through using the accumulated data, some systems and markets provide powerful intelligent services and applications, such as smart workplaces, smart factories, etc.
\nWe are already living in a hyper-connected world where people and intangible things are networked through the IoT. Indeed, the IoT is leading the era of superfusion that is creating multifaceted economic, social, and ethical values that converge with various industries and expressed as productive business models. In the era of the IoT, most devices use gathered information and network connectivity that actively exploit collected data through a variety of sensors to drive opportunities for new products and services. From this perspective, the IoT integrates intelligent networks which can be systematically linked with humans, things, and services for distributed sensing, networking, and processing.
\nAs one of the IoT applications, the smart city was introduced in this chapter. The smart city can be understood as a kind of hyper-connected world comprising the overall society, business platforms, the environment, etc., with newly developed technologies, such as big data, cloud, and artificial intelligence. Smart cities can also embed these applications and innovations, such as in connected vehicles, smart homes, etc.
\nInitially, the IoT was developed for simple communications between devices and objects through RFID and M2M technology. However, the IoT is creating a new type of hyper-connected world that comprises connected societies, connected environments, etc. It also creates entirely new types of services, products, and businesses that were not even envisioned in the past. For example, when the Internet first appeared, it was not expected that it would revolutionize the world, but it did. This time, the IoT is changing the world and to no less of an extent.
\nIn near the future, in our hyper-connected world, we will be able to experience a truly smart world which integrates systems that were previously operated individually and create powerful new values and opportunities that we have never experienced.
\nThe sexual abuse of children continues to be an extensive international problem with serious long term consequences. There are varying definitions of CSA, with the World Health Organization defining CSA as the involvement of a child under the age of 18 in sexual activity that they do not fully comprehend, do not give consent to, or for which the youth is not developmentally prepared and that violates the social taboos or laws of society [1]. CSA may include penetrative and nonpenetrative acts. Prevalence rates for CSA vary greatly, based on differing definitions of CSA, underreporting of CSA, and differences in child welfare record keeping by country. Prevalence rates for CSA according to a 2009 meta-analysis from 65 studies in 22 countries determined that an estimated 20% of girls and 8% of boys were victims of CSA prior to age 18 [2]. The high prevalence rates and the serious long term emotional, physical, relational and sexual consequences of CSA implore the need for efficacious, trauma informed interventions for the child and family. The vast majority of CSA is perpetrated by an offender the child knows and trusts, mandating that the interventions address the family and not just the victim [3]. Additionally, multidisciplinary coordination of law enforcement, forensic interviewing, child welfare services and therapists is essential to minimize retraumatization of the child and to best promote healing and recovery.
There are emotional, behavioral, developmental, relational, physical and sexual sequela of CSA, especially if the child did not receive timely and efficacious interventions and/or the child was not believed nor supported when they disclosed the CSA. The effects of CSA are often dependent on severity and frequency of the CSA as well as the developmental level of the child. Additionally, many CSA survivors have been victims of ongoing and complex trauma and the effects are cumulative and likely to overwhelm the child’s coping resources. Emotional impacts can include depression, anxiety, posttraumatic stress symptoms, and angry outbursts, among others [4]. Externalizing behavioral symptoms can include regressions in toileting, temper tantrums, sleep difficulties and nightmares, provocative sexual behaviors, substance abuse, defiance and noncompliance [5]. CSA increases an individual’s risk for both minor and major health problems including cancer and diabetes [6]. Relational consequences can include indiscriminant attachments which put victims at further risk, and also withdrawal and mistrust. Mistrust is empirically common if the child experienced betrayal trauma where the perpetrator was a known and trusted individual [7]. Sexual sequela can include sexual acting out behaviors, hypersexuality, poor body boundaries as well as an aversion and fear of affection and sexual behaviors.
The child’s relationship with the perpetrator or offender of the sexual abuse impacts symptom presentation and also disclosure. The majority of sexual abuse victims know their perpetrator [3, 7], often making it difficult for the child to disclose due to feelings of loyalty to the family or the perpetrator. The lack of disclosure often results in the sexual abuse continuing over an extended period of time and the youth not receiving needed interventions, which may exacerbate their symptoms and the negative effects of CSA [8].
There is a need for empirically supported, targeted, and child directed interventions for victims of CSA [9]. These interventions should be trauma informed, provided within the context of a strong and supportive therapeutic relationship and include psychoeducation about CSA, coping skills, exposure through a trauma narrative and safety planning. Several of the most widely utilized interventions for CSA victims and their nonoffending caregivers are presented in this chapter.
Trauma-Focused Cognitive Behavioral Therapy (TF-CBT) is an empirically supported treatment model for CSA developed to address PTSD symptoms and trauma in children and adolescents [4, 8, 10, 11]. Studies conducted in the last 25 years have provided consistent support for TF-CBT as the superior therapy for sexually abused children and other traumatized children when compared to non-directive or child-centered supportive therapy, as it provides essential support structures for both caregivers and children [11]. TF-CBT treats children and adolescents, ages 3 to 17, by addressing the negative effects of trauma including processing of traumatic memories, addressing and overcoming problematic thoughts, and building coping and interpersonal skills. This short-term manualized treatment is typically provided in eight to 16 weekly 90-minute sessions, extending to as many as 25 sessions for individuals suffering from complex trauma [4, 8]. The TF-CBT treatment model was developed not only to address PTSD and depression and anxiety symptoms, but also underlying problematic distortions of thought regarding self-blame for trauma, ideas and expectations for safety, and constructs of trust in others and the world [10, 11].
The core components of TF-CBT can be summarized with the PRACTICE acronym, P: psychoeducation and parenting skills, R: relaxation skills or managing physiological reactions to trauma, A: affective modulation skills or managing affective responses to trauma, C: cognitive coping skills that build connections between thoughts, feelings, and behaviors, T: trauma narrative and processing, I: in vivo mastery of trauma reminders, C: conjoint child-caregiver sessions, and E: enhancing safety and future development [4, 8].
A primary curative component of TF-CBT is creation and processing of the trauma narrative (T) [4, 8, 10, 11]. This is the middle third of the duration of therapy, where the therapist and traumatized client focus increasingly on the specific traumas experienced. As the therapist and client progress through the components of the PRACTICE model, the therapist increases gradual exposure and helps the client and caregivers implement the skills learned to prepare them to cope with the inevitable full exposure of trauma reminders that accompany the trauma narrative [4, 8]. The trauma narrative and processing component is essential in the exposure therapy aspect of this treatment model, as it allows the child to extinguish negative emotions and reactions associated with the trauma by wiring new pathways of associations to the traumatic memories and eliciting positive and resilience-focused feelings such as pride and strength [8, 10].
In the trauma narrative and processing component, the youth develop a narrative about their CSA that includes specific traumatic circumstances, cognitions, feelings, behaviors, and other trauma-related experiences. For many of these youth, it is difficult to create a fully integrated trauma narrative, as they may only conjure up fragmented and non-linear pieces of their complex trauma memories [8]. Traditionally, these trauma narratives manifest in the form of written books about the youth and their specific trauma. The youth will complete their trauma narrative, usually ending with a chapter of what they have learned about themselves, relationships with others, worldviews, and expectations of the future, and then have the opportunity to share their narrative with their caregiver [10]. Trauma narratives can both highlight maladaptive core beliefs, and facilitate the integration of thoughts and feelings related to trauma [10]. Trauma narratives have been shown to reduce a child’s fear and anxiety related to their abuse and decrease avoidant behaviors related to trauma [4, 8, 10, 11].
Play is the language of children and play based therapy for CSA is a developmentally attuned and expressive intervention that can facilitate emotional and behavioral regulation and healing from CSA [12]. Children who have been sexually abused frequently have difficulty with verbal recollection and expression of their traumatic experiences both due to the neurobiological impact of trauma on language centers in the brain and the developmental level of the child [13, 14] and play interventions can be familiar and less threatening. Additionally, complex trauma interferes with typical brain development, plus traumatic memories are often stored in the brain’s implicit memory, which results in memories of sexual abuse being stored in areas of the brain and body that are frequently challenging to access through verbal methods [15]. Through play therapy, children use symbolic representation to explore feelings and thoughts. Play therapy can include dolls, puppets, action figures and stuffed animal play for sexual abuse disclosure, which creates distance and an alternative to the children directly discussing their traumatic experiences, as they act it out through play. Play can be incorporated into other treatment modalities, such as play based construction of a trauma narrative in TF-CBT, and is particularly important for younger children who may not have the cognitive and language skills to fully express their feelings through talk therapy [16].
