Selected properties of oxygen carriers.
\\n\\n
IntechOpen was founded by scientists, for scientists, in order to make book publishing accessible around the globe. Over the last two decades, this has driven Open Access (OA) book publishing whilst levelling the playing field for global academics. Through our innovative publishing model and the support of the research community, we have now published over 5,700 Open Access books and are visited online by over three million academics every month. These researchers are increasingly working in broad technology-based subjects, driving multidisciplinary academic endeavours into human health, environment, and technology.
\\n\\nBy listening to our community, and in order to serve these rapidly growing areas which lie at the core of IntechOpen's expertise, we are launching a portfolio of Open Science journals:
\\n\\nAll three journals will publish under an Open Access model and embrace Open Science policies to help support the changing needs of academics in these fast-moving research areas. There will be direct links to preprint servers and data repositories, allowing full reproducibility and rapid dissemination of published papers to help accelerate the pace of research. Each journal has renowned Editors in Chief who will work alongside a global Editorial Board, delivering robust single-blind peer review. Supported by our internal editorial teams, this will ensure our authors will receive a quick, user-friendly, and personalised publishing experience.
\\n\\n"By launching our journals portfolio we are introducing new, dedicated homes for interdisciplinary technology-focused researchers to publish their work, whilst embracing Open Science and creating a unique global home for academics to disseminate their work. We are taking a leap toward Open Science continuing and expanding our fundamental commitment to openly sharing scientific research across the world, making it available for the benefit of all." Dr. Sara Uhac, IntechOpen CEO
\\n\\n"Our aim is to promote and create better science for a better world by increasing access to information and the latest scientific developments to all scientists, innovators, entrepreneurs and students and give them the opportunity to learn, observe and contribute to knowledge creation. Open Science promotes a swifter path from research to innovation to produce new products and services." Alex Lazinica, IntechOpen founder
\\n\\nIn conclusion, Natalia Reinic Babic, Head of Journal Publishing and Open Science at IntechOpen adds:
\\n\\n“On behalf of the journal team I’d like to thank all our Editors in Chief, Editorial Boards, internal supporting teams, and our scientific community for their continuous support in making this portfolio a reality - we couldn’t have done it without you! With your support in place, we are confident these journals will become as impactful and successful as our book publishing program and bring us closer to a more open (science) future.”
\\n\\nWe invite you to visit the journals homepage and learn more about the journal’s Editorial Boards, scope and vision as all three journals are now open for submissions.
\\n\\nFeel free to share this news on social media and help us mark this memorable moment!
\\n\\n\\n"}]',published:!0,mainMedia:{caption:"",originalUrl:"/media/original/237"}},components:[{type:"htmlEditorComponent",content:'
After years of being acknowledged as the world's leading publisher of Open Access books, today, we are proud to announce we’ve successfully launched a portfolio of Open Science journals covering rapidly expanding areas of interdisciplinary research.
\n\n\n\nIntechOpen was founded by scientists, for scientists, in order to make book publishing accessible around the globe. Over the last two decades, this has driven Open Access (OA) book publishing whilst levelling the playing field for global academics. Through our innovative publishing model and the support of the research community, we have now published over 5,700 Open Access books and are visited online by over three million academics every month. These researchers are increasingly working in broad technology-based subjects, driving multidisciplinary academic endeavours into human health, environment, and technology.
\n\nBy listening to our community, and in order to serve these rapidly growing areas which lie at the core of IntechOpen's expertise, we are launching a portfolio of Open Science journals:
\n\nAll three journals will publish under an Open Access model and embrace Open Science policies to help support the changing needs of academics in these fast-moving research areas. There will be direct links to preprint servers and data repositories, allowing full reproducibility and rapid dissemination of published papers to help accelerate the pace of research. Each journal has renowned Editors in Chief who will work alongside a global Editorial Board, delivering robust single-blind peer review. Supported by our internal editorial teams, this will ensure our authors will receive a quick, user-friendly, and personalised publishing experience.
\n\n"By launching our journals portfolio we are introducing new, dedicated homes for interdisciplinary technology-focused researchers to publish their work, whilst embracing Open Science and creating a unique global home for academics to disseminate their work. We are taking a leap toward Open Science continuing and expanding our fundamental commitment to openly sharing scientific research across the world, making it available for the benefit of all." Dr. Sara Uhac, IntechOpen CEO
\n\n"Our aim is to promote and create better science for a better world by increasing access to information and the latest scientific developments to all scientists, innovators, entrepreneurs and students and give them the opportunity to learn, observe and contribute to knowledge creation. Open Science promotes a swifter path from research to innovation to produce new products and services." Alex Lazinica, IntechOpen founder
\n\nIn conclusion, Natalia Reinic Babic, Head of Journal Publishing and Open Science at IntechOpen adds:
\n\n“On behalf of the journal team I’d like to thank all our Editors in Chief, Editorial Boards, internal supporting teams, and our scientific community for their continuous support in making this portfolio a reality - we couldn’t have done it without you! With your support in place, we are confident these journals will become as impactful and successful as our book publishing program and bring us closer to a more open (science) future.”
\n\nWe invite you to visit the journals homepage and learn more about the journal’s Editorial Boards, scope and vision as all three journals are now open for submissions.
\n\nFeel free to share this news on social media and help us mark this memorable moment!
\n\n\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"5931",leadTitle:null,fullTitle:"Stomach Disorders",title:"Stomach Disorders",subtitle:null,reviewType:"peer-reviewed",abstract:"We have realized that this is a rather light book by weight, but the subject is quite heavy. The stomach is not just a digestive organ. In fact, it carries many important duties far beyond digestion. No matter whether you are an educator, or a medical practitioner, or just a regular reader with a lot of curiosities, we hope after reading you will learn to appreciate this precious organ and take good care of it. Next time when you are eating, please think about what you are doing to your stomach.",isbn:"978-953-51-3729-0",printIsbn:"978-953-51-3728-3",pdfIsbn:"978-953-51-3997-3",doi:"10.5772/66029",price:119,priceEur:129,priceUsd:155,slug:"stomach-disorders",numberOfPages:124,isOpenForSubmission:!1,isInWos:1,isInBkci:!1,hash:"489f823dd49e3fa397e477a8101ca4ff",bookSignature:"Jianyuan Chai",publishedDate:"January 10th 2018",coverURL:"https://cdn.intechopen.com/books/images_new/5931.jpg",numberOfDownloads:8929,numberOfWosCitations:1,numberOfCrossrefCitations:2,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:2,numberOfDimensionsCitationsByBook:0,hasAltmetrics:1,numberOfTotalCitations:5,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"January 9th 2017",dateEndSecondStepPublish:"January 30th 2017",dateEndThirdStepPublish:"August 3rd 2017",dateEndFourthStepPublish:"September 3rd 2017",dateEndFifthStepPublish:"November 3rd 2017",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"28281",title:"Dr.",name:"Jianyuan",middleName:null,surname:"Chai",slug:"jianyuan-chai",fullName:"Jianyuan Chai",profilePictureURL:"https://mts.intechopen.com/storage/users/28281/images/system/28281.jpg",biography:"Dr. Chai received his Ph.D. in Biology from the City University of New York in 1998 and completed his postdoctoral training in molecular medicine at Harvard University in 2001. Then he served the Department of Veterans Affairs of the United States as a Principal Investigator (2002-2016) in affiliation with the School of Medicine, University of California in Irvine. Currently, he is a professor at Baotou Medical College in China. He has published dozens of research articles on various subjects including zoology, cardiovascular biology, gastroenterology, and cancer biology. He has been a member of AGA, AHA, ASBMB, and several other professional organizations, and has also served on the editorial board of multiple journals. His current research mainly focuses on the molecular dynamics of esophageal cancer.",institutionString:"Baotou Medical College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"5",totalChapterViews:"0",totalEditedBooks:"6",institution:{name:"Baotou Medical College",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1021",title:"Hepatology",slug:"gastroenterology-hepatology"}],chapters:[{id:"57837",title:"Introductory Chapter: Stomach-Beyond Digestion",doi:"10.5772/intechopen.72520",slug:"introductory-chapter-stomach-beyond-digestion",totalDownloads:1225,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Jianyuan Chai",downloadPdfUrl:"/chapter/pdf-download/57837",previewPdfUrl:"/chapter/pdf-preview/57837",authors:[{id:"28281",title:"Dr.",name:"Jianyuan",surname:"Chai",slug:"jianyuan-chai",fullName:"Jianyuan Chai"}],corrections:null},{id:"56242",title:"Molecular Pathogenesis of Gastric Adenocarcinoma",doi:"10.5772/intechopen.69951",slug:"molecular-pathogenesis-of-gastric-adenocarcinoma",totalDownloads:1267,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"The incidence and mortality of gastric cancer (GC) rank top five and top three, respectively, among cancers around the world. It is an intricate malignancy caused by the reciprocity of intrinsically genetic, environmental, and host-related elements. The silent property, advanced clinical characterization, and potential heterogeneity have made GC a thorny disease with a high death rate. The increasing knowledge of the abundant genetic abnormalities regarding GC will definitely elongate the patients’ survival. Scientists have been working hard to discover the myths beneath gastric tumorigenesis: novel biomarkers have been established, and cell transduction cascades have been well described. The study grouping GC into four molecular subtypes by The Cancer Genome Atlas (TCGA) broadens our horizon of GC etiologies. Knowledge regarding to the sophisticated networks in tumor microenvironment also bring new insights into the mechanisms assist GC development. In the future, people will strive for translating more research achievements into clinical utility. Successful translational medicine will lead to new methods for early GC diagnosis and precise medical strategies for individuals.",signatures:"Wei Kang, Jinglin Zhang and Ka Fai To",downloadPdfUrl:"/chapter/pdf-download/56242",previewPdfUrl:"/chapter/pdf-preview/56242",authors:[{id:"164362",title:"Prof.",name:"Ka Fai",surname:"To",slug:"ka-fai-to",fullName:"Ka Fai To"},{id:"199366",title:"Prof.",name:"Wei",surname:"Kang",slug:"wei-kang",fullName:"Wei Kang"},{id:"213420",title:"Dr.",name:"Jinglin",surname:"Zhang",slug:"jinglin-zhang",fullName:"Jinglin Zhang"}],corrections:null},{id:"56474",title:"The Purview of Phytotherapy in the Management of Gastric Ulcer",doi:"10.5772/intechopen.70007",slug:"the-purview-of-phytotherapy-in-the-management-of-gastric-ulcer",totalDownloads:1767,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Stomach/gastric ulcer is a debilitating disease affecting more than 10% of the global population. Sufferers often have chronic pains with life-threatening gastrointestinal haemorrhage or perforation. Since the first diagnosis of stomach ulcer (SU) in the 19th century, excessive gastric juice that eroded the mucosa of the stomach was opined as its major cause. Efforts were channelled toward effective control of the resulting acid build-up through the use of antiulcer medications and reduction in stress-induced activities, which may aggravate gastric hyperacidity. An intense treatment option involved vagotomy (surgically severing the nerves surrounding an ulcer) to prevent hyperacidity and further perforation of the stomach epithelium. Despite these interventions, SU disease remained an impediment to clinical practice. Literatures revealed that many botanicals have been used to treat SU and this is hinged on their being endowed with antiulcerogenic phytonutrients of therapeutic significance. In this review, attempts have been made to highlight the main mechanisms of action and limitations of the conventional antiulcerogenic drugs, various antiulcerogenic experimental models, as well as compile selected medicinal plants and their implicated phytonutrients that will ultimately and eventually present effective and globally competitive exciting opportunities for the development of new lead therapeutics for the management of SU disorders.",signatures:"Sabiu Saheed, Ajani Emmanuel Oladipo, Taofik Olatunde Sunmonu,\nFatai Oladunni Balogun and Anofi Omotayo Tom Ashafa",downloadPdfUrl:"/chapter/pdf-download/56474",previewPdfUrl:"/chapter/pdf-preview/56474",authors:[{id:"200121",title:"Prof.",name:"Emmanuel Oladipo",surname:"Ajani",slug:"emmanuel-oladipo-ajani",fullName:"Emmanuel Oladipo Ajani"},{id:"200123",title:"Prof.",name:"Taofik Olatunde",surname:"Sunmonu",slug:"taofik-olatunde-sunmonu",fullName:"Taofik Olatunde Sunmonu"},{id:"200124",title:"Dr.",name:"Fatai Oladunni",surname:"Balogun",slug:"fatai-oladunni-balogun",fullName:"Fatai Oladunni Balogun"},{id:"202069",title:"Dr.",name:"Anofi Omotayo Tom",surname:"Ashafa",slug:"anofi-omotayo-tom-ashafa",fullName:"Anofi Omotayo Tom Ashafa"},{id:"300406",title:"Dr.",name:"Saheed",surname:"Sabiu",slug:"saheed-sabiu",fullName:"Saheed Sabiu"}],corrections:null},{id:"56851",title:"Gastric Antral Vascular Ectasia and Portal Hypertensive Gastropathy",doi:"10.5772/intechopen.70610",slug:"gastric-antral-vascular-ectasia-and-portal-hypertensive-gastropathy",totalDownloads:1402,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:1,abstract:"Gastric antral vascular ectasia (GAVE) and portal hypertensive gastropathy (PHG) are mucosal lesions that can cause chronic gastrointestinal bleeding in the patients with cirrhosis. While PHG occurs exclusively in patients with liver cirrhosis, GAVE can also present in patients with systemic and autoimmune conditions. The need to accurately characterize these two conditions is dependent on clinical, endoscopic, and histological parameters. The management of GAVE utilizes endoscopic ablation techniques, while medical therapy is directed toward stabilizing portal pressure in patients with PHG. Herein, we review the epidemiology, diagnosis, pathophysiology, and medical, endoscopic, and surgical management of GAVE and PHG.",signatures:"Daryl Ramai, Sandar Linn and Madhavi Reddy",downloadPdfUrl:"/chapter/pdf-download/56851",previewPdfUrl:"/chapter/pdf-preview/56851",authors:[{id:"219230",title:"Dr.",name:"Daryl",surname:"Ramai",slug:"daryl-ramai",fullName:"Daryl Ramai"},{id:"219392",title:"Dr.",name:"Sandar",surname:"Linn",slug:"sandar-linn",fullName:"Sandar Linn"},{id:"219395",title:"Dr.",name:"Madhavi",surname:"Reddy",slug:"madhavi-reddy",fullName:"Madhavi Reddy"}],corrections:null},{id:"55879",title:"Portal Hypertensive Gastropathy (PHG)",doi:"10.5772/intechopen.69539",slug:"portal-hypertensive-gastropathy-phg-",totalDownloads:1820,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Reversal of erosive gastritis in patients with portal hypertension by surgical shunts evolves the term of portal hypertensive gastropathy. In 1984, Sarfeh et al. addressed the term PHG to describe the distinctive erosive gastritis in patients with portal hypertension. Since that time, the recorded incidence of PHG in the studies has varied widely from 20 to 75% in patients with portal hypertension, with or without liver cirrhosis. As the underlying pathophysiology of the disease is unclear, not all the patients with portal hypertension developed PHG. Thus, portal hypertension cannot be the only factor for the development of PHG. Patients with PHG presented with either acute or chronic bleedings. Acute presentation is an emergency case. Anemia from chronic bleeding is a frequent presentation in PHG patients. The diagnosis is confirmed by a characteristic endoscopic appearance of PHG. Capsule endoscopy and dynamic CT are also used for the diagnosis of PHG. The goal of the treatment of PHG is reducing the portal pressure in patients with acute or chronic bleeding. Pharmacological treatment, endoscopic therapy, trans‐jugular intrahepatic portosystemic shunt (TIPS), and shunt surgery are different modalities for treatment of PHG. Yet, primary prophylaxis treatment is not recommended in the patients with PHG.",signatures:"Samia Ali Gamie",downloadPdfUrl:"/chapter/pdf-download/55879",previewPdfUrl:"/chapter/pdf-preview/55879",authors:[{id:"204157",title:"Prof.",name:"Samia",surname:"Ali Abdo Gamie",slug:"samia-ali-abdo-gamie",fullName:"Samia Ali Abdo Gamie"}],corrections:null},{id:"57415",title:"Application of Transmission Electron Microscopy Techniques in the Veterinary Diagnosis of Viral Gastroenteritis in Livestock Animals",doi:"10.5772/intechopen.70945",slug:"application-of-transmission-electron-microscopy-techniques-in-the-veterinary-diagnosis-of-viral-gast",totalDownloads:1448,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Gastroenteritis caused by viruses is considered to be one of the most important diseases in livestock, being the main cause of morbidity and mortality in young animals, culminating in serious economic losses due to costs with prophylaxis and treatment, increased susceptibility of animals to secondary infections, developmental delay and death. Stressful factors may support the onset of illness. Several viral agents can cause gastroenteritis in various animal species. Rotaviruses are considered the main cause of enteric infections in various animals, including humans constituting important zoonosis. Due to genetic diversity and their ability to cross the species barrier, the coronaviruses infect many species. In cattle, they cause “Winter Dysentery” in adult animals and “Neonatal Diarrhea” in newborn calves. In swine, they are responsible for “Transmissible Gastroenteritis” and “Swine Epidemic Diarrhea.” Equines infected with coronavirus also develop severe gastroenteritis. Bovine viral diarrhea (BVD) caused by a flavivirus of the genus Pestivirus is related to digestive and reproductive disorders, affecting any productive sector, are it cut, milk or confinement. Transmission electron microscopy is an indispensable tool in the diagnosis of viral gastroenteric infectious diseases. Negative staining is a simple, fast and efficient technique, being ideal for the detection of gastroenteric viruses, being easily visualized. The immunoelectron microscopy (IEM) technique allows increasing the sensitivity of virus detection where low concentrations of virus are aggregated so that they may be more easily seen. The immunolabeling with colloidal gold technique utilizes specific antibodies tagged with particles of colloidal gold to label the antigen antibody reaction. Embedding resin technique allows obtaining information on the virus–cell interaction. The different transmission electron microscopy modalities promotes a fast and accurate diagnosis of the different gastroenteric viral agents, allowing prophylactic measures of control and prevention in the creations to be promptly instituted, avoiding animal losses and disastrous economic losses, and collaborating with the National Porcine and Bovine Agribusiness.",signatures:"Marcia Helena Braga Catroxo and Ana Maria Cristina Rebello Pinto\nda Fonseca Martins",downloadPdfUrl:"/chapter/pdf-download/57415",previewPdfUrl:"/chapter/pdf-preview/57415",authors:[{id:"101340",title:"Dr.",name:"Marcia Helena Braga",surname:"Catroxo",slug:"marcia-helena-braga-catroxo",fullName:"Marcia Helena Braga Catroxo"},{id:"104007",title:"Dr.",name:"Ana Maria Cristina",surname:"Martins",slug:"ana-maria-cristina-martins",fullName:"Ana Maria Cristina Martins"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"225",title:"Peptic Ulcer Disease",subtitle:null,isOpenForSubmission:!1,hash:"d739f4ee9bd8e8521a50ab44d67dd160",slug:"peptic-ulcer-disease",bookSignature:"Jianyuan Chai",coverURL:"https://cdn.intechopen.com/books/images_new/225.jpg",editedByType:"Edited by",editors:[{id:"28281",title:"Dr.",name:"Jianyuan",surname:"Chai",slug:"jianyuan-chai",fullName:"Jianyuan Chai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5714",title:"Esophageal Abnormalities",subtitle:null,isOpenForSubmission:!1,hash:"132a5e5097b78a76535fde4196596ac9",slug:"esophageal-abnormalities",bookSignature:"Jianyuan Chai",coverURL:"https://cdn.intechopen.com/books/images_new/5714.jpg",editedByType:"Edited by",editors:[{id:"28281",title:"Dr.",name:"Jianyuan",surname:"Chai",slug:"jianyuan-chai",fullName:"Jianyuan Chai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3439",title:"Research Directions in Tumor Angiogenesis",subtitle:null,isOpenForSubmission:!1,hash:"fe5692f82fb9709aca8d230560dc38d5",slug:"research-directions-in-tumor-angiogenesis",bookSignature:"Jianyuan Chai",coverURL:"https://cdn.intechopen.com/books/images_new/3439.jpg",editedByType:"Edited by",editors:[{id:"28281",title:"Dr.",name:"Jianyuan",surname:"Chai",slug:"jianyuan-chai",fullName:"Jianyuan Chai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7091",title:"Esophageal Cancer and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4ecda741df661e21f77858de31105346",slug:"esophageal-cancer-and-beyond",bookSignature:"Jianyuan Chai",coverURL:"https://cdn.intechopen.com/books/images_new/7091.jpg",editedByType:"Edited by",editors:[{id:"28281",title:"Dr.",name:"Jianyuan",surname:"Chai",slug:"jianyuan-chai",fullName:"Jianyuan Chai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9481",title:"Celiac