A significant increase in inflammation has been shown to be a crucial factor in the progression of the Alzheimer’s disease (AD). Moreover, inflammatory signals are already present in mild cognitive impairment (MCI) patients before they develop AD. The amyloid hypothesis argues that in AD, there is an increase in oxidative stress caused by the accumulation of β-amyloid (Aβ) and that its elimination should be a priority. Also, hyperphosphorylation of the protein TAU occurs, which is characteristic of this disease. In AD oxidative stress processes occur and also inflammation. The basal chronic inflammation produces a cascade of cellular, such as astrocytes and microglial cells, and molecular processes in AD patients. We here have tried to explore the action of the inflammatory process and its implication in the neurodegenerative process of the AD. We can see that the role of Aβ is only one component that gives rise to inflammation, probably mediated by activation of microglia and astrocytes with the goal of getting rid of these brain waste products. In fact, it is related to a greater degree with the progression of the disease and worsening of the symptoms with the increase of phosphorylated TAU in different parts of the brain.
Part of the book: Glia in Health and Disease