Play therapy for CSA can be directive and focused on the CSA or nondirective and child centered, focused on building rapport and establishing safety in the therapeutic relationship [12]. Play can be used to engage children who have experienced CSA and their caregivers in the therapy process, to teach specific personal safety and coping skills, to create a fun therapeutic environment and to facilitate communication between the child and the therapist [16]. Historically, the efficacy of play therapy for CSA has been difficult to quantify, however, play therapy is beginning to develop an evidence base that is more than anecdotal, and is establishing play therapy as an effective empirically supported intervention for CSA [17, 18].
Trauma informed art therapy is effective for children who have experienced early relational trauma, such as intrafamilial sexual abuse, which may result in symptoms of PTSD [19]. Art therapy interventions can provide a voice and sense of self-agency to CSA survivors as they creatively and abstractly represent their traumatic experiences and use metaphors and visual symbols to describe their sexual abuse [20]. Through visual arts, youth who have been sexually abused can express overwhelming emotions without requiring words [21].
Healthy emotional expression as well as emotional regulation for children who have experienced CSA can be promoted through art therapy [21]. Children who have been sexually abused may present with dissociative tendencies, limiting their ability to create a verbal trauma narrative and art therapy can provide a medium of construction of the trauma narrative that is not dependent on verbal processing [22]. Art interventions, such as drawing, painting, sculpting, collaging, etc., employed in forming and processing of a trauma narrative can act as a catalyst for children who have experienced CSA to explore thoughts, feelings, trauma memories, and perceptions through visual, tactile, and other sensory means [23]. With child sexual abuse, it is especially important to explore the non-verbal memories that recall fragmented sensory and emotional experiences of the trauma [24]. Art therapy is a visual and sensory modality that assists youth who have been sexually abused with accessing traumatic material stored in implicit memory, which is body-based form of memory that is distinct from explicit, narrative and conscious memory [20]. Art therapy may provide a bridge between implicit and explicit memory that allows children who have experienced CSA to express feelings and memories that are not accessible by verbal means [23].
To treat CSA, there are numerous efficacious group interventions which aim to decrease symptoms of CSA while also providing future risk reduction skills [25]. Group therapy for CSA is a treatment modality that is frequently used and is often the treatment of choice for CSA. CSA group treatment has growing interest for a variety of reasons, such as an increase in demand for trauma focused mental health services and a need for a cost-effective approach [26]. Group modalities for CSA include TF-CBT groups, art therapy groups, support groups, psychoeducation groups, and process groups, among others. Children in CSA group therapy benefit from the support and understanding of peers who have had similar experiences. Group therapy provides an important sense of universality for CSA victims which can help combat feeling of isolation, social stigma, shame, guilt, and anger [27]. Universality is a key component of CSA group treatment and can assist with normalization of feelings of powerlessness, betrayal and helplessness, while simultaneously providing skills for resilience [27]. The relational consequences and mistrust that are often a result of CSA can be mitigated in group therapy for CSA as group members begin to connect through the opportunity to interact with supportive therapists and other CSA victims [28].
TF-CBT was initially provided as individual treatment although TF-CBT is frequently provided in a group format and group TF-CBT has also been identified as an efficacious treatment modality for CSA [29]. The group format of TF-CBT promotes cohesion by destigmatizing traumatic experiences. Children learn new skills together and can support one another to implement these skills [29]. When children are attending their group, caregivers are attending collateral group sessions to learn the TF-CBT components [10, 29]. Parenting and coping skills are taught to provide more consistency in the home and psychoeducation regarding trauma is provided [10, 29]. TF-CBT groups for CSA can decrease trauma symptoms such as anxiety, depression, avoidance, hypervigilance, and intrusive thoughts in youth [25]. Group therapy for CSA has shown to be effective for improving overall psychological distress, development of coping skills, and reducing sexual and other behavior problems [25]. Additionally, group TF-CBT has supported youth in developing stronger personal safety skills and decreasing emotional reactions in caregivers [25].
Art therapy groups for CSA are an expressive arts group treatment modality that incorporates creativity and can facilitate processing of traumatic experiences with other youth who have experienced CSA. Various types of abstract and representational art can be created in group and shared with group members in order to increase catharsis and connection/cohesion between group members. For example, group members may draw characters (animals, superheroes, objects) that represent themselves, their perpetrators and protective caregivers and then be asked to tell detailed stories to the group about these characters [20]. In this group art activity, a child may identify as an animal living in their safe place, until a predator presents and harms the animal (i.e., a fox attacking a rabbit, a bee stinging a kitten). Allowing the child to identify with the animal provides distance and separation from the event so as to prevent the children from being retraumatized or overwhelmed by trigger reminders [20]. An eight session art therapy group for latency age girls who had been sexually abused focused on four themes: establishing group cohesion and fostering trust, exploring feelings associated with the abuse, sexual behavior and the prevention of revictimization and termination of the group [30]. Group members utilized painting, drawing, clay sculpting, and dramatic role plays during this art therapy group. Outcome measures from this group art therapy intervention for girls who had been sexually abused evidenced a reduction in symptoms of anxiety and depression [30].
Support groups for CSA provide cohesion, connection with others with a shared experience, and psychoeducation about CSA. CSA support groups may focus on body boundaries, personal safety, CSA education, and coping skills and typically do not have a disclosure or trauma narrative as part of the group curriculum [31]. This may be due to the shorter length of treatment and/or group treatment provided outside of a clinical setting, such as at a school. Due to limited time and the need for youth to not become emotionally triggered in a school setting, support groups typically do not have group members share details about their victimization.
Nonoffending caregivers are primary supports for children who have been victims of CSA and the need for specific and tailored interventions for nonoffending caregivers is increasingly recognized in the literature and caregiver support has been identified as a crucial factors in children’s recovery from CSA [32]. Caregiver interventions following sexual abuse of their child aim to reduce caregiver distress, increase adaptive caregiver coping as well as enhance support of the child [33]. Nonoffending caregivers have been referred to as “overlooked victims” in child sexual abuse cases [34]. A recent qualitative study with nonoffending caregivers of children under 13 who had been victims of CSA found that the majority of caregivers reported mental health services were necessary and beneficial for themselves to help them cope with the impact of their child’s CSA [33]. Interventions for nonoffending caregivers may include group and/or individual treatment focusing on psychoeducation, information, supports, parenting guidance, and dealing with their own victimization (if relevant). When intrafamilial CSA occurs, the nonoffending caregiver has the essential role of assisting the CSA victims and other children in the family so that safety and security can be restored [35]. Simultaneously, the caregiver is likely experiencing shock, grief, fear and a myriad of other emotions, which are often overwhelming, while they are tasked with shepherding the child who has experienced CSA on their journey of healing and recovery. Nonoffending caregivers often need support, guidance and direction because in addition to the crisis of the CSA, they may be faced with a lack of financial support, legal proceedings, and possible conflict with and separation from extended family whose loyalties may lie with the perpetrator [35]. Caregiver support is an important mediating variable in outcomes for victims of CSA [32].
Support groups for nonoffending caregivers of children who have been sexually abused can provide critical psychoeducation and social support for the caregiver during this vulnerable time of rebuilding and redefining their family [32]. Nonoffending caregiver support groups offer a safe place to begin the difficult recovery process, to normalize feelings and thoughts about their child’s CSA and to begin to build a support network with other families [34]. In the group, group therapists teach caregivers the relationship between thoughts, feelings and behaviors and provide guidance on thought restructuring which enables caregivers to deal with their own symptoms as well as modeling appropriate coping skills for their children and coaching their children on these skills. Additionally, caregiver support groups can provide practical information on social services, legal services, housing, school intervention and other needed resources [34].