Disease",subtitle:null,isOpenForSubmission:!1,hash:"e6e11ac5ac7485c2653e734fafdc7b64",slug:"celiac-disease",bookSignature:"Jianyuan Chai",coverURL:"https://cdn.intechopen.com/books/images_new/9481.jpg",editedByType:"Edited by",editors:[{id:"28281",title:"Dr.",name:"Jianyuan",surname:"Chai",slug:"jianyuan-chai",fullName:"Jianyuan Chai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1807",title:"New Advances in the Basic and Clinical Gastroenterology",subtitle:null,isOpenForSubmission:!1,hash:"a7ec52cb83e9fc2064e573afcfc87a71",slug:"new-advances-in-the-basic-and-clinical-gastroenterology",bookSignature:"Thomas Brzozowski",coverURL:"https://cdn.intechopen.com/books/images_new/1807.jpg",editedByType:"Edited by",editors:[{id:"35854",title:"Prof.",name:"Tomasz",surname:"Brzozowski",slug:"tomasz-brzozowski",fullName:"Tomasz Brzozowski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1304",title:"New Techniques in Gastrointestinal Endoscopy",subtitle:null,isOpenForSubmission:!1,hash:"e108f32556a501bd10550b95901980b2",slug:"new-techniques-in-gastrointestinal-endoscopy",bookSignature:"Oliviu Pascu and Andrada Seicean",coverURL:"https://cdn.intechopen.com/books/images_new/1304.jpg",editedByType:"Edited by",editors:[{id:"62220",title:"Prof.",name:"Oliviu",surname:"Pascu",slug:"oliviu-pascu",fullName:"Oliviu Pascu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"351",title:"Gastritis and Gastric Cancer",subtitle:"New Insights in Gastroprotection, Diagnosis and Treatments",isOpenForSubmission:!1,hash:"ecadad30b73c5ffe72063ea31898fb3e",slug:"gastritis-and-gastric-cancer-new-insights-in-gastroprotection-diagnosis-and-treatments",bookSignature:"Paola Tonino",coverURL:"https://cdn.intechopen.com/books/images_new/351.jpg",editedByType:"Edited by",editors:[{id:"53066",title:"Dr.",name:"Paola",surname:"Tonino",slug:"paola-tonino",fullName:"Paola Tonino"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3839",title:"Trends in Helicobacter pylori Infection",subtitle:null,isOpenForSubmission:!1,hash:"3dc63cbee177c36f568ff67aa6ec1413",slug:"trends-in-helicobacter-pylori-infection",bookSignature:"Bruna Maria Roesler",coverURL:"https://cdn.intechopen.com/books/images_new/3839.jpg",editedByType:"Edited by",editors:[{id:"54995",title:"Dr.",name:"Bruna Maria",surname:"Roesler",slug:"bruna-maria-roesler",fullName:"Bruna Maria Roesler"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"831",title:"Liver Biopsy in Modern Medicine",subtitle:null,isOpenForSubmission:!1,hash:"7b41e87c701a255c1a5ef8c5a15a3a56",slug:"liver-biopsy-in-modern-medicine",bookSignature:"Yoshiaki Mizuguchi",coverURL:"https://cdn.intechopen.com/books/images_new/831.jpg",editedByType:"Edited by",editors:[{id:"62797",title:"Dr.",name:"Yoshiaki",surname:"Mizuguchi",slug:"yoshiaki-mizuguchi",fullName:"Yoshiaki Mizuguchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"66303",slug:"corrigendum-to-rural-landscape-architecture-traditional-versus-modern-fa-ade-designs-in-western-spai",title:"Corrigendum to: Rural Landscape Architecture: Traditional versus Modern Façade Designs in Western Spain",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66303.pdf",downloadPdfUrl:"/chapter/pdf-download/66303",previewPdfUrl:"/chapter/pdf-preview/66303",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66303",risUrl:"/chapter/ris/66303",chapter:{id:"57545",slug:"rural-landscape-architecture-traditional-versus-modern-fa-ade-designs-in-western-spain",signatures:"María Jesús Montero-Parejo, Jin Su Jeong, Julio Hernández-Blanco\nand Lorenzo García-Moruno",dateSubmitted:"September 6th 2017",dateReviewed:"October 11th 2017",datePrePublished:"December 20th 2017",datePublished:"September 19th 2018",book:{id:"6066",title:"Landscape Architecture",subtitle:"The Sense of Places, Models and Applications",fullTitle:"Landscape Architecture - The Sense of Places, Models and Applications",slug:"landscape-architecture-the-sense-of-places-models-and-applications",publishedDate:"September 19th 2018",bookSignature:"Amjad Almusaed",coverURL:"https://cdn.intechopen.com/books/images_new/6066.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"110471",title:"Prof.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"221245",title:"Dr.",name:"María Jesús",middleName:null,surname:"Montero-Parejo",fullName:"María Jesús Montero-Parejo",slug:"maria-jesus-montero-parejo",email:"cmontero@unex.es",position:null,institution:null},{id:"223556",title:"Dr.",name:"Jin Su",middleName:null,surname:"Jeong",fullName:"Jin Su Jeong",slug:"jin-su-jeong",email:"jsbliss@gmail.com",position:null,institution:null},{id:"223557",title:"Prof.",name:"Julio",middleName:null,surname:"Hernández-Blanco",fullName:"Julio Hernández-Blanco",slug:"julio-hernandez-blanco",email:"juliohb@unex.es",position:null,institution:null},{id:"223558",title:"Prof.",name:"Lorenzo",middleName:null,surname:"García-Moruno",fullName:"Lorenzo García-Moruno",slug:"lorenzo-garcia-moruno",email:"lgmoruno@unex.es",position:null,institution:null}]}},chapter:{id:"57545",slug:"rural-landscape-architecture-traditional-versus-modern-fa-ade-designs-in-western-spain",signatures:"María Jesús Montero-Parejo, Jin Su Jeong, Julio Hernández-Blanco\nand Lorenzo García-Moruno",dateSubmitted:"September 6th 2017",dateReviewed:"October 11th 2017",datePrePublished:"December 20th 2017",datePublished:"September 19th 2018",book:{id:"6066",title:"Landscape Architecture",subtitle:"The Sense of Places, Models and Applications",fullTitle:"Landscape Architecture - The Sense of Places, Models and Applications",slug:"landscape-architecture-the-sense-of-places-models-and-applications",publishedDate:"September 19th 2018",bookSignature:"Amjad Almusaed",coverURL:"https://cdn.intechopen.com/books/images_new/6066.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"110471",title:"Prof.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"221245",title:"Dr.",name:"María Jesús",middleName:null,surname:"Montero-Parejo",fullName:"María Jesús Montero-Parejo",slug:"maria-jesus-montero-parejo",email:"cmontero@unex.es",position:null,institution:null},{id:"223556",title:"Dr.",name:"Jin Su",middleName:null,surname:"Jeong",fullName:"Jin Su Jeong",slug:"jin-su-jeong",email:"jsbliss@gmail.com",position:null,institution:null},{id:"223557",title:"Prof.",name:"Julio",middleName:null,surname:"Hernández-Blanco",fullName:"Julio Hernández-Blanco",slug:"julio-hernandez-blanco",email:"juliohb@unex.es",position:null,institution:null},{id:"223558",title:"Prof.",name:"Lorenzo",middleName:null,surname:"García-Moruno",fullName:"Lorenzo García-Moruno",slug:"lorenzo-garcia-moruno",email:"lgmoruno@unex.es",position:null,institution:null}]},book:{id:"6066",title:"Landscape Architecture",subtitle:"The Sense of Places, Models and Applications",fullTitle:"Landscape Architecture - The Sense of Places, Models and Applications",slug:"landscape-architecture-the-sense-of-places-models-and-applications",publishedDate:"September 19th 2018",bookSignature:"Amjad Almusaed",coverURL:"https://cdn.intechopen.com/books/images_new/6066.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"110471",title:"Prof.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"12019",leadTitle:null,title:"Chaos Theory - Recent Advances, New Perspectives and Applications",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tThe book is devoted to the recent research in the chaos theory covering the Mathematical Description of Chaos Phenomena, Chaotic Dynamical Systems, Chaos and Fractals, Chaos in the Classical and Quantum Mechanics, Advances of Chaos, and Application in the Pure Sciences and Technologies. The first topic covers the approaches to describing the chaos phenomena in terms of generalized differential equations; the second one describes the different approaches applied to the study of the non-classical dynamical systems. The topic Chaos and Fractals illustrates the application of the cellular automata, non-classical differential equations, and surprising attractors; the appearance of new physical phenomena are discussed in the Chaos in the Classical and Quantum Mechanics. The topic Advances of Chaos describes the novel results in the pure and applied science based on the chaotic background. The application in the Pure Sciences and Technologies covers the achievements based on the characteristics of the chaos fundamentals. Since huge progress on chaos theory predetermines its application in the many areas of pure and applied science, the proposed book will be demanded by many scientists and industrial engineers, as well as post-graduate students and beyond.
",isbn:"978-1-83768-123-5",printIsbn:"978-1-83768-122-8",pdfIsbn:"978-1-83768-124-2",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,hash:"38f0946fe1dd3314939e670799f88426",bookSignature:"Dr. Mykhaylo I. Andriychuk",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/12019.jpg",keywords:"Deterministic Laws, Chaotic Dynamical Systems, Chaotic Mixing, Bifurcation of Vector Fields, Fractal Patterns, Fractal Mapping, Entropy, Non-linear Transformations, Chaos and Fuzzy Systems, Euler Method, Nonlinear Chaotic Maps, Application",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 19th 2022",dateEndSecondStepPublish:"June 16th 2022",dateEndThirdStepPublish:"August 15th 2022",dateEndFourthStepPublish:"November 3rd 2022",dateEndFifthStepPublish:"January 2nd 2023",remainingDaysToSecondStep:"23 days",secondStepPassed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"IEEE senior member and known researcher in the antenna synthesis according to the desired amplitude characteristics, numerical methods for solving the non-linear integral equations, and asymptotic scattering theory.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"57755",title:"Dr.",name:"Mykhaylo",middleName:"I.",surname:"Andriychuk",slug:"mykhaylo-andriychuk",fullName:"Mykhaylo Andriychuk",profilePictureURL:"https://mts.intechopen.com/storage/users/57755/images/system/57755.jpg",biography:"Prof. Andriychuk obtained the M.Sc. degree in computational mathematics from the Lviv National University, the Ph.D. degree in application of computational techniques from the Kyiv National University, and the D.Sc. degree in mathematical modelling from the Lviv Polytechnic National University in 1976, 1987, and 2015, respectively. He has been employed by the Pidstryhach Institute for Applied Problems of Mechanics and Mathematics (IAPMM), Ukraine for more than 40 years. Currently, he is the Head of Department of the Numerical Methods in Mathematical Physics at the IAPMM. His professional performance includes more than 160 papers in the scientific journals and international conference proceedings, which concern to the diffraction and antenna synthesis theory, optimization methods and nonlinear integral and matrix equations. He is author of two monographs in antenna theory. Dr. Andriychuk is IEEE Member since 1995, and IEEE Senior Member since 2003.",institutionString:"Pidstryhach Institute for Applied Problems of Mechanics and Mathematics",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Pidstryhach Institute for Applied Problems of Mechanics and Mathematics",institutionURL:null,country:{name:"Ukraine"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"15",title:"Mathematics",slug:"mathematics"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"466997",firstName:"Patricia",lastName:"Kerep",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/466997/images/21565_n.jpg",email:"patricia@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully"}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"40239",title:"Small Scale Hydrogen Production from Metal-Metal Oxide Redox Cycles",doi:"10.5772/50030",slug:"small-scale-hydrogen-production-from-metal-metal-oxide-redox-cycles",body:'The industrial production of hydrogen by reforming natural gas is well established. However, this process is energy intensive and process economics are adversely affected as scale is decreased. There are many situations where a smaller supply of hydrogen, sometimes in remote locations, is required. To this end, the steam-iron process, an originally coal-based process, has been re-considered as an alternative. Many recent investigations have shown that hydrogen (H2) can be produced when methane (CH4) is used as the feedstock under carefully controlled process conditions. The chemistry driving this chemical looping (CL) process involves the reduction of metal oxides by methane and the oxidation of lower oxidation state metal oxides with steam. This process utilises oxygen from oxide materials that are able to transfer oxygen and eliminates the need of purified oxygen for combustion. Such a system has the potential advantage of being less energy intensive than reforming processes and of being flexible enough for decentralised hydrogen production from stranded reserves of natural gas. This chapter first reviews the existing hydrogen production technologies then highlights the recent progress made on hydrogen production from small scale CL processes. The development of oxygen carrier materials will also be discussed. Finally, a preliminary economic appraisal of the CL process will be presented.
Hydrogen can be produced from the reaction of feedstock including fossil fuels and biomass with water. Today, 96 % of hydrogen is derived from fossil fuels of which 48 %, 30 % and 18 % originates from natural gas, higher hydrocarbons and coal, respectively and the remaining 4 % comes from electrolysis.Fossil fuel based hydrogen production processes are mature technologies and are currently the most economic routes for large scale hydrogen production.Because coal, natural gas and biomass all contain carbon, carbon dioxide is inevitably produced as a by-product of the energy released.A pictorial overview of the available hydrogen production processes is given in Figure 1. The basics of two commercialised processes, namely steam methane reforming and partial oxidation, are considered in this section. A brief discussion on emerging hydrogen production technology will also be presented.
An overview of existing hydrogen production process from different sources.
Steam reforming of methane (SMR) is one of the most developed and commercially used technologies.Compared to other fossil fuels, natural gas, which contains mostly methane, is a cost effective feedstock for making hydrogen.This is because methane has a high hydrogen-to-carbon ratio, meaning the yield of hydrogen is higher. Today, almost 48 % of the world’s hydrogen is produced from this technology [1].In this process, hydrogen is produced according to the following two reactions:
CH4 + H2O → CO + 3H2∆H = 206 kJ/mol
CO + H2O → CO2 + H2∆H = -41 kJ/mol
In the SMR, the natural gas feedstock is first reformed in the presence of steam over a catalyst at elevated temperatures (700 – 925 C) to produce a mixture of carbon monoxide and hydrogen (syngas) as shown in Equation 1.Then, the yield of hydrogen is further increased by reacting the carbon monoxide with make up steam via the water-gas shift reaction (WGS) as shown in Equation 2.Finally, hydrogen is separated and purified by processes such as pressure swing absorption, wet scrubbing or membrane separation.SMR is currently the most cost effective hydrogen production process which offers a minimum energy efficiency of 80 – 85 % in a large scale facility if residual steam is re-used [1].Furthermore, the process is economically viable for large scale operation [2].According to Pardor
Hydrogen can also be produced from the partial oxidation (POX) of hydrocarbons over a catalyst at high temperatures (Equation 3).
CH4 + 0.5O2 → CO + 2H2∆H = -36 kJ/mol
The reaction requires the use of high purity oxygen and is mildly exothermic. Similar to the SMR process, the yield and purity of hydrogen may be further increased by the WGS reaction and a subsequent purification process. The reported efficiency of POX is in the range of 66 – 76 % [1]. Mirabal [4] estimated the cost of hydrogen to be $12.43/GJ for a 2.83 million Nm3/day plant, which is higher than that produced from SMR. However, based on the use of coke off-gas and residual oil (both having a price of lower than natural gas), Pardro
Gasification can be used to convert a varied range of solid fuels such as coal and biomass into syngas (Equation 4).
C(s) + H2O → CO + H2∆H = 131 kJ/mol
Coal gasification is a mature process and is commercially available.Although the cost of the coal feedstock is generally much cheaper than natural gas, the price of hydrogen produced from coal gasification process is estimated to be $17.45/GJ.This is higher compared to SMR ($10.26/GJ) and POX ($12.43/GJ), and this is due to the higher capital investment required for coal gasification.Coal is an economically viable option for making hydrogen in very large centralised plants where the demand for hydrogen becomes large enough to support an associated large distribution network and establishment costs.It is therefore seen that coal gasification would become more competitive than SMR and POX as the price of natural gas increases [4].Much of the engineering experience accumulated from coal fired power plant is directly useful for coal gasification.
Water splitting is one of the options for producing hydrogen and has received wide attention.The current reported energy efficiency is between 10 – 27 % and the cost of hydrogen is estimated to be 3-10 times of the hydrogen produced from the SMR process [5]. Biological routes for producing hydrogen are also being considered because of the renewable nature and the mild operating conditions of these processes.These alternative routes have yet to become economically competitive with technologies in practice such as SMR and POX that use fossil fuel feedstock.
There is an ongoing demand for viable processes for producing hydrogen on a small scale for decentralised distribution. For this reason, there is currently much attention being paid to the development of cyclic redox processes or commonly referred as chemical looping (CL) processes for small scale hydrogen production. In addition to the compactness of the process, another advantage is the ability to produce a near sequestration-ready stream of carbon dioxide from the process. The operating concept behind these processes resembles the well-known steam-iron process and is illustrated in Figure 2a. Some widely reported variations and applications include chemical looping combustion (CLC) for power generation and, chemical looping hydrogen production (CLH2). The schematic diagrams representing these processes are shown in Figure 2b and\n\t\t\t\tFigure 2c. A typical chemical looping operation consists of a reduction and an oxidation steps. During the reduction, a metal oxide is used as the oxygen carrier to oxidise carbonaceous fuels (e.g. natural gas, coal or biomass) into carbon dioxide and steam. The reduction can be optimised such that syngas (a mixture of carbon monoxide and hydrogen) can be obtained. Subsequently, the partially or fully reduced metal oxide is oxidised with air or steam to re-generate the original metal oxide and other oxidation products. When steam is used, water is split to produce hydrogen as the main product.
One of the fundamental parameters that determine the overall efficiency of many chemical looping processes is the effectiveness of the oxygen carriers. Therefore many research groups have focused on improving the activity and the stability of oxygen carrying materials. This section reports the latest developments of oxygen carrier materials for CL applications.
a) The traditional steam-iron process and chemical looping (CL) processes, b) CLC for power generation, and c) CLH2.
The selection of an oxygen carrier requires comprehensive appraisal of the physiochemical properties of the material.Some properties include reaction kinetics, oxygen content, long-term recyclability and durability, attrition resistance, heat capacity, melting points, tendency to form coke, resistance to carbon deposition, cost and toxicity [6, 7].Nevertheless, the most important requirement is the thermodynamic feasibility of oxygen transfer to and from these oxygen carriers.Figure 3 shows the changes in Gibbs free energy (∆G) of some oxygen carriers commonlystudied for CL applications. Some selected properties are provided in Table 1.
For the current topic, the oxygen carrier can be divided into two groups based on their ability to oxidise methane. The first group contains oxides that are capable of only partially oxidising methane into carbon monoxide and hydrogen. Some representative redox couples are ZnO/Zn, V2O5/V and CeO2/Ce2O3 couples. The second group contains oxides that are able to support the complete oxidation of methane. NiO/Ni, CuO/Cu and Co3O4/Co are redox couples that fall into this category. In addition, the oxidations of these reduced oxides are favourable over a wide temperature range as indicated by the negative ∆G values in Figure 3. Therefore these three redox couples are often regarded as good candidates for CL applications.
Variation of Gibbs free energy of reactions, a) CH4 combustion (CH4 + 4/yMxOy→ CO2 + 2H2O + 4x/yM) and b) CH4 partial oxidation (CH4 + 1/yMxOy→ CO + 2H2 + x/yM), c) steam oxidation (xM + yH2O → MxOy + yH2), and d) air oxidation (xM + y/2O2→ MxOy).See
Melting point [°C] | Oxygen transport capacity [kg/kg-metal] | Price [USD/t] | ||
1 | NiO/Ni | 1955/1455 | 0.27 | 21,800 |
2 | CuO/Cu | 1326/1084 | 0.25 | 7,680 |
3 | Fe3O4/Fe | 1597/1538 | 0.38 | 100 |
4 | MnO2/Mn | 535/1267 | 0.58 | 1,500 |
5 | Co3O4/Co | 895/1495 | 0.36 | 39,700 |
6 | WO3/W | 1472/3407 | 0.26 | 27,000 |
7 | ZnO/Zn | 1975/420 | 0.24 | 2,250 |
8 | SnO/Sn | 1080/232 | 0.13 | 21,000 |
9 | In2O3/In | 1913/157 | 0.21 | 565,000 |
10 | MoO2/Mo | 1100/2623 | 0.33 | 34,900 |
11 | V2O5/V | 670/1910 | 0.78 | 25,600 |
12 | CeO2/Ce2O3 | 2400/2230 | 0.06 | 24,611 |
Selected properties of oxygen carriers.
Compared to oxidation using molecular oxygen, the ∆G shifts to higher values when steam is used as the oxidising agent.As a result, it is not thermodynamically feasible to produce hydrogenby reacting steam with metallic Ni, Cu or Co.MnO2/Mn and SnO/Sn couples are also not reactive when they are brought into contact with steam. ZnO/Zn and V2O5/V couples react with steam to produce hydrogen, however, their melting points in either the oxide or the metallic form are too low for CL applications in general.Despite the moderate ∆G values associated with Fe3O4/Fe, WO3/W and CeO2/Ce2O3 redox couples, the reported redox kinetics and thermo-mechanicalstrength have made them appealing candidates for CL processes.The Fe3O4/Fecouple also possesses a relatively high oxygen content, and is widely available, non-toxic and less costly.When iron oxide is used, it is only possible to oxidise the reduced state to magnetite (Fe3O4) due to thermodynamic limitations.
