Gold nanoshells (GNSs), formed by a silica core surrounded by a gold shell, present a shift on their surface plasmon resonance (SPR) to the near-infrared (NIR) part of the electromagnetic spectrum when synthesized with specific dimensions. This chapter presents a simple method to prepare the nanoshells, a step-by-step characterization, as well as their absorbance spectrum. For the synthesis, silica spheres, with approximately 190 ± 5 nm in diameter, were prepared using the Stöber method and then functionalized with 3-aminopropyltriethoxysilane (APTES). The gold nanoparticles (GNPs), with a diameter of 7 ± 3 nm, were produced by the reduction of chloroauric acid. Then, the silica was seeded with the GNPs to later grow a gold shell with the help of Au(OH)4¯ ions and formaldehyde. UV-Vis spectroscopy results showed an increase of absorbance starting at 520 nm. It reached its maximum around 600 nm and kept absorbing all through 1200 nm. Transmission electron microscope (TEM) and scanning electron microscope (SEM) images suggest that the absorption peak movement coincided with the completion of the shell. Furthermore, when the sample was irradiated with an 820 nm wavelength/3.1 mW laser, its temperatures increased by 6.3°C in 2 min, showing its absorbance in the NIR.
Part of the book: Current Topics in Biochemical Engineering