Following disclosure or discovery that their child has been sexually abused, nonoffending caregivers may experience depression, posttraumatic stress and increases in anxiety [36]. Shields and colleagues found that following child sexual abuse disclosure, 24% of caregivers met diagnostic criteria for depression or PTSD or both [36]. Parental distress was associated with decreases in positive parenting and caregiver involvement with the victim. Individual therapy for the nonoffending caregiver can be beneficial to address mood symptoms, trauma reminders and to increase coping and implementation of parenting skills. This individual treatment can be provided in conjunction with group treatment. If a caregiver has their own history of CSA, they may also benefit from individual therapy to process how their child’s victimization is triggering their own CSA experience, especially if the caregiver did not receive interventions for their own CSA victimization [34].
TF-CBT incorporates individual and caregiver-focused interventions to inform families of the reactions and effects of trauma in children. Caregivers can be parents, foster parents, relative caregivers or other supportive adults actively involved in the child’s life. This caregiver component enhances the positive impact of treatment in terms of decreasing caregiver and child depressive and anxiety symptoms, as factors such as caregivers’ emotional distress and caregiver support of the child have been found to be strong and significant mediators to treatment response [10]. Parental and caregiver support is a primary component of the PRACTICE interventions of the TF-CBT model and the caregiver is actively and collaboratively involved in the entire course of treatment with approximately half of the treatment time focused on caregivers [8, 10]. Through both individual caregiver sessions and conjoint sessions with their child, caregivers learn to be present while their child discusses the CSA and how it affected them and caregivers learn skills to be supportive of their child as they work through the recovery process. Through the PRACTICE components, caregivers are taught strategies to express and modulate their affect as well as being taught ways to manage intense emotions in their child [10]. Additionally, caregivers learn parenting and child behavior management skills specific to children who have been victims of CSA. Prior to terminating treatment, skills to safety plan for CSA victims and promote positive future engagement are addressed with caregivers [11].
Following disclosure or discovery of suspected CSA, a child and family’s life may have an influx of professionals involved with the aim of child protection, assessment and promotion of the victim’s physical and mental health, prosecution of the perpetrator, and family healing and recovery. Ideally, these efforts are coordinated in order to minimize deleterious impact on the CSA victim and family. In the United States, Child Advocacy Centers (CAC) were developed in response to the desire to limit redundant interviewing of the victim and to coordinate investigative and therapeutic response to CSA [37]. These CACs utilize a multidisciplinary team of medical, mental health, child protective and law enforcement professionals in a “one stop shop” approach to CSA with interagency communication and collaboration. In 2011, The National Children’s Alliance in the United States (U.S.), developed Standards to ensure that children across the U.S. receive consistent, evidence based services that help them recover from CSA and other types of child abuse [38]. These Standards are updated every five years, with the most recent Standards from 2017 and to date there are more than 880 CACs in the United States, spanning all 50 states. In 2018, 367,797 children in the U.S. were served by CACs, with an increase in 29% from 2008 to 2018 [38]. However, even with this increase, there are still over ten million children living in the U.S. in areas without a CAC. Additionally, internationally, many countries lack the funding and infrastructure to implement a coordinated and multidisciplinary response to CSA.
Increased caregiver and child satisfaction were found with these coordination efforts in evaluation and intervention with CSA [37]. CACs can serve as a model for coordinated multidisciplinary services that reduce retraumatization of the CSA victim due to limiting the child having to repeatedly disclose their CSA experiences to police, lawyers, doctors, therapists, investigators and judges [38].
This chapter highlighted several empirically supported and highly utilized interventions for CSA. Rather than being a comprehensive review of the literature, this chapter covered best practices for CSA intervention and treatment with attention to both the child and the nonoffending caregiver as it is imperative to simultaneously address the needs of the child and the caregiver to promote healing and recovery from CSA. Multiple modalities for individual, group and collateral caregiver intervention were presented, illuminating their efficacy and implementation for CSA. Selection of a specific treatment modality should be individualized based on cultural and contextual variables for the child and family, the frequency and severity of abuse, the child’s and the caregiver’s symptomology as well as the treatment setting and the training and experience of the provider. Additionally, the need for coordinated multidisciplinary investigative and therapeutic responses to CSA was highlighted in order to limit the negative systemic impact on the child and family, with CACs presented as a model implemented in the U.S. to address this need.
",metaTitle:"Open Access Statement",metaDescription:"Book chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0)",metaKeywords:null,canonicalURL:"/page/open-access-statement/",contentRaw:'[{"type":"htmlEditorComponent","content":"
License
\\n\\nBook Chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen maintains a very flexible Copyright Policy that ensures that there is no copyright transfer to the publisher. Therefore, Authors retain exclusive copyright to their work. All Monographs are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) and journal articles are distributed under a Creative Commons 4.0 International Licence.
\\n\\n\\n\\nFormats
\\n\\nBased on your preferences and the stage of your scientific projects, you have multiple options for publishing your scientific research with IntechOpen:
\\n\\nPeer Review Policies
\\n\\nAll scientific Works are subject to Peer Review prior to publishing.
\\n\\n\\n\\nCosts
\\n\\nThe Open Access publishing model followed by IntechOpen eliminates subscription charges and pay-per-view fees, thus enabling readers to access research at no cost to themselves. In order to sustain these operations, and keep our publications freely accessible, we levy an Open Access Publishing Fee on all manuscripts accepted for publication to help cover the costs of editorial work and the production of books.
\\n\\n\\n\\nDigital Archiving Policy
\\n\\nIntechOpen is dedicated to ensuring the long-term preservation and availability of the scholarly research it publishes.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'License
\n\nBook Chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen maintains a very flexible Copyright Policy that ensures that there is no copyright transfer to the publisher. Therefore, Authors retain exclusive copyright to their work. All Monographs are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) and journal articles are distributed under a Creative Commons 4.0 International Licence.
\n\n\n\nFormats
\n\nBased on your preferences and the stage of your scientific projects, you have multiple options for publishing your scientific research with IntechOpen:
\n\nPeer Review Policies
\n\nAll scientific Works are subject to Peer Review prior to publishing.
\n\n\n\nCosts
\n\nThe Open Access publishing model followed by IntechOpen eliminates subscription charges and pay-per-view fees, thus enabling readers to access research at no cost to themselves. In order to sustain these operations, and keep our publications freely accessible, we levy an Open Access Publishing Fee on all manuscripts accepted for publication to help cover the costs of editorial work and the production of books.