A number of studies have employed non-gaseous fuels including coal [8-13], biomass [14-17] and pyrolysis oil [18, 19].In a syngas chemical looping (SCL) process, the fuel is first converted into syngas in a separate gasification unit.The syngas generated is then used in the reduction cycle and steam is used to regenerate the oxide and to produce hydrogen.An additional air oxidation cycle may be required to regenerate the oxygen carrier. The SCL process generally has lower efficiency for conversion, owing to the low conversions in the syngas generation step and the steam oxidation step [8].Li et al. [9] examined the cyclic performance of a Fe-based oxygen carrier at 830 C when a simulated syngas was used.They showed that the syngas was completely converted in the reduction half cycle giving an oxygen carrier conversion of 94.6 %.For the steam half cycle, the reduced oxygen carrier was oxidised into Fe3O4 producing a stream of 99.8 % pure hydrogen.In a separate study, the same group also demonstrated the feasibility of using a moving bed reactor at 900 C for the same reaction[10]. A syngas conversion in excess of 99.5% and an oxygen carrier conversion of 50 % were recorded. A process simulation conducted by Gupta et al. [8] confirmed that the maximum efficiency for the SCL process could reach 74.2 % for hydrogen production which is comparable to or more effective than steam reforming (65-75 %), partial oxidation (50 %) and gasification (43-47 %). Considering the complexity of the SCL, it is clear that footprint of the process would be large because of the large number of unit operations involved in its design.
When coal is used as the feedstock, the solid fuelcan be used to reduce oxygen carriers directly.This process is often referred as the coal direct chemical looping (CDCL) process because a gasification unit, as well as air separation and gas cleaning units, is not required[12]. The CDCL process is reported to be significantly more efficient than the SCL process for hydrogen production [6, 13].Yang et al. [11] investigated the CDCL process using a lignite-derived char in a fluidised bed reactor. The complete gasification of the char achieved a maximum carbon dioxide concentration of 90% in the presence of a K2CO3 catalyst.A high oxygen carrier-to-char ratioimproved the complete gasification to carbon dioxide but this also led to lower hydrogen yields as a result of low conversions of the oxygen carrier.Under the optimum condition, thehydrogen production efficiency was reported to be 50.2 % at an oxygen carrier conversion of 70.2 %. The use of counter-current moving bed reactor was found to improve oxygen carrier conversion, and achieved (due to the significantly low mass required) a char conversion of > 90 % and an overall carbon dioxide capturing efficiency of > 95 %[6].
Biomass has found limited applications for SCL processes. This is because of the high water content generally associated with biomass feedstocks.Sime et al. [14] investigated the use of gases derived from woody biomass gases for SCL and reported that such process was less efficient and more costly than conventional gasification processes for producing hydrogen. Li et al. [16] pointed out that it is critical to reduce the moisture content in the biomass feedstock to less than 5 %in order to achieve a conversion of 56.6 % in gasification.Similar to other solid feedstocks, unreacted biomass must be separated before the oxygen carrier is circulated to the steam reactor.Otherwise, the unreacted biomass could be gasified and lower the purity of the hydrogen produced.
Natural gas is an efficient feedstock for CL processes since it is fed to the process in gaseous form. This minimises the need of solid handling and improvesmass transfer processes [20]. Cormos (2011) recently assessed and compared hydrogen production from a natural gas CL process and a coal/lignite based SCL [21]. It was concluded that when natural gas was used to produce hydrogen, the recorded efficiency was 78.1 %. This value was higher compared to the values of 65.7 % and 63.3 % recorded for the coal- or lignite-based SCL processes, respectively. In addition, the separation and capturing of CO2 were said to be more effective when natural gas was used. Another clear advantage of using natural gas as the feedstock is that no additional up-stream unit operations are required for producing syngas.
As mentioned previously, redox kinetics and thermal stability are the two main issues associated with the use of oxide-based oxygen carriers for CL processes.In order to improve their performance, support and/or promoting materials to assist in material stabilisation are often added to improve the performance of the metal oxide. A comprehensive list of oxygen carriers developed for various CL applications in the last decade can be found in an excellent review published by Adanez et al. [7]. This section highlights some recent studies on developing novel oxygen carriers.
Otsuka et al. [22, 23] investigated the effects of 26 different metal dopants on iron oxide.It was found that some metal dopants were more effective in preventing the iron oxide from sintering and some were more effective in facilitating the splitting of water.Among these 26 metals, Mo and Cr were found to improve the thermal stability of iron oxide in the cyclic process.The improved redox stability after the introduction of Mo metal (5 mol%) was also reported by Wang et al. [24], and Liu and Wang [25].Despite the fact that Cr addition could improve the sintering resistance of iron oxide, temperature programmed analysis revealed that a temperature of ca. 500 C is required to split water when compared to a temperature of 420 Cas required by iron oxide modified with Mo [22].In addition, no oxidation of methane was observed when the temperature was lower than 700 C [26].It was proposed that the main role of Cr and Mo dopants was to partially transform the iron oxide into the ferrite structure (MxFe3-xO4, M = Mo and Cr) [22, 26] and therefore inhabited the agglomeration of neighbouring particles.
Some metals including Ru, Rh, Pd, Ag, Ir and Pt have been shown to improve reaction kinetics by facilitating the dissociation of hydrogen, methane and water.Otsuka et al. [22] reported that the improvement on splitting of water into hydrogen by metal in a CLprocess increased inthe order of Rh > Ir > Ag > Pd > Ru.Ryu et al. [27] also found that Rh was more effective than Pb, Pt and Ru in enhancing the hydrogen production step in a chemical looping process. Therole of Rh was to decrease the onset temperature for the water splitting reaction.A XANES/EXAFS study on Rh-Cr-added iron oxide revealed that Rh was also able to form Rh-Fe alloy upon reductions[26].However, Rh segregated in the alloy structure when it contactedsteam and thus accelerated the sintering of iron oxide.This led to the observed deterioration in redox activity after repeated redox operation.Although Ni- and Cu-ferrites also exhibited an enhancing effect on redox kinetics, Ni and Cu were shown not to be effective in improving sintering resistance [28, 29].
The addition of a second and a third metal have been shown to further improve the redox activity [22, 24-27, 30, 31]. Common choices of metal combinations often consisted of a first metal such as Rh, Pt, Ni and Cu which is thought to catalytically activates the reducing gas (e.g. hydrogen, carbon monoxideormethane), and a second metal such as Mo and Cr which exhibitsa structural stabilising effect.Otsuka et al [22] examined the addition of Rh and Mo to iron oxide for the chemical storage of hydrogen and observed an enhancement in reaction kinetics and a reduction in reaction temperature for hydrogen formation.Most importantly, the Mo provided good stabilising effect and largely mitigated the sintering of the oxygen carrier. The effect of bimetal addition on iron oxide was also investigated under methane oxidation at a temperature range of 200 – 800 C by Takenaka et al. [30]. The methane conversion was found to increase by adding a second metal and the performance increased in the order of Rh-Cr > Ir-Cr > Pt-Cr > Ni-Cr > Pd-Cr > Cu-Cr = Co-Cr.Other research groups also reported similar findings [24, 25, 27, 31].Despite the improvement in reactivity and thermal stability, most of the bimetallic modified oxygen carriers produce carbon upon methane oxidation.The production of carbon usually leads to a rapid deterioration of the oxygen carrier and is the source of carbon oxides (COx) contamination.
Another approach to improve the thermal stability of oxygen carriers is to introduce inert support materials such as Al2O3, SiO2, TiO2 and ZrO2.Adanez et al. [32] assessed the reactivity of 240 different types of oxygen carriers composed of Cu, Fe, Mn or Ni supported on SiO2, TiO2, ZrO2, Al2O3 or sepiolite (Mg4Si6O15(OH)2∙6H2O) over a temperature range of 950 – 1300 C.The best Fe-based oxygen carriers were those supported on Al2O3 or ZrO2.It was also found that the formation of aluminate (NiAl2O4 and CoAl2O4) lowered the oxygen transport capacity and hence reduced the redox activity [33].SiO2 was found to be the most suitable support for Cu-based oxygen carrier because it remained inert at high temperatures and did not form Cu-SiO2 composites.However, Fe-based oxygen carriers showed a strong tendency to form unreactive iron silicates with SiO2[34].ZrO2 and TiO2 were suggested as the best supports for Mn- and Ni-based oxygen carriers, respectively.In terms of the cyclic redox activity, however, TiO2 supported Ni-based oxygen carriers showed lower reactivities, compared to Ni supported on Al2O3. This is because NiO is more prone to react with TiO2 and form NiTiO3 which is known to be less reducible than NiO. It also exhibits a high carbon formation tendency.Therefore, Al2O3 supported Ni-based oxides were considered to be the most promising oxygen carrier for a large scale CLC applications.
Some metal doped iron oxide oxygen carriers were also supported on ZrO2 for CL processes [29, 35-37]. Kodama et al. [35, 36] showed improved thermal resistance for the Ni- and Co-ferrites when ZrO2 support was introduced. The reported methane conversion and carbon monoxide selectivity by using Ni0.39Fe2.61O2 (33 wt%)/ZrO2 were 46-58% and 44-48%, respectively. However, since Fe and Ni are excellent catalysts for methane decomposition, the material was severely deactivated by coke and the subsequent carbide species formed. Because Cu has lower activity for methane decomposition, CuFe2O4 was used to produce syngas from methane [29]. The results showed that no COx was formed during the operation. The same group also found beneficial effects of ZrO2 and CeO2 supports for CuFe2O4 (20 wt%) [38]. Compared to the methane conversion obtained for CuFe2O4 (34–56 %), the methane conversions achieved by CuFe2O4/CeO2 and CuFe2O4/ZrO2 were 89-92 % and 74-83 %, respectively. From these results, CeO2 was found to be more active in promoting methane oxidation while ZrO2 was considered to be a more effective stabiliser against thermal sintering. Since CeO2 is known to be able to oxidise soot through lattice oxygen transfer [39, 40], it is thought that this property could help to minimise carbon formation when CuFe2O4/CeO2 is used. Cha et al. [37] also confirmed that CeO2 modified CuFe2O4/ZrO2 was a more effective oxygen carrier than Ni- modified CuFe2O4/ZrO2 for chemical looping syngas and hydrogen productions.
A recent study conducted by Yamaguchi et al. [41] also demonstrated the improved performance of CeO2/ZrO2 modified Fe2O3for producing hydrogen from methane-steam cycles.Some results obtained from temperature programmed analysis and isothermal reduction are shown in Figure 4 and are summarised in Table 2.Figure 4a shows that CeO2 and ZrO2 altered the redox properties of Fe2O3 with the most significant enhancement observed for the reducibility at low temperatures (< 600 C) (see Table 2).The isothermal reduction analysis (Figure4b) further confirmed the accelerated reduction kinetics after the introduction of CeO2 and ZrO2.The observed overall enhancement was derived from the combined effects of CeO2 and ZrO2.CeO2 improved the reducibility of Fe2O3 while ZrO2 provided thermal stability and helped to suppress the reduction of FeO to metallic Fe.The latter was supported by the incomplete reduction of Fe15Ce10Zr75 and Fe40Zr60 (Table2).Similar observations were also reported when WO3 was modified with CeO2 and ZrO2[42].The synergic effect provided by CeO2 and ZrO2 effectively defined the redox window of the oxygen carriers.An immediate consequence is the minimisation of carbon and carbide formation during repeated redox cycles.This can be demonstrated by the fact that COx free hydrogen was produced by using CeO2-ZrO2 modified WO3 in a methane-steam CL process [42]. The addition of a small amount of Mo or Cr could further improve the thermal stability of this type of oxygen carrier.Galvita et al. [43]showed the addition of 2 wt% of Mo to Fe2O3/Ce0.5Zr0.5O2 could maintain a stable level of hydrogen production over 100 cycles in a cyclic water-gas shift process.In this reaction, the main role of Mo is to improve the dispersion of Fe-Mo oxide material and minimise the migration of material across the boundary of adjacent particles [44].
Effect of CeO2 and/or ZrO2 addition on Fe2O3 reducibility during a) temperature programmed and b) isothermal reduction with H2[
Oxygen removal1 [mg-O/g-Fe] | Overall reduction efficiency2 [wt%] | H2 yield [μmol/g-Fe] | H2 purity [%] | |
Fe100 | 125 | 98.1 | 15 | 11.5 |
Fe60Ce40 | 169 | 97.1 | 368 | 49.1 |
Fe40Zr60 | 153 | 66.7 | 88 | 17.4 |
Fe15Ce10Zr75 | 255 | 77.2 | 6283 | 97.5 |
A summary of oxides used in methane-steam redox cycle [41]. 1The oxygen removal represents a cumulative weight reduction at temperatures < 600 C during the TPR analysis (Figure4a). 2The overall reduction efficiency represents a final reduction efficiency obtained during isothermal reduction analysis at 750 C for 240 min.
Recently, many naturally occurring minerals and ashy waste produced from industry have been considered for use as oxygen carriers. These materials include natural ilmenite (Fe and Ti mixed oxide often denoted as FeTiO3), iron ore, manganese ore and oxide scales. An advantage of using these materials is the low cost compared to many synthetic oxygen carriers. In addition, naturally occurring oxides usually contain Si, Al, Mg, and many other metals which have been shown to modify the physiochemical properties of the materials to various degrees. Leion et al. [45] investigated the feasibility of using ilmenite, iron ores, oxide scales from steel industry and manganese ores as oxygen carriers in a fluidised bed reactor. They concluded that many Fe based oxides, particularly ilmenite, were suitable for CLC application. However, the Mn-based oxides showed poor mechanical stability and fluidising properties, and were determined to be non-ideal candidates for this application. In a separate study, Leion et al. [46] also proved the feasibility of using ilmenite to completely capture carbon dioxide upon its reaction with syngas and reported a moderate conversion when methane is used. Adanez et al. [47] observed increases in ilmenite, and syngas and methane conversions with increasing the time on stream and the number of redox cycles. Another important finding was the enhanced activation of ilmenite when the raw ilmenite material was subjected to an oxidation pre-treatment. The authors also found the redox properties of ilmenite changed with the temperature of oxidative pre-treatment. However, the positive effect only became apparent when the ilmenite was first oxidised to pseudobrookie (Fe2TiO5) which is usually formed above 1000 C.
Pre-oxidation temperature [°C] | Oxygen transfer capacity [wt%] | |
Raw | FeTiO3, TiO2 | 1.1 |
800 | Fe2O3, TiO2 | 1.0 |
1000 | Fe2TiO5, TiO2 | 1.8 |
Oxygen transfer capacity and major phase of various ilmenite samples before and after pre-oxidation. 1 Phases were identified by XRD analysis
Leion et al. [46] also reported that an ilmenite sample remained active with minimum carbon formation after a continuous operation for three days at 975 C.Furthermore, natural ilmenite is known to react just as well with petroleum coke, syngas and methane as synthetically prepared Fe2O3/MgAl2O4[48].Lorente et al. [49] reported a better hydrogen storage capacity and redox stability when iron ore samples was used instead of pure Fe2O3.The improvement in the overall redox performance was due to the presence of impurities including SiO2, Al2O3, MgO and CaO.Among these impurities, Al2O3 and SiO2 are considered to be good stabilisers against sintering, while CaO and MgO are able to facilitate kinetics of water splitting.
The life time of the oxygen carrier is a critical factor in determining the efficiency and viability of CL processes.In general, the efficacies of oxygen carriersdecrease over time because of material alternation by sintering and/or coking.
Generally, for the CLH2 application, a relatively high temperature is required for driving the reduction reaction in order to achieve satisfactory conversion and kinetics. As a result, the high temperature environment irreversibly alters the structure and the morphology of oxygen carriers, and lowers the activity during the cyclic operation. The sintering process starts as two spherical particles adhere to one another. The process involves the diffusion of metal cations between neighbouring spheres. Figure 5 shows the SEM images of a pure Fe2O3 sample and the same material recovered after six methane-steam redox cycles performed at 750 C. Severe sintering is clearly evident. The heat generated from the redox reactions could accelerate the rate of sintering. When oxygen carriers sinter and agglomerate inside a fluidised bed reactor, bed defluidisation may occur. The change in solid circulation and the subsequent occurrence of gas by-pass would significantly lower the gas-solid contact and hence the overall conversion efficiency.
SEM images of Fe2O3 sample before and after six methane-steam redox cycles at 750 Cand representative schematics of neck growth between two particles[
One of the approaches to minimise material sintering is to inhibit the diffusion in the solid particle.The complete reduction of the oxygen carrier to the corresponding zero valent metal is also a main cause of sintering since most metals agglomerates easily under elevated temperature conditions.Fukase and Suzuka [50] reported that the formation and accumulation of FeO during CL operation was mainly responsible for deactivation when iron oxide was used as the oxygen carrier.They also pointed out the importance of balancing the stoichiometry of reduction and oxidation of iron oxide and to avoid the formation of FeO by controlling reduction and oxidation temperatures.It is also important that the reduced iron species were completely oxidised to Fe3O4 phase.This mitigates the crystallite growth of the iron oxide and effectively prevents it from any structural changes.
Carbon is a common by-product of the CL process when a carbonaceous fuel is used as the feedsstock.Two possible routes for carbon formation are the decomposition of methane (Eq. 5) and the Boudouard reaction (Eq. 6). Methane decomposition is an endothermic reaction, and it is thermodynamically favourable at a high temperature, while the Boudourard reaction is favourable at a low temperature.These reactions could become significant in the presence of catalysts.Upon reduction, many metal oxides such as NiO, CuO and Fe2O3 could give rise to active metal centres which are able to rapidly produce carbon on the oxygen carrier surfaces.Once the solid carbon is formed, it will be carried over to the subsequent oxidation cycle where it is gasified to produce COx.When this happens, the purity of the hydrogen produced will be inevitably lowered.
CH4→ C + 2H2∆H = 74.6 kJ/mol
2CO → C + CO2∆H = -172.4 kJ/mol
In general, as the oxygen ratio in the system decreases, there is a higher tendency towards carbon formation. The oxygen ratio is defined as the actual amount of oxygen contained in the metal oxide to the stoichiometric amount of oxygen required for complete oxidation of the fuel. It is also clear that carbon formation becomes more favourable as the oxygen in the oxygen carrier is depleted through the reaction with fuel. Cho et al. [51] reported that when more than 80 % of the available oxygen in the Ni-based oxygen carrier was consumed, the rate of carbon formation increased rapidly. This was accompanied by a drastic decrease in the fuel conversion because of the decreasing oxygen content available for oxidation. Galvita and Sundmacher [43] reported that a maximum Fe reduction of 60 % largely minimised carbon formation and a high purity hydrogen stream (< 20 ppm CO) could be obtained.
In view of the lack of information on the cost of hydrogen produced from the CLprocess, the preliminary economic analysis and greenhouse gas footprint (GHG equivalent emissions in terms of carbon dioxide) of a methane-steam redox process will be provided in this section. A simple design for hydrogen production via a two-reactor layout wasfirst obtained by considering the mass and energy balances as well as the overall pressure balance in order to establish a circulation of solids between the two reactors. The means of exchanging heat (direct, indirect, counter-current, available surface area, approach temperatures etc) has been considered, but has not been addressed further in this study. The pressure balance was affected by variables including the physical properties of the solid and gas, fluid velocity, solids recirculation rate as well as the geometry of the system.The pressure balance was solved using a one-dimensional model[52].The basis of the design was a hydrogen production rate of 49 kg/h (or 547 Nm3/h). This process considered the use of iron oxide as the oxygen carrier. Because the reduction of the iron oxide was much slower than its oxidation, a bubbling fluidised bed was chosen for the fuel reactor and a riser for the steam reactor.A particle size and density of the iron oxide particles were assumed to be 160µm and 5850kg/m3, respectively. Other assumptions made for the operation are listed in Table 4.A high solids (i.e. the iron oxide) flow rate was required through the riser in order to meet the mass balance.This resulted in a high pressure drop across the riser, which was reduced by increasing the excess steam used for oxidation of the reduced iron oxide in the riser (at constant superficial gas velocity). The resultant mass balance is given inFigure6 and the CLH2 design is presented in Figure 5.
6.0 | 0.1 | 0.15 | 0.1 | |
750 | 700 | 750 | 700 | |
Steam | Steam | Natural Gas | Steam | |
240 | 240 | 500 | 240 | |
5 | 5 | 5 | 5 | |
100% FeO to Fe3O4 | None | 20% F3O4 to FeO 100% conversion of NG | None | |
1 minute |
Assumptions used in the design of a CLH2process.
A schematic of CLH2processand the mass balance used for hydrogenproduction.Flow rates are represented in kg/hr and compositions in mass percentage.
