Owing to the fact that severe thermal interferences exist in the radial and generatrix directions of the traditional cylinder helix energy pile due to the limited thermal heat capacity of the pile and small ratio between coil pitch and radius of pile, therefore, a novel truncated cone helix energy pile (CoHEP) is presented to weaken the thermal interferences and improve the heat transfer efficiency. Further, both the analytical solution model and numerical solution model for CoHEP are built to discuss the dynamic characteristics of thermal interferences and heat transfer performance. The results indicate that the thermal interference of CoHEP is dynamic. The thermal interference in the upper part of the CoHEP is much smaller than the traditional CyHEP. And in general the heat flux per unit pipe length of the novel CoHEP is larger than that of the traditional CyHEP. Heat flux per unit pipe length of the CoHEP increases linearly with inlet water temperature. For the same inlet water temperature, the thermal short circuit is serious at the bottom of the CoHEP, and it’s weak in the upper part of CoHEP. Also it’s obvious that as the inlet water temperature increases, the thermal short circuit becomes more serious.
Part of the book: Heat Transfer