In this study, pyrolysis was used to upgrade the agricultural biomass waste (ABW) and increase its energy at pyrolysis temperatures ranging from 350 to 950°C and a residence time of 60 minutes. The produced biochars were characterized and their fuel qualities (such as, fixed carbon & carbon percentage, gross calorific value, pH and surface area) were evaluated. Physiochemical analysis showed that the biochar has improved fuel qualities compared to the raw biomass, such as decreased volatile matter, increased carbon content, pH and its gross calorific value with lower ash content. The evolution of derived biochar, as determined by TG-DTG and FT-IR, showed that most hemicellulose and cellulose were decomposed at below 350°C while the decomposition of lignin only occurs at higher pyrolysis temperatures. The biochars had increased ignition temperatures and higher combustion temperature regions compared to raw biomass feedstock. The present study showed that pyrolysis pointed the differences in fuel qualities among different agricultural biomass feedstocks. It also compromises with a promising conversion process for the production of biochar which has an alternative, clean and environment friendly energy source.
Part of the book: Energy Systems and Environment