The process flow diagram including the major peripheral equipment is shown inFigure7. The heat from the exothermic reaction in the riser is used to raise superheated steam at 20 bar and 400 C. This is used to generate electricity, with the steam let down to 5 bar and 240 C. 25% of the steam is used as feed to the steam reactor and to fluidise the two loop seals. The water vapour content in the hydrogen product stream is due to the excess steam fed to the riser as well as from steam used to fluidise the loop seals. This is condensed out and returned with the water from the steam turbine to the boiler, in order to reduce the fresh water requirement. The heating required for the endothermic reaction in the fuel reactor is reduced by pre-heating the natural gas using the waste heat from the off gas from the fuel reactor. For the current heat balance purpose it is assumed that there are different ways of supplying this remaining heat. One of the possible ways of supplying direct heat is by including a third combustion loop operated at higher temperature, which is outside the scope of this study.
Steam reactor | Steam down-comer | Fuel reactor | Units | ||||
Gas flow | Entering | 957 | 16 | 159 | Nm3/h | ||
Exiting | 457 | 14 | 137 | Nm3/h | |||
Superficial gas velocity | 6.0 | 0.1 | 0.15 | m/s | |||
Gs | Entering | 346 | 346 | 51 | kg/m2s | ||
Internal diameter | 0.32 | 0.32 | 0.83 | m | |||
Temperature | 750 | 700 | 750 | C | |||
Pressure | Bottom | 113 | 98 | 107 | kPa,g | ||
Top | 102.45 | 179.31 | 179.31 | kPa,g | |||
Height | Total internal | 15 | - | 3.9 | m | ||
Gas exit (from top of riser) | 0.8 | - | - | m | |||
Downcomer (not including cyclone) | - | 7 | - | m | |||
Bubbling bed /loop seal | - | 0.7 | 1.1 | m | |||
Height relative to datum | |||||||
Bottom | 0.0 | 5.1 | 1.9 | m | |||
Loop seal entrance to riser | 1.2 | - | - | m | |||
Solids voidage (ε) | 0.88 | 0.47 | 0.53 |
Reactor configuration for CLH2process.
Proposed flow diagram of CLH2 process, showing peripheral equipment.
The greenhouse gas emissions associated with the production of a unit of hydrogen were calculated using lifecycle assessment (LCA) techniques. Principally, LCA is a technique used to assess the environmental impacts of all stages associated with the production, use and disposal of a product or delivery of a service (product life from cradle to grave).In the case of a fossil fuel for example, this includes not only the combustion emissions associated with the fuel’s use, but also includes pre-combustion or upstream emissions resulting from the extraction, production, transportation, processing, conversion and distribution of the fuel.The international standards contained in the ISO 14040 series [53] provide a basic framework in which to undertake LCA.A more general introduction to LCA may be found in Horne et al. [54]and Weidema et al. [55].In this study, all fuel production and feedstock supply processes, as specified in Figure 7, were included in the LCA. The analysis is therefore limited to processes upstream of the refinery gate and thus does not include the delivery and combustion of hydrogen.Emission results are reported using the concept of a global warming potential (GWP), which enables different greenhouse gases to be compared and expressed using an equivalent carbon dioxide (gCO2e) value.Data used for the analysis are summarised in Table 6 based on an hourly hydrogen production rate of 49 kg.The GHG impact of the CLH2 processunder consideration is 18,690 gCO2e/kg H2 produced or 154 gCO2e/MJ H2.The impact is dominated by the need to supply process heat to the fuel reactor(redox heater emissions:9,628 gCO2/kg H2) as shown in Figure 8.
Natural gas | 99 | kg | Natural gas for reaction |
Oxide material | 1.26 | kg | Yearly make-up (per hour) |
Water | 440 | kg | Make-up water (reaction and cooling) |
Natural gas | 151 | kg | Fuel reactor heat requirement |
Electricity | 189 | kW | Net electricity requirement |
Hydrogen | 49 | kg | Compressed hydrogen output |
H2O | 217 | kg | Fuel reactor (stack emissions) |
CO2 | 272 | kg | Fuel reactor (stack emissions) |
CO2 | 419 | kg | Fuel reactor (heater emissions) |
LCA inputs/outputs (per hour) for the CLH2 process.
Redox emissions breakdown (per kg H2).
Preliminary results demonstrate the need to optimise the delivery of heat to the fuel reactor. The introduction of a third combustion loop operated at higher temperature is one such means to reduce upstream emissions. However, this may negatively influence total capital expenditure.The literature reports hydrogen production through current steam reforming technology produces between 9,830 gCO2e/kg H2 (24,000 kg H2/day; midsized facility) and 12,130 gCO2e/kg H2 (480 kg H2/day; distributed facility), and thus are higher than the direct redox process emissions [56], although significantly lower than the total CLH2 emissions.The literature only considered electricity and natural gas related emissions and thus total upstream emissions of existing technologies maybe higher than the reported values.
The commercial viability of the redox process was estimated using cost estimate practices outlined in the literature [56, 57]. Results are reported in $/kg H2. Material and fuel operating expenditure was calculated using the inputs identified in Figure 7, as summarised in the lifecycle analysis section (Table 6). Fixed operating and maintenance costs were calculated based on the total capital expenditure. Battery limit capital expenditure (e.g. redox process) is based on the engineering judgment of the authors, with capital build-up (facilities, engineering, permitting, start-up, contingencies, working capital and land) estimated using a percentage of the battery limit cost. Capital charges are calculated using a percentage of total capital expenses. Importantly, although the estimates may look precise, they are simply estimates based on the judgment of the authors. There remains significant uncertainty about the actual cost of the redox process as it has not been commercially demonstrated. A breakdown of cost data is provided in Table 7.
Initial costing estimates show that the redox process may produce hydrogen at $8.93/kg ($9.36/kg, including carbon tax). The cost breakdown demonstrates that onsite storage of compressed hydrogen represents a significant expense. However, this arises from the conversion of stranded methane. If demand for hydrogen is identified close to a stranded gas reserve, storage costs will decrease significantly. Delivery of compressed hydrogen represents an additional cost that has not been considered in this analysis. Literature cost estimates for at gate hydrogen production via steam reforming, using current technology, range between $1.51/kg (midsize facility: 24,000 kg H2/day) to $3.68/kg (distributed facility: 480 kg H2/day facility). Hence the hydrogen at gate cost for the CLH2 process is higher than steamreforming technology. Electrolysis production of hydrogen ranges between $4.94 and $6.82 per kg for a midsize and distributed facility respectively and thus is closer to CLH2production costs [56]. Experience gained through the commercialisation and deployment of the redox technology is expected to reduce costs, particularly capital build-up costs. However the stranded nature of the product may significantly increase total delivered hydrogen cost.
Variable (fuel and materials) | ||
Oxide material | 0.55 | $50/kg |
Natural gas | 0.20 | Reaction feed and reducer heating |
Electricity | 0.12 | Net electricity demand |
Water | 0.01 | Make-up supply |
CLH2 reactor | 10.0 | |
H2 Compression | 0.44 | $3,000/kW capacity |
H2 Storage | 5.97 | $26,417/m3 capacity; 5 days storage |
16.42 | ||
General facilities | 3.28 | 20 % of process unit CapEX |
Engineering | 2.46 | 15 % of process unit CapEX |
Contingencies | 1.64 | 10 % of process unit CapEX |
Working capital | 0.82 | 5 % of process unit CapEX |
24.62 | ||
OpEx (variable) | 0.88 | |
OpEx (fixed) | 0.49 | 2 % of total CapEX |
Capital charge | 2.46 | 10 % of total CapEX |
Carbon Tax | 0.18 | $23/T CO2 |
Redox process cost estimates.
The feasibility of producing hydrogen from the metal/metal oxide redox process has been demonstrated in the literature. This process offers several advantages including the ability to produce hydrogen of high purity and a concentrated stream of carbon dioxide. Most importantly this process eliminates the need for a supply of high purity oxygen and a water gas shift process that are generally required by commercial processes. However, this redox process is not regarded as a fully developed technology and further R&D development is required for commercialisation.
In view of the literature, much research effort has been devoted to formulating novel oxygen carrier materials. Although several types of improved oxygen carrier materials have been identified, full appraisals of their performance and further optimisation studies are required.Iron oxidesand nickel oxides appear to be attractive candidates for this application in terms of their activity. However, their thermal stabilities need further improvement. Current practices include doping, introducing a diffusional barrier provided by a second oxide, and/or adding a second oxide with higher oxygen storage capacity. There are also a limited number of studies that investigate the life time of oxygen carriers. Apart from chemical stability, the changes in the physical properties such as size and attrition of the carrier particles during fluidisation have received little attention and should be addressed in future research. It is viewed strongly that improvement in these areas would significantly increase process efficiency and economic viability of the cyclic redox process.
The lack of pilot scale studies also impedes the commercialisation of cyclic redox and chemical looping processes. Limited data are available for process design, scale-up and optimisation. For example, the transfer of the oxygen carrier particles between oxidation and reduction is a critical issue when it comes to process design.Fixed bed, moving bed and circulating fluidised bed have been proposed, and the choice of reactor will depend on the reaction kinetics and the required flow dynamics of the process. Because the cyclic redox process is considered as an unsteady process, the definition of the operation window of the process will be determined by limiting the upper and the lower oxidation states of the metal/metal oxide couple. This parameter has a direct impact on the overall conversion efficiencies, process designs and economics. Since the redox reactions usually take place at temperatures above 600 C, most of the sensible heat stored in the gas existing from the oxidation and reduction reactors can be used to generate power with a steam generator.The co-production of excess electricity would reduce the cost of the hydrogen produced and increase overall process viability. Hence, the issue of heat management requires much closer examination when it comes to process optimisation.
Finally, the current preliminary LCA-Economic study has made the first attempt to provide an indicative price of hydrogen produced from the redox process. Although the cost of hydrogen produced from the redox process is higher than hydrogen produced from other commercial processes, several design parameters have been identified as the areas for future improvement. It is seen that the LCA techniques are valuable tools for process optimisation.
The authors acknowledge the support from CSIRO Petroleum and Geothermal Research Portfolio in conducting this study
Equipment for whole-body cryotherapy (WBC) has been used in clinics around the world for over 40 years [1, 2]. Despite this, until today there is no universally accepted concept describing the mechanism for achieving the healthcare effect of this physiotherapeutic procedure, and the physical conditions of safety and effectiveness of cryogenic cooling of the patient’s skin surface have not been determined [3, 4, 5, 6]. Temperature of the cooling gas and the duration of its contact with the patient’s skin, being the most important technological parameters of WBC, vary over a wide range. The requirements for the power supply capacity of equipment for the implementation of WBC technology are not defined. In such conditions, manufacturers of devices for WBC procedures gradually increase the value of the minimum gas temperature in the WBC cab. Over 40 years of cryotherapeutic system production, the gas temperature declared by manufacturers of devices for WBC has doubled from 98 K in 1978 [1, 2] to 192 K [4, 5, 6, 7]. By increasing the operating temperature of the equipment, manufacturers significantly reduce the cost of its production. For 40 years, the cost of devices for group WBC has decreased by 30 times. Low prices for equipment provide a high level of sales, so the trend of increasing operating temperature of WBC devices persists. An increase in the temperature level is accompanied by a decrease in the power of systems for cryostatting the WBC zone. The newest installations are equipped with refrigerators with a specific power of the electric driver of not more than 1 kW/m3. At a temperature level of 170 K, a refrigerator with such a power has a heat-removing capacity of not more than 400 W/m3, which is comparable with the physiological heat release of a patient under thermal comfort conditions (150 W) [7].
\nUnreasonable changes in WBC technology affect the effectiveness of the procedures. Recently, more and more articles appear, the authors of which express doubt that cryotherapy can provide the healthcare effects described in papers published before 1990 [7, 8]. The reason that many modern WBC systems are not able to provide the conditions for obtaining the healthcare effects described in the last century [1, 2] is the increase in gas temperature in the working zone of new installations. This can be seen even from the titles of the articles [1, 8]. The temperature increase from −170°C (102 K) to −110°C (163 K) changes the absolute value of the temperature by 1.6 times, which cannot but affect the intensity of heat removal, the degree of supercooling of the patient’s body surface, etc. From a thermophysical point of view, it is obvious that from 1978 to 2018 the technology, which is commonly referred to as WBC, has qualitatively changed. And, judging by contemporary publications, this qualitative change had a negative impact on the healthcare effectiveness of the procedures, which until recently were successfully used to treat a number of severe diseases: rheumatoid arthritis, bronchial asthma, psoriasis, etc. [9, 10].
\nIn such conditions, the determination of cause–effect relationships between the WBC technological parameters and the magnitude of the healthcare effect acquires high scientific and social significance. Formation of the thermophysical theory of WBC creates a scientific basis for restoring the production of effective cryotherapeutic installations at the modern technical level.
\nThe WBC method is based on providing the total contact of the patient’s skin surface with a cryogenic gas. With a contact duration of up to 3 minutes and a gas temperature of less than 140 K, the WBC procedure provides a number of positive effects that are used in treatment practice [11, 12]. The most demonstrative and controlled sign of the WBC effectiveness is the duration of analgesic action, which can last 6–8 hours [7]. The analgesic effect of WBC was first described and used in treatment practice by a Japanese doctor Yamauchi. For the WBC procedures, a special installation was made, called “Cryotium” by the author of the method [2]. The “Сryotium” design was analogously a refrigeration chamber for long-term storage of perishable products. The chamber was separated from the environment by the lock chamber (Figure 1), which was supposed to reduce the loss of cold air from the main chamber.
\nMulti-seat cab for WBC.
Given the relatively large size of the chamber, several patients were undergoing the WBC procedures simultaneously (from 5 to 12). To obtain cryogenic temperatures, liquid nitrogen was fed to the “Cryotium” heat exchangers instead of freon. The “Сryotium” design appeared by chance. Yamauchi believed that in order to obtain the maximum treatment outcome, the maximum decrease in temperature should be used. This condition became the basis of the design. To reduce the cost of manufacturing “Сryotium,” Japanese engineers used the insulating structure and heat exchangers of the serial refrigeration chamber. The temperature regime in the chamber volume was determined by the requirement of the inadmissibility of air condensation on the surface of a heat exchanger. The temperature of the outer surface of the heat exchanger \n
The removal of heat from air to the surface of the heat exchanger was carried out by natural convection.
\nWith natural convection, the calculated temperature gradient between the gas and the heat-removing surface is 20 K:
\nMinimum possible air temperature in the cab:
\nThe value of the air temperature during the WBC sessions specified by the method’s author [1] is the lowest possible temperature that could be achieved in this cab design. It is important to note that in “Сryotium” the temperature was maintained by choosing the pressure of liquid nitrogen (LN) vapor in the heat exchanger tubes (Figure 2). The boiling point of LN depends on pressure; by increasing the vapor pressure to a level of
The scheme of supplying liquid nitrogen to the heat exchangers of the installations for the WBC: (a) “Cryotium”; (b) “KR-2005.”
Thus, the “Сryotium” design determined the WBC technology. Perhaps, that is why the author of the method did not give any reason for the WBC temperature regime in his works. The ratios of the boiling points of nitrogen and air, as well as the design features of the device in which the procedures were performed, have randomly created the conditions for a safe and highly efficient procedure.
\nYamauchi used the WBC method for the treatment of rheumatoid arthritis [1]; the technique was so effective that it quickly spread to the countries of Western Europe. In Poland and Germany, devices similar to “Cryotium” were put in production. European manufacturers have tried to reproduce the Japanese installation on the base of available information but, for unknown reasons, have changed the basic operating principle of “Cryotium.” This is translated into an increase in the minimum operating temperature from −170 to −160°C [13]. A slight increase in temperature led to a whole chain of changes in cooling technology, which caused a gradual decrease in the efficiency of European (Polish and German) installations for WBC. As already shown above, the temperature level of −170°C was maintained in “Cryotium” without using a temperature control system, only through relief of excess pressure in the LN vapor line (Figure 2a).
\nThe liquid level controller (YC) in the heat exchangers of the “Сryotium” installation according to the sensor signals of the Y level controls the operation of the solenoid valve (SV), through which LN enters the system. The cryogenic liquid enters the heat exchanger (HE) tubes, where it partially evaporates due to the supply of heat from the procedural room air. Vaporization reduces the flow density in the tubes; the vapor–liquid mixture is pushed out from the top of the heat exchanger to the liquid separator (LS). In this apparatus, liquid and vapor are separated. The liquid flows into the lower section of the heat exchanger (HE) and again participates in the removal of heat. LN vapors accumulate at the top of the liquid separator (LS). The vapor pressure is controlled by a safety valve (V), which opens at a pressure of 0.22 MPa. The vapor pressure determines the LN boiling point and the temperature of the tubes of the heat exchanger (HE), which must meet condition (1). The air temperature in the main “Cryotium” cab at the presence of patients rises to −170°C. In the pauses between the procedures, when the heat load on the cooling system is reduced by 10 times [7], the air temperature in the main cab approaches the temperature of the heat exchanger tubes:
\nThe air temperature in the cab remains at the minimum possible level. In European installations, the air temperature in the cab is controlled by the temperature controller (TC), which, by signals from the temperature sensor (S), opens the liquid nitrogen supply valve (SV). In order to maintain the temperature at −160°C, the TC limits the supply of LN to the heat exchanger (HE) in the period when there are no patients in the cab. The LN level decreases until the sensor (S) registers the set temperature. The upper sections of the heat exchanger (HE), through which the nitrogen passes in the vapor state, are heated to a temperature close to the air temperature in the chamber. The temperature of the inner tube surfaces exceeds the LN boiling point by more than 20 K:
\nWhen patients enter the main cab, relatively warm air enters from the lock chamber (\n
The increase in the air nominal temperature in the cab for WBC from −170°C to −160°C fundamentally changed the temperature algorithm of the procedure. The transition to the LN film boiling regime caused a significant overrun of the cryoagent. The operational drawbacks of the nitrogen cooling system and the uncertainty of the air temperature requirements in the main procedural cab created conditions for use in the WBC cryostatting system of three-stage chillers and steam cycles on gas mixtures. Refusing LN resulted in an increase in the nominal temperature in the main cab to −110°C.
\nSpecialists in the field of WBC did not only pay attention to this but also actively promoted the “modernization” of cryotherapy equipment [13, 14, 15]. The ability to refuse to use LN and significantly reduce the costs of WBC procedures turned out to be so attractive that the specialists “did not notice” that the efficiency of the procedures in the “nitrogen-free” installations was 10 times lower than in “Сryotium” [7]. At the beginning of the twenty-first century, “Criohome” “cryotherapeutic” devices with a nominal temperature of −85°C was used for WBC procedures, i.e., the tendency to increase the temperature persists. Since 1985, the Russian direction of devices for WBC has been developing independently, based on the use of single-seat installations with a nitrogen cooling system (cryosaunas). The temperature in the cab of a single-seat cryosauna during the whole procedure is no higher than −130°C. The conditional constancy of temperature fundamentally changes the degree of supercooling of the skin surface; therefore, cryosaunas ensure the effectiveness of WBC at the level of the original technology implemented in “Cryotium” but with less energy loss. The current state of WBC in Europe is a consequence of the 40-year use of the method in the absence of a reliable concept of the method for obtaining the cryotherapeutic effect and the uncertainty of the technological requirements to specialized equipment [3, 4, 5]. In such conditions, manufacturers of WBC installations have flooded Europe with installations that, by their therapeutic efficacy, do not differ from traditional hypothermia. The popularization of the thermophysical theory of WBC will stop the regression of cryotherapy in Europe and the world.
\nThe WBC thermophysical theory was formulated at St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University) in order to overcome the uncertainty of the technological requirements for specialized devices for WBC. In developing the theory, information on the conduct of WBC procedures and their effectiveness was used [1, 2, 7, 13]. As a criterion for optimizing the WBC technology, it is reasonable to use the duration of the analgesic effect of cryotherapy. The duration of the analgesic effect or effective time (WBC ET) is easy to determine in practice. To carry out computational experiments at ITMO University, a method was developed for calculating the WBC ET [16], which made it possible to perform studies on the optimization of the WBC technology in the mode of numerical experiment.
\nTo calculate the WBC ET, a formula is proposed that relates the positive effect with the degree of approaching the skin surface temperature (
where
The maximum duration of WBC (τmax) is determined taking into account the requirements of the patient’s hypothermic safety, which limit the permissible changes in body temperature on the surface (
Physical model of the human body shell (BS).
Compliance with the established limitations of changing the value of
\n
\nFigure 3 shows a graphical representation of the patient’s body shell (BS). BS is the outer layer of the body, the mass of which is 30% of the total body mass. BS consists of three types of tissues: epithelium 1, adipose tissue 2, and muscle tissue 3. Layers 1 and 2 endure significant hypothermia without any harm; patient’s safety is ensured when the violation of the normal temperature distribution does not extends beyond the inner boundary of the BS [13]. In the normal state
The simplified physical model of a human BS has become the basis of a mathematical model.