\n\n\n\nDigital Archiving Policy
\n\nIntechOpen is dedicated to ensuring the long-term preservation and availability of the scholarly research it publishes.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6630},{group:"region",caption:"Middle and South America",value:2,count:5913},{group:"region",caption:"Africa",value:3,count:2404},{group:"region",caption:"Asia",value:4,count:12563},{group:"region",caption:"Australia and Oceania",value:5,count:1009},{group:"region",caption:"Europe",value:6,count:17574}],offset:12,limit:12,total:132971},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"ebgfFaeGuveeFgfcChcyvfu"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:24},{group:"topic",caption:"Computer and Information Science",value:9,count:19},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:19},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:11},{group:"topic",caption:"Materials Science",value:14,count:29},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:128},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:3},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4387},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3385,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1875,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3842,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3008,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1109,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1010,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3918,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",publishedDate:"May 11th 2022",numberOfDownloads:1654,editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7686,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3444,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10522",title:"Coding Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"6357e1dd7d38adeb519ca7a10dc9e5a0",slug:"coding-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Sudhakar Radhakrishnan and Sudev Naduvath",coverURL:"https://cdn.intechopen.com/books/images_new/10522.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10821",title:"Automation and Control",subtitle:"Theories and Applications",isOpenForSubmission:!1,hash:"18463c2291ba306c4dcbabd988227eea",slug:"automation-and-control-theories-and-applications",bookSignature:"Elmer P. Dadios",coverURL:"https://cdn.intechopen.com/books/images_new/10821.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11348",title:"Mutagenesis and Mitochondrial-Associated Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"001972b3c5b49367314b13025a449232",slug:"mutagenesis-and-mitochondrial-associated-pathologies",bookSignature:"Michael Fasullo and Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/11348.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"258231",title:"Dr.",name:"Michael",middleName:"Thomas",surname:"Fasullo",slug:"michael-fasullo",fullName:"Michael Fasullo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11123",title:"Epoxy-Based Composites",subtitle:null,isOpenForSubmission:!1,hash:"c1c5447cf3b9d6c7688276ac30e80de6",slug:"epoxy-based-composites",bookSignature:"Samson Jerold Samuel Chelladurai, Ramesh Arthanari and M.R.Meera",coverURL:"https://cdn.intechopen.com/books/images_new/11123.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"247421",title:"Dr.",name:"Samson Jerold Samuel",middleName:null,surname:"Chelladurai",slug:"samson-jerold-samuel-chelladurai",fullName:"Samson Jerold Samuel Chelladurai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10632",title:"Theory and Practice of Tunnel Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ba17749f9d0b6a62d584a3c320a1f49",slug:"theory-and-practice-of-tunnel-engineering",bookSignature:"Hasan Tosun",coverURL:"https://cdn.intechopen.com/books/images_new/10632.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"79083",title:"Prof.",name:"Hasan",middleName:null,surname:"Tosun",slug:"hasan-tosun",fullName:"Hasan Tosun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10906",title:"Fungal Reproduction and Growth",subtitle:null,isOpenForSubmission:!1,hash:"f84de0280d54f3b52e3e4585cff24ac1",slug:"fungal-reproduction-and-growth",bookSignature:"Sadia Sultan and Gurmeet Kaur Surindar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10906.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"176737",title:"Dr.",name:"Sadia",middleName:null,surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10914",title:"Effective Elimination of Structural Racism",subtitle:null,isOpenForSubmission:!1,hash:"f6a2562646c0fd664aca8335bc3b3e69",slug:"effective-elimination-of-structural-racism",bookSignature:"Erick Guerrero",coverURL:"https://cdn.intechopen.com/books/images_new/10914.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"294761",title:"Dr.",name:"Erick",middleName:null,surname:"Guerrero",slug:"erick-guerrero",fullName:"Erick Guerrero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,isOpenForSubmission:!1,hash:"2d66af42fb17d0a6556bb9ef28e273c7",slug:"animal-reproduction",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10940",title:"Plant Hormones",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"5aae8a345f8047ed528914ff3491f643",slug:"plant-hormones-recent-advances-new-perspectives-and-applications",bookSignature:"Christophe Hano",coverURL:"https://cdn.intechopen.com/books/images_new/10940.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10207",title:"Sexual Abuse",subtitle:"An Interdisciplinary Approach",isOpenForSubmission:!1,hash:"e1ec1d5a7093490df314d7887e0b3809",slug:"sexual-abuse-an-interdisciplinary-approach",bookSignature:"Ersi Kalfoğlu and Sotirios Kalfoglou",coverURL:"https://cdn.intechopen.com/books/images_new/10207.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"68678",title:"Dr.",name:"Ersi",middleName:null,surname:"Kalfoglou",slug:"ersi-kalfoglou",fullName:"Ersi Kalfoglou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1250",title:"Rescue Robot",slug:"rescue-robot",parent:{id:"242",title:"Aerial Robotics",slug:"aerial-robotics"},numberOfBooks:2,numberOfSeries:0,numberOfAuthorsAndEditors:29,numberOfWosCitations:61,numberOfCrossrefCitations:67,numberOfDimensionsCitations:99,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1250",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"5905",title:"Robots Operating in Hazardous Environments",subtitle:null,isOpenForSubmission:!1,hash:"a22b4e4b02af1dd0727231b0d974f121",slug:"robots-operating-in-hazardous-environments",bookSignature:"Hüseyin Canbolat",coverURL:"https://cdn.intechopen.com/books/images_new/5905.jpg",editedByType:"Edited by",editors:[{id:"5887",title:"Dr.",name:"Hüseyin",middleName:null,surname:"Canbolat",slug:"huseyin-canbolat",fullName:"Hüseyin Canbolat"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6181",title:"Search and Rescue Robotics",subtitle:"From Theory to Practice",isOpenForSubmission:!1,hash:"e1ca88810595580ec90815aab3f1ec9a",slug:"search-and-rescue-robotics-from-theory-to-practice",bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/6181.jpg",editedByType:"Authored by",editors:null,equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}}],booksByTopicTotal:2,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"56152",doi:"10.5772/intechopen.69489",title:"Introduction to the Use of Robotic Tools for Search and Rescue",slug:"introduction-to-the-use-of-robotic-tools-for-search-and-rescue",totalDownloads:23900,totalCrossrefCites:15,totalDimensionsCites:19,abstract:"Modern search and rescue workers are equipped with a powerful toolkit to address natural and man-made disasters. This introductory chapter explains how a new tool can be added to this toolkit: robots. The use of robotic assets in search and rescue operations is explained and an overview is given of the worldwide efforts to incorporate robotic tools in search and rescue operations. Furthermore, the European Union ICARUS project on this subject is introduced. The ICARUS project proposes to equip first responders with a comprehensive and integrated set of unmanned search and rescue tools, to increase the situational awareness of human crisis managers, such that more work can be done in a shorter amount of time. The ICARUS tools consist of assistive unmanned air, ground, and sea vehicles, equipped with victim-detection sensors. The unmanned vehicles collaborate as a coordinated team, communicating via ad hoc cognitive radio networking. To ensure optimal human-robot collaboration, these tools are seamlessly integrated into the command and control equipment of the human crisis managers and a set of training and support tools is provided to them to learn to use the ICARUS system.",book:{id:"6181",slug:"search-and-rescue-robotics-from-theory-to-practice",title:"Search and Rescue Robotics",fullTitle:"Search and Rescue Robotics - From Theory to Practice"},signatures:"Geert De Cubber, Daniela Doroftei, Konrad Rudin, Karsten Berns,\nAnibal Matos, Daniel Serrano, Jose Sanchez, Shashank Govindaraj,\nJanusz Bedkowski, Rui Roda, Eduardo Silva and Stephane Ourevitch",authors:[{id:"206420",title:"Dr.",name:"Geert",middleName:null,surname:"De Cubber",slug:"geert-de-cubber",fullName:"Geert De Cubber"}]},{id:"56737",doi:"10.5772/intechopen.69738",title:"UAV for Landmine Detection Using SDR-Based GPR Technology",slug:"uav-for-landmine-detection-using-sdr-based-gpr-technology",totalDownloads:3331,totalCrossrefCites:12,totalDimensionsCites:14,abstract:"This chapter presents an approach for explosive-landmine detection on-board an autonomous aerial drone. The chapter describes the design, implementation and integration of a ground penetrating radar (GPR) using a software defined radio (SDR) platform into the aerial drone. The chapter?s goal is first to tackle in detail the development of a custom-designed lightweight GPR by approaching interplay between hardware and software radio on an SDR platform. The SDR-based GPR system results on a much lighter sensing device compared against the conventional GPR systems found in the literature and with the capability of re-configuration in real-time for different landmines and terrains, with the capability of detecting landmines under terrains with different dielectric characteristics. Secondly, the chapter introduce the integration of the SDR-based GPR into an autonomous drone by describing the mechanical integration, communication system, the graphical user interface (GUI) together with the landmine detection and geo-mapping. This chapter approach completely the hardware and software implementation topics of the on-board GPR system given first a comprehensive background of the software-defined radar technology and second presenting the main features of the Tx and Rx modules. Additional details are presented related with the mechanical and functional integration of the GPR into the UAV system.",book:{id:"5905",slug:"robots-operating-in-hazardous-environments",title:"Robots Operating in Hazardous Environments",fullTitle:"Robots Operating in Hazardous Environments"},signatures:"Manuel Ricardo Pérez Cerquera, Julian David Colorado Montaño\nand Iván Mondragón",authors:[{id:"177422",title:"Dr.",name:"Julian",middleName:null,surname:"Colorado",slug:"julian-colorado",fullName:"Julian Colorado"},{id:"197884",title:"Prof.",name:"Ivan",middleName:null,surname:"Mondragon",slug:"ivan-mondragon",fullName:"Ivan Mondragon"},{id:"199958",title:"Prof.",name:"Manuel",middleName:null,surname:"Perez",slug:"manuel-perez",fullName:"Manuel Perez"}]},{id:"56126",doi:"10.5772/intechopen.69493",title:"Interoperability in a Heterogeneous Team of Search and Rescue Robots",slug:"interoperability-in-a-heterogeneous-team-of-search-and-rescue-robots",totalDownloads:22671,totalCrossrefCites:8,totalDimensionsCites:10,abstract:"Search and rescue missions are complex operations. A disaster scenario is generally unstructured, time‐varying and unpredictable. This poses several challenges for the successful deployment of unmanned technology. The variety of operational scenarios and tasks lead to the need for multiple robots of different types, domains and sizes. A priori planning of the optimal set of assets to be deployed and the definition of their mission objectives are generally not feasible as information only becomes available during mission. The ICARUS project responds to this challenge by developing a heterogeneous team composed by different and complementary robots, dynamically cooperating as an interoperable team. This chapter describes our approach to multi‐robot interoperability, understood as the ability of multiple robots to operate together, in synergy, enabling multiple teams to share data, intelligence and resources, which is the ultimate objective of ICARUS project. It also includes the analysis of the relevant standardization initiatives in multi‐robot multi‐domain systems, our implementation of an interoperability framework and several examples of multi‐robot cooperation of the ICARUS robots in realistic search and rescue missions.",book:{id:"6181",slug:"search-and-rescue-robotics-from-theory-to-practice",title:"Search and Rescue Robotics",fullTitle:"Search and Rescue Robotics - From Theory to Practice"},signatures:"Daniel Serrano López, German Moreno, Jose Cordero, Jose Sanchez,\nShashank Govindaraj, Mario Monteiro Marques, Victor Lobo,\nStefano Fioravanti, Alberto Grati, Konrad Rudin, Massimo Tosa,\nAnibal Matos, Andre Dias, Alfredo Martins, Janusz Bedkowski, Haris\nBalta and Geert De Cubber",authors:[{id:"153104",title:"Prof.",name:"Victor",middleName:null,surname:"Lobo",slug:"victor-lobo",fullName:"Victor Lobo"},{id:"212087",title:"Mr.",name:"Daniel",middleName:null,surname:"Serrano",slug:"daniel-serrano",fullName:"Daniel Serrano"}]},{id:"56139",doi:"10.5772/intechopen.69492",title:"Unmanned Maritime Systems for Search and Rescue",slug:"unmanned-maritime-systems-for-search-and-rescue",totalDownloads:22685,totalCrossrefCites:4,totalDimensionsCites:10,abstract:"The development of maritime unmanned tools for search and rescue operations is not a trivial task. A great part of maritime unmanned systems developed did not target such application, being more focused on environmental monitoring, surveillance or defence. In opposition to these applications, search and rescue operations need to take into account relevant issues such as the presence of people or other vessels on the water. Building upon user requirements and overall integrated components for assisted rescue and unmanned search operations (ICARUS) system architecture, this chapter addresses the development of unmanned maritime systems. It starts with an overview of the approach where a two‐tier solution was adopted to address safety issues and then proceeds to detail each of the developed technologies.",book:{id:"6181",slug:"search-and-rescue-robotics-from-theory-to-practice",title:"Search and Rescue Robotics",fullTitle:"Search and Rescue Robotics - From Theory to Practice"},signatures:"Aníbal Matos, Eduardo Silva, José Almeida, Alfredo Martins, Hugo\nFerreira, Bruno Ferreira, José Alves, André Dias, Stefano Fioravanti,\nDaniele Bertin and Victor Lobo",authors:[{id:"153104",title:"Prof.",name:"Victor",middleName:null,surname:"Lobo",slug:"victor-lobo",fullName:"Victor Lobo"},{id:"12282",title:"Dr.",name:"Aníbal",middleName:null,surname:"Matos",slug:"anibal-matos",fullName:"Aníbal Matos"}]},{id:"56076",doi:"10.5772/intechopen.69739",title:"Towards Advanced Robotic Manipulations for Nuclear Decommissioning",slug:"towards-advanced-robotic-manipulations-for-nuclear-decommissioning",totalDownloads:1493,totalCrossrefCites:7,totalDimensionsCites:10,abstract:"Despite enormous remote handling requirements, remarkably very few robots are being used by the nuclear industry. Most of the remote handling tasks are still performed manually, using conventional mechanical master‐slave devices. The few robotic manipulators deployed are directly tele‐operated in rudimentary ways, with almost no autonomy or even a pre‐programmed motion. In addition, majority of these robots are under‐sensored (i.e. with no proprioception), which prevents them to use for automatic tasks. In this context, primarily this chapter discusses the human operator performance in accomplishing heavy‐duty remote handling tasks in hazardous environments such as nuclear decommissioning. Multiple factors are evaluated to analyse the human operators’ performance and workload. Also, direct human tele‐operation is compared against human‐supervised semi‐autonomous control exploiting computer vision. Secondarily, a vision‐guided solution towards enabling advanced control and automating the under‐sensored robots is presented. Maintaining the coherence with real nuclear scenario, the experiments are conducted in the lab environment and results are discussed.",book:{id:"5905",slug:"robots-operating-in-hazardous-environments",title:"Robots Operating in Hazardous Environments",fullTitle:"Robots Operating in Hazardous Environments"},signatures:"Naresh Marturi, Alireza Rastegarpanah, Vijaykumar Rajasekaran,\nValerio Ortenzi, Yasemin Bekiroglu, Jeffrey Kuo and Rustam Stolkin",authors:[{id:"201309",title:"Dr.",name:"Naresh",middleName:null,surname:"Marturi",slug:"naresh-marturi",fullName:"Naresh Marturi"},{id:"203239",title:"Dr.",name:"Alireza",middleName:null,surname:"Rastegarpanah",slug:"alireza-rastegarpanah",fullName:"Alireza Rastegarpanah"},{id:"203240",title:"Mr.",name:"Valerio",middleName:null,surname:"Ortenzi",slug:"valerio-ortenzi",fullName:"Valerio Ortenzi"},{id:"203241",title:"Dr.",name:"Yasemin",middleName:null,surname:"Bekiroglu",slug:"yasemin-bekiroglu",fullName:"Yasemin Bekiroglu"},{id:"203242",title:"Dr.",name:"Rustam",middleName:null,surname:"Stolkin",slug:"rustam-stolkin",fullName:"Rustam Stolkin"},{id:"209401",title:"Dr.",name:"Vijaykumar",middleName:null,surname:"Rajasekaran",slug:"vijaykumar-rajasekaran",fullName:"Vijaykumar Rajasekaran"}]}],mostDownloadedChaptersLast30Days:[{id:"56737",title:"UAV for Landmine Detection Using SDR-Based GPR Technology",slug:"uav-for-landmine-detection-using-sdr-based-gpr-technology",totalDownloads:3336,totalCrossrefCites:12,totalDimensionsCites:14,abstract:"This chapter presents an approach for explosive-landmine detection on-board an autonomous aerial drone. The chapter describes the design, implementation and integration of a ground penetrating radar (GPR) using a software defined radio (SDR) platform into the aerial drone. The chapter?s goal is first to tackle in detail the development of a custom-designed lightweight GPR by approaching interplay between hardware and software radio on an SDR platform. The SDR-based GPR system results on a much lighter sensing device compared against the conventional GPR systems found in the literature and with the capability of re-configuration in real-time for different landmines and terrains, with the capability of detecting landmines under terrains with different dielectric characteristics. Secondly, the chapter introduce the integration of the SDR-based GPR into an autonomous drone by describing the mechanical integration, communication system, the graphical user interface (GUI) together with the landmine detection and geo-mapping. This chapter approach completely the hardware and software implementation topics of the on-board GPR system given first a comprehensive background of the software-defined