The article presents a method for extracting predicate-argument constructions characterizing the composition of the structural elements of the inventions and the relationships between them. The extracted structures are converted into a domain ontology and used in prior art patent search and information support of automated invention. The analysis of existing natural language processing (NLP) tools in relation to the processing of Russian-language patents has been carried out. A new method for extracting structured data from patents has been proposed taking into account the specificity of the text of patents and is based on the shallow parsing and segmentation of sentences. The value of the F1 metric for a rigorous estimate of data extraction is 63% and for a lax estimate is 79%. The results obtained suggest that the proposed method is promising.
Part of the book: Statistical Methodologies