\nBS is a relatively thin surface layer. The calculated thickness of the BS of an average human is Δ
where
The energy equation allows you to simulate thermal processes associated with significant changes in the temperature of the study object. The energy equation describes well the processes of changing the state of aggregation; this provides the mathematical model with certain advantages compared to models built based on the heat transfer equation [13]. When replacing derivatives with difference approximants, it is possible to obtain an algebraic expression suitable for automated calculations:
\nSolving Eq. (8) with respect to the value of enthalpy at the new time layer \n
where \n
The structure of the cooling object and temperature distribution in the BS layers are described above (Figure 3). Thermophysical properties of the human body shell tissues are shown in Table 1.
\nTissue | \nρ, kg/m3\n | \nφ, % | \n\n | \nλ, W/(m·K) | \n\n | \n
---|---|---|---|---|---|
Skin | \n1093 | \n72.0 | \n3600 | \n0.35 | \n10,996 | \n
Muscles | \n1041 | \n80.0 | \n3458 | \n0.475 | \n7277 | \n
Adipose tissue | \n916 | \n20 | \n2250 | \n0.21 | \n— | \n
Properties of the human BS tissues [17].
Due to the high water content (φ), all human BS tissues have a high heat capacity, which ensures the accumulation of a significant amount of heat. The heat accumulated in the tissues protects the organs of the body core (BC), heart, lungs, kidneys, and liver from frigorism at a sharp decrease in ambient temperature. Thermal balance of the BS area element
\ndetermined by the ratio of the intensity of the heat fluxes transferred by the thermal conductivity of the tissue along the
At BS boundaries, heat transfer is described by boundary conditions. For the outer boundary, the intensity of the convective heat removal is calculated:
\nwhere α means the heat transfer coefficient at the natural convection of gas or liquid, \n
On the inner BS boundary, the temperature of the tissues during WBC does not change and is equal to the body core temperature (0):
\n\nEq. (10) describes the change in the heat content of tissues over time \n
The described algorithm of computations forms the mathematical model of the human BS, which is suitable for studies of processes of the therapeutic effect of low-temperature liquids and gases.
\nThe mathematical model of the human BS allowed us to perform a numerical experiment to study the physical bases of the WBC healthcare efficacy. Quite often [4, 5] WBC is compared with the cold water immersion procedures. The basis for this comparison is that cryogenic gas and cold water remove a significant amount of heat from the body surface. Moreover, under conditions of natural convection, the coefficient of heat transfer from a source of heat to gas is usually 10 times lower than when heat is removed by water [7]. In reliance on this information, attempts to replace WBC with cheaper water procedures have been ongoing for 40 years [18]. Proponents of such a replacement do not take into account the fact that the WBC ET is more than 360 minutes, and water treatments provide pain relief for a maximum of 30 minutes. Such a difference in efficiency should be based on the fundamental differences between the results of heat removal by liquid and gaseous heat carrier.
\nSimulation of the BS surface cooling process with water with a temperature of 273 K and a cryogenic gas with a temperature of 140 K has allowed revealing such a difference (Figure 4), which reduces to the level of the minimum surface temperature of the cooling object. In cold water, the minimum surface temperature of the cooling object is at least 5.5°C. As the temperature difference between the water and the cooled surface decreases, the intensity of convective heat removal to water decreases to less than 950 W/m2 [19]. The intensity of heat supply from the inner layers of the body to the surface, on the contrary, approaches the level of 880 W/m2. Due to the small difference in heat fluxes at the boundary of the cooling object, the rate of temperature decrease
Dependence of skin temperature on time.
The use of a cryogenic gas with a temperature of 140 K for cooling the BS surface gives a completely different picture. The graph of surface temperature changes (Figure 3) is almost a straight line, which means that the temperature decreases almost without the rate change:
\nThe minimum temperature value
In the case of cooling with a cryogenic gas, the BS surface is supercooled to the minimum acceptable level. WBC technology is based on the use of this hypothermia to stimulate the cold receptors of the skin. Expression (6) for calculating the duration of positive effects contains a term that allows us to illustrate the intensity of stimulation of cold receptors by changing the temperature of the BS surface. This parameter of the WBC procedure is called the intensity of stimulating action (ISA):
\nThe dependence graph
Dependence of ISA value on body surface temperature.
Data on the amount of heat
The calculated values are given in Table 2. In cryogenic gas, heat removal was 440 kJ/m2, which is 10% more than in cold water. The result obtained is significantly less than that supposed by some WBC popularizers who estimate heat removal from the patient’s body at 1250–2500 kJ/m2 [20].
\nResults | \nHeat carrier | \n|
---|---|---|
gas | \nwater | \n|
Cooling time, τmax, sec | \n159 | \n177 | \n
Minimum surface temperature of the object, | \n−2.0 | \n5.5 | \n
The minimum temperature at the inner boundary of the fat layer, | \n309.2 | \n309.0 | \n
Heat removed by heat carrier from the body surface, | \n440 | \n410 | \n
Heat removed through the inner boundary of the fat layer, | \n10.2 | \n12.5 | \n
Heat flux from the body surface at the beginning of the cooling process, \n | \n3.5 | \n11.3 | \n
Heat flux from the body surface at the end of the cooling process, \n | \n2.3 | \n0.95 | \n
The results of a numerical experiment on the simulation of heat removal by water with a temperature of 273 K and gas with a temperature of 140 K [16].
At the same time, the result obtained is significantly more than can be removed from a WBC device by using 2 kg of liquid nitrogen for one patient’s cooling [6, 10].
\nThe assessment of the power of the specific heat flux, which the BS surface gives to the heat carrier, has essential practical importance. Table 1 shows the maximum values, at the beginning of the procedure, and the minimum values, at the time of completion of the cooling powers of the heat flux to the cold water and the gaseous heat carrier. For designing WBC devices, it is useful to know the mean value of the heat flux, which the heat carrier must remove in a single procedure, 2.9 kW/m2. This value is 29 times greater than the nominal calorific capacity of the human body; therefore, it is often challenged by manufacturers of WBC devices [13]. Estimation of the heat reserve in BS tissues before and after the procedure shows that the heat flux to the heat carrier is provided by the heat capacity of the body shell tissues (Figure 6).
\nThe temperature of the body shell before and after the WBC procedure.
Lowering the surface temperature of the BS creates conditions for increasing heat transfer with thermal conductivity from the deep to the periphery of the body. As a result, there is a change in the distribution of the tissue temperature throughout the entire thickness of the BS. The amount of heat removed from different BS tissues is determined by the enthalpy difference before and after the WBC procedure. Taking into account the constancy of the heat capacity of the tissues in the temperature range from −2 to 40°C [17], the amount of heat removed can be calculated from the temperature difference:
\nThe amount of accumulated heat removed from one area element:
\nThe total amount of heat released due to supercooling of each of the three types of BS tissues is the sum of portions of heat released in the area elements of this tissue layer:
\nwhere
Part of the heat removed was obtained from internal sources in the epithelial and muscle layers, heat of metabolism
where
Some of the heat removed came from the patient’s body core; the amount of heat gained can be determined by numerical integration and instantaneous values of the heat flux transferred by thermal conductivity through the inner boundary of the body shell:
\nThe histogram on Figure 7 gives an idea of what is the source of heat removed from the surface of the patient’s body shell. The main share of the heat of 55.2% was gained due to supercooling the epithelial layer. The heat gained by supercooling the fat layer
Sources of the heat gained the WBC procedure.
The calorific capacity of the body does not play any role in the formation of the heat load on the cooling system of the WBC device, which is determined by the heat storage capacity of the body shell tissues. The safety of the WBC procedures is ensured by the correct choice of the contact duration of the body surface with a cryogenic gas. The thermal control system of the body does not affect the safety of procedures.
\nIn practice, there are two options for carrying out WBC procedures in multi-seat and single-seat installations [7, 21, 22, 23]. The cooling conditions in these installations differ significantly; therefore, the technology of group and individual WBC should be developed separately.
\nContrary to the popular belief [7, 13], GWBC and IWBC provide effects on only a fraction of the skin area. In a group installation, the contact area of the cooling gas with the patient’s body in a multi-seat cab is up to 70.5% of the total surface area of the body. In an individual cab, the contact area reaches 66% [7]. Temperature regimes of GWBC and IWBC are fundamentally different.
\nThe GWBC technology was influenced by the design of the device for performing the procedures (Figure 1). Using a low-temperature food storage chamber for WBC procedures, Japanese engineers and doctors were forced to carry out WBC procedures in groups. The dimensions of the chamber were too large for individual procedures. This forced solution is contrary to the general practice of physiotherapy; treatment is always carried out individually.
\nSystems for implementing technology I, individual cryosaunas, were developed 20 years after multi-seat installations [7] with consideration of the experience of their operation. Modern installations for IWBC use a nitrogen cooling system (NCS), so they quickly reach a given temperature level and allow you to adjust the temperature of the gas in the WBC zone.
\nIt is impossible to develop universal recommendations on selecting the optimal temperature of the gaseous heat carrier for GWBC and IWBC, since in multi-seat and single-seat installations the algorithm for changing the temperature of the cooling gas during the procedure is different.
\nTo conduct a preliminary analysis of the effect of gas temperature in the WBC zone on the magnitude of the positive effect achieved, it can be assumed that the procedure takes place in isothermal conditions:
\nIt is impossible to implement WBC in the isothermal mode, since it takes some time for the patient to enter the low-temperature zone and exit from it. However, the study of WBC processes in ideal temperature conditions allows us to formulate the general technological conditions of efficiency.
\nTo determine the optimal gas temperature in the WBC zone, the calculated values of the WBC ET obtained by Eq. (6) were used. Simulation of the BS cooling process under conditions of natural gas convection with a temperature from 90 to 190 K allowed us to plot the dependence of the ET value on the gas temperature in the WBC zone (Figure 8).
\nThe estimated duration of the effect of WBC at different gas temperature.
When isothermally cooling the surface of the patient’s body, the maximum value of ET (325 min) is achieved at a temperature of 140 K. At temperatures below 140 K, the WBC efficiency gradually decreases. At a temperature of 100 K, the value of WBC ЕТ is almost three times lower than the maximum [7]; therefore, when conducting WBC procedures, it is advisable to use a gas with a temperature from 120 to 140 K [16]. At temperatures above 140 K, the WBC efficiency rapidly decreases. At a temperature of 160 K, the WBC ET of the procedures is 10 times lower than the maximum value and is close to the results achieved during water procedures. The results of the computational experiment on simulation of cooling the body surface with gas with a temperature of 160 K (−110°C) ideally coincide with the results of tests performed by doctors in sports medicine [8], which in comparing the therapeutic effect of WBC procedures at a temperature of −110°C and water baths with a temperature of 8°C, did not reveal any advantages of the WBC. The results obtained have clear thermophysical reasons. As the temperature of the gaseous heat carrier increases, the intensity of heat removal from the BS surface decreases, and the safe cooling time increases.
\nWhen the gas temperature is above 150 K, the danger of supercooling of the body core (
According to the results of simulating the process of cooling the BS surface with a cryogenic gas, it can be argued that for effective procedures the gas temperature in the WBC zone should be not lower than 140 K.
\nThe author of the WBC method, Yamauchi, limited the exposure of the body contact with a cryogenic gas to a period of 180 sec [1, 2]. The minimum air temperature in the Japanese installation was −175°C. According to the contemporary idea that WBC technology is based on metered supercooling of the body shell, the choice of the cooling exposure should be related to the temperature of the gas in the WBC zone. Using the assumption of the constancy of the gas temperature in the WBC zone, it is possible to determine the maximum duration of cooling at different gas temperatures. Computational experiments on the mathematical model of the human BS showed that with an increase in the heat carrier temperature from 90 to 190 K, the safe duration of a patient’s stay in the WBC zone increases from 54 to 237 sec [3]. At a temperature of 140 K, the safe exposure time for cooling is 161 sec. The practice of using WBC has shown that, along with the maximum duration of cooling, it is necessary to limit the minimum duration of stay of patients in a cryotherapeutic installation [7].
\nThe reasons for this limitation are explained by the graph of dependence
The change of the body temperature surface
The calculated dependences of the WBC safe exposure (τmax) and the duration of the cooling time (τcool) on the gas temperature (
The dependence of the cooling phase duration and safe exposure WBC on the gas temperature.
Numerical experiments on a mathematical model of the human body shell allowed to formulate general ideas about the technological foundations of effective WBC. When developing technological recommendations on the design of installations for the implementation of GWBC or IWBC methods, it is necessary to take into account the algorithm for changing the temperature of the gas in contact with the patient’s body surface.
\nInstallations for GWBC consist of two or three heat-insulated rooms with different air temperatures [7]. Patients pass from the treatment room to the chamber with the minimum temperature (main chamber, MC) and back through the lock chambers (LC). In most modern installations, the temperature in the main chamber is maintained at 160 K and in the lock chamber means at 210 K. At the time of entry (exit) of patients into the LC or MC, warmer air enters from adjacent volumes. Because of this, the air temperature in the MC volume increases by at least 25 K. From the body surface of each patient, 3.5 to 4.5 kW of heat is released into the MC volume. Taking into account these factors, the actual GWBC temperature regime depends not only on the choice of the nominal temperatures in MC and LC but also on the power of the cooling system. Another uncertainty factor is the duration of stay of patients in the main cab. There are different opinions about the advisability of pre-cooling the body surface at an intermediate temperature of 210 K. Some researchers believe that a gradual decrease in temperature increases subjective comfort and safety [7]. In other works it is proposed to reduce the time of stay of patients in LC to a minimum [13]. Given all the reasons presented, it is obvious that it is extremely difficult to simulate the GWBC process. The temperature of the cooling gas varies according to a complex schedule, which consists of at least eight stages (Figure 11).
\nAlgorithm for changing the temperature of the of the cooling gas with the technology GWBS and IWBS.
The algorithm of changing the gas temperature in IWBC is much simpler (Figure 11). The patient enters the cab filled with atmospheric air, which is quickly replaced by vapors of liquid nitrogen with a temperature not higher than 140 K. The time to reduce the gas temperature in the IWBC cab to the optimum level depends on the power of the cooling system and is at least 20 sec.
\nTaking into account the results of simulating the WBC process under conditions of a constant gas temperature, it can be argued that the GWBC procedures using the algorithm shown in Figure 11 do not provide significant therapeutic outcomes. To restore the effectiveness of GWBC, it is necessary to significantly reduce the minimum air temperature in the main treatment cab. Experiments on a mathematical model of the body shell showed that the effectiveness of GWBC reaches the optimal level when the air temperature in the main cab drops to 130 K. However, modern installations for GWBC cannot maintain the temperature at this level, since they use compression cooling systems on gas mixtures [7]. To lower the temperature, it is necessary to use other heat transformation cycles in the cooling system, the power of which will allow compensating for the heat load associated with WBC procedures.
\nWhen designing cooling systems of the WBC zone, it is necessary to adequately estimate the power of the heat fluxes that need to be compensated. It was shown above that during the WBC procedure, 440 kJ/m2 of the heat is released from the patient’s body surface, and the mean heat flux from the body to the cryogenic heat carrier varies from 3.5 to 2.3 kW/m2 (Table 2). Taking into account the surface area of the body (1.6 m2 [7]), the heat input from one patient will be 700 kJ; the mean power of the heat input is 4.6 kW. It is necessary to spend at least 2.7 kg of liquid nitrogen only to remove the heat released from a patient’s body surface with a gas with the temperature of
where
Estimated nitrogen flowrate for removal of the heat from the body surface is 2.7 times higher than in modern nitrogen-cooled WBC installations [13]. To restore the WBC effectiveness, it is necessary to provide cryotherapy installations with sufficiently powerful cooling systems.
\nThe heat input from the patients
The energy efficiency of the installation design for WBC can be estimated by the share of the useful load on the cryostatting system, the coefficient of thermal efficiency:
\nTo estimate the expenditure of energy and select the optimal technology for WBC procedures, it is necessary to conduct a numerical experiment on a mathematical model of a cryotherapeutic device.
\nGiven the variety of design solutions used in the manufacture of devices for WBC, the mathematical model should have the most generalized form. It is necessary to stop considering particular design features and focus on the fundamental issues. It becomes possible with a one-dimensional model of the WBC zone (Figure 12). The model considers the processes occurring in a volume unit of the WBC zone.
\nHeat fluxes in the WBC zone.
The surface of the patient’s body 1 is cooled with a gaseous heat carrier 2 which fills the volume of the thermal fencing 3. The heat flux is removed from the patient’s body surface
where
The specific heat input from the patient’s body and the thermal fencing is calculated considering the temperatures of their surfaces:
\nwhere α3–2 and α1–2 means the heat transfer coefficients from the thermal fencing and the patient’s body, respectively;
Specific characteristics of devices designed for the implementation of GWBC and IWBC technologies have large differences. In multi-seat installations, the patient accommodation density is 0.4–0.7 person/m3, and the specific volume of free space
In single-seat cryosaunas, the patient accommodation density reaches 2.0 persons/m3, the specific surface area of the patient’s body is 3.2 m2/m3, the thermal fencing area of the WBC zone is 6.4 m2/m3, and the specific free space volume is 84% [7]. High compactness of the patient accommodation is ensured by the fact that the patient does not move during the procedure; therefore, the cab size is comparable to the size of the patient’s body.
\nThe heat input with gas fluxes is determined by the intensity of convective mass transfer of warm gas to the volume of the WBC zone. The heat input by gas convection across the boundary of the WBC zone is determined from the expression:
\nwhere
Large heat flows with gas fluxes are supplied into the WBC zone as patients enter and exit. For example, a multi-seat lock chamber and a cab of a single-seat cryosauna are filled with atmospheric air at the moment patients enter. 93 kJ/m3 of heat enters the lock cab with atmospheric air. When the temperature recovers to the nominal level, the air density in the lock cab increases by 40%; this is accompanied by supplying additional air from the atmosphere, which contributes another 27 kJ/m3 of heat. In one procedure, 120 kJ/m3 of heat transferred by gas convection enters the lock chamber.
\nThe basis of the mathematical model of the WBC zone is a one-dimensional energy equation:
\nwhere
In the ideal case,
To account for material balance in the mathematical model of the WBC zone, the continuity equation is used:
\nSo, the transfer of heat by the thermal conductivity of gas is small; expression (30) is simplified and can be transformed by replacing the derivatives with differential approximants:
\nThe numerical solution of the continuity (Eq. (33)) allows to take into account the input of gas mass to compensate for the change in density:
\n\nEqs. (29), (34) and (35) allow to analyze the processes occurring in the WBC zone during the implementation of individual or group technology. To perform a computational experiment, it is necessary to adopt an algorithm for changing the temperature of the cooling gas for IWBC and GWBC.
\nFormulation of a temperature algorithm for the IWBC process is relatively simple. let us take the time of filling the zone with a cryogenic gas (Figure 11) τI = 20 sec, τII = 150 sec, and τIII = 10 sec and the gas temperature in the isothermal phase II
By Eqs. (26) and (27), the total heat load on the cooling system and the coefficient of thermal efficiency are calculated. It is assumed that the cooling system covers all types of heat load, so the specific power of the refrigerator electric drive can be determined by the heat load and the value of the coefficient of performance at the current temperature level:
\nwhere ε5 means the coefficient of performance and the ratio of the heat removed to expenditure of energy in the refrigerator at the temperature level of 140 K, ε5 = 0.25 W/W.
\nFor the instantaneous values of the calculated power of the system refrigerator, the specific expenditure of energy for cooling the IWBC zone per procedure is calculated:
\nLet us determine the specific values of the liquid nitrogen flowrate per procedure:
\nThe results of the numerical experiment are summarized in Table 3. In the experiment on simulating the GWBC process, the time algorithm presented on the graph (Figure 11) was used; the nominal gas temperature in the main cab was 130 K. Energy indicators for the main and lock chambers were calculated.
\nIndicators | \nIWBC | \nGWBC | \n||
---|---|---|---|---|
Cab | \nLock chamber | \nTotal | \n||
Features of WBC zone | \n||||
\n | \n3.2 | \n0.62 | \n0.62 | \n\n |
\n | \n6.4 | \n2.4 | \n2.4 | \n\n |
\n | \n0.84 | \n0.97 | \n0.97 | \n\n |
Heat input to the WBC zone | \n||||
\n\n | \n33 | \n7.43 | \n3.97 | \n\n |
\n | \n2012 | \n422 | \n144 | \n566 | \n
\n\n | \n92 | \n142 | \n96 | \n238 | \n
\n\n | \n1427 | \n246 | \n33 | \n279 | \n
\n\n | \n493 | \n33 | \n14 | \n47 | \n
\n\n | \n11.8 | \n2.76 | \n1.18 | \n3.94 | \n
η | \n0.71 | \n0.58 | \n0.23 | \n0.49 | \n
The expenditure of electrical energy and liquid nitrogen flowrate for cooling | \n||||
\n\n | \n136 | \n11.04 | \n4.72 | \n15.76 | \n
\n | \n2.15 | \n0.50 | \n0.07 | \n0.57 | \n
\n\n | \n45.3 | \n11.04 | \n4.72 | \n15.76 | \n
\n | \n7.503 | \n1.56 | \n0.42 | \n2.02 | \n
\n\n | \n0.04 | \n0.0029 | \n0.009 | \n0.0038 | \n
Energy features of devices for IWBC and GWBC.