radar technology and second presenting the main features of the Tx and Rx modules. Additional details are presented related with the mechanical and functional integration of the GPR into the UAV system.",book:{id:"5905",slug:"robots-operating-in-hazardous-environments",title:"Robots Operating in Hazardous Environments",fullTitle:"Robots Operating in Hazardous Environments"},signatures:"Manuel Ricardo Pérez Cerquera, Julian David Colorado Montaño\nand Iván Mondragón",authors:[{id:"177422",title:"Dr.",name:"Julian",middleName:null,surname:"Colorado",slug:"julian-colorado",fullName:"Julian Colorado"},{id:"197884",title:"Prof.",name:"Ivan",middleName:null,surname:"Mondragon",slug:"ivan-mondragon",fullName:"Ivan Mondragon"},{id:"199958",title:"Prof.",name:"Manuel",middleName:null,surname:"Perez",slug:"manuel-perez",fullName:"Manuel Perez"}]},{id:"56729",title:"Robot Protection in the Hazardous Environments",slug:"robot-protection-in-the-hazardous-environments",totalDownloads:1787,totalCrossrefCites:1,totalDimensionsCites:4,abstract:"Rescue missions for chemical, biological, radiological, nuclear, and explosive (CBRNE) incidents are highly risky and sometimes it is impossible for rescuers to perform, while these accidents vary dramatically in features and protection requirements. The purpose of this chapter is to present several protection approaches for rescue robots in the hazardous conditions. And four types of rescue robots are presented, respectively. First, design factors and challenges of the rescue robots are analyzed and indicated for these accidents. Then the rescue robots with protective modification are presented, respectively, meeting individual hazardous requirements. And finally several tests are conducted to validate the effectiveness of these modified robots. It is clear that these well-designed robots can work efficiently for the CBRNE response activities.",book:{id:"5905",slug:"robots-operating-in-hazardous-environments",title:"Robots Operating in Hazardous Environments",fullTitle:"Robots Operating in Hazardous Environments"},signatures:"Weidong Wang, Wenrui Gao, Siyu Zhao, Wenwu Cao and Zhijiang\nDu",authors:[{id:"200730",title:"Dr.",name:"Weidong",middleName:null,surname:"Wang",slug:"weidong-wang",fullName:"Weidong Wang"},{id:"207176",title:"Dr.",name:"Wenrui",middleName:null,surname:"Gao",slug:"wenrui-gao",fullName:"Wenrui Gao"},{id:"207177",title:"MSc.",name:"Siyu",middleName:null,surname:"Zhao",slug:"siyu-zhao",fullName:"Siyu Zhao"},{id:"207178",title:"MSc.",name:"Wenwu",middleName:null,surname:"Cao",slug:"wenwu-cao",fullName:"Wenwu Cao"},{id:"207179",title:"Prof.",name:"Zhijiang",middleName:null,surname:"Du",slug:"zhijiang-du",fullName:"Zhijiang Du"}]},{id:"56086",title:"Command and Control Systems for Search and Rescue Robots",slug:"command-and-control-systems-for-search-and-rescue-robots",totalDownloads:22793,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"The novel application of unmanned systems in the domain of humanitarian Search and Rescue (SAR) operations has created a need to develop specific multi-Robot Command and Control (RC2) systems. This societal application of robotics requires human-robot interfaces for controlling a large fleet of heterogeneous robots deployed in multiple domains of operation (ground, aerial and marine). This chapter provides an overview of the Command, Control and Intelligence (C2I) system developed within the scope of Integrated Components for Assisted Rescue and Unmanned Search operations (ICARUS). The life cycle of the system begins with a description of use cases and the deployment scenarios in collaboration with SAR teams as end-users. This is followed by an illustration of the system design and architecture, core technologies used in implementing the C2I, iterative integration phases with field deployments for evaluating and improving the system. The main subcomponents consist of a central Mission Planning and Coordination System (MPCS), field Robot Command and Control (RC2) subsystems with a portable force-feedback exoskeleton interface for robot arm tele-manipulation and field mobile devices. The distribution of these C2I subsystems with their communication links for unmanned SAR operations is described in detail. Field demonstrations of the C2I system with SAR personnel assisted by unmanned systems provide an outlook for implementing such systems into mainstream SAR operations in the future.",book:{id:"6181",slug:"search-and-rescue-robotics-from-theory-to-practice",title:"Search and Rescue Robotics",fullTitle:"Search and Rescue Robotics - From Theory to Practice"},signatures:"Shashank Govindaraj, Pierre Letier, Keshav Chintamani, Jeremi\nGancet, Mario Nunez Jimenez, Miguel Ángel Esbrí, Pawel Musialik,\nJanusz Bedkowski, Irune Badiola, Ricardo Gonçalves, António\nCoelho, Daniel Serrano, Massimo Tosa, Thomas Pfister and Jose\nManuel Sanchez",authors:[{id:"212089",title:"Mr.",name:"Shashank",middleName:null,surname:"Govindaraj",slug:"shashank-govindaraj",fullName:"Shashank Govindaraj"}]},{id:"56080",title:"Unmanned Ground Robots for Rescue Tasks",slug:"unmanned-ground-robots-for-rescue-tasks",totalDownloads:24012,totalCrossrefCites:4,totalDimensionsCites:7,abstract:"This chapter describes two unmanned ground vehicles that can help search and rescue teams in their difficult, but life-saving tasks. These robotic assets have been developed within the framework of the European project ICARUS. The large unmanned ground vehicle is intended to be a mobile base station. It is equipped with a powerful manipulator arm and can be used for debris removal, shoring operations, and remote structural operations (cutting, welding, hammering, etc.) on very rough terrain. The smaller unmanned ground vehicle is also equipped with an array of sensors, enabling it to search for victims inside semi-destroyed buildings. Working together with each other and the human search and rescue workers, these robotic assets form a powerful team, increasing the effectiveness of search and rescue operations, as proven by operational validation tests in collaboration with end users.",book:{id:"6181",slug:"search-and-rescue-robotics-from-theory-to-practice",title:"Search and Rescue Robotics",fullTitle:"Search and Rescue Robotics - From Theory to Practice"},signatures:"Karsten Berns, Atabak Nezhadfard, Massimo Tosa, Haris Balta and\nGeert De Cubber",authors:[{id:"212086",title:"Prof.",name:"Karsten",middleName:null,surname:"Berns",slug:"karsten-berns",fullName:"Karsten Berns"}]},{id:"56656",title:"Robots for Humanitarian Demining",slug:"robots-for-humanitarian-demining",totalDownloads:1553,totalCrossrefCites:2,totalDimensionsCites:4,abstract:"More than 100,000,000 anti-personnel mines have been laid in deferent part of the world by terrorists or government forces. The mines are cheapest weapon, built to make horrible injuries, affecting active people, with major falls-off into economic growth. Therefore, after or during a war demining is a big technological problem which needs to address by the governments. All demining activities can be classified mainly in two different ways, military demining and humanitarian demining. Main objective of military demining is to make a quick safe path for troops and may be 80% clearing is enough for them. On the other hand, humanitarian demining target is to clear 100% to ensure the use of lands by people who are not involved in the conflicts for their day-to-day activities including farming. Mainly humanitarian demining has two tasks: detection and removal. Still the use of robots is questionable in this regard. Mainly robots work well for clean and reliable tasks. When the price to performance ratio is too high, they are academic toys. This chapter presents the overview of the available robotic technologies with a depth comparison between them by considering the appropriateness to the local context.",book:{id:"5905",slug:"robots-operating-in-hazardous-environments",title:"Robots Operating in Hazardous Environments",fullTitle:"Robots Operating in Hazardous Environments"},signatures:"Manjula Udayanga Hemapala",authors:[{id:"128187",title:"Dr.",name:"K.T.M.",middleName:"Udayanga",surname:"Hemapala",slug:"k.t.m.-hemapala",fullName:"K.T.M. Hemapala"}]}],onlineFirstChaptersFilter:{topicId:"1250",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],testimonialsList:[]},series:{item:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517",scope:"Paralleling similar advances in the medical field, astounding advances occurred in Veterinary Medicine and Science in recent decades. These advances have helped foster better support for animal health, more humane animal production, and a better understanding of the physiology of endangered species to improve the assisted reproductive technologies or the pathogenesis of certain diseases, where animals can be used as models for human diseases (like cancer, degenerative diseases or fertility), and even as a guarantee of public health. Bridging Human, Animal, and Environmental health, the holistic and integrative “One Health” concept intimately associates the developments within those fields, projecting its advancements into practice. This book series aims to tackle various animal-related medicine and sciences fields, providing thematic volumes consisting of high-quality significant research directed to researchers and postgraduates. It aims to give us a glimpse into the new accomplishments in the Veterinary Medicine and Science field. By addressing hot topics in veterinary sciences, we aim to gather authoritative texts within each issue of this series, providing in-depth overviews and analysis for graduates, academics, and