Attempt has been made to investigate the experimental process and surface roughness (SR) optimization of cold working (high carbon and high chromium) hard die steel (D2) during wire electrical discharge machining processes (WEDM). It is very difficult to determine optimal cutting parameters for improving cutting performance has been reported. Wire electrical discharge machining process relies heavily on the operators’ technologies and experience because of their numerous and diverse range as using complicated cuts can made through difficult to machine electrically conductive components, WEDM process was developed to generate precise cutting on complicate, hard and difficult to machine materials. Tan-sigmoid and purlin transfer functional with bias based four layered back propagation artificial neural network (BPANN) approach have been used to investigate the effect of six independent parameters namely gap voltage (Vg), flush rate (Fr), Pulse on time (Ton), pulse off time (Toff), wire feed (Wf) and wire tension (Wt) over CLA value of surface roughness (Ra) along with corresponding material removal rate (MRR). A fractional factorial design of experiment of three level were employed to conduct 80 rows of experiment on (D2) steel with chrome coated copper alloy wire electrode. The predicted response, CLA values of SR and corresponding MRR were observed by the approach of BPANN from experimental (55 rows for training, 15 rows for validation and 10 for testing) data. Software instructed programme has been used individually for training, validation and testing in MATLAB 2010a to find the corresponding prediction output. Two fold cross over technique (TFCT) were used to developed distinguish (S1 and S2) models and also developed more models depending on numbers of neurons used in primary and secondary hidden layers. The model adequacy is very satisfactory as correlation coefficient (R2) is found to be 99.1% and adjusted (Radj.2) statistics is 98.5. It is found those spark time ON/OFF, wire feed rate, wire tension, gap voltage and flush rate and few of their interactions have significant effect on SR.
Part of the book: Applied Surface Science