The energy efficiency of the technology was estimated by the total energy expenditures in the main and lock chambers. The results of the numerical experiment on simulating the GWBC process are summarized in Table 3.
\nThe data in Table 3 show that WBC procedures require the removal of large amounts of heat from the low-temperature zone. Specific heat input to the IWBC zone is
The energy indicators of the GWBC zone are much lower (Table 3). The specific heat input is
Due to the low compactness of the accommodation of patients in the treatment area, the GWBC thermal efficiency coefficient was 0.49. Under conditions of a single-seat installation, the thermal efficiency coefficient was 0.71, which indicates a more rational expenditure of energy. This is clearly illustrated by the histogram of the structure of the heat load on the cooling system of the IWBC and GWBC zones (Figure 13).
\nThe structure of the heat load on the cooling system zones IWBC and GWBC.
In single-seat installations, the heat storage capacity of the thermal fencing makes a significant contribution to the heat load, due to which the share of heat removed from thermal insulation reaches 24%. At the beginning of each procedure, a single-seat cab is filled with atmospheric air, which heats the inner surface of the thermal insulation. When implementing the GWBC technology, the heat load from the insulation is insignificant means of 9%, but the convective heat supply is 24%. The negative impact of convective heat transfer is determined by a large share of the free space in the low-temperature zone.
\nThe data in Table 3 do not allow giving an unambiguous preference for a particular technology. This is due to the fact that all indicators are related to the volume unit of the WBC zone, while the technological task of the process is to cool the surface of the patient’s body shell. If we calculate the specific heat load values and the expenditure of energy for cooling a unit of the shell surface (Table 4), the advantages of the IWBC technology become indisputable. According to all energy indicators, the IWBC technology is 1.5 times more efficient than the GWBC process.
\nIndicators | \nIWBC | \nGWBC | \n
---|---|---|
\n\n | \n629 | \n913 | \n
\n\n | \n0.67 | \n0.92 | \n
\n\n | \n2.34 | \n3.24 | \n
\n\n | \n3.77 | \n5.18 | \n
Energy features of devices for IWBC and GWBC.
The performed analysis of the healthcare and energy efficiency of the two options for the implementation of the WBC technology allows us to reasonably give preference to individual procedures that not only combine high healthcare efficiency with relatively low expenditure of energy but also to a greater extent correspond to the traditional principle of individuality of therapeutic techniques.
\nThe effectiveness of WBC technology depends on the choice of the duration of contact with cryogenic gas. The minimum duration of WBC procedure at the optimum gas temperature (−130°С) is 120 s. Meanwhile, one should remove 440 kJ/m2 with an average intensity of at least 2.4 kW/m2 and spend not less than 1.7 kg/m2 of liquid nitrogen on heat removal. The electric drive of the cooling system of WBC zone should have an average power of at least 9.3 kW/m2, and in the case of using nitrogen cooling system, the cryoagent consumption should be not less than 2.4 kg/m2.
\nThe research was supported by the Ministry of Education and Science of the Russian Federation (Project 11.4942.2017/6.7).
\nAt IntechOpen, we not only specialize in the publication of Book Chapters as part of our Edited Volumes, but also the publication and dissemination of longer manuscripts, known as Long Form Monographs. Monographs allow Authors to focus on presenting a single subject or a specific aspect of that subject and publish their research in detail.
\n\nEven if you have an area of research that does not at first sight fit within a previously defined IntechOpen project, we can still offer support and help you in publishing your individual research. Publishing your IntechOpen book in the form of a Long Form Monograph is a viable alternative.
",metaTitle:"Publish a Whole Book",metaDescription:"At IntechOpen, we not only specialize in the publication of book chapters as part of our Edited Volumes, but also the publication and dissemination of long form manuscripts, known as monographs. Monographs allow authors to focus on presenting a single subject or a specific aspect of that subject and publish their research at length.\n\nPerhaps you have an area of research that does not fit within a previously defined IntechOpen project, but rather need help in publishing your individual research? Publishing your IntechOpen book in the form of a long form monograph is a great alternative.",metaKeywords:null,canonicalURL:"/page/publish-a-whole-book",contentRaw:'[{"type":"htmlEditorComponent","content":"MONOGRAPH - LONG FORM MANUSCRIPT
\\n\\nFORMATS
\\n\\nCOST
\\n\\n10,000 GBP Monograph - Long Form
\\n\\nThe final price includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\\n\\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applied in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\nOptional Services
\\n\\nIntechOpen has collaborated with Enago, through its sister brand, Ulatus, which is one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work to readers from across the globe in a language they understand. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book and their high degree of linguistic and subject expertise enables them to deliver a superior quality output.
\\n\\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation services. To find out more information or obtain a quote, please visit: https://www.enago.com/intech.
\\n\\nFUNDING
\\n\\nWe feel that financial barriers should never prevent researchers from publishing their work. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\\n\\nBENEFITS
\\n\\nPUBLISHING PROCESS STEPS
\\n\\nFor a complete overview of all publishing process steps and descriptions, go to How Open Access Publishing Works.
\\n\\nSEND YOUR PROPOSAL
\\n\\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\\n\\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'MONOGRAPH - LONG FORM MANUSCRIPT
\n\nFORMATS
\n\nCOST
\n\n10,000 GBP Monograph - Long Form
\n\nThe final price includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\n\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applied in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\n\nOptional Services
\n\nIntechOpen has collaborated with Enago, through its sister brand, Ulatus, which is one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work to readers from across the globe in a language they understand. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book and their high degree of linguistic and subject expertise enables them to deliver a superior quality output.
\n\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation services. To find out more information or obtain a quote, please visit: https://www.enago.com/intech.
\n\nFUNDING
\n\nWe feel that financial barriers should never prevent researchers from publishing their work. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\n\nBENEFITS
\n\nPUBLISHING PROCESS STEPS
\n\nFor a complete overview of all publishing process steps and descriptions, go to How Open Access Publishing Works.
\n\nSEND YOUR PROPOSAL
\n\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\n\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6601},{group:"region",caption:"Middle and South America",value:2,count:5906},{group:"region",caption:"Africa",value:3,count:2400},{group:"region",caption:"Asia",value:4,count:12541},{group:"region",caption:"Australia and Oceania",value:5,count:1008},{group:"region",caption:"Europe",value:6,count:17561}],offset:12,limit:12,total:132763},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"18"},books:[{type:"book",id:"10744",title:"Astrocytes in Brain Communication and Disease",subtitle:null,isOpenForSubmission:!0,hash:"8b6a8e2bb5f070305768945fdef8eed2",slug:null,bookSignature:"Prof. Denis Larrivee",coverURL:"https://cdn.intechopen.com/books/images_new/10744.jpg",editedByType:null,editors:[{id:"206412",title:"Prof.",name:"Denis",surname:"Larrivee",slug:"denis-larrivee",fullName:"Denis Larrivee"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11636",title:"Neuroplasticity - Visual Cortex Reorganization From Neurons to Maps",subtitle:null,isOpenForSubmission:!0,hash:"b306ce94998737c764d08736e76d60e1",slug:null,bookSignature:"Dr. Alyssa A Brewer and Dr. Brian Barton",coverURL:"https://cdn.intechopen.com/books/images_new/11636.jpg",editedByType:null,editors:[{id:"115304",title:"Dr.",name:"Alyssa",surname:"Brewer",slug:"alyssa-brewer",fullName:"Alyssa Brewer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11637",title:"Neuropsychology of Dementia",subtitle:null,isOpenForSubmission:!0,hash:"d40f707b9ef020bb202be89404f77a1e",slug:null,bookSignature:"Dr. Devendra Kumar, Prof. Sushil Kumar Singh and Dr. Ankit Ganeshpurkar",coverURL:"https://cdn.intechopen.com/books/images_new/11637.jpg",editedByType:null,editors:[{id:"454030",title:"Dr.",name:"Devendra",surname:"Kumar",slug:"devendra-kumar",fullName:"Devendra Kumar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12165",title:"Mild Cognitive Impairment",subtitle:null,isOpenForSubmission:!0,hash:"53705d28ee50f077d865170f6dbb769c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12165.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12166",title:"New Topics on Electroencephalography",subtitle:null,isOpenForSubmission:!0,hash:"e6eae5162ca3ec5be1a1f2b85f007b2d",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12166.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12167",title:"Neuroprotection",subtitle:null,isOpenForSubmission:!0,hash:"5b16c09a6266c3be63796aefa6828df2",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12167.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12168",title:"Neuroglial Research",subtitle:null,isOpenForSubmission:!0,hash:"ce5fb5312ae2e8239b9ba2710fe3c0fe",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12168.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12169",title:"Olfactory and Gustatory Systems",subtitle:null,isOpenForSubmission:!0,hash:"d5a1c1b017ee33f8028a4de153f5762c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12169.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12170",title:"Hydrocephalus",subtitle:null,isOpenForSubmission:!0,hash:"2a0f7f54e5e93c674dd19336fa859f50",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12170.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12300",title:"Dopamine Receptors",subtitle:null,isOpenForSubmission:!0,hash:"257af6b69ae2215cdd6327cc5a5f6135",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12300.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:42},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:5},{group:"topic",caption:"Chemistry",value:8,count:24},{group:"topic",caption:"Computer and Information Science",value:9,count:19},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:62},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:29},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:123},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:12,limit:12,total:10},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4383},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3340,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1845,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1096,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:995,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3791,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:2982,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",publishedDate:"May 18th 2022",numberOfDownloads:559,editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",publishedDate:"May 18th 2022",numberOfDownloads:546,editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",publishedDate:"May 18th 2022",numberOfDownloads:539,editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",publishedDate:"May 18th 2022",numberOfDownloads:535,editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1164",title:"Sexology",slug:"urology-sexology",parent:{id:"204",title:"Urology",slug:"urology"},numberOfBooks:1,numberOfSeries:0,numberOfAuthorsAndEditors:17,numberOfWosCitations:3,numberOfCrossrefCitations:1,numberOfDimensionsCitations:4,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1164",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"5529",title:"Sexual Dysfunction",subtitle:null,isOpenForSubmission:!1,hash:"0975454a14d04823d05d12d95cc9f619",slug:"sexual-dysfunction",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/5529.jpg",editedByType:"Edited by",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"55509",doi:"10.5772/intechopen.69105",title:"Sexual Dysfunction, Depression and Antidepressants: A Translational Approach",slug:"sexual-dysfunction-depression-and-antidepressants-a-translational-approach",totalDownloads:2138,totalCrossrefCites:0,totalDimensionsCites:3,abstract:"Major depression is frequently associated with sexual dysfunctions. Most antidepressants, especially selective serotonin reuptake inhibitors (SSRIs), induce additional sexual side effects and, although effective antidepressants, deteriorate sexual symptoms, which are the main reason that patients stop antidepressant treatment. Many strategies have been used to circumvent the additional sexual side effects, but results are rather disappointing. Recently, new antidepressants have been introduced, vilazodone and vortioxetine, which seem to lack sexual side effects in the early registration trials. Much research with large numbers of depressed patients and adequate methodological tools still has to confirm in daily use the absence of sexual side effects of new antidepressants. Animal models that in an early phase of drug development may predict putative sexual side effects of new antidepressants are extremely useful and could speed up development of new antidepressants. A rat model of sexual behavior is described that has a very high predictive validity for sexual side effects in man. Several characteristics of present antidepressants with regard to sexual dysfunctions are also present in the rat model and establish its validity. The animal model can also be used in the search for new psychotropics without sexual side effects or for drugs with sexual stimulating activity.",book:{id:"5529",slug:"sexual-dysfunction",title:"Sexual Dysfunction",fullTitle:"Sexual Dysfunction"},signatures:"Jocelien D.A. Olivier, Diana C. Esquivel Franco, Marcel D. Waldinger\nand Berend Olivier",authors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"},{id:"157663",title:"Prof.",name:"Marcel",middleName:null,surname:"Waldinger",slug:"marcel-waldinger",fullName:"Marcel Waldinger"},{id:"197644",title:"Dr.",name:"Jocelien D.A.",middleName:null,surname:"Olivier",slug:"jocelien-d.a.-olivier",fullName:"Jocelien D.A. Olivier"},{id:"197646",title:"MSc.",name:"Diana C.",middleName:null,surname:"Esquivel Franco",slug:"diana-c.-esquivel-franco",fullName:"Diana C. Esquivel Franco"}]},{id:"55430",doi:"10.5772/intechopen.69106",title:"A “Snip” in Time: Circumcision Revisited",slug:"a-snip-in-time-circumcision-revisited",totalDownloads:1408,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"The publication of an Italian study on etiology and interactions of frenulum breve, frenulectomy, and premature ejaculation, and the results of a popular Austrian sex study initiated a survey on this topic, accompanied by collecting a small sample of data in an urban practice environment in Germany. Since frenulectomy, for practical reasons, often leads to a complete removal of the prepuce, circumcision has come to the fore anew. Moreover, under the heading, “Ending a myth: male circumcision is not associated with higher prevalence of erectile dysfunction,” a recent study relating circumcision to sexual dysfunction has been published. In this chapter, an overview of research results as well as of psychological and clinical aspects of circumcision and associated subjects is given. There seem to be advantages of circumcision as to sexual dysfunction and premature ejaculation. Depending on etiopathology, some treatment options may require psychosomatic reasoning.",book:{id:"5529",slug:"sexual-dysfunction",title:"Sexual Dysfunction",fullTitle:"Sexual Dysfunction"},signatures:"Götz Egloff",authors:[{id:"194175",title:"M.A.",name:"Götz",middleName:null,surname:"Egloff",slug:"gotz-egloff",fullName:"Götz Egloff"}]},{id:"55210",doi:"10.5772/intechopen.69107",title:"Hypogonadism in Male Sexual Dysfunction",slug:"hypogonadism-in-male-sexual-dysfunction",totalDownloads:1332,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Normal testosterone level is influencing all the steps of the male psychosexual development: intrauterine neonatal and final psychosexual development.. At pubertal stage, the quality of testosterone secretion is conditioning the development of the mature male phenotype. In adult life, eugonadism sustains desire, arousal, determines spontaneous erections, facilitates stimulated erection, influencing the response rate to medication. Moreover, eugonadism sustain daydreaming and phantasies, both needed for a normal sexual life. The pathogenic mechanism of all these actions is presented. Talking about hypogonadism means not only the classical types of hypogonadism: due to classical testicular disease of central, hypothalamic and hypophysis disease, but also the partial testosterone deficiency induces by aging (late onset hypogonadism), weight increase (up to 30% of males with metabolic syndrome and 50% of males with diabetes) or secondary hypogonadism described in chronic use of steroids or after long exposure to stress, especially in young males. All these types of hypogonadism, that affect young, middle aged or old males will be presented separately. A therapeutic approach that is individualized for each type of hypogonadism, should consider positive and possible negative effects and all alternatives will be presented: life style changes, sustained weight loss, increase exercise, supplemental therapy, pro fertility treatment.",book:{id:"5529",slug:"sexual-dysfunction",title:"Sexual Dysfunction",fullTitle:"Sexual Dysfunction"},signatures:"Dana Stoian, Ioana Mozos, Marius Craina, Corina Paul, Iulian Velea,\nAdalbert Schiller and Mihaela Craciunescu",authors:[{id:"71595",title:"Dr.",name:"Ioana",middleName:null,surname:"Mozos",slug:"ioana-mozos",fullName:"Ioana Mozos"},{id:"182103",title:"Dr.",name:"Dana",middleName:"I",surname:"Stoian",slug:"dana-stoian",fullName:"Dana Stoian"},{id:"182104",title:"Prof.",name:"Marius",middleName:null,surname:"Craina",slug:"marius-craina",fullName:"Marius Craina"},{id:"182245",title:"Dr.",name:"Mihaela",middleName:null,surname:"Craciunescu",slug:"mihaela-craciunescu",fullName:"Mihaela Craciunescu"},{id:"183185",title:"Prof.",name:"Adalbert",middleName:null,surname:"Schiller",slug:"adalbert-schiller",fullName:"Adalbert Schiller"},{id:"194084",title:"Dr.",name:"Puiu",middleName:null,surname:"Velea",slug:"puiu-velea",fullName:"Puiu Velea"},{id:"194085",title:"Dr.",name:"Corina",middleName:null,surname:"Paul",slug:"corina-paul",fullName:"Corina Paul"}]},{id:"55391",doi:"10.5772/intechopen.69092",title:"Introductory Chapter: Sexual Dysfunction - Introduction and Perspective",slug:"introductory-chapter-sexual-dysfunction-introduction-and-perspective",totalDownloads:1794,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"5529",slug:"sexual-dysfunction",title:"Sexual Dysfunction",fullTitle:"Sexual Dysfunction"},signatures:"Berend Olivier",authors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}]},{id:"55700",doi:"10.5772/intechopen.69104",title:"Erectile Dysfunction Associated with Cardiovascular Risk Factors",slug:"erectile-dysfunction-associated-with-cardiovascular-risk-factors",totalDownloads:1420,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Objectives: (1) Determine erectile dysfunction (ED) prevalence in patients with cardiovascular risk factors (CVRF). (2) Assess ED incidence in relation to the extent of controlling CVRF. Methodology: Patients: Enrolled participants came to the health centres in the study area. In accordance with the incidence of diseases with cardiovascular risks (CVR) in the Basic Health Regions of the study area, sample size was calculated with a 95% confidence interval and an alpha error of 0.005, resulting in a sample of 210 people, of which 30 could not complete the study for various reasons (change of address, death, refused to complete questionnaire, etc.). A full awareness and diffusion campaign was organized with talks and leaflets. Letters: A standard letter was given to patients which explained the importance of sexual health, offering them an appointment with a DUE (Diploma in Nursing) survey taker. The questionnaire was devised by the research group and was given by a fully trained DUE survey taker. Previously, contact was made with all the health centres, physicians and nursing staff to give them information on ED and CVRF and to inform them about the work to be done in their health region. Those patients who did not come to the appointment were telephoned to insist on the importance of attending and completing the questionnaire. Variables analysis: We analysed age, level of education, civil status, height, weight and body mass index (BMI), SBP, DBP, smoking habit, number cigarettes/day, year smoking began, ex‐smoker, year smoking stopped, alcohol consumption, grams alcohol/week, as well as consumption of other drugs, frequency and type. Blood test: glucose, haemoglobin glycated haemoglobin, total cholesterol, LDL cholesterol, HDL cholesterol, triglycerides, artherogenic index, creatinine, urea, GOT, GPT, gamma‐GT and PSA. Urine test: micro‐albuminuria, proteinuria and creatinine clearance. ECG: Diabetes diagnosed at least 1 year ago and prescribed drugs to treat it. High blood pressure diagnosed at least 1 year ago and prescribed drugs to treat it. Dyslipidaemia (hypercholesterolaemia) diagnosed at least 1 year ago and prescribed drugs to treat it. Concomitant diseases of at least 1 year and drugs (up to 3) SHIM questionnaire and ED according to SHIM. Statistical analysis: an observational, descriptive, analytical, cross‐sectional study. Qualitative variables are presented as exact values and a percentage; quantitative variables as the mean and standard deviation (SD). A means comparison was done with the Student’s t‐test for independent groups, or the Mann‐Whitney U test if normality conditions (using the Kolmogorov‐Smirnoff or Shapiro‐Wilks test) were not fulfilled. The chi‐squared test was used for qualitative variables. Results: Of the 210 selected people, 179 completed the questionnaire (85.2%). The mean age was 64.5 ± 11.6 years. When analysing all the study variables in relation to the main variable, presence or absence of ED, age played an important role in ED appearing as ED incidence rises with age. Blood pressure had no significant relationship with the studied variable, and the same hold for BMI and its subdivision into normal weight and obesity. As regards toxic habits, neither cigarette smoking nor alcohol consumption influenced the presence of ED. The same hold for the sociological‐type variables (civil states, level of education). Regarding the biochemical variables from blood tests, a significant relationship with the atherogenic index and its recoded variable at high and low atherogenic risk (p < 0.04) was noted. In the glycaemic profile, a glycaemia mean of 126 mg/dl was obtained in the ED presence group, which is the cut‐off point proposed by ADA117 (American Diabetes Association) to consider a subject diabetic. Likewise, glycated haemoglobin presented figures in the two groups can be considered an alternation of a practically diabetic glucose metabolism. In our study, the presence of diabetic disease, high blood pressure (HBP) and dyslipidaemia showed no significant relationship with ED presence for each disease. However, in the combination of these diseases, a