Grinding is an indispensable form of machining, in which, a large amount of heat is transferred into workpiece surface, causing surface burn of the workpiece. Flood grinding is easy to cause pollution to the environment while dry grinding and minimum quantity lubrication (MQL) is insufficient of cooling and lubrication effect. The appearance of nanofluid minimum quantity lubrication cooling (NMQLC) technique can effectively solve the problem of heat transfer in grinding zone and also enhance the lubrication characteristics. In this chapter, NMQLC technique, including nanofluid preparation and atomization is summarized first; then a review on the mechanism of grinding thermodynamics under NMQLC condition is presented based on published literatures. Most of the studies, including investigation of grinding forces and temperatures, indicate that NMQLC has realized a lubrication-cooling effect close to that of flood lubrication. According to existing investigations, theoretical models of temperature field are concluded, heat source distribution model, thermal distribution coefficient model, and heat transfer coefficient model under NMQLC condition are developed, and temperature field control equation are determined. This chapter reviews and amasses the current state of the mechanism of grinding thermodynamics and also recommends ways to precision control the grinding temperature field.
Part of the book: Microfluidics and Nanofluidics