The aim of this study is to coat a stretching cylinder with the help of a liquid film spray. The Casson fluid has been chosen for the coating phenomena. The thickness of the liquid film has been used as variable, and the influence of heat and mass transmission under the impact of thermophoresis has been encountered in the flow field. The required pressure term for the spray pattern during variable thickness has mainly been focused. Using the suitable similarity transformations, the basic flow equations for the fluid motion have been converted into high-order nonlinear coupled differential equations. Series solutions of subsequent problem have been obtained using controlling procedure optimal approach. Important physical constraints of skin friction, Nusselt number, and Sherwood number have been calculated numerically and discussed. Other physical parameters involved in the problem, i.e., Reynolds number Re , Casson fluid parameter β 1 , Prandtl number Pr , Lewis number Le , Brownian motion parameter N b , and thermophoresis parameter N t have been illustrated. The skin friction effect and its physical appearance are also included in this work. The convergence is checked by plotting h-curves. The emerging parameters are discussed by plotting graphs. The recent work is also compared with the published work.
Part of the book: Fluid Flow Problems