statistically significant relationship was seen when CVR increases, according to the Framinghan tables. Neither did each disease’s duration show a significant relationship with ED presence nor significant differences for the drugs used to treat the three pathologies were found. The coronary risk calculated according to the Framinghan tables indicated a statistically significant result, as did excessive risk (the difference between the coronary risk and the average assigned per age) for ED presence. The LISAT 8 test suggested that ED affected health‐associated quality of life and was statistically significant in two items of sex life and economic situation and was borderline statistically significant in the general life and working life items. Conclusions: There is a high ED prevalence in patients with high CVR. When ED improves, the better CVRFs are controlled. These patients’ pluripathology implies aggressive polymedication which doctors must consider as it increases the risk of ED.",book:{id:"5529",slug:"sexual-dysfunction",title:"Sexual Dysfunction",fullTitle:"Sexual Dysfunction"},signatures:"Ángel Celada Rodríguez, Pedro Juan Tárraga López, José Antonio\nRodríguez Montes, Ma Loreto Tarraga Marcos and Carmen Celada\nRoldan",authors:[{id:"193842",title:"Prof.",name:"Pedro J",middleName:null,surname:"Tarraga Lopez",slug:"pedro-j-tarraga-lopez",fullName:"Pedro J Tarraga Lopez"},{id:"193850",title:"Prof.",name:"Angel",middleName:null,surname:"Celada",slug:"angel-celada",fullName:"Angel Celada"},{id:"203619",title:"Dr.",name:"Jose Antonio",middleName:null,surname:"Rodriguez Montes",slug:"jose-antonio-rodriguez-montes",fullName:"Jose Antonio Rodriguez Montes"},{id:"203623",title:"Dr.",name:"Carmen",middleName:null,surname:"Celada",slug:"carmen-celada",fullName:"Carmen Celada"}]}],mostDownloadedChaptersLast30Days:[{id:"55430",title:"A “Snip” in Time: Circumcision Revisited",slug:"a-snip-in-time-circumcision-revisited",totalDownloads:1407,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"The publication of an Italian study on etiology and interactions of frenulum breve, frenulectomy, and premature ejaculation, and the results of a popular Austrian sex study initiated a survey on this topic, accompanied by collecting a small sample of data in an urban practice environment in Germany. Since frenulectomy, for practical reasons, often leads to a complete removal of the prepuce, circumcision has come to the fore anew. Moreover, under the heading, “Ending a myth: male circumcision is not associated with higher prevalence of erectile dysfunction,” a recent study relating circumcision to sexual dysfunction has been published. In this chapter, an overview of research results as well as of psychological and clinical aspects of circumcision and associated subjects is given. There seem to be advantages of circumcision as to sexual dysfunction and premature ejaculation. Depending on etiopathology, some treatment options may require psychosomatic reasoning.",book:{id:"5529",slug:"sexual-dysfunction",title:"Sexual Dysfunction",fullTitle:"Sexual Dysfunction"},signatures:"Götz Egloff",authors:[{id:"194175",title:"M.A.",name:"Götz",middleName:null,surname:"Egloff",slug:"gotz-egloff",fullName:"Götz Egloff"}]},{id:"55509",title:"Sexual Dysfunction, Depression and Antidepressants: A Translational Approach",slug:"sexual-dysfunction-depression-and-antidepressants-a-translational-approach",totalDownloads:2138,totalCrossrefCites:0,totalDimensionsCites:3,abstract:"Major depression is frequently associated with sexual dysfunctions. Most antidepressants, especially selective serotonin reuptake inhibitors (SSRIs), induce additional sexual side effects and, although effective antidepressants, deteriorate sexual symptoms, which are the main reason that patients stop antidepressant treatment. Many strategies have been used to circumvent the additional sexual side effects, but results are rather disappointing. Recently, new antidepressants have been introduced, vilazodone and vortioxetine, which seem to lack sexual side effects in the early registration trials. Much research with large numbers of depressed patients and adequate methodological tools still has to confirm in daily use the absence of sexual side effects of new antidepressants. Animal models that in an early phase of drug development may predict putative sexual side effects of new antidepressants are extremely useful and could speed up development of new antidepressants. A rat model of sexual behavior is described that has a very high predictive validity for sexual side effects in man. Several characteristics of present antidepressants with regard to sexual dysfunctions are also present in the rat model and establish its validity. The animal model can also be used in the search for new psychotropics without sexual side effects or for drugs with sexual stimulating activity.",book:{id:"5529",slug:"sexual-dysfunction",title:"Sexual Dysfunction",fullTitle:"Sexual Dysfunction"},signatures:"Jocelien D.A. Olivier, Diana C. Esquivel Franco, Marcel D. Waldinger\nand Berend Olivier",authors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"},{id:"157663",title:"Prof.",name:"Marcel",middleName:null,surname:"Waldinger",slug:"marcel-waldinger",fullName:"Marcel Waldinger"},{id:"197644",title:"Dr.",name:"Jocelien D.A.",middleName:null,surname:"Olivier",slug:"jocelien-d.a.-olivier",fullName:"Jocelien D.A. Olivier"},{id:"197646",title:"MSc.",name:"Diana C.",middleName:null,surname:"Esquivel Franco",slug:"diana-c.-esquivel-franco",fullName:"Diana C. Esquivel Franco"}]},{id:"55700",title:"Erectile Dysfunction Associated with Cardiovascular Risk Factors",slug:"erectile-dysfunction-associated-with-cardiovascular-risk-factors",totalDownloads:1420,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Objectives: (1) Determine erectile dysfunction (ED) prevalence in patients with cardiovascular risk factors (CVRF). (2) Assess ED incidence in relation to the extent of controlling CVRF. Methodology: Patients: Enrolled participants came to the health centres in the study area. In accordance with the incidence of diseases with cardiovascular risks (CVR) in the Basic Health Regions of the study area, sample size was calculated with a 95% confidence interval and an alpha error of 0.005, resulting in a sample of 210 people, of which 30 could not complete the study for various reasons (change of address, death, refused to complete questionnaire, etc.). A full awareness and diffusion campaign was organized with talks and leaflets. Letters: A standard letter was given to patients which explained the importance of sexual health, offering them an appointment with a DUE (Diploma in Nursing) survey taker. The questionnaire was devised by the research group and was given by a fully trained DUE survey taker. Previously, contact was made with all the health centres, physicians and nursing staff to give them information on ED and CVRF and to inform them about the work to be done in their health region. Those patients who did not come to the appointment were telephoned to insist on the importance of attending and completing the questionnaire. Variables analysis: We analysed age, level of education, civil status, height, weight and body mass index (BMI), SBP, DBP, smoking habit, number cigarettes/day, year smoking began, ex‐smoker, year smoking stopped, alcohol consumption, grams alcohol/week, as well as consumption of other drugs, frequency and type. Blood test: glucose, haemoglobin glycated haemoglobin, total cholesterol, LDL cholesterol, HDL cholesterol, triglycerides, artherogenic index, creatinine, urea, GOT, GPT, gamma‐GT and PSA. Urine test: micro‐albuminuria, proteinuria and creatinine clearance. ECG: Diabetes diagnosed at least 1 year ago and prescribed drugs to treat it. High blood pressure diagnosed at least 1 year ago and prescribed drugs to treat it. Dyslipidaemia (hypercholesterolaemia) diagnosed at least 1 year ago and prescribed drugs to treat it. Concomitant diseases of at least 1 year and drugs (up to 3) SHIM questionnaire and ED according to SHIM. Statistical analysis: an observational, descriptive, analytical, cross‐sectional study. Qualitative variables are presented as exact values and a percentage; quantitative variables as the mean and standard deviation (SD). A means comparison was done with the Student’s t‐test for independent groups, or the Mann‐Whitney U test if normality conditions (using the Kolmogorov‐Smirnoff or Shapiro‐Wilks test) were not fulfilled. The chi‐squared test was used for qualitative variables. Results: Of the 210 selected people, 179 completed the questionnaire (85.2%). The mean age was 64.5 ± 11.6 years. When analysing all the study variables in relation to the main variable, presence or absence of ED, age played an important role in ED appearing as ED incidence rises with age. Blood pressure had no significant relationship with the studied variable, and the same hold for BMI and its subdivision into normal weight and obesity. As regards toxic habits, neither cigarette smoking nor alcohol consumption influenced the presence of ED. The same hold for the sociological‐type variables (civil states, level of education). Regarding the biochemical variables from blood tests, a significant relationship with the atherogenic index and its recoded variable at high and low atherogenic risk (p < 0.04) was noted. In the glycaemic profile, a glycaemia mean of 126 mg/dl was obtained in the ED presence group, which is the cut‐off point proposed by ADA117 (American Diabetes Association) to consider a subject diabetic. Likewise, glycated haemoglobin presented figures in the two groups can be considered an alternation of a practically diabetic glucose metabolism. In our study, the presence of diabetic disease, high blood pressure (HBP) and dyslipidaemia showed no significant relationship with ED presence for each disease. However, in the combination of these diseases, a statistically significant relationship was seen when CVR increases, according to the Framinghan tables. Neither did each disease’s duration show a significant relationship with ED presence nor significant differences for the drugs used to treat the three pathologies were found. The coronary risk calculated according to the Framinghan tables indicated a statistically significant result, as did excessive risk (the difference between the coronary risk and the average assigned per age) for ED presence. The LISAT 8 test suggested that ED affected health‐associated quality of life and was statistically significant in two items of sex life and economic situation and was borderline statistically significant in the general life and working life items. Conclusions: There is a high ED prevalence in patients with high CVR. When ED improves, the better CVRFs are controlled. These patients’ pluripathology implies aggressive polymedication which doctors must consider as it increases the risk of ED.",book:{id:"5529",slug:"sexual-dysfunction",title:"Sexual Dysfunction",fullTitle:"Sexual Dysfunction"},signatures:"Ángel Celada Rodríguez, Pedro Juan Tárraga López, José Antonio\nRodríguez Montes, Ma Loreto Tarraga Marcos and Carmen Celada\nRoldan",authors:[{id:"193842",title:"Prof.",name:"Pedro J",middleName:null,surname:"Tarraga Lopez",slug:"pedro-j-tarraga-lopez",fullName:"Pedro J Tarraga Lopez"},{id:"193850",title:"Prof.",name:"Angel",middleName:null,surname:"Celada",slug:"angel-celada",fullName:"Angel Celada"},{id:"203619",title:"Dr.",name:"Jose Antonio",middleName:null,surname:"Rodriguez Montes",slug:"jose-antonio-rodriguez-montes",fullName:"Jose Antonio Rodriguez Montes"},{id:"203623",title:"Dr.",name:"Carmen",middleName:null,surname:"Celada",slug:"carmen-celada",fullName:"Carmen Celada"}]},{id:"55210",title:"Hypogonadism in Male Sexual Dysfunction",slug:"hypogonadism-in-male-sexual-dysfunction",totalDownloads:1331,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Normal testosterone level is influencing all the steps of the male psychosexual development: intrauterine neonatal and final psychosexual development.. At pubertal stage, the quality of testosterone secretion is conditioning the development of the mature male phenotype. In adult life, eugonadism sustains desire, arousal, determines spontaneous erections, facilitates stimulated erection, influencing the response rate to medication. Moreover, eugonadism sustain daydreaming and phantasies, both needed for a normal sexual life. The pathogenic mechanism of all these actions is presented. Talking about hypogonadism means not only the classical types of hypogonadism: due to classical testicular disease of central, hypothalamic and hypophysis disease, but also the partial testosterone deficiency induces by aging (late onset hypogonadism), weight increase (up to 30% of males with metabolic syndrome and 50% of males with diabetes) or secondary hypogonadism described in chronic use of steroids or after long exposure to stress, especially in young males. All these types of hypogonadism, that affect young, middle aged or old males will be presented separately. A therapeutic approach that is individualized for each type of hypogonadism, should consider positive and possible negative effects and all alternatives will be presented: life style changes, sustained weight loss, increase exercise, supplemental therapy, pro fertility treatment.",book:{id:"5529",slug:"sexual-dysfunction",title:"Sexual Dysfunction",fullTitle:"Sexual Dysfunction"},signatures:"Dana Stoian, Ioana Mozos, Marius Craina, Corina Paul, Iulian Velea,\nAdalbert Schiller and Mihaela Craciunescu",authors:[{id:"71595",title:"Dr.",name:"Ioana",middleName:null,surname:"Mozos",slug:"ioana-mozos",fullName:"Ioana Mozos"},{id:"182103",title:"Dr.",name:"Dana",middleName:"I",surname:"Stoian",slug:"dana-stoian",fullName:"Dana Stoian"},{id:"182104",title:"Prof.",name:"Marius",middleName:null,surname:"Craina",slug:"marius-craina",fullName:"Marius Craina"},{id:"182245",title:"Dr.",name:"Mihaela",middleName:null,surname:"Craciunescu",slug:"mihaela-craciunescu",fullName:"Mihaela Craciunescu"},{id:"183185",title:"Prof.",name:"Adalbert",middleName:null,surname:"Schiller",slug:"adalbert-schiller",fullName:"Adalbert Schiller"},{id:"194084",title:"Dr.",name:"Puiu",middleName:null,surname:"Velea",slug:"puiu-velea",fullName:"Puiu Velea"},{id:"194085",title:"Dr.",name:"Corina",middleName:null,surname:"Paul",slug:"corina-paul",fullName:"Corina Paul"}]},{id:"55391",title:"Introductory Chapter: Sexual Dysfunction - Introduction and Perspective",slug:"introductory-chapter-sexual-dysfunction-introduction-and-perspective",totalDownloads:1794,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"5529",slug:"sexual-dysfunction",title:"Sexual Dysfunction",fullTitle:"Sexual Dysfunction"},signatures:"Berend Olivier",authors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}]}],onlineFirstChaptersFilter:{topicId:"1164",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"22",title:"Business, Management and Economics",doi:"10.5772/intechopen.100359",issn:"2753-894X",scope:"\r\n\tThis series will provide a comprehensive overview of recent research trends in business and management, economics, and marketing. Topics will include asset liability management, financial consequences of the financial crisis and covid-19, financial accounting, mergers and acquisitions, management accounting, SMEs, financial markets, corporate finance and governance, managerial technology and innovation, resource management and sustainable development, social entrepreneurship, corporate responsibility, ethics and accountability, microeconomics, labour economics, macroeconomics, public economics, financial economics, econometrics, direct marketing, creative marketing, internet marketing, market planning and forecasting, brand management, market segmentation and targeting and other topics under business and management. This book series will focus on various aspects of business and management whose in-depth understanding is critical for business and company management to function effectively during this uncertain time of financial crisis, Covid-19 pandemic, and military activity in Europe.
",coverUrl:"https://cdn.intechopen.com/series/covers/22.jpg",latestPublicationDate:"May 18th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:1,editor:{id:"356540",title:"Prof.",name:"Taufiq",middleName:null,surname:"Choudhry",slug:"taufiq-choudhry",fullName:"Taufiq Choudhry",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000036X2hvQAC/Profile_Picture_2022-03-14T08:58:03.jpg",biography:"Prof. Choudhry holds a BSc degree in Economics from the University of Iowa, as well as a Masters and Ph.D. in Applied Economics from Clemson University, USA. In January 2006, he became a Professor of Finance at the University of Southampton Business School. He was previously a Professor of Finance at the University of Bradford Management School. He has over 80 articles published in international finance and economics journals. His research interests and specialties include financial econometrics, financial economics, international economics and finance, housing markets, financial markets, among others.",institutionString:null,institution:{name:"University of Southampton",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"86",title:"Business and Management",coverUrl:"https://cdn.intechopen.com/series_topics/covers/86.jpg",isOpenForSubmission:!0,editor:{id:"128342",title:"Prof.",name:"Vito",middleName:null,surname:"Bobek",slug:"vito-bobek",fullName:"Vito Bobek",profilePictureURL:"https://mts.intechopen.com/storage/users/128342/images/system/128342.jpg",biography:"Dr. Vito Bobek works as an international management professor at the University of Applied Sciences FH Joanneum, Graz, Austria. He has published more than 400 works in his academic career and visited twenty-two universities worldwide as a visiting professor. Dr. Bobek is a member of the editorial boards of six international journals and a member of the Strategic Council of the Minister of Foreign Affairs of the Republic of Slovenia. He has a long history in academia, consulting, and entrepreneurship. His own consulting firm, Palemid, has managed twenty significant projects, such as Cooperation Program Interreg V-A (Slovenia-Austria) and Capacity Building for the Serbian Chamber of Enforcement Agents. He has also participated in many international projects in Italy, Germany, Great Britain, the United States, Spain, Turkey, France, Romania, Croatia, Montenegro, Malaysia, and China. Dr. Bobek is also a co-founder of the Academy of Regional Management in Slovenia.",institutionString:"Universities of Applied Sciences FH Joanneum, Austria",institution:null},editorTwo:{id:"293992",title:"Dr.",name:"Tatjana",middleName:null,surname:"Horvat",slug:"tatjana-horvat",fullName:"Tatjana Horvat",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hXb0hQAC/Profile_Picture_1642419002203",biography:"Tatjana Horvat works as a professor for accountant and auditing at the University of Primorska, Slovenia. She is a Certified State Internal Auditor (licensed by Ministry of Finance RS) and Certified Internal Auditor for Business Sector and Certified accountant (licensed by Slovenian Institute of Auditors). At the Ministry of Justice of Slovenia, she is a member of examination boards for court expert candidates and judicial appraisers in the following areas: economy/finance, valuation of companies, banking, and forensic investigation of economic operations/accounting. At the leading business newspaper Finance in Slovenia (Swedish ownership), she is the editor and head of the area for business, finance, tax-related articles, and educational programs.",institutionString:null,institution:{name:"University of Primorska",institutionURL:null,country:{name:"Slovenia"}}},editorThree:null},{id:"87",title:"Economics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/87.jpg",isOpenForSubmission:!0,editor:{id:"327730",title:"Prof.",name:"Jaime",middleName:null,surname:"Ortiz",slug:"jaime-ortiz",fullName:"Jaime Ortiz",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002zaOKZQA2/Profile_Picture_1642145584421",biography:"Dr. Jaime Ortiz holds degrees from Chile, the Netherlands, and the United States. He has held tenured faculty, distinguished professorship, and executive leadership appointments in several universities around the world. Dr. Ortiz has previously worked for international organizations and non-government entities in economic and business matters, and he has university-wide globalization engagement in more than thirty-six countries. He has advised, among others, the United Nations Development Program, Inter-American Development Bank, Organization of American States, Pre-investment Organization of Latin America and the Caribbean, Technical Cooperation of the Suisse Government, and the World Bank. Dr. Ortiz is the author, co-author, or editor of books, book chapters, textbooks, research monographs and technical reports, and refereed journal articles. He is listed in Who’s Who in the World, Who’s Who in America, Who’s Who in Finance and Business, Who’s Who in Business Higher Education, Who’s Who in American Education, and Who’s Who Directory of Economists. Dr. Ortiz has been a Fulbright Scholar and an MSI Leadership Fellow with the W.K. Kellogg Foundation. His teaching interests revolve around global economies and markets while his research focuses on topics related to development and growth, global business decisions, and the economics of technical innovation.",institutionString:null,institution:{name:"University of Houston",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},{id:"88",title:"Marketing",coverUrl:"https://cdn.intechopen.com/series_topics/covers/88.jpg",isOpenForSubmission:!1,editor:null,editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:1,paginationItems:[{id:"81831",title:"Deep Network Model and Regression Analysis using OLS Method for Predicting Lung Vital Capacity",doi:"10.5772/intechopen.104737",signatures:"Harun Sümbül",slug:"deep-network-model-and-regression-analysis-using-ols-method-for-predicting-lung-vital-capacity",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Decision Science - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11604.jpg",subseries:{id:"86",title:"Business and Management"}}}]},overviewPagePublishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",hash:"86a6d33cf601587e591064ce92effc02",volumeInSeries:1,fullTitle:"Leadership in a Changing World - A Multidimensional Perspective",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",biography:"Dr. Muhammad Mohiuddin is an Associate Professor of International Business at Laval University, Canada. He has taught at Thompson Rivers University, Canada; University of Paris-Est, France; Osnabruck University of Applied Science, Germany; and Shanghai Institute of Technology and Tianjin University of Technology, China. He has published research in Research Policy, Applied Economics, Review of Economic Philosophy, Strategic Change, International Journal of Logistics, Sustainability, Journal of Environmental Management, Journal of Global Information Management, Journal of Cleaner Production, M@N@GEMENT, and more. He is a member of CEDIMES Institut (France), Academy of International Business (AIB), Strategic Management Society (SMS), Academy of Management (AOM), Administrative Science Association of Canada (ASAC), and Canadian council of small business and entrepreneurship (CCSBE). He is currently the director of the Research Group on Contemporary Asia (GERAC) at Laval University. He is also co-managing editor of Transnational Corporations Review and a guest editor for Electronic Commerce Research and Journal of Internet Technology.",institutionString:"Université Laval",institution:{name:"Université Laval",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:5,paginationItems:[{id:"11576",title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",hash:"5a01644fb0b4ce24c2f947913d154abe",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 26th 2022",isOpenForSubmission:!0,editors:[{id:"76041",title:"Prof.",name:"Pier Paolo",surname:"Piccaluga",slug:"pier-paolo-piccaluga",fullName:"Pier