practitioners and foreseeing a deeper understanding of the subject. Forthcoming texts, written and edited by experienced researchers from both industry and academia, will also discuss scientific challenges faced today in Veterinary Medicine and Science. In brief, we hope that books in this series will provide accessible references for those interested or working in this field and encourage learning in a range of different topics.",coverUrl:"https://cdn.intechopen.com/series/covers/13.jpg",latestPublicationDate:"May 25th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:11,editor:{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"19",title:"Animal Science",coverUrl:"https://cdn.intechopen.com/series_topics/covers/19.jpg",isOpenForSubmission:!0,annualVolume:11415,editor:{id:"259298",title:"Dr.",name:"Edward",middleName:null,surname:"Narayan",slug:"edward-narayan",fullName:"Edward Narayan",profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",biography:"Dr. Edward Narayan graduated with Ph.D. degree in Biology from the University of the South Pacific and pioneered non-invasive reproductive and stress endocrinology tools for amphibians - the novel development and validation of non-invasive enzyme immunoassays for the evaluation of reproductive hormonal cycle and stress hormone responses to environmental stressors. \nDr. Narayan leads the Stress Lab (Comparative Physiology and Endocrinology) at the University of Queensland. A dynamic career research platform which is based on the thematic areas of comparative vertebrate physiology, stress endocrinology, reproductive endocrinology, animal health and welfare, and conservation biology. \nEdward has supervised 40 research students and published over 60 peer reviewed research.",institutionString:null,institution:{name:"University of Queensland",institutionURL:null,country:{name:"Australia"}}},editorTwo:null,editorThree:null},{id:"20",title:"Animal Nutrition",coverUrl:"https://cdn.intechopen.com/series_topics/covers/20.jpg",isOpenForSubmission:!0,annualVolume:11416,editor:{id:"175967",title:"Dr.",name:"Manuel",middleName:null,surname:"Gonzalez Ronquillo",slug:"manuel-gonzalez-ronquillo",fullName:"Manuel Gonzalez Ronquillo",profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",biography:"Dr. Manuel González Ronquillo obtained his doctorate degree from the University of Zaragoza, Spain, in 2001. He is a research professor at the Faculty of Veterinary Medicine and Animal Husbandry, Autonomous University of the State of Mexico. He is also a level-2 researcher. He received a Fulbright-Garcia Robles fellowship for a postdoctoral stay at the US Dairy Forage Research Center, Madison, Wisconsin, USA in 2008–2009. He received grants from Alianza del Pacifico for a stay at the University of Magallanes, Chile, in 2014, and from Consejo Nacional de Ciencia y Tecnología (CONACyT) to work in the Food and Agriculture Organization’s Animal Production and Health Division (AGA), Rome, Italy, in 2014–2015. He has collaborated with researchers from different countries and published ninety-eight journal articles. He teaches various degree courses in zootechnics, sheep production, and agricultural sciences and natural resources.\n\nDr. Ronquillo’s research focuses on the evaluation of sustainable animal diets (StAnD), using native resources of the region, decreasing carbon footprint, and applying meta-analysis and mathematical models for a better understanding of animal production.",institutionString:null,institution:{name:"Universidad Autónoma del Estado de México",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"28",title:"Animal Reproductive Biology and Technology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/28.jpg",isOpenForSubmission:!0,annualVolume:11417,editor:{id:"177225",title:"Prof.",name:"Rosa Maria Lino Neto",middleName:null,surname:"Pereira",slug:"rosa-maria-lino-neto-pereira",fullName:"Rosa Maria Lino Neto Pereira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9wkQAC/Profile_Picture_1624519982291",biography:"Rosa Maria Lino Neto Pereira (DVM, MsC, PhD and) is currently a researcher at the Genetic Resources and Biotechnology Unit of the National Institute of Agrarian and Veterinarian Research (INIAV, Portugal). She is the head of the Reproduction and Embryology Laboratories and was lecturer of Reproduction and Reproductive Biotechnologies at Veterinary Medicine Faculty. She has over 25 years of experience working in reproductive biology and biotechnology areas with a special emphasis on embryo and gamete cryopreservation, for research and animal genetic resources conservation, leading research projects with several peer-reviewed papers. Rosa Pereira is member of the ERFP-FAO Ex situ Working Group and of the Management Commission of the Portuguese Animal Germplasm Bank.",institutionString:"The National Institute for Agricultural and Veterinary Research. Portugal",institution:null},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:1,paginationItems:[{id:"81831",title:"Deep Network Model and Regression Analysis using OLS Method for Predicting Lung Vital Capacity",doi:"10.5772/intechopen.104737",signatures:"Harun Sümbül",slug:"deep-network-model-and-regression-analysis-using-ols-method-for-predicting-lung-vital-capacity",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Decision Science - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11604.jpg",subseries:{id:"86",title:"Business and Management"}}}]},overviewPagePublishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",hash:"86a6d33cf601587e591064ce92effc02",volumeInSeries:1,fullTitle:"Leadership in a Changing World - A Multidimensional Perspective",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",biography:"Dr. Muhammad Mohiuddin is an Associate Professor of International Business at Laval University, Canada. He has taught at Thompson Rivers University, Canada; University of Paris-Est, France; Osnabruck University of Applied Science, Germany; and Shanghai Institute of Technology and Tianjin University of Technology, China. He has published research in Research Policy, Applied Economics, Review of Economic Philosophy, Strategic Change, International Journal of Logistics, Sustainability, Journal of Environmental Management, Journal of Global Information Management, Journal of Cleaner Production, M@N@GEMENT, and more. He is a member of CEDIMES Institut (France), Academy of International Business (AIB), Strategic Management Society (SMS), Academy of Management (AOM), Administrative Science Association of Canada (ASAC), and Canadian council of small business and entrepreneurship (CCSBE). He is currently the director of the Research Group on Contemporary Asia (GERAC) at Laval University. He is also co-managing editor of Transnational Corporations Review and a guest editor for Electronic Commerce Research and Journal of Internet Technology.",institutionString:"Université Laval",institution:{name:"Université Laval",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"11579",title:"Animal Welfare - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11579.jpg",hash:"12e4f41264cbe99028655e5463fa941a",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"51520",title:"Dr.",name:"Shao-Wen",surname:"Hung",slug:"shao-wen-hung",fullName:"Shao-Wen Hung"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11578",title:"Antibiotics and Probiotics in Animal Food - Impact and Regulation",coverURL:"https://cdn.intechopen.com/books/images_new/11578.jpg",hash:"3731c009f474c6ed4293f348ca7b27ac",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 3rd 2022",isOpenForSubmission:!0,editors:[{id:"225390",title:"Dr.",name:"Asghar Ali",surname:"Kamboh",slug:"asghar-ali-kamboh",fullName:"Asghar Ali Kamboh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:0,paginationItems:[]},subseriesFiltersForOFChapters:[],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{}},subseries:{item:{id:"28",type:"subseries",title:"Animal Reproductive Biology and Technology",keywords:"Animal Reproduction, Artificial Insemination, Embryos, Cryopreservation, Conservation, Breeding, Epigenetics",scope:"The advances of knowledge on animal reproductive biology and technologies revolutionized livestock production. Artificial insemination, for example, was the first technology applied on a large scale, initially in dairy cattle and afterward applied to other species. Nowadays, embryo production and transfer are used commercially along with other technologies to modulate epigenetic regulation. Gene editing is also emerging as an innovative tool. This topic will discuss the potential use of these techniques, novel strategies, and lines of research in progress in the fields mentioned above.