Paolo Piccaluga"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11577",title:"Tick-Borne Diseases - A Review and an Update of Knowledge on Infections in Human and Animal Population",coverURL:"https://cdn.intechopen.com/books/images_new/11577.jpg",hash:"3d72ae651ee2a04b2368bf798a3183ca",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 29th 2022",isOpenForSubmission:!0,editors:[{id:"51521",title:"Prof.",name:"Elisa",surname:"Pieragostini",slug:"elisa-pieragostini",fullName:"Elisa Pieragostini"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11570",title:"Influenza - New Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11570.jpg",hash:"157b379b9d7a4bf5e2cc7a742f155a44",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"139889",title:"Dr.",name:"Seyyed Shamsadin",surname:"Athari",slug:"seyyed-shamsadin-athari",fullName:"Seyyed Shamsadin Athari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11569",title:"Bacterial Sexually Transmitted Infections - New Findings, Diagnosis, Treatment, and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/11569.jpg",hash:"069d6142ecb0d46d14920102d48c0e9d",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"May 31st 2022",isOpenForSubmission:!0,editors:[{id:"189561",title:"Dr.",name:"Mihaela Laura",surname:"Vica",slug:"mihaela-laura-vica",fullName:"Mihaela Laura Vica"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11568",title:"Staphylococcal Infections - Recent Advances and Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11568.jpg",hash:"92c881664d1921c7f2d0fee34b78cd08",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"59719",title:"Dr.",name:"Jaime",surname:"Bustos-Martínez",slug:"jaime-bustos-martinez",fullName:"Jaime Bustos-Martínez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:49,paginationItems:[{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81756",title:"Alteration of Cytokines Level and Oxidative Stress Parameters in COVID-19",doi:"10.5772/intechopen.104950",signatures:"Marija Petrusevska, Emilija Atanasovska, Dragica Zendelovska, Aleksandar Eftimov and Katerina Spasovska",slug:"alteration-of-cytokines-level-and-oxidative-stress-parameters-in-covid-19",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"81681",title:"Immunomodulatory Effects of a M2-Conditioned Medium (PRS® CK STORM): Theory on the Possible Complex Mechanism of Action through Anti-Inflammatory Modulation of the TLR System and the Purinergic System",doi:"10.5772/intechopen.104486",signatures:"Juan Pedro Lapuente",slug:"immunomodulatory-effects-of-a-m2-conditioned-medium-prs-ck-storm-theory-on-the-possible-complex-mech",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81647",title:"Diabetes and Epigenetics",doi:"10.5772/intechopen.104653",signatures:"Rasha A. Alhazzaa, Thomas Heinbockel and Antonei B. Csoka",slug:"diabetes-and-epigenetics",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81580",title:"Graft-Versus-Host Disease: Pathogenesis and Treatment",doi:"10.5772/intechopen.104450",signatures:"Shin Mukai",slug:"graft-versus-host-disease-pathogenesis-and-treatment",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81533",title:"Prenylation of Natural Products: An Overview",doi:"10.5772/intechopen.104636",signatures:"Kantharaju Kamanna and Aravind Kamath",slug:"prenylation-of-natural-products-an-overview",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Kantharaju",surname:"Kamanna"}],book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"81067",title:"Encapsulation of Essential Oils and Their Use in Food Applications",doi:"10.5772/intechopen.103147",signatures:"Hamdy A. Shaaban and Amr Farouk",slug:"encapsulation-of-essential-oils-and-their-use-in-food-applications",totalDownloads:49,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81099",title:"SK Channels and Heart Disease",doi:"10.5772/intechopen.104115",signatures:"Katherine Zhong, Shawn Kant, Frank Sellke and Jun Feng",slug:"sk-channels-and-heart-disease",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:3,group:"subseries"},{caption:"Metabolism",value:17,count:9,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:17,group:"subseries"},{caption:"Chemical Biology",value:15,count:19,group:"subseries"}],publishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",publishedDate:"October 6th 2021",editedByType:"Edited by",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",hash:"6c3ddcc13626110de289b57f2516ac8f",volumeInSeries:22,fullTitle:"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",institutionString:"Hacettepe University",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9753",title:"Terpenes and Terpenoids",subtitle:"Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/9753.jpg",slug:"terpenes-and-terpenoids-recent-advances",publishedDate:"July 28th 2021",editedByType:"Edited by",bookSignature:"Shagufta Perveen and Areej Mohammad Al-Taweel",hash:"575689df13c78bf0e6c1be40804cd010",volumeInSeries:21,fullTitle:"Terpenes and Terpenoids - Recent Advances",editors:[{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9403",title:"Human Microbiome",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9403.jpg",slug:"human-microbiome",publishedDate:"June 16th 2021",editedByType:"Edited by",bookSignature:"Natalia V. Beloborodova and Andrey V. Grechko",hash:"c31366ba82585ba3ac91d21eb1cf0a4d",volumeInSeries:20,fullTitle:"Human Microbiome",editors:[{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",slug:"oxidoreductase",publishedDate:"February 17th 2021",editedByType:"Edited by",bookSignature:"Mahmoud Ahmed Mansour",hash:"852e6f862c85fc3adecdbaf822e64e6e",volumeInSeries:19,fullTitle:"Oxidoreductase",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour",profilePictureURL:"https://mts.intechopen.com/storage/users/224662/images/system/224662.jpg",institutionString:"King Saud bin Abdulaziz University for Health Sciences",institution:{name:"King Saud bin Abdulaziz University for Health Sciences",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9742",title:"Ubiquitin",subtitle:"Proteasome Pathway",coverURL:"https://cdn.intechopen.com/books/images_new/9742.jpg",slug:"ubiquitin-proteasome-pathway",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"af6880d3a5571da1377ac8f6373b9e82",volumeInSeries:18,fullTitle:"Ubiquitin - Proteasome Pathway",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9002",title:"Glutathione System and Oxidative Stress in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9002.jpg",slug:"glutathione-system-and-oxidative-stress-in-health-and-disease",publishedDate:"August 26th 2020",editedByType:"Edited by",bookSignature:"Margarete Dulce Bagatini",hash:"127defed0a50ad5ed92338dc96e1e10e",volumeInSeries:17,fullTitle:"Glutathione System and Oxidative Stress in Health and Disease",editors:[{id:"217850",title:"Dr.",name:"Margarete Dulce",middleName:null,surname:"Bagatini",slug:"margarete-dulce-bagatini",fullName:"Margarete Dulce Bagatini",profilePictureURL:"https://mts.intechopen.com/storage/users/217850/images/system/217850.jpeg",institutionString:"Universidade Federal da Fronteira Sul",institution:{name:"Universidade Federal da Fronteira Sul",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:3},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:8},{group:"subseries",caption:"Chemical Biology",value:15,count:10}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:3},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:33,paginationItems:[{id:"424419",title:"Dr.",name:"Matthew",middleName:"Ayorinde",surname:"Ayorinde Adebayo",slug:"matthew-ayorinde-adebayo",fullName:"Matthew Ayorinde Adebayo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/424419/images/17356_n.jpg",biography:null,institutionString:null,institution:null},{id:"354033",title:"Dr.",name:"Ahmed",middleName:null,surname:"Nasri",slug:"ahmed-nasri",fullName:"Ahmed Nasri",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"435702",title:"Dr.",name:"Amel",middleName:null,surname:"Hannachi",slug:"amel-hannachi",fullName:"Amel Hannachi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"420857",title:"Prof.",name:"Ezzeddine",middleName:null,surname:"Mahmoudi",slug:"ezzeddine-mahmoudi",fullName:"Ezzeddine Mahmoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"420856",title:"Prof.",name:"Hamouda",middleName:null,surname:"Beyrem",slug:"hamouda-beyrem",fullName:"Hamouda Beyrem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"435703",title:"Dr.",name:"Hary",middleName:null,surname:"Demey",slug:"hary-demey",fullName:"Hary Demey",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Polytechnic University of Cartagena",country:{name:"Spain"}}},{id:"425026",title:"Mr.",name:"Kholofelo",middleName:null,surname:"Clifford Malematja",slug:"kholofelo-clifford-malematja",fullName:"Kholofelo Clifford Malematja",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Tshwane University of Technology",country:{name:"South Africa"}}},{id:"435701",title:"Dr.",name:"Mohamed",middleName:null,surname:"Allouche",slug:"mohamed-allouche",fullName:"Mohamed Allouche",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"420855",title:"Prof.",name:"Patricia",middleName:null,surname:"Aïssa",slug:"patricia-aissa",fullName:"Patricia Aïssa",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"435699",title:"Dr.",name:"Takoua",middleName:null,surname:"Mhadhbi",slug:"takoua-mhadhbi",fullName:"Takoua Mhadhbi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Carthage",country:{name:"Tunisia"}}},{id:"442300",title:"Prof.",name:"Véronique",middleName:null,surname:"Perrier",slug:"veronique-perrier",fullName:"Véronique Perrier",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Montpellier",country:{name:"France"}}},{id:"445179",title:"Mr.",name:"Aman",middleName:null,surname:"Jaiswal",slug:"aman-jaiswal",fullName:"Aman Jaiswal",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Science Education and Research Mohali",country:{name:"India"}}},{id:"445178",title:"Mr.",name:"Dhiraj",middleName:null,surname:"Dutta",slug:"dhiraj-dutta",fullName:"Dhiraj Dutta",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Defence Research Laboratory",country:{name:"India"}}},{id:"445180",title:"Dr.",name:"Rama",middleName:null,surname:"Dubey",slug:"rama-dubey",fullName:"Rama Dubey",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Defence Research Laboratory",country:{name:"India"}}},{id:"424992",title:"Dr.",name:"Mohamed",middleName:null,surname:"Helal",slug:"mohamed-helal",fullName:"Mohamed Helal",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Institute of Oceanography and Fisheries",country:{name:"Egypt"}}},{id:"428329",title:"Mr.",name:"Collet",middleName:null,surname:"Maswanganyi",slug:"collet-maswanganyi",fullName:"Collet Maswanganyi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Limpopo",country:{name:"South Africa"}}},{id:"428546",title:"MSc.",name:"Ndivhuwo",middleName:null,surname:"Shumbula",slug:"ndivhuwo-shumbula",fullName:"Ndivhuwo Shumbula",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of the Witwatersrand",country:{name:"South Africa"}}},{id:"352155",title:"Dr.",name:"Poslet",middleName:"Morgan",surname:"Shumbula",slug:"poslet-shumbula",fullName:"Poslet Shumbula",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Limpopo",country:{name:"South Africa"}}},{id:"435064",title:"Dr.",name:"Mohammadtaghi",middleName:null,surname:"Vakili",slug:"mohammadtaghi-vakili",fullName:"Mohammadtaghi Vakili",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Yangtze Normal University",country:{name:"China"}}},{id:"437268",title:"Dr.",name:"Linda Lunga",middleName:null,surname:"Sibali",slug:"linda-lunga-sibali",fullName:"Linda Lunga Sibali",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437269",title:"Dr.",name:"Peter P.",middleName:null,surname:"Ndibewu",slug:"peter-p.-ndibewu",fullName:"Peter P. Ndibewu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"424106",title:"Ph.D. Student",name:"Siyabonga",middleName:null,surname:"Aubrey Mhlongo",slug:"siyabonga-aubrey-mhlongo",fullName:"Siyabonga Aubrey Mhlongo",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"424233",title:"Ph.D. Student",name:"Ifeoluwa Oluwafunmilayo",middleName:null,surname:"Daramola",slug:"ifeoluwa-oluwafunmilayo-daramola",fullName:"Ifeoluwa Oluwafunmilayo Daramola",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"446429",title:"Dr.",name:"Dev Vrat",middleName:null,surname:"Kamboj",slug:"dev-vrat-kamboj",fullName:"Dev Vrat Kamboj",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"425585",title:"Dr.",name:"NISHA",middleName:null,surname:"GAUR",slug:"nisha-gaur",fullName:"NISHA GAUR",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"226635",title:"Prof.",name:"Amany",middleName:null,surname:"El-Sikaily",slug:"amany-el-sikaily",fullName:"Amany El-Sikaily",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"435668",title:"Dr.",name:"Sara",middleName:null,surname:"Ghanem",slug:"sara-ghanem",fullName:"Sara Ghanem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"426808",title:"Associate Prof.",name:"Yesim",middleName:null,surname:"Gucbilmez",slug:"yesim-gucbilmez",fullName:"Yesim Gucbilmez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"423291",title:"Assistant Prof.",name:"Giovanni",middleName:null,surname:"Cagnetta",slug:"giovanni-cagnetta",fullName:"Giovanni Cagnetta",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]}},subseries:{item:{id:"19",type:"subseries",title:"Animal Science",keywords:"Animal Science, Animal Biology, Wildlife Species, Domesticated Animals",scope:"The Animal Science topic welcomes research on captive and wildlife species, including domesticated animals. The research resented can consist of primary studies on various animal biology fields such as genetics, nutrition, behavior, welfare, and animal production, to name a few. Reviews on specialized areas of animal science are also welcome.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/19.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11415,editor:{id:"259298",title:"Dr.",name:"Edward",middleName:null,surname:"Narayan",slug:"edward-narayan",fullName:"Edward Narayan",profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",biography:"Dr. Edward Narayan graduated with Ph.D. degree in Biology from the University of the South Pacific and pioneered non-invasive reproductive and stress endocrinology tools for amphibians - the novel development and validation of non-invasive enzyme immunoassays for the evaluation of reproductive hormonal cycle and stress hormone responses to environmental stressors. \nDr. Narayan leads the Stress Lab (Comparative Physiology and Endocrinology) at the University of Queensland. A dynamic career research platform which is based on the thematic areas of comparative vertebrate physiology, stress endocrinology, reproductive endocrinology, animal health and welfare, and conservation biology. \nEdward has supervised 40 research students and published over 60 peer reviewed research.",institutionString:null,institution:{name:"University of Queensland",institutionURL:null,country:{name:"Australia"}}},editorTwo:null,editorThree:null,series:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517"},editorialBoard:[{id:"258334",title:"Dr.",name:"Carlos Eduardo",middleName:null,surname:"Fonseca-Alves",slug:"carlos-eduardo-fonseca-alves",fullName:"Carlos Eduardo Fonseca-Alves",profilePictureURL:"https://mts.intechopen.com/storage/users/258334/images/system/258334.jpg",institutionString:null,institution:{name:"Universidade Paulista",institutionURL:null,country:{name:"Brazil"}}},{id:"191123",title:"Dr.",name:"Juan José",middleName:null,surname:"Valdez-Alarcón",slug:"juan-jose-valdez-alarcon",fullName:"Juan José Valdez-Alarcón",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBfcQAG/Profile_Picture_1631354558068",institutionString:"Universidad Michoacana de San Nicolás de Hidalgo",institution:{name:"Universidad Michoacana de San Nicolás de Hidalgo",institutionURL:null,country:{name:"Mexico"}}},{id:"161556",title:"Dr.",name:"Maria Dos Anjos",middleName:null,surname:"Pires",slug:"maria-dos-anjos-pires",fullName:"Maria Dos Anjos Pires",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS8q2QAC/Profile_Picture_1633432838418",institutionString:null,institution:{name:"University of Trás-os-Montes and Alto Douro",institutionURL:null,country:{name:"Portugal"}}},{id:"209839",title:"Dr.",name:"Marina",middleName:null,surname:"Spinu",slug:"marina-spinu",fullName:"Marina Spinu",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRLXpQAO/Profile_Picture_1630044895475",institutionString:null,institution:{name:"University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca",institutionURL:null,country:{name:"Romania"}}},{id:"92185",title:"Dr.",name:"Sara",middleName:null,surname:"Savic",slug:"sara-savic",fullName:"Sara Savic",profilePictureURL:"https://mts.intechopen.com/storage/users/92185/images/system/92185.jfif",institutionString:'Scientific Veterinary Institute "Novi Sad"',institution:{name:'Scientific Veterinary Institute "Novi Sad"',institutionURL:null,country:{name:"Serbia"}}}]},onlineFirstChapters:{paginationCount:1,paginationItems:[{id:"81813",title:"Schistosomiasis: Discovery of New Molecules for Disease Treatment and Vaccine Development",doi:"10.5772/intechopen.104738",signatures:"Andressa Barban do Patrocinio",slug:"schistosomiasis-discovery-of-new-molecules-for-disease-treatment-and-vaccine-development",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}}]},publishedBooks:{paginationCount:0,paginationItems:[]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"4",title:"Fungal Infectious Diseases",scope:"Fungi are ubiquitous and there are almost no non-pathogenic fungi. Fungal infectious illness prevalence and prognosis are determined by the exposure between fungi and host, host immunological state, fungal virulence, and early and accurate diagnosis and treatment. \r\nPatients with both congenital and acquired immunodeficiency are more likely to be infected with opportunistic mycosis. Fungal infectious disease outbreaks are common during the post- disaster rebuilding era, which is characterised by high population density, migration, and poor health and medical conditions.\r\nSystemic or local fungal infection is mainly associated with the fungi directly inhaled or inoculated in the environment during the disaster. The most common fungal infection pathways are human to human (anthropophilic), animal to human (zoophilic), and environment to human (soilophile). Diseases are common as a result of widespread exposure to pathogenic fungus dispersed into the environment. \r\nFungi that are both common and emerging are intertwined. In Southeast Asia, for example, Talaromyces marneffei is an important pathogenic thermally dimorphic fungus that causes systemic mycosis. Widespread fungal infections with complicated and variable clinical manifestations, such as Candida auris infection resistant to several antifungal medicines, Covid-19 associated with Trichoderma, and terbinafine resistant dermatophytosis in India, are among the most serious disorders. \r\nInappropriate local or systemic use of glucocorticoids, as well as their immunosuppressive effects, may lead to changes in fungal infection spectrum and clinical characteristics. Hematogenous candidiasis is a worrisome issue that affects people all over the world, particularly ICU patients. CARD9 deficiency and fungal infection have been major issues in recent years. Invasive aspergillosis is associated with a significant death rate. Special attention should be given to endemic fungal infections, identification of important clinical fungal infections advanced in yeasts, filamentous fungal infections, skin mycobiome and fungal genomes, and immunity to fungal infections.\r\nIn addition, endemic fungal diseases or uncommon fungal infections caused by Mucor irregularis, dermatophytosis, Malassezia, cryptococcosis, chromoblastomycosis, coccidiosis, blastomycosis, histoplasmosis, sporotrichosis, and other fungi, should be monitored. \r\nThis topic includes the research progress on the etiology and pathogenesis of fungal infections, new methods of isolation and identification, rapid detection, drug sensitivity testing, new antifungal drugs, schemes and case series reports. It will provide significant opportunities and support for scientists, clinical doctors, mycologists, antifungal drug researchers, public health practitioners, and epidemiologists from all over the world to share new research, ideas and solutions to promote the development and progress of medical mycology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",keywords:"Emerging Fungal Pathogens, Invasive Infections, Epidemiology, Cell Membrane, Fungal Virulence, Diagnosis, Treatment"},{id:"5",title:"Parasitic Infectious Diseases",scope:"Parasitic diseases have evolved alongside their human hosts. In many cases, these diseases have adapted so well that they have developed efficient resilience methods in the human host and can live in the host for years. Others, particularly some blood parasites, can cause very acute diseases and are responsible for millions of deaths yearly. Many parasitic diseases are classified as neglected tropical diseases because they have received minimal funding over recent years and, in many cases, are under-reported despite the critical role they play in morbidity and mortality among human and animal hosts. The current topic, Parasitic Infectious Diseases, in the Infectious Diseases Series aims to publish studies on the systematics, epidemiology, molecular biology, genomics, pathogenesis, genetics, and clinical significance of parasitic diseases from blood borne to intestinal parasites as well as zoonotic parasites. We hope to cover all aspects of parasitic diseases to provide current and relevant research data on these very important diseases. In the current atmosphere of the Coronavirus pandemic, communities around the world, particularly those in different underdeveloped areas, are faced with the growing challenges of the high burden of parasitic diseases. At the same time, they are faced with the Covid-19 pandemic leading to what some authors have called potential syndemics that might worsen the outcome of such infections. Therefore, it is important to conduct studies that examine parasitic infections in the context of the coronavirus pandemic for the benefit of all communities to help foster more informed decisions for the betterment of human and animal health.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",keywords:"Blood Borne Parasites, Intestinal Parasites, Protozoa, Helminths, Arthropods, Water Born Parasites, Epidemiology, Molecular Biology, Systematics, Genomics, Proteomics, Ecology"},{id:"6",title:"Viral Infectious Diseases",scope:"The Viral Infectious Diseases Book Series aims to provide a comprehensive overview of recent research trends and discoveries in various viral infectious diseases emerging around the globe. The emergence of any viral disease is hard to anticipate, which often contributes to death. A viral disease can be defined as an infectious disease that has recently appeared within a population or exists in nature with the rapid expansion of incident or geographic range. This series will focus on various crucial factors related to emerging viral infectious diseases, including epidemiology, pathogenesis, host immune response, clinical manifestations, diagnosis, treatment, and clinical recommendations for managing viral infectious diseases, highlighting the recent issues with future directions for effective therapeutic strategies.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",keywords:"Novel Viruses, Virus Transmission, Virus Evolution, Molecular Virology, Control and Prevention, Virus-host Interaction"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 18th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:287,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRqB9QAK/Profile_Picture_1626163237970",institutionString:null,institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/414424",hash:"",query:{},params:{id:"414424"},fullPath:"/profiles/414424",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()