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/28.jpg",hasOnlineFirst:!1,hasPublishedBooks:!0,annualVolume:11417,editor:{id:"177225",title:"Prof.",name:"Rosa Maria Lino Neto",middleName:null,surname:"Pereira",slug:"rosa-maria-lino-neto-pereira",fullName:"Rosa Maria Lino Neto Pereira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9wkQAC/Profile_Picture_1624519982291",biography:"Rosa Maria Lino Neto Pereira (DVM, MsC, PhD and) is currently a researcher at the Genetic Resources and Biotechnology Unit of the National Institute of Agrarian and Veterinarian Research (INIAV, Portugal). She is the head of the Reproduction and Embryology Laboratories and was lecturer of Reproduction and Reproductive Biotechnologies at Veterinary Medicine Faculty. She has over 25 years of experience working in reproductive biology and biotechnology areas with a special emphasis on embryo and gamete cryopreservation, for research and animal genetic resources conservation, leading research projects with several peer-reviewed papers. Rosa Pereira is member of the ERFP-FAO Ex situ Working Group and of the Management Commission of the Portuguese Animal Germplasm Bank.",institutionString:"The National Institute for Agricultural and Veterinary Research. Portugal",institution:null},editorTwo:null,editorThree:null,series:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517"},editorialBoard:[{id:"90066",title:"Dr.",name:"Alexandre",middleName:"Rodrigues",surname:"Silva",slug:"alexandre-silva",fullName:"Alexandre Silva",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRt8pQAC/Profile_Picture_1622531020756",institutionString:null,institution:{name:"Universidade Federal Rural do Semi-Árido",institutionURL:null,country:{name:"Brazil"}}},{id:"176987",title:"Ph.D.",name:"María-José",middleName:"Carrascosa",surname:"Argente",slug:"maria-jose-argente",fullName:"María-José Argente",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9vOQAS/Profile_Picture_1630330499537",institutionString:null,institution:{name:"Miguel Hernandez University",institutionURL:null,country:{name:"Spain"}}},{id:"321396",title:"Prof.",name:"Muhammad Subhan",middleName:null,surname:"Qureshi",slug:"muhammad-subhan-qureshi",fullName:"Muhammad Subhan Qureshi",profilePictureURL:"https://mts.intechopen.com/storage/users/321396/images/system/321396.jpg",institutionString:null,institution:{name:"University of Agriculture",institutionURL:null,country:{name:"Pakistan"}}},{id:"183723",title:"Dr.",name:"Xiaojun",middleName:null,surname:"Liu",slug:"xiaojun-liu",fullName:"Xiaojun Liu",profilePictureURL:"https://mts.intechopen.com/storage/users/183723/images/system/183723.jpg",institutionString:null,institution:null}]},onlineFirstChapters:{paginationCount:0,paginationItems:[]},publishedBooks:{paginationCount:4,paginationItems:[{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",slug:"animal-reproduction",publishedDate:"May 25th 2022",editedByType:"Edited by",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",hash:"2d66af42fb17d0a6556bb9ef28e273c7",volumeInSeries:11,fullTitle:"Animal Reproduction",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt",profilePictureURL:"https://mts.intechopen.com/storage/users/90846/images/system/90846.jpg",institutionString:"İskenderun Technical University",institution:{name:"İskenderun Technical University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",editedByType:"Edited by",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",hash:"13aaddf5fdbbc78387e77a7da2388bf6",volumeInSeries:6,fullTitle:"Animal Reproduction in Veterinary Medicine",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral",profilePictureURL:"https://mts.intechopen.com/storage/users/25600/images/system/25600.jpg",institutionString:"Independent Researcher",institution:{name:"Harran University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[{id:"22",title:"Applied Intelligence",scope:"This field is the key in the current industrial revolution (Industry 4.0), where the new models and developments are based on the knowledge generation on applied intelligence. The motor of the society is the industry and the research of this topic has to be empowered in order to increase and improve the quality of our lives.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",keywords:"Machine Learning, Intelligence Algorithms, Data Science, Artificial Intelligence, Applications on Applied Intelligence"},{id:"23",title:"Computational Neuroscience",scope:"Computational neuroscience focuses on biologically realistic abstractions and models validated and solved through computational simulations to understand principles for the development, structure, physiology, and ability of the nervous system. This topic is dedicated to biologically plausible descriptions and computational models - at various abstraction levels - of neurons and neural systems. This includes, but is not limited to: single-neuron modeling, sensory processing, motor control, memory, and synaptic plasticity, attention, identification, categorization, discrimination, learning, development, axonal patterning, guidance, neural architecture, behaviors, and dynamics of networks, cognition and the neuroscientific basis of consciousness. Particularly interesting are models of various types of more compound functions and abilities, various and more general fundamental principles (e.g., regarding architecture, organization, learning, development, etc.) found at various spatial and temporal levels.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",keywords:"Single-Neuron Modeling, Sensory Processing, Motor Control, Memory and Synaptic Pasticity, Attention, Identification, Categorization, Discrimination, Learning, Development, Axonal Patterning and Guidance, Neural Architecture, Behaviours and Dynamics of Networks, Cognition and the Neuroscientific Basis of Consciousness"},{id:"24",title:"Computer Vision",scope:"The scope of this topic is to disseminate the recent advances in the rapidly growing field of computer vision from both the theoretical and practical points of view. Novel computational algorithms for image analysis, scene understanding, biometrics, deep learning and their software or hardware implementations for natural and medical images, robotics, VR/AR, applications are some research directions relevant to this topic.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",keywords:"Image Analysis, Scene Understanding, Biometrics, Deep Learning, Software Implementation, Hardware Implementation, Natural Images, Medical Images, Robotics, VR/AR"},{id:"25",title:"Evolutionary Computation",scope:"Evolutionary computing is a paradigm that has grown dramatically in recent years. This group of bio-inspired metaheuristics solves multiple optimization problems by applying the metaphor of natural selection. It so far has solved problems such as resource allocation, routing, schedule planning, and engineering design. Moreover, in the field of machine learning, evolutionary computation has carved out a significant niche both in the generation of learning models and in the automatic design and optimization of hyperparameters in deep learning models. This collection aims to include quality volumes on various topics related to evolutionary algorithms and, alternatively, other metaheuristics of interest inspired by nature. For example, some of the issues of interest could be the following: Advances in evolutionary computation (Genetic algorithms, Genetic programming, Bio-inspired metaheuristics, Hybrid metaheuristics, Parallel ECs); Applications of evolutionary algorithms (Machine learning and Data Mining with EAs, Search-Based Software Engineering, Scheduling, and Planning Applications, Smart Transport Applications, Applications to Games, Image Analysis, Signal Processing and Pattern Recognition, Applications to Sustainability).",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",keywords:"Genetic Algorithms, Genetic Programming, Evolutionary Programming, Evolution Strategies, Hybrid Algorithms, Bioinspired Metaheuristics, Ant Colony Optimization, Evolutionary Learning, Hyperparameter Optimization"},{id:"26",title:"Machine Learning and Data Mining",scope:"The scope of machine learning and data mining is immense and is growing every day. It has become a massive part of our daily lives, making predictions based on experience, making this a fascinating area that solves problems that otherwise would not be possible or easy to solve. This topic aims to encompass algorithms that learn from experience (supervised and unsupervised), improve their performance over time and enable machines to make data-driven decisions. It is not limited to any particular applications, but contributions are encouraged from all disciplines.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",keywords:"Intelligent Systems, Machine Learning, Data Science, Data Mining, Artificial Intelligence"},{id:"27",title:"Multi-Agent Systems",scope:"Multi-agent systems are recognised as a state of the art field in Artificial Intelligence studies, which is popular due to the usefulness in facilitation capabilities to handle real-world problem-solving in a distributed fashion. The area covers many techniques that offer solutions to emerging problems in robotics and enterprise-level software systems. Collaborative intelligence is highly and effectively achieved with multi-agent systems. Areas of application include swarms of robots, flocks of UAVs, collaborative software management. Given the level of technological enhancements, the popularity of machine learning in use has opened a new chapter in multi-agent studies alongside the practical challenges and long-lasting collaboration issues in the field. It has increased the urgency and the need for further studies in this field. We welcome chapters presenting research on the many applications of multi-agent studies including, but not limited to, the following key areas: machine learning for multi-agent systems; modeling swarms robots and flocks of UAVs with multi-agent systems; decision science and multi-agent systems; software engineering for and with multi-agent systems; tools and technologies of multi-agent systems.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",keywords:"Collaborative Intelligence, Learning, Distributed Control System, Swarm Robotics, Decision Science, Software Engineering"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:{title:"Artificial Intelligence",id:"14"},selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/420943",hash:"",query:{},params:{id:"420943"},fullPath:"/